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Introduction



Windows Internals, Sixth Edition is intended
    for advanced computer professionals (both developers and system
    administrators) who want to understand how the core components of the
    Microsoft Windows 7 and Windows Server 2008 R2 operating systems work
    internally. With this knowledge, developers can better comprehend the
    rationale behind design choices when building applications specific to the
    Windows platform. Such knowledge can also help developers debug complex
    problems. System administrators can benefit from this information as well,
    because understanding how the operating system works “under the covers”
    facilitates understanding the performance behavior of the system and makes
    troubleshooting system problems much easier when things go wrong. After
    reading this book, you should have a better understanding of how Windows
    works and why it behaves as it does.

Structure of the Book



For the first time, Windows Internals has
      been divided into two parts. Updating the book for each release of
      Windows takes considerable time so producing it in two parts allows us
      to publish the first part earlier.
This book, Part 1, begins with two chapters that define key
      concepts, introduce the tools used in the book, and describe the overall
      system architecture and components. The next two chapters present key
      underlying system and management mechanisms. Part 1 wraps up by covering
      three core components of the operating system: processes, threads, and
      jobs; security; and networking.
Part 2, which is available separately, covers the remaining core
      subsystems: I/O, storage, memory management, the cache manager, and file
      systems. Part 2 concludes with a description of the startup and shutdown
      processes and a description of crash-dump analysis.

History of the Book



This is the sixth edition of a book that was originally called
      Inside Windows NT (Microsoft Press, 1992), written
      by Helen Custer (prior to the initial release of Microsoft Windows NT
      3.1). Inside Windows NT was the first book ever
      published about Windows NT and provided key insights into the
      architecture and design of the system. Inside Windows NT,
      Second Edition (Microsoft Press, 1998) was written by David
      Solomon. It updated the original book to cover Windows NT 4.0 and had a
      greatly increased level of technical depth.
Inside Windows 2000, Third Edition (Microsoft
      Press, 2000) was authored by David Solomon and Mark Russinovich. It
      added many new topics, such as startup and shutdown, service internals,
      registry internals, file-system drivers, and networking. It also covered
      kernel changes in Windows 2000, such as the Windows Driver Model (WDM),
      Plug and Play, power management, Windows Management Instrumentation
      (WMI), encryption, the job object, and Terminal Services.
      Windows Internals, Fourth Edition was the Windows
      XP and Windows Server 2003 update and added more content focused on
      helping IT professionals make use of their knowledge of Windows
      internals, such as using key tools from Windows Sysinternals
      (www.microsoft.com/technet/sysinternals)
      and analyzing crash dumps. Windows Internals, Fifth
      Edition was the update for Windows Vista and Windows Server
      2008. New content included the image loader, user-mode debugging
      facility, and Hyper-V.

Sixth Edition Changes



This latest edition has been updated to cover the kernel changes
      made in Windows 7 and Windows Server 2008 R2. Hands-on experiments have
      been updated to reflect changes in tools.

Hands-on Experiments



Even without access to the Windows source code, you can glean much
      about Windows internals from tools such as the kernel debugger and tools
      from Sysinternals and Winsider Seminars & Solutions. When a tool can
      be used to expose or demonstrate some aspect of the internal behavior of
      Windows, the steps for trying the tool yourself are listed in
      “EXPERIMENT” boxes. These appear throughout the book, and we encourage
      you to try these as you’re reading—seeing visible proof of how Windows
      works internally will make much more of an impression on you than just
      reading about it will.

Topics Not Covered



Windows is a large and complex operating system. This book doesn’t
      cover everything relevant to Windows internals but instead focuses on
      the base system components. For example, this book doesn’t describe
      COM+, the Windows distributed object-oriented programming
      infrastructure, or the Microsoft .NET Framework, the foundation of
      managed code applications.
Because this is an internals book and not a user, programming, or
      system administration book, it doesn’t describe how to use, program, or
      configure Windows.

A Warning and a Caveat



Because this book describes undocumented behavior of the internal
      architecture and the operation of the Windows operating system (such as
      internal kernel structures and functions), this content is subject to
      change between releases. (External interfaces, such as the Windows API,
      are not subject to incompatible changes.)
By “subject to change,” we don’t necessarily mean that details
      described in this book will change between releases, but you can’t count
      on them not changing. Any software that uses these undocumented
      interfaces might not work on future releases of Windows. Even worse,
      software that runs in kernel mode (such as device drivers) and uses
      these undocumented interfaces might experience a system crash when
      running on a newer release of Windows.
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Chapter 1. Concepts and Tools



In this chapter, we’ll introduce the key Microsoft Windows
    operating system concepts and terms we’ll be using throughout this book,
    such as the Windows API, processes, threads, virtual memory, kernel mode
    and user mode, objects, handles, security, and the registry. We’ll also
    introduce the tools that you can use to explore Windows internals, such as
    the kernel debugger, the Performance Monitor, and key tools from Windows
    Sysinternals (www.microsoft.com/technet/sysinternals).
    In addition, we’ll explain how you can use the Windows Driver Kit (WDK)
    and the Windows Software Development Kit (SDK) as resources for finding
    further information on Windows internals.
Be sure that you understand everything in this chapter—the remainder
    of the book is written assuming that you do.

Windows Operating System Versions



This book covers the most recent version of the Microsoft Windows
      client and server operating systems: Windows 7 (32-bit and 64-bit
      versions) and Windows Server 2008 R2 (64-bit version only). Unless
      specifically stated, the text applies to all versions. As background
      information, Table 1-1 lists
      the Windows product names, their internal version number, and their
      release date.
Table 1-1. Windows Operating System Releases
	Product Name
	Internal Version
              Number
	Release Date

	Windows NT 3.1
	3.1
	July 1993

	Windows NT 3.5
	3.5
	September 1994

	Windows NT 3.51
	3.51
	May 1995

	Windows NT 4.0
	4.0
	July 1996

	Windows 2000
	5.0
	December 1999

	Windows XP
	5.1
	August 2001

	Windows Server 2003
	5.2
	March 2003

	Windows Vista
	6.0 (Build 6000)
	January 2007

	Windows Server 2008
	6.0 (Build 6001)
	March 2008

	Windows 7
	6.1 (Build 7600)
	October 2009

	Windows Server 2008 R2
	6.1 (Build 7600)
	October 2009




Note
The “7” in the “Windows 7” product name does not refer
        to the internal version number, but is rather a generational index. In
        fact, to minimize application compatibility issues, the version number
        for Windows 7 is actually 6.1, as shown in Table 1-1. This allows
        applications checking for the major version number to continue
        behaving on Windows 7 as they did on Windows Vista. In fact, Windows 7
        and Server 2008 R2 have identical version/build numbers because they
        were built from the same Windows code base.


Foundation Concepts and Terms



In the course of this book, we’ll be referring to some structures
      and concepts that might be unfamiliar to some readers. In this section,
      we’ll define the terms we’ll be using throughout. You should become
      familiar with them before proceeding to subsequent chapters.
Windows API



The Windows application programming interface (API) is the
        user-mode system programming interface to the Windows operating system
        family. Prior to the introduction of 64-bit versions of Windows, the
        programming interface to the 32-bit versions of the Windows operating
        systems was called the Win32 API to distinguish
        it from the original 16-bit Windows API, which was the programming
        interface to the original 16-bit versions of Windows. In this book,
        the term Windows API refers to both the 32-bit
        and 64-bit programming interfaces to Windows.
Note
The Windows API is described in the Windows Software
          Development Kit (SDK) documentation. (See the section Windows Software Development Kit later in this
          chapter.) This documentation is available for free viewing online at
          www.msdn.microsoft.com.
          It is also included with all subscription levels to the Microsoft
          Developer Network (MSDN), Microsoft’s support program for
          developers. For more information, see www.msdn.microsoft.com.
          An excellent description of how to program the Windows base API is
          in the book Windows via C/C++, Fifth Edition by
          Jeffrey Richter and Christophe Nasarre (Microsoft Press,
          2007).

The Windows API consists of thousands of callable functions,
        which are divided into the following major categories:
	Base Services

	Component Services

	User Interface Services

	Graphics and Multimedia Services

	Messaging and Collaboration

	Networking

	Web Services



This book focuses on the internals of the key base services,
        such as processes and threads, memory management, I/O, and
        security.
What About .NET?
The Microsoft .NET Framework consists of a library of classes
          called the Framework Class Library (FCL) and a Common Language
          Runtime (CLR) that provides a managed code execution environment
          with features such as just-in-time compilation, type verification,
          garbage collection, and code access security. By offering these
          features, the CLR provides a development environment that improves
          programmer productivity and reduces common programming errors. For
          an excellent description of the .NET Framework and its core
          architecture, see CLR via C#, Third Edition by
          Jeffrey Richter (Microsoft Press, 2010).
The CLR is implemented as a classic COM server whose code
          resides in a standard user-mode Windows DLL. In fact, all components
          of the .NET Framework are implemented as standard user-mode Windows
          DLLs layered over unmanaged Windows API functions. (None of the .NET
          Framework runs in kernel mode.) Figure 1-1 illustrates
          the relationship between these components:
[image: Relationship between .NET Framework components]

Figure 1-1. Relationship between .NET Framework components


History of the Win32 API
Interestingly, Win32 wasn’t slated to be the original
          programming interface to what was then called Windows NT. Because
          the Windows NT project started as a replacement for OS/2 version 2,
          the primary programming interface was the 32-bit OS/2 Presentation
          Manager API. A year into the project, however, Microsoft Windows 3.0
          hit the market and took off. As a result, Microsoft changed
          direction and made Windows NT the future replacement for the Windows
          family of products as opposed to the replacement for OS/2. It was at
          this juncture that the need to specify the Windows API arose—before
          this, in Windows 3.0, the API existed only as a 16-bit
          interface.
Although the Windows API would introduce many new functions
          that hadn’t been available on Windows 3.1, Microsoft decided to make
          the new API compatible with the 16-bit Windows API function names,
          semantics, and use of data types whenever possible to ease the
          burden of porting existing 16-bit Windows applications to Windows
          NT. This explains why many function names and interfaces might seem
          inconsistent: –this was required to ensure that the then new Windows
          API was compatible with the old 16-bit Windows API.


Services, Functions, and Routines



Several terms in the Windows user and programming documentation
        have different meanings in different contexts. For example, the word
        service can refer to a callable routine in the
        operating system, a device driver, or a server process. The following
        list describes what certain terms mean in this book:
	Windows API
              functions. Documented, callable subroutines in the Windows API.
              Examples include CreateProcess,
              CreateFile, and
              GetMessage.

	Native system services (or system
              calls). The undocumented, underlying services in the operating
              system that are callable from user mode. For example,
              NtCreateUserProcess is the internal system
              service the Windows CreateProcess function
              calls to create a new process. For a definition of
              system calls, see the section System Service Dispatching in Chapter 3.

	Kernel support functions (or
              routines). Subroutines inside the Windows operating system that can
              be called only from kernel mode (defined later in this chapter).
              For example, ExAllocatePoolWithTag is the
              routine that device drivers call to allocate memory from the
              Windows system heaps (called pools).

	Windows
              services. Processes started by the Windows service control manager.
              For example, the Task Scheduler service runs in a user-mode
              process that supports the at command (which
              is similar to the UNIX commands
              at or cron). (Note:
              although the registry defines Windows device drivers as
              “services,” they are not referred to as such in this
              book.)

	DLLs (dynamic-link
              libraries). A set of callable subroutines linked together as a binary
              file that can be dynamically loaded by applications that use the
              subroutines. Examples include Msvcrt.dll (the C run-time
              library) and Kernel32.dll (one of the Windows API subsystem
              libraries). Windows user-mode components and applications use
              DLLs extensively. The advantage DLLs provide over static
              libraries is that applications can share DLLs, and Windows
              ensures that there is only one in-memory copy of a DLL’s code
              among the applications that are referencing it. Note that
              nonexecutable .NET assemblies are compiled as DLLs but without
              any exported subroutines. Instead, the CLR parses compiled
              metadata to access the corresponding types and members.




Processes, Threads, and Jobs



Although programs and processes appear similar on the surface,
        they are fundamentally different. A program is a
        static sequence of instructions, whereas a
        process is a container for a set of resources
        used when executing the instance of the program. At the highest level
        of abstraction, a Windows process comprises the following:
	A private virtual address space, which
            is a set of virtual memory addresses that the process can
            use

	An executable program, which defines initial code and data
            and is mapped into the process’ virtual address space

	A list of open handles to various system resources—such as
            semaphores, communication ports, and files—that are accessible to
            all threads in the process

	A security context called an access
            token that identifies the user, security groups,
            privileges, User Account Control (UAC) virtualization state,
            session, and limited user account state associated with the
            process

	A unique identifier called a process ID
            (internally part of an identifier called a client
            ID)

	At least one thread of execution (although an “empty”
            process is possible, it is not useful)



Each process also points to its parent or creator process. If
        the parent no longer exists, this information is not updated.
        Therefore, it is possible for a process to refer to a nonexistent
        parent. This is not a problem, because nothing relies on this
        information being kept current. In the case of ProcessExplorer, the
        start time of the parent process is taken into account to avoid
        attaching a child process based on a reused process ID. The following
        experiment illustrates this behavior.
EXPERIMENT: Viewing the Process Tree
One unique attribute about a process that most tools
          don’t display is the parent or creator process ID. You can retrieve
          this value with the Performance Monitor (or programmatically) by
          querying the Creating Process ID. The Tlist.exe tool (in the
          Debugging Tools for Windows) can show the process tree by using the
          /t switch. Here’s an example of output from
          tlist /t:
C:\>tlist /t
System Process (0)
System (4)
  smss.exe (224)
csrss.exe (384)
csrss.exe (444)
  conhost.exe (3076) OleMainThreadWndName
winlogon.exe (496)
wininit.exe (504)
  services.exe (580)
    svchost.exe (696)
    svchost.exe (796)
    svchost.exe (912)
    svchost.exe (948)
    svchost.exe (988)
    svchost.exe (244)
      WUDFHost.exe (1008)
      dwm.exe (2912) DWM Notification Window
    btwdins.exe (268)
    svchost.exe (1104)
    svchost.exe (1192)
    svchost.exe (1368)
    svchost.exe (1400)
    spoolsv.exe (1560)
    svchost.exe (1860)
    svchost.exe (1936)
    svchost.exe (1124)
    svchost.exe (1440)
    svchost.exe (2276)
    taskhost.exe (2816) Task Host Window
    svchost.exe (892)
  lsass.exe (588)
  lsm.exe (596)
explorer.exe (2968) Program Manager
  cmd.exe (1832) Administrator: C:\Windows\system32\cmd.exe - "c:\tlist.exe"  /t
    tlist.exe (2448)
The list indents each process to show its parent/child
          relationship. Processes whose parents aren’t alive are
          left-justified (as is Explorer.exe in the preceding example) because
          even if a grandparent process exists, there’s no way to find that
          relationship. Windows maintains only the creator process ID, not a
          link back to the creator of the creator, and so forth.
To demonstrate the fact that Windows doesn’t keep
          track of more than just the parent process ID, follow these
          steps:
	Open a Command Prompt window.

	Type title Parent (to
              change the window title to Parent).

	Type start cmd (which
              starts a second command prompt).

	Type title Child in the
              second command prompt.

	Bring up Task Manager.

	Type mspaint (which
              runs Microsoft Paint) in the second command prompt.

	Go back to the second command prompt and type exit. (Notice that Paint
              remains.)

	Switch to Task Manager.

	Click on the Applications tab.

	Right-click on the Parent task, and select Go To
              Process.

	Right-click on this cmd.exe process, and select End
              Process Tree.

	Click End Process Tree in the Task Manager confirmation
              message box.



The first command prompt window will disappear, but you should
          still see the Paint window because it was the grandchild of the
          command prompt process you terminated; and because the intermediate
          process (the parent of Paint) was terminated, there was no link
          between the parent and the grandchild.

A number of tools for viewing (and modifying) processes and
        process information are available. The following experiments
        illustrate the various views of process information you can obtain
        with some of these tools. While many of these tools are included
        within Windows itself and within the Debugging Tools for Windows and
        the Windows SDK, others are stand-alone tools from Sysinternals. Many
        of these tools show overlapping subsets of the core process and thread
        information, sometimes identified by different names.
Probably the most widely used tool to examine process activity
        is Task Manager. (Because there is no such thing as a “task” in the
        Windows kernel, the name of this tool, Task Manager, is a bit odd.)
        The following experiment shows the difference between what Task
        Manager lists as applications and processes.
EXPERIMENT: Viewing Process Information with Task
          Manager
The built-in Windows Task Manager provides a quick
          list of the processes on the system. You can start Task Manager in
          one of four ways: (1) press Ctrl+Shift+Esc, (2) right-click on the
          taskbar and click Start Task Manager, (3) press Ctrl+Alt+Delete and
          click the Start Task Manager button, or (4) start the executable
          Taskmgr.exe. Once Task Manager has started, click on the Processes
          tab to see the list of processes. Notice that processes are
          identified by the name of the image of which they are an instance.
          Unlike some objects in Windows, processes can’t be given global
          names. To display additional details, choose Select Columns from the
          View menu and select additional columns to be added, as shown
          here:
[image: image with no caption]

Although the Task Manager Processes tab shows a list of
          processes, what the Applications tab displays isn’t as obvious. The
          Applications tab lists the top-level visible windows on all the
          desktops in the interactive window station you are connected to. (By
          default, there is only one interactive desktop—an application can
          create more by using the Windows CreateDesktop
          function, as is done by the Sysinternals Desktops tool.) The Status
          column indicates whether or not the thread that owns the window is
          in a window message wait state. “Running” means the thread is
          waiting for windowing input; “Not Responding” means the thread isn’t
          waiting for windowing input (for example, the thread might be
          running or waiting for I/O or some Windows synchronization
          object).
[image: image with no caption]

On the Applications tab, you can match a task to the
          process that owns the thread that owns the task window by
          right-clicking on the task name and choosing Go To Process as shown
          in the previous tlist experiment.

Process Explorer, from Sysinternals, shows more details about
        processes and threads than any other available tool, which is why you
        will see it used in a number of experiments throughout the book. The
        following are some of the unique things that Process Explorer shows or
        enables:
	Process security token (such as lists of groups and
            privileges and the virtualization state)

	Highlighting to show changes in the process and thread
            list

	List of services inside service-hosting processes, including
            the display name and description

	Processes that are part of a job and job details

	Processes hosting .NET applications and .NET-specific
            details (such as the list of AppDomains, loaded assemblies, and
            CLR performance counters)

	Start time for processes and threads

	Complete list of memory-mapped files (not just DLLs)

	Ability to suspend a process or a thread

	Ability to kill an individual thread

	Easy identification of which processes were
            consuming the most CPU time over a period of time (The Performance
            Monitor can display process CPU utilization for a given set of
            processes, but it won’t automatically show processes created after
            the performance monitoring session has started—only a manual trace
            in binary output format can do that.)



Process Explorer also provides easy access to information in one
        place, such as:
	Process tree (with the ability to collapse parts of the
            tree)

	Open handles in a process (including unnamed handles)

	List of DLLs (and memory-mapped files) in a process

	Thread activity within a process

	User-mode and kernel-mode thread stacks (including the
            mapping of addresses to names using the Dbghelp.dll that comes
            with the Debugging Tools for Windows)

	More accurate CPU percentage using the thread cycle count
            (an even better representation of precise CPU activity, as
            explained in Chapter 5)

	Integrity level

	Memory manager details such as peak commit charge and kernel
            memory paged and nonpaged pool limits (other tools show only
            current size)



An introductory experiment using Process Explorer
        follows.
EXPERIMENT: Viewing Process Details with Process
          Explorer
Download the latest version of Process Explorer from
          Sysinternals and run it. The first time you run it and go to the the
          Threads tab of a process’ property page, you will receive a message
          that symbols are not currently configured. If properly configured,
          Process Explorer can access symbol information to display the
          symbolic name of the thread start function and functions on a
          thread’s call stack (available by double-clicking on a process and
          clicking on the Threads tab). This is useful for identifying what
          threads are doing within a process. To access symbols, you must have
          the Debugging Tools for Windows installed (described later in this
          chapter). Then click on Options, choose Configure Symbols, and fill
          in the path to the Dbghelp.dll in the Debugging Tools folder and a
          valid symbol path. For example, on a 64-bit system this
          configuration is correct:
[image: image with no caption]

In the preceding example, the on-demand symbol server
          is being used to access symbols and a copy of the symbol files is
          being stored on the local machine in the c:\symbols folder. For more
          information on configuring the use of the symbol server, see
          http://msdn.microsoft.com/en-us/windows/hardware/hh852360.aspx.
When Process Explorer starts, it shows by default the process
          tree view. It has an optional lower pane that can show open handles
          or mapped DLLs and memory-mapped files. (These are explored in Chapter 3 in Part 1 and Chapter 10, “Memory
          Management” in Part 2.) It also shows tooltips for several kinds of
          hosting processes:
	The services inside a service-hosting process
              (Svchost.exe) if you hover your mouse over the name

	The COM object tasks inside a Taskeng.exe process (started
              by the Task Scheduler)

	The target of a Rundll32.exe process (used for things such
              as Control Panel items)

	The COM object being hosted inside a Dllhost.exe
              process

	Internet Explorer tab processes

	Console host processes



[image: image with no caption]

Here are a few steps to walk you through some basic
          capabilities of Process Explorer:
	Notice that processes hosting services are highlighted by
              default in pink. Your own processes are highlighted in blue.
              (These colors can be configured.)

	Hover your mouse pointer over the image name for
              processes, and notice the full path displayed by the tooltip. As
              noted earlier, certain types of processes have additional
              details in the tooltip.

	Click on View, Select Columns from the Process Image tab,
              and add the image path.

	Sort by clicking on the process column, and notice the
              tree view disappears. (You can either display tree view or sort
              by any of the columns shown.) Click again to sort from Z to A.
              Then click again, and the display returns to tree view.

	Deselect View, Show Processes From All Users to show only
              your processes.

	Go to Options, Difference Highlight Duration, and change
              the value to 5 seconds. Then launch a new process (anything),
              and notice the new process highlighted in green for 5 seconds.
              Exit this new process, and notice the process is highlighted in
              red for 5 seconds before disappearing from the display. This can
              be useful to see processes being created and exiting on your
              system.

	Finally, double-click on a process and explore the various
              tabs available from the process properties display. (These will
              be referenced in various experiments throughout the book where
              the information being shown is being explained.)




A thread is the entity within a process
        that Windows schedules for execution. Without it, the process’ program
        can’t run. A thread includes the following essential
        components:
	The contents of a set of CPU registers representing the
            state of the processor.

	Two stacks—one for the thread to use while executing in
            kernel mode and one for executing in user mode.

	A private storage area called thread-local
            storage (TLS) for use by subsystems, run-time
            libraries, and DLLs.

	A unique identifier called a thread ID
            (part of an internal structure called a client
            ID—process IDs and thread IDs are generated out of the
            same namespace, so they never overlap).

	Threads sometimes have their own security context, or token,
            that is often used by multithreaded server applications that
            impersonate the security context of the clients that they
            serve.



The volatile registers, stacks, and private storage area are
        called the thread’s context. Because this
        information is different for each machine architecture that Windows
        runs on, this structure, by necessity, is architecture-specific. The
        Windows GetThreadContext function provides access
        to this architecture-specific information (called the CONTEXT
        block).
Note
The threads of a 32-bit application running on a
          64-bit version of Windows will contain both 32-bit and 64-bit
          contexts, which Wow64 will use to switch the application from
          running in 32-bit to 64-bit mode when required. These threads will
          have two user stacks and two CONTEXT blocks, and the usual Windows
          API functions will return the 64-bit context instead. The
          Wow64GetThreadContext function, however, will
          return the 32-bit context. See Chapter 3
          for more information on Wow64.

Fibers and User-Mode Scheduler Threads
Because switching execution from one thread to another
          involves the kernel scheduler, it can be an expensive operation,
          especially if two threads are often switching between each other.
          Windows implements two mechanisms for reducing this cost:
          fibers and user-mode
          scheduling (UMS).
Fibers allow an application to schedule its own “threads” of
          execution rather than rely on the priority-based scheduling
          mechanism built into Windows. Fibers are often called “lightweight”
          threads, and in terms of scheduling, they’re invisible to the kernel
          because they’re implemented in user mode in Kernel32.dll. To use
          fibers, a call is first made to the Windows
          ConvertThreadToFiber function. This function
          converts the thread to a running fiber. Afterward, the newly
          converted fiber can create additional fibers with the
          CreateFiber function. (Each fiber can have its
          own set of fibers.) Unlike a thread, however, a fiber doesn’t begin
          execution until it’s manually selected through a call to the
          SwitchToFiber function. The new fiber runs
          until it exits or until it calls SwitchToFiber,
          again selecting another fiber to run. For more information, see the
          Windows SDK documentation on fiber functions.
UMS threads, which are available only for 64-bit applications
          on 64-bit versions of Windows, provide the same basic advantages as
          fibers, without many of the disadvantages. UMS threads have their
          own kernel thread state and are therefore visible to the kernel,
          which allows multiple UMS threads to issue blocking system calls,
          share and contend on resources, and have per-thread state. However,
          as long as two or more UMS threads only need to perform work in user
          mode, they can periodically switch execution contexts (by yielding
          from one thread to another) without involving the scheduler: the
          context switch is done in user mode. From the kernel’s perspective,
          the same kernel thread is still running and nothing has changed.
          When a UMS thread performs an operation that requires entering the
          kernel (such as a system call), it switches to its dedicated
          kernel-mode thread (called a directed context
          switch).

Although threads have their own execution context, every thread
        within a process shares the process’ virtual address space (in
        addition to the rest of the resources belonging to the process),
        meaning that all the threads in a process have full read-write access
        to the process virtual address space. Threads cannot accidentally
        reference the address space of another process, however, unless the
        other process makes available part of its private address space as a
        shared memory section (called a file mapping object in the
        Windows API) or unless one process has the right to open another
        process to use cross-process memory functions such as
        ReadProcessMemory and
        WriteProcessMemory.
In addition to a private address space and one or more threads,
        each process has a security context and a list of open handles to
        kernel objects such as files, shared memory sections, or one of the
        synchronization objects such as mutexes, events, or semaphores, as
        illustrated in Figure 1-2.
[image: A process and its resources]

Figure 1-2. A process and its resources

Each process’ security context is stored in an object called an
        access token. The process access token contains
        the security identification and credentials for the process. By
        default, threads don’t have their own access token, but they can
        obtain one, thus allowing individual threads to impersonate the
        security context of another process—including processes on a remote
        Windows system—without affecting other threads in the process. (See
        Chapter 6, for more details on process and
        thread security.)
The virtual address descriptors (VADs) are
        data structures that the memory manager uses to keep track of the
        virtual addresses the process is using. These data structures are
        described in more depth in Chapter 10 in Part 2.
Windows provides an extension to the process model called a
        job. A job object’s main function is to allow
        groups of processes to be managed and manipulated as a unit. A job
        object allows control of certain attributes and provides limits for
        the process or processes associated with the job. It also records
        basic accounting information for all processes associated with the job
        and for all processes that were associated with the job but have since
        terminated. In some ways, the job object compensates for the lack of a
        structured process tree in Windows—yet in many ways it is more
        powerful than a UNIX-style process tree.
You’ll find out much more about the internal structure of jobs,
        processes, and threads; the mechanics of process and thread creation;
        and the thread-scheduling algorithms in Chapter 5.

Virtual Memory



Windows implements a virtual memory system based on a
        flat (linear) address space that provides each process with the
        illusion of having its own large, private address space. Virtual
        memory provides a logical view of memory that might not correspond to
        its physical layout. At run time, the memory manager, with assistance
        from hardware, translates, or maps, the virtual
        addresses into physical addresses, where the data is actually stored.
        By controlling the protection and mapping, the operating system can
        ensure that individual processes don’t bump into one another or
        overwrite operating system data. Figure 1-3 illustrates
        three virtually contiguous pages mapped to three discontiguous pages
        in physical memory.
[image: Mapping virtual memory to physical memory]

Figure 1-3. Mapping virtual memory to physical memory

Because most systems have much less physical memory than the
        total virtual memory in use by the running processes, the memory
        manager transfers, or pages, some of the memory
        contents to disk. Paging data to disk frees physical memory so that it
        can be used for other processes or for the operating system itself.
        When a thread accesses a virtual address that has been paged to disk,
        the virtual memory manager loads the information back into memory from
        disk. Applications don’t have to be altered in any way to take
        advantage of paging because hardware support enables the memory
        manager to page without the knowledge or assistance of processes or
        threads.
The size of the virtual address space varies for each hardware
        platform. On 32-bit x86 systems, the total virtual address space has a
        theoretical maximum of 4 GB. By default, Windows allocates half this
        address space (the lower half of the 4-GB virtual address space, from
        0x00000000 through 0x7FFFFFFF) to processes for their unique private
        storage and uses the other half (the upper half, addresses 0x80000000
        through 0xFFFFFFFF) for its own protected operating system memory
        utilization. The mappings of the lower half change to reflect the
        virtual address space of the currently executing process, but the
        mappings of the upper half always consist of the operating system’s
        virtual memory. Windows supports boot-time options (the
        increaseuserva qualifier in the Boot
        Configuration Database, described in Chapter 13, “Startup and
        Shutdown,” in Part 2) that give processes running specially marked
        programs (the large address space aware flag must be set in the header
        of the executable image) the ability to use up to 3 GB of private
        address space (leaving 1 GB for the operating system). This option allows applications such
        as database servers to keep larger portions of a database in the
        process address space, thus reducing the need to map subset views of
        the database. Figure 1-4 shows the two
        typical virtual address space layouts supported by 32-bit Windows.
        (The increaseuserva option allows anywhere from 2
        to 3 GB to be used by marked applications.)
[image: Typical address space layouts for 32-bit Windows]

Figure 1-4. Typical address space layouts for 32-bit Windows

Although 3 GB is better than 2 GB, it’s still not enough virtual
        address space to map very large (multigigabyte) databases. To address
        this need on 32-bit systems, Windows provides a mechanism called
        Address Windowing Extension (AWE), which allows a
        32-bit application to allocate up to 64 GB of physical memory and then
        map views, or windows, into its 2-GB virtual address space. Although
        using AWE puts the burden of managing mappings of virtual to physical
        memory on the programmer, it does address the need of being able to
        directly access more physical memory than can be mapped at any one
        time in a 32-bit process address space.
64-bit Windows provides a much larger address space for
        processes: 7152 GB on IA-64 systems and 8192 GB on x64 systems. Figure 1-5 shows a
        simplified view of the 64-bit system address space layouts. (For a
        detailed description, see Chapter 10 in Part 2.) Note that these sizes
        do not represent the architectural limits for these platforms.
        Sixty-four bits of address space is over 17 billion GB, but current
        64-bit hardware limits this to smaller values. And Windows
        implementation limits in the current versions of 64-bit Windows
        further reduce this to 8192 GB (8 TB).
[image: Address space layouts for 64-bit Windows]

Figure 1-5. Address space layouts for 64-bit Windows

Details of the implementation of the memory manager, including
        how address translation works and how Windows manages physical memory,
        are described in Chapter 10 in Part 2.

Kernel Mode vs. User Mode



To protect user applications from accessing and/or
        modifying critical operating system data, Windows uses two processor
        access modes (even if the processor on which Windows is running
        supports more than two): user mode and
        kernel mode. User application code runs in user
        mode, whereas operating system code (such as system services and
        device drivers) runs in kernel mode. Kernel mode
        refers to a mode of execution in a processor that grants access to all
        system memory and all CPU instructions. By providing the operating
        system software with a higher privilege level than the application
        software has, the processor provides a necessary foundation for
        operating system designers to ensure that a misbehaving application
        can’t disrupt the stability of the system as a whole.
Note
The architectures of the x86 and x64 processors define four
          privilege levels (or rings) to protect system code and data from
          being overwritten either inadvertently or maliciously by code of
          lesser privilege. Windows uses privilege level 0 (or ring 0) for
          kernel mode and privilege level 3 (or ring 3) for user mode. The
          reason Windows uses only two levels is that some hardware
          architectures that were supported in the past (such as Compaq Alpha
          and Silicon Graphics MIPS) implemented only two privilege
          levels.

Although each Windows process has its own private memory space,
        the kernel-mode operating system and device driver code share a single
        virtual address space. Each page in virtual memory is tagged to
        indicate what access mode the processor must be in to read and/or
        write the page. Pages in system space can be accessed only from kernel
        mode, whereas all pages in the user address space are accessible from
        user mode. Read-only pages (such as those that contain static data)
        are not writable from any mode. Additionally, on processors that
        support no-execute memory protection, Windows marks pages containing
        data as nonexecutable, thus preventing inadvertent or malicious code
        execution in data areas.
32-bit Windows doesn’t provide any protection to private
        read/write system memory being used by components running in kernel
        mode. In other words, once in kernel mode, operating system and device
        driver code has complete access to system space memory and can bypass
        Windows security to access objects. Because the bulk of the Windows
        operating system code runs in kernel mode, it is vital that components
        that run in kernel mode be carefully designed and tested to ensure
        that they don’t violate system security or cause system
        instability.
This lack of protection also emphasizes the need to take care
        when loading a third-party device driver, because once in kernel mode
        the software has complete access to all operating system data. This
        weakness was one of the reasons behind the driver-signing mechanism
        introduced in Windows, which warns (and, if configured as such,
        blocks) the user if an attempt is made to add an unsigned Plug and
        Play driver. (See Chapter 8, “I/O System,” in Part 2 for more
        information on driver signing.) Also, a mechanism called Driver
        Verifier helps device driver writers to find bugs (such as buffer
        overruns or memory leaks) that can cause security or reliability
        issues. Driver Verifier is explained in Chapter 10 in Part 2.
On 64-bit versions of Windows, the Kernel Mode Code Signing
        (KMCS) policy dictates that any 64-bit device drivers (not just Plug
        and Play) must be signed with a cryptographic key assigned by
        one of the major code certification authorities. The
        user cannot explicitly force the installation of an unsigned driver,
        even as an administrator, but, as a one-time exception, this
        restriction can be disabled manually at boot time by pressing F8 and
        choosing the advanced boot option Disable Driver Signature
        Enforcement. This causes a watermark on the desktop wallpaper and
        certain digital rights management (DRM) features to be
        disabled.
As you’ll see in Chapter 2, user
        applications switch from user mode to kernel mode when they make a
        system service call. For example, a Windows
        ReadFile function eventually needs to call the
        internal Windows routine that actually handles reading data from a
        file. That routine, because it accesses internal system data
        structures, must run in kernel mode. The transition from user mode to
        kernel mode is accomplished by the use of a special processor
        instruction that causes the processor to switch to kernel mode and
        enter the system service dispatching code in the kernel which calls
        the appropriate internal function in Ntoskrnl.exe or Win32k.sys.
        Before returning control to the user thread, the processor mode is
        switched back to user mode. In this way, the operating system protects
        itself and its data from perusal and modification by user
        processes.
Note
A transition from user mode to kernel mode (and back) does
          not affect thread scheduling per se—a mode
          transition is not a context switch. Further
          details on system service dispatching are included in Chapter 3.

Thus, it’s normal for a user thread to spend part of its time
        executing in user mode and part in kernel mode. In fact, because the
        bulk of the graphics and windowing system also runs in kernel mode,
        graphics-intensive applications spend more of their time in kernel
        mode than in user mode. An easy way to test this is to run a
        graphics-intensive application such as Microsoft Paint or Microsoft
        Chess Titans and watch the time split between user mode and kernel
        mode using one of the performance counters listed in Table 1-2. More advanced
        applications can use newer technologies such as Direct2D and
        compositing, which perform bulk computations in user mode and send
        only the raw surface data to the kernel, reducing the time spent
        transitioning between user and kernel modes.
Table 1-2. Mode-Related Performance Counters
	Object: Counter
	Function

	Processor: % Privileged
                Time
	Percentage of time that an
                individual CPU (or all CPUs) has run in kernel mode during a
                specified interval

	Processor: % User
                Time
	Percentage of time that an
                individual CPU (or all CPUs) has run in user mode during a
                specified interval

	Process: % Privileged
                Time
	Percentage of time that the threads
                in a process have run in kernel mode during a specified
                interval

	Process: % User Time
	Percentage of time that the threads
                in a process have run in user mode during a specified
                interval

	Thread: % Privileged
                Time
	Percentage of time that a thread has
                run in kernel mode during a specified interval

	Thread: % User Time
	Percentage of time that a thread has
                run in user mode during a specified interval




EXPERIMENT: Kernel Mode vs. User Mode
You can use the Performance Monitor to see how much
          time your system spends executing in kernel mode vs. in user mode.
          Follow these steps:
	Run the Performance Monitor by opening the Start menu and
              selecting All Programs /Administrative Tools/Performance
              Monitor. Select the Performance Monitor node under
              Performance/Monitoring Tools on the left-side tree.

	Click the Add button (+) on the toolbar.

	Expand the Processor counter section, click the %
              Privileged Time counter and, while holding down the Ctrl key,
              click the % User Time counter.

	Click Add, and then click OK.

	Open a command prompt, and do a directory scan of your C
              drive over the network by typing dir
              \\%computername%\c$ /s.
[image: image with no caption]


	When you’re finished, just close the tool.



You can also quickly see this by using Task Manager.
          Just click the Performance tab, and then select Show Kernel Times
          from the View menu. The CPU usage bar will show total CPU usage in
          green and kernel-mode time in red.
To see how the Performance Monitor itself uses kernel time and
          user time, run it again, but add the individual Process counters %
          User Time and % Privileged Time for every process in the
          system:
	If it’s not already running, run the Performance Monitor
              again. (If it is already running, start with a blank display by
              right-clicking in the graph area and selecting Remove All
              Counters.)

	Click the Add button (+) on the toolbar.

	In the available counters area, expand the Process
              section.

	Select the % Privileged Time and % User Time
              counters.

	Select a few processes in the Instance box (such as mmc,
              csrss, and Idle).

	Click Add, and then click OK.

	Move the mouse rapidly back and forth.

	Press Ctrl+H to turn on highlighting mode. This highlights
              the currently selected counter in black.

	Scroll through the counters at the bottom of the display
              to identify the processes whose threads were running when you
              moved the mouse, and note whether they were running in user mode
              or kernel mode.



You should see the Performance Monitor process (by looking in
          the Instance column for the mmc process) kernel-mode
          and user-mode time go up when you move the
          mouse because it is executing application code in user mode and
          calling Windows functions that run in kernel mode. You’ll also
          notice kernel-mode thread activity in a process named csrss when you
          move the mouse. This activity occurs because the Windows subsystem’s
          kernel-mode raw input thread, which handles keyboard and mouse
          input, is attached to this process. (See Chapter 2 for more information about system
          threads.) Finally, the process named Idle that you see spending
          nearly 100 percent of its time in kernel mode isn’t really a
          process—it’s a fake process used to account for idle CPU cycles. As
          you can observe from the mode in which the threads in the Idle
          process run, when Windows has nothing to do, it does it in kernel
          mode.


Terminal Services and Multiple Sessions



Terminal Services refers to the support in Windows for multiple
        interactive user sessions on a single system. With Windows Terminal
        Services, a remote user can establish a session on another machine,
        log in, and run applications on the server. The server transmits the
        graphical user interface to the client (as well as other configurable resources such as
        audio and clipboard), and the client transmits the user’s input back
        to the server. (Similar to the X Window System, Windows permits
        running individual applications on a server system with the display
        remoted to the client instead of remoting the entire desktop.)
The first session is considered the services session, or session
        zero, and contains system service hosting processes (explained in
        further detail in Chapter 4). The first
        login session at the physical console of the machine is session one,
        and additional sessions can be created through the use of the remote
        desktop connection program (Mstsc.exe) or through the use of fast user
        switching (described later).
Windows client editions permits a single remote user to connect
        to the machine, but if someone is logged in at the console, the
        workstation is locked (that is, someone can be using the system either
        locally or remotely, but not at the same time). Windows editions that
        include Windows Media Center allow one interactive session and up to
        four Windows Media Center Extender sessions.
Windows server systems support two simultaneous remote
        connections (to facilitate remote management—for example, use of
        management tools that require being logged in to the machine being
        managed) and more than two remote sessions if it’s appropriately
        licensed and configured as a terminal server.
All Windows client editions support multiple sessions created
        locally through a feature called fast user
        switching that can be used one at a time. When a user
        chooses to disconnect her session instead of log off (for example, by
        clicking Start and choosing Switch User from the Shutdown submenu or
        by holding down the Windows key and pressing L and then clicking the
        Switch User button), the current session (that is, the processes
        running in that session and all the sessionwide data structures that
        describe the session) remains active in the system and the system
        returns to the main logon screen. If a new user logs in, a new session
        is created.
For applications that want to be aware of running in a terminal
        server session, there are a set of Windows APIs for programmatically
        detecting that as well as for controlling various aspects of Terminal
        Services. (See the Windows SDK and the Remote Desktop Services API for
        details.)
Chapter 2 describes briefly how
        sessions are created and has some experiments showing how to view
        session information with various tools, including the kernel debugger.
        The Object Manager section in Chapter 3 describes how the system namespace for
        objects is instantiated on a per-session basis and how applications
        that need to be aware of other instances of themselves on the same
        system can accomplish that. Finally, Chapter 10 in Part 2 covers how
        the memory manager sets up and manages sessionwide data.

Objects and Handles



In the Windows operating system, a kernel
        object is a single, run-time instance of a
        statically defined object type. An object type
        comprises a system-defined data type, functions that operate on
        instances of the data type, and a set of object attributes. If you
        write Windows applications, you might encounter process, thread, file,
        and event objects, to name just a few examples. These objects are
        based on lower-level objects that Windows creates and manages. In
        Windows, a process is an instance of the process object type, a file
        is an instance of the file object type, and so on.
An object attribute is a field of data in
        an object that partially defines the object’s state. An object of type
        process, for example, would have attributes that
        include the process ID, a base scheduling priority, and a pointer to
        an access token object. Object methods, the means
        for manipulating objects, usually read or change the object
        attributes. For example, the open method for a
        process would accept a process identifier as input and return a
        pointer to the object as output.
Note
Although there is a parameter named
          ObjectAttributes that a caller supplies when
          creating an object using the kernel object manager APIs, that
          parameter shouldn’t be confused with the more general meaning of the
          term as used in this book.

The most fundamental difference between an object and an
        ordinary data structure is that the internal structure of an object is
        opaque. You must call an object service to get data out of an object
        or to put data into it. You can’t directly read or change data inside
        an object. This difference separates the underlying implementation of
        the object from code that merely uses it, a technique that allows
        object implementations to be changed easily over time.
Objects, through the help of a kernel component called the
        object manager, provide a convenient means for
        accomplishing the following four important operating system
        tasks:
	Providing human-readable names for system resources

	Sharing resources and data among processes

	Protecting resources from unauthorized access

	Reference tracking, which allows the system to know when an
            object is no longer in use so that it can be automatically
            deallocated



Not all data structures in the Windows operating system are
        objects. Only data that needs to be shared, protected, named, or made
        visible to user-mode programs (via system services) is placed in
        objects. Structures used by only one component of the operating system
        to implement internal functions are not objects. Objects and handles
        (references to an instance of an object) are discussed in more detail
        in Chapter 3.

Security



Windows was designed from the start to be secure and to meet the
        requirements of various formal government and industry security
        ratings, such as the Common Criteria for Information Technology
        Security Evaluation (CCITSE) specification. Achieving a
        government-approved security rating allows an operating system to
        compete in that arena. Of course, many of these capabilities are
        advantageous features for any multiuser system.
The core security capabilities of Windows include discretionary
        (need-to-know) and mandatory integrity protection for all shareable
        system objects (such as files, directories, processes, threads, and
        so forth), security auditing (for accountability of
        subjects, or users and the actions they initiate), user authentication
        at logon, and the prevention of one user from accessing uninitialized
        resources (such as free memory or disk space) that another user has
        deallocated.
Windows has three forms of access control over objects. The
        first form—discretionary access control—is the protection mechanism
        that most people think of when they think of operating system
        security. It’s the method by which owners of objects (such as files or
        printers) grant or deny access to others. When users log in, they are
        given a set of security credentials, or a security context. When they
        attempt to access objects, their security context is compared to the
        access control list on the object they are trying to access to
        determine whether they have permission to perform the requested
        operation.
Privileged access control is necessary for those times when
        discretionary access control isn’t enough. It’s a method of ensuring
        that someone can get to protected objects if the owner isn’t
        available. For example, if an employee leaves a company, the
        administrator needs a way to gain access to files that might have been
        accessible only to that employee. In that case, under Windows, the
        administrator can take ownership of the file so that he can manage its
        rights as necessary.
Finally, mandatory integrity control is required when an
        additional level of security control is required to protect objects
        that are being accessed from within the same user account. It’s used
        both to isolate Protected Mode Internet Explorer from a user’s
        configuration and to protect objects created by an elevated
        administrator account from access by a nonelevated administrator
        account. (See Chapter 6 for more information
        on User Account Control—UAC.)
Security pervades the interface of the Windows API. The Windows
        subsystem implements object-based security in the same way the
        operating system does; the Windows subsystem protects shared Windows
        objects from unauthorized access by placing Windows security
        descriptors on them. The first time an application tries to access a
        shared object, the Windows subsystem verifies the application’s right
        to do so. If the security check succeeds, the Windows subsystem allows
        the application to proceed.
For a comprehensive description of Windows security, see Chapter 6.

Registry



If you’ve worked at all with Windows operating systems, you’ve
        probably heard about or looked at the registry. You can’t talk much
        about Windows internals without referring to the registry because it’s
        the system database that contains the information required to boot and
        configure the system, systemwide software settings that control the
        operation of Windows, the security database, and per-user
        configuration settings (such as which screen saver to use).
In addition, the registry is a window into in-memory volatile
        data, such as the current hardware state of the system (what device
        drivers are loaded, the resources they are using, and so on) as well
        as the Windows performance counters. The performance counters, which
        aren’t actually “in” the registry, are accessed through the registry
        functions. See Chapter 4 for more on
        how performance counter information is accessed from the
        registry.
Although many Windows users and administrators will
        never need to look directly into the registry (because you can view or
        change most configuration settings with standard administrative
        utilities), it is still a useful source of Windows internals
        information because it contains many settings that affect system
        performance and behavior. (If you decide to directly change registry
        settings, you must exercise extreme caution; any changes might
        adversely affect system performance or, worse, cause the system to
        fail to boot successfully.) You’ll find references to individual
        registry keys throughout this book as they pertain to the component
        being described. Most registry keys referred to in this book are under
        the systemwide configuration, HKEY_LOCAL_MACHINE, which we’ll
        abbreviate throughout as HKLM.
For further information on the registry and its internal
        structure, see Chapter 4.

Unicode



Windows differs from most other operating systems in that most
        internal text strings are stored and processed as 16-bit-wide Unicode
        characters. Unicode is an international character set standard that
        defines unique 16-bit values for most of the world’s known character
        sets.
Because many applications deal with 8-bit (single-byte) ANSI
        character strings, many Windows functions that accept string
        parameters have two entry points: a Unicode (wide, 16-bit) version and
        an ANSI (narrow, 8-bit) version. If you call the narrow version of a
        Windows function, there is a slight performance impact as input string
        parameters are converted to Unicode before being processed by the
        system and output parameters are converted from Unicode to ANSI before
        being returned to the application. Thus, if you have an older service
        or piece of code that you need to run on Windows but this code is
        written using ANSI character text strings, Windows will convert the
        ANSI characters into Unicode for its own use. However, Windows never
        converts the data inside files—it’s up to the
        application to decide whether to store data as Unicode or as
        ANSI.
Regardless of language, all versions of Windows contain the same
        functions. Instead of having separate language versions, Windows has a
        single worldwide binary so that a single installation can support
        multiple languages (by adding various language packs). Applications
        can also take advantage of Windows functions that allow single
        worldwide application binaries that can support multiple
        languages.
For more information about Unicode, see www.unicode.org as
        well as the programming documentation in the MSDN Library.


Digging into Windows Internals



Although much of the information in this book is based on reading
      the Windows source code and talking to the developers, you don’t have to
      take everything on faith. Many details about the
      internals of Windows can be exposed and demonstrated by using a variety
      of available tools, such as those that come with Windows and the Windows
      debugging tools. These tool packages are briefly described later in this
      section.
To encourage your exploration of Windows internals, we’ve
      included “Experiment” sidebars throughout the book that describe steps
      you can take to examine a particular aspect of Windows internal
      behavior. (You already saw a few of these sections earlier in this
      chapter.) We encourage you to try these experiments so that you can see
      in action many of the internals topics described in this book.
Table 1-3 shows a
      list of the principal tools used in this book and where they come
      from.
Table 1-3. Tools for Viewing Windows Internals
	Tool
	Image Name
	Origin

	Startup Programs Viewer
	AUTORUNS
	Sysinternals

	Access Check
	ACCESSCHK
	Sysinternals

	Dependency Walker
	DEPENDS
	www.dependencywalker.com

	Global Flags
	GFLAGS
	Debugging tools

	Handle Viewer
	HANDLE
	Sysinternals

	Kernel debuggers
	WINDBG, KD
	Debugging tools, Windows
              SDK

	Object Viewer
	WINOBJ
	Sysinternals

	Performance Monitor
	PERFMON.MSC
	Windows built-in tool

	Pool Monitor
	POOLMON
	Windows Driver Kit

	Process Explorer
	PROCEXP
	Sysinternals

	Process Monitor
	PROCMON
	Sysinternals

	Task (Process) List
	TLIST
	Debugging tools

	Task Manager
	TASKMGR
	Windows built-in tool




Performance Monitor



We’ll refer to the Performance Monitor found in the
        Administrative Tools folder on the Start menu (or via Control Panel)
        throughout this book; specifically, we’ll focus on the Performance
        Monitor and Resource Monitor. The Performance Monitor has three
        functions: system monitoring, viewing performance counter logs, and
        setting alerts (by using data collector sets, which also contain
        performance counter logs and trace and configuration data). For
        simplicity, when we refer to the Performance Monitor, we are referring
        to the System Monitor function within the tool.
The Performance Monitor provides more information about how your
        system is operating than any other single utility. It includes
        hundreds of base and extensible counters for various objects. For each
        major topic described in this book, a table of the relevant Windows
        performance counters is included.
The Performance Monitor contains a brief description for each
        counter. To see the descriptions, select a counter in the Add Counters
        window and select the Show Description check box.
Although all the low-level system monitoring we’ll do in
        this book can be done with the Performance Monitor, Windows also
        includes a Resource Monitor utility (accessible from the start menu or
        from the Task Manager Performance tab) that shows four primary system
        resources: CPU, Disk, Network, and Memory. In their basic states,
        these resources are displayed with the same level of information that
        you would find in Task Manager. However, they also provide sections
        that can be expanded for more information.
When expanded, the CPU tab displays information about
        per-process CPU usage, just like Task Manager. However, it adds a
        column for average CPU usage, which can give you a better idea of
        which processes are most active. The CPU tab also includes a separate
        display of services and their associated CPU usage and average. Each
        service hosting process is identified by the service group it is
        hosting. As with Process Explorer, selecting a process (by clicking
        its associated check box) will display a list of named handles opened
        by the process, as well as a list of modules (such as DLLs) that are
        loaded in the process address space. The Search Handles box can also
        be used to search for which processes have opened a handle to a given
        named resource.
The Memory section displays much of the same information that
        one can obtain with Task Manager, but it is organized for the entire
        system. A physical memory bar graph displays the current organization
        of physical memory into either hardware reserved, in use, modified,
        standby, and free memory. See Chapter 10 in Part 2 for the exact
        meaning of these terms.
The Disk section, on the other hand, displays per-file
        information for I/Os in a way that makes it easy to identify the most
        accessed, written to, or read from files on the system. These results
        can be further filtered down by process.
The Networking section displays the active network connections
        and which processes own them, as well as how much data is going
        through them. This information makes it possible to see background
        network activity that might be hard to detect otherwise. In addition,
        the TCP connections that are active on the system are shown, organized
        by process, with data such as the remote and local port and address,
        and packet latency. Finally, a list of listening ports is displayed by
        process, allowing an administrator to see which services (or
        applications) are currently waiting for connections on a given port.
        The protocol and firewall policy for each port and process is also
        shown.
Note that all of the Windows performance counters are accessible
        programmatically. The section HKEY_PERFORMANCE_DATA in Chapter 4 has a brief description of the
        components involved in retrieving performance counters through the
        Windows API.

Kernel Debugging



Kernel debugging means examining internal kernel data structures
        and/or stepping through functions in the kernel. It is a useful way to
        investigate Windows internals because you can display internal system
        information not available through any other tools and get a clearer
        idea of code flows within the kernel.
Before describing the various ways you can debug the
        kernel, let’s examine a set of files that you’ll need in order to
        perform any type of kernel debugging.
Symbols for Kernel Debugging



Symbol files contain the names of functions and variables and
          the layout and format of data structures. They are generated by the
          linker and used by debuggers to reference and display these names
          during a debug session. This information is not usually stored in
          the binary image because it is not needed to execute the code. This
          means that binaries are smaller and faster. However, this means that
          when debugging, you must make sure that the debugger can access the
          symbol files that are associated with the images you are referencing
          during a debugging session.
To use any of the kernel debugging tools to examine internal
          Windows kernel data structures (such as the process list, thread
          blocks, loaded driver list, memory usage information, and so on),
          you must have the correct symbol files for at least the kernel
          image, Ntoskrnl.exe. (The section Architecture Overview in Chapter 2 explains more about this file.)
          Symbol table files must match the version of the image they were
          taken from. For example, if you install a Windows Service Pack or
          hot fix that updates the kernel, you must obtain the matching,
          updated symbol files.
While it is possible to download and install symbols for
          various versions of Windows, updated symbols for hot fixes are not
          always available. The easiest solution to obtain the correct version
          of symbols for debugging is to use the Microsoft on-demand symbol
          server by using a special syntax for the symbol path that you
          specify in the debugger. For example, the following symbol path
          causes the debugging tools to load required symbols from the
          Internet symbol server and keep a local copy in the c:\symbols
          folder:
srv*c:\symbols*http://msdl.microsoft.com/download/symbols
For detailed instructions on how to use the symbol server, see
          the debugging tools help file or the Web page http://msdn.microsoft.com/en-us/windows/hardware/gg462988.aspx.

Debugging Tools for Windows



The Debugging Tools for Windows package contains advanced
          debugging tools used in this book to explore Windows internals. The
          latest version is included as part of the Windows Software
          Development Kit (SDK). These tools can be used to debug user-mode
          processes as well as the kernel. (See the following sidebar.)
Note
The Debugging Tools for Windows are updated frequently and
            released independently of Windows operating system versions, so
            check often for new versions.

User-Mode Debugging
The debugging tools can also be used to attach to a
            user-mode process and examine and/or change process memory. There
            are two options when attaching to a process:
	Invasive. Unless specified otherwise, when you attach to a
                  running process, the DebugActiveProcess Windows function is
                  used to establish a connection between the debugger and the
                  debugee. This permits examining and/or changing process
                  memory, setting breakpoints, and performing other debugging
                  functions. Windows allows you to stop debugging without
                  killing the target process, as long as the debugger is
                  detached, not killed.

	Noninvasive. With this option, the debugger simply opens the
                  process with the OpenProcess function.
                  It does not attach to the process as a debugger. This allows
                  you to examine and/or change memory in the target process,
                  but you cannot set breakpoints.



You can also open user-mode process dump files with the
            debugging tools. User-mode dump files are explained in Chapter 3 in the section on exception
            dispatching.

There are two debuggers that can be used for kernel debugging:
          a command-line version (Kd.exe) and a graphical user interface (GUI)
          version (Windbg.exe). Both provide the same set of commands, so
          which one you choose is a matter of personal preference. You can
          perform three types of kernel debugging with these tools:
	Open a crash dump file created as a result of a Windows
              system crash. (See Chapter 14, “Crash Dump Analysis,” in Part 2
              for more information on kernel crash dumps.)

	Connect to a live, running system and examine the system
              state (or set breakpoints if you’re debugging device driver
              code). This operation requires two computers—a target and a
              host. The target is the system being debugged, and the host is
              the system running the debugger. The target system can be
              connected to the host via a null modem cable, an IEEE 1394
              cable, or a USB 2.0 debugging cable. The target system must be
              booted in debugging mode (either by pressing F8 during the boot
              process and selecting Debugging Mode or by configuring the
              system to boot in debugging mode using Bcdedit or Msconfig.exe).
              You can also connect through a named pipe, which is useful when
              debugging through a virtual machine product such as Hyper-V,
              Virtual PC, or VMWare, by exposing the guest operating system’s
              serial port as a named pipe device.

	Windows systems also allow you to connect to the local
              system and examine the system state. This is called
              local kernel debugging. To initiate local
              kernel debugging with WinDbg, open the File menu, choose Kernel
              Debug, click on the Local tab, and then click OK. The target
              system must be booted in debugging mode. An example output
              screen is shown in Figure 1-6.
              Some kernel debugger commands do not work when used in local
              kernel debugging mode (such as creating a memory dump with the
              .dump command—however, this can be done with LiveKd, described
              later in this section).



[image: Local kernel debugging]

Figure 1-6. Local kernel debugging

Once connected in kernel debugging mode, you can use
          one of the many debugger extension commands
          (commands that begin with “!”) to display the contents of internal
          data structures such as threads, processes, I/O request packets, and
          memory management information. Throughout this book, the relevant
          kernel debugger commands and output are included as they apply to
          each topic being discussed. An excellent companion reference is the
          Debugger.chm help file, contained in the WinDbg installation folder,
          which documents all the kernel debugger functionality and
          extensions. In addition, the dt (display type)
          command can format over 1000 kernel structures because the kernel
          symbol files for Windows contain type information that the debugger
          can use to format structures.
EXPERIMENT: Displaying Type Information for Kernel
            Structures
To display the list of kernel structures whose type
            information is included in the kernel symbols, type dt nt!_* in the kernel debugger. A sample
            partial output is shown here:
lkd> dt nt!_*
          nt!_LIST_ENTRY
          nt!_LIST_ENTRY
          nt!_IMAGE_NT_HEADERS
          nt!_IMAGE_FILE_HEADER
          nt!_IMAGE_OPTIONAL_HEADER
          nt!_IMAGE_NT_HEADERS
          nt!_LARGE_INTEGER
You can also use the dt command to
            search for specific structures by using its wildcard lookup
            capability. For example, if you were looking for the structure
            name for an interrupt object, type dt
            nt!_*interrupt*:
lkd> dt nt!_*interrupt*
          nt!_KINTERRUPT
          nt!_KINTERRUPT_MODE
          nt!_KINTERRUPT_POLARITY
          nt!_UNEXPECTED_INTERRUPT
Then you can use dt to format a
            specific structure as shown next:
lkd> dt nt!_kinterrupt
nt!_KINTERRUPT
   +0x000 Type             : Int2B
   +0x002 Size             : Int2B
   +0x008 InterruptListEntry : _LIST_ENTRY
   +0x018 ServiceRoutine   : Ptr64     unsigned char
   +0x020 MessageServiceRoutine : Ptr64     unsigned char
   +0x028 MessageIndex     : Uint4B
   +0x030 ServiceContext   : Ptr64 Void
   +0x038 SpinLock         : Uint8B
   +0x040 TickCount        : Uint4B
   +0x048 ActualLock       : Ptr64 Uint8B
   +0x050 DispatchAddress  : Ptr64     void
   +0x058 Vector           : Uint4B
   +0x05c Irql             : UChar
   +0x05d SynchronizeIrql  : UChar
   +0x05e FloatingSave     : UChar
   +0x05f Connected        : UChar
   +0x060 Number           : Uint4B
   +0x064 ShareVector      : UChar
   +0x065 Pad              : [3] Char
   +0x068 Mode             : _KINTERRUPT_MODE
   +0x06c Polarity         : _KINTERRUPT_POLARITY
   +0x070 ServiceCount     : Uint4B
   +0x074 DispatchCount    : Uint4B
   +0x078 Rsvd1            : Uint8B
   +0x080 TrapFrame        : Ptr64 _KTRAP_FRAME
   +0x088 Reserved         : Ptr64 Void
   +0x090 DispatchCode     : [4] Uint4B
Note that dt does not show
            substructures (structures within structures) by default. To
            recurse through substructures, use the –r
            switch. For example, using this switch to display the kernel
            interrupt object shows the format of the _LIST_ENTRY structure
            stored at the InterruptListEntry
            field:
lkd> dt nt!_kinterrupt -r
nt!_KINTERRUPT
   +0x000 Type             : Int2B
   +0x002 Size             : Int2B
   +0x008 InterruptListEntry : _LIST_ENTRY
      +0x000 Flink            : Ptr64 _LIST_ENTRY
         +0x000 Flink            : Ptr64 _LIST_ENTRY
         +0x008 Blink            : Ptr64 _LIST_ENTRY
      +0x008 Blink            : Ptr64 _LIST_ENTRY
         +0x000 Flink            : Ptr64 _LIST_ENTRY
         +0x008 Blink            : Ptr64 _LIST_ENTRY

The Debugging Tools for Windows help file also
          explains how to set up and use the kernel debuggers. Additional
          details on using the kernel debuggers that are aimed primarily at
          device driver writers can be found in the Windows Driver Kit
          documentation.

LiveKd Tool



LiveKd is a free tool from Sysinternals that allows you to use
          the standard Microsoft kernel debuggers just described to examine
          the running system without booting the system in debugging mode.
          This approach might be useful when kernel-level troubleshooting is
          required on a machine that wasn’t booted in debugging mode—certain
          issues might be hard to reproduce reliably, so a reboot with the
          debug option enabled might not readily exhibit
          the error.
You run LiveKd just as you would WinDbg or Kd. LiveKd passes
          any command-line options you specify to the debugger you select. By
          default, LiveKd runs the command-line kernel debugger (Kd). To have
          it run WinDbg, specify the –w switch. To see
          the help files for LiveKd switches, specify the
          –? switch.
LiveKd presents a simulated crash dump file to the debugger,
          so you can perform any operations in LiveKd that are supported on a
          crash dump. Because LiveKd is relying on physical memory to back the
          simulated dump, the kernel debugger might run into situations in
          which data structures are in the middle of being changed by the
          system and are inconsistent. Each time the debugger is launched, it
          starts with a fresh view of the system state. If you want to refresh
          the snapshot, quit the debugger (with the q
          command), and LiveKd will ask you whether you want to start it
          again. If the debugger enters a loop in printing output, press
          Ctrl+C to interrupt the output and quit. If it hangs, press
          Ctrl+Break, which will terminate the debugger process. LiveKd will
          then ask you whether you want to run the debugger again.


Windows Software Development Kit



The Windows Software Development Kit (SDK) is available as part
        of the MSDN subscription program or can be downloaded for free from
        msdn.microsoft.com.
        Besides the Debugging Tools, it contains the documentation, C header
        files, and libraries necessary to compile and link Windows
        applications. (Although Microsoft Visual C++ comes with a copy of
        these header files, the versions contained in the Windows SDK always
        match the latest version of the Windows operating systems, whereas the
        version that comes with Visual C++ might be an older version that was
        current when Visual C++ was released.) From an internals perspective,
        items of interest in the Windows SDK include the Windows API header
        files (\Program Files\Microsoft SDKs\Windows\v7.0A\Include). A few of
        these tools are also shipped as sample source code in both the Windows
        SDK and the MSDN Library.

Windows Driver Kit



The Windows Driver Kit (WDK) is also available through the MSDN
        subscription program, and just like the Windows SDK, it is available
        for free download. The Windows Driver Kit documentation is included in
        the MSDN Library.
Although the WDK is aimed at device driver developers,
        it is an abundant source of Windows internals information. For
        example, while Chapter 8 in Part 2 describes the I/O system
        architecture, driver model, and basic device driver data structures,
        it does not describe the individual kernel support functions in
        detail. The WDK documentation contains a comprehensive description of
        all the Windows kernel support functions and mechanisms used by device
        drivers in both a tutorial and reference form.
Besides including the documentation, the WDK contains header
        files (in particular, ntddk.h, ntifs.h, and wdm.h) that define key
        internal data structures and constants as well as interfaces to many
        internal system routines. These files are useful when exploring
        Windows internal data structures with the kernel debugger because
        although the general layout and content of these structures are shown
        in this book, detailed field-level descriptions (such as size and data
        types) are not. A number of these data structures (such as object
        dispatcher headers, wait blocks, events, mutants, semaphores, and so
        on) are, however, fully described in the WDK.
So if you want to dig into the I/O system and driver model
        beyond what is presented in this book, read the WDK documentation
        (especially the Kernel-Mode Driver Architecture Design Guide and
        Reference manuals). You might also find useful Programming
        the Microsoft Windows Driver Model, Second Edition by
        Walter Oney (Microsoft Press, 2002) and Developing Drivers
        with the Windows Driver Foundation by Penny Orwick and Guy
        Smith (Microsoft Press, 2007).

Sysinternals Tools



Many experiments in this book use freeware tools that you can
        download from Sysinternals. Mark Russinovich, coauthor of this book,
        wrote most of these tools. The most popular tools include Process
        Explorer and Process Monitor. Note that many of these utilities
        involve the installation and execution of kernel-mode device drivers
        and thus require (elevated) administrator privileges, though they can
        run with limited functionality and output in a standard (or
        nonelevated) user account.
Since the Sysinternals tools are updated frequently, it is best
        to make sure you have the latest version. To be notified of tool
        updates, you can follow the Sysinternals Site Blog (which has an RSS
        feed).
For a description of all the tools, a description of how to use
        them, and case studies of problems solved, see Windows
        Sysinternals Administrator’s Reference (Microsoft Press,
        2011) by Mark Russinovich and Aaron Margosis.
For questions and discussions on the tools, use the Sysinternals
        Forums.


Conclusion



In this chapter, you’ve been introduced to the key Windows
      technical concepts and terms that will be used throughout the book.
      You’ve also had a glimpse of the many useful tools available for digging
      into Windows internals. Now we’re ready to begin our exploration of the
      internal design of the system, beginning with an overall view of the
      system architecture and its key components.

Chapter 2. System Architecture



Now that we’ve covered the terms, concepts, and tools you
    need to be familiar with, we’re ready to start our exploration of the
    internal design goals and structure of the Microsoft Windows operating
    system. This chapter explains the overall architecture of the system—the
    key components, how they interact with each other, and the context in
    which they run. To provide a framework for understanding the internals of
    Windows, let’s first review the requirements and goals that shaped the
    original design and specification of the system.

Requirements and Design Goals



The following requirements drove the specification of Windows NT
      back in 1989:
	Provide a true 32-bit, preemptive, reentrant, virtual memory
          operating system

	Run on multiple hardware architectures and platforms

	Run and scale well on symmetric multiprocessing systems

	Be a great distributed computing platform, both as a network
          client and as a server

	Run most existing 16-bit MS-DOS and Microsoft Windows 3.1
          applications

	Meet government requirements for POSIX 1003.1
          compliance

	Meet government and industry requirements for operating system
          security

	Be easily adaptable to the global market by supporting
          Unicode



To guide the thousands of decisions that had to be made to create
      a system that met these requirements, the Windows NT design team adopted
      the following design goals at the beginning of the project:
	Extensibility. The code must be written to comfortably grow and change as
            market requirements change.

	Portability. The system must be able to run on multiple hardware
            architectures and must be able to move with relative ease to new
            ones as market demands dictate.

	Reliability and
            robustness. The system should protect itself from both internal
            malfunction and external tampering. Applications should not be
            able to harm the operating system or other applications.

	Compatibility. Although Windows NT should extend existing technology, its
            user interface and APIs should be compatible with older versions
            of Windows and with MS-DOS. It should also interoperate well with
            other systems, such as UNIX, OS/2, and NetWare.

	Performance. Within the constraints of the other design goals, the system
            should be as fast and responsive as possible on each hardware
            platform.



As we explore the details of the internal structure and operation
      of Windows, you’ll see how these original design goals and market
      requirements were woven successfully into the construction of the
      system. But before we start that exploration, let’s examine the overall
      design model for Windows and compare it with other modern operating
      systems.

Operating System Model



In most multiuser operating systems, applications are separated
      from the operating system itself—the operating system kernel code runs
      in a privileged processor mode (referred to as kernel
      mode in this book), with access to system data and to the
      hardware; application code runs in a nonprivileged processor mode
      (called user mode), with a limited set of
      interfaces available, limited access to system data, and no direct
      access to hardware. When a user-mode program calls a system service, the
      processor executes a special instruction that switches the calling
      thread to kernel mode. When the system service completes, the operating
      system switches the thread context back to user mode and allows the
      caller to continue.
Windows is similar to most UNIX systems in that it’s a monolithic
      operating system in the sense that the bulk of the operating system and
      device driver code shares the same kernel-mode protected memory space.
      This means that any operating system component or device driver can
      potentially corrupt data being used by other operating system
      components. However, Windows does implement some kernel protection
      mechanisms, such as PatchGuard and Kernel Mode Code Signing (both
      described in Chapter 3), which help in the
      mitigation and prevention of issues related to the shared kernel-mode
      address space.
All these operating system components are, of course, fully
      protected from errant applications because applications don’t have
      direct access to the code and data of the privileged part of the
      operating system (although they can quickly call other kernel services).
      This protection is one of the reasons that Windows has the reputation
      for being both robust and stable as an application server and as a
      workstation platform, yet fast and nimble from the perspective of core
      operating system services, such as virtual memory management, file I/O,
      networking, and file and print sharing.
The kernel-mode components of Windows also embody basic
      object-oriented design principles. For example, in general they don’t
      reach into one another’s data structures to access information
      maintained by individual components. Instead, they use formal interfaces
      to pass parameters and access and/or modify data structures.
Despite its pervasive use of objects to represent shared system
      resources, Windows is not an object-oriented system in the strict sense.
      Most of the operating system code is written in C for portability. The C
      programming language doesn’t directly support object-oriented constructs
      such as dynamic binding of data types, polymorphic functions, or class
      inheritance. Therefore, the C-based implementation of objects in Windows
      borrows from, but doesn’t depend on, features of particular
      object-oriented languages.

Architecture Overview



With this brief overview of the design goals and packaging of
      Windows, let’s take a look at the key system components that make up its
      architecture. A simplified version of this architecture is shown in
      Figure 2-1. Keep in mind that
      this diagram is basic—it doesn’t show everything. (For example, the
      networking components and the various types of device driver layering
      are not shown.)
[image: Simplified Windows architecture]

Figure 2-1. Simplified Windows architecture

In Figure 2-1, first
      notice the line dividing the user-mode and kernel-mode parts of the
      Windows operating system. The boxes above the line represent user-mode
      processes, and the components below the line are kernel-mode operating
      system services. As mentioned in Chapter 1,
      user-mode threads execute in a protected process address space (although
      while they are executing in kernel mode, they have access to system
      space). Thus, system support processes, service processes, user
      applications, and environment subsystems each have their own private
      process address space.
The four basic types of user-mode processes are described
      as follows:
	Fixed (or hardwired) system support
          processes, such as the logon process and the Session
          Manager, that are not Windows services. (That is, they are not
          started by the service control manager. Chapter 4, describes services in
          detail.)

	Service processes that host Windows
          services, such as the Task Scheduler and Print Spooler services.
          Services generally have the requirement that they run independently
          of user logons. Many Windows server applications, such as Microsoft
          SQL Server and Microsoft Exchange Server, also include components
          that run as services.

	User applications, which can be one of
          the following types: Windows 32-bit or 64-bit, Windows 3.1 16-bit,
          MS-DOS 16-bit, or POSIX 32-bit or 64-bit. Note that 16-bit
          applications can be run only on 32-bit Windows.

	Environment subsystem server processes,
          which implement part of the support for the operating system
          environment, or personality, presented to the
          user and programmer. Windows NT originally shipped with three
          environment subsystems: Windows, POSIX, and OS/2. However, the POSIX
          and OS/2 subsystems last shipped with Windows 2000. The Ultimate and
          Enterprise editions of Windows client as well as all of the server
          versions include support for an enhanced POSIX subsystem called
          Subsystem for Unix-based Applications (SUA).



In Figure 2-1, notice the
      “Subsystem DLLs” box below the “Service processes” and “User
      applications” boxes. Under Windows, user applications don’t call the
      native Windows operating system services directly; rather, they go
      through one or more subsystem dynamic-link
      libraries (DLLs). The role of the subsystem DLLs is to
      translate a documented function into the appropriate internal (and
      generally undocumented) native system service calls. This translation
      might or might not involve sending a message to the environment
      subsystem process that is serving the user application.
The kernel-mode components of Windows include the
      following:
	The Windows executive contains the base
          operating system services, such as memory management, process and
          thread management, security, I/O, networking, and interprocess
          communication.

	The Windows kernel consists of low-level
          operating system functions, such as thread scheduling, interrupt and
          exception dispatching, and multiprocessor synchronization. It also
          provides a set of routines and basic objects that the rest of the
          executive uses to implement higher-level constructs.

	Device drivers include both hardware
          device drivers, which translate user I/O function calls into
          specific hardware device I/O requests, as well as nonhardware device
          drivers such as file system and network drivers.

	The hardware abstraction layer (HAL) is a
          layer of code that isolates the kernel, the device drivers, and the
          rest of the Windows executive from platform-specific hardware
          differences (such as differences between motherboards).

	The windowing and graphics system
          implements the graphical user interface (GUI) functions (better
          known as the Windows USER and GDI functions), such as dealing with
          windows, user interface controls, and drawing.



Table 2-1 lists the file names
      of the core Windows operating system components. (You’ll need to know
      these file names because we’ll be referring to some system files by
      name.) Each of these components is covered in greater detail both later
      in this chapter and in the chapters that follow.
Table 2-1. Core Windows System Files
	File Name
	Components

	Ntoskrnl.exe
	Executive and kernel

	Ntkrnlpa.exe (32-bit systems
              only)
	Executive and kernel, with support for
              Physical Address Extension (PAE), which allows 32-bit systems to
              address up to 64 GB of physical memory and to mark memory as
              nonexecutable (see the section “No Execute Page Prevention” in
              Chapter 10, “Memory Management,” in Part 2)

	Hal.dll
	Hardware abstraction
              layer

	Win32k.sys
	Kernel-mode part of the Windows
              subsystem

	Ntdll.dll
	Internal support functions and system
              service dispatch stubs to executive functions

	Kernel32.dll, Advapi32.dll,
              User32.dll, Gdi32.dll
	Core Windows subsystem
              DLLs




Before we dig into the details of these system components, though,
      let’s examine some basics about the Windows kernel design, starting with
      how Windows achieves portability across multiple hardware
      architectures.
Portability



Windows was designed to run on a variety of hardware
        architectures. The initial release of Windows NT supported the x86 and
        MIPS architectures. Support for the Digital Equipment Corporation
        (which was bought by Compaq, which later merged with Hewlett-Packard)
        Alpha AXP was added shortly thereafter. (Although Alpha AXP was a
        64-bit processor, Windows NT ran in 32-bit mode. During the
        development of Windows 2000, a native 64-bit version was running on
        Alpha AXP, but this was never released.) Support for a fourth
        processor architecture, the Motorola PowerPC, was added in Windows NT
        3.51. Because of changing market demands, however, support for the
        MIPS and PowerPC architectures was dropped before development began on
        Windows 2000. Later, Compaq withdrew support for the Alpha AXP
        architecture, resulting in Windows 2000 being supported only on the
        x86 architecture. Windows XP and Windows Server 2003 added support for
        three 64-bit processor families: the Intel Itanium IA-64 family, the
        AMD64 family, and the Intel 64-bit Extension Technology (EM64T) for
        x86 (which is compatible with the AMD64 architecture, although there
        are slight differences in instructions supported). The latter two
        processor families are called 64-bit extended
        systems and in this book are referred to as
        x64. (How Windows runs 32-bit applications on
        64-bit Windows is explained in Chapter 3.)
Windows achieves portability across hardware
        architectures and platforms in two primary ways:
	Windows has a layered design, with low-level portions of the
            system that are processor-architecture-specific or
            platform-specific isolated into separate modules so that upper
            layers of the system can be shielded from the differences between
            architectures and among hardware platforms. The two key components
            that provide operating system portability are the kernel
            (contained in Ntoskrnl.exe) and the hardware abstraction layer (or
            HAL, contained in Hal.dll). Both these components are described in
            more detail later in this chapter. Functions that are
            architecture-specific (such as thread context switching and trap
            dispatching) are implemented in the kernel. Functions that can
            differ among systems within the same architecture (for example,
            different motherboards) are implemented in the HAL. The only other
            component with a significant amount of architecture-specific code
            is the memory manager, but even that is a small amount compared to
            the system as a whole.

	The vast majority of Windows is written in C, with some
            portions in C++. Assembly language is used only for those parts of
            the operating system that need to communicate directly with system
            hardware (such as the interrupt trap handler) or that are
            extremely performance-sensitive (such as context switching).
            Assembly language code exists not only in the kernel and the HAL
            but also in a few other places within the core operating system
            (such as the routines that implement interlocked instructions as
            well as one module in the local procedure call facility), in the
            kernel-mode part of the Windows subsystem, and even in some
            user-mode libraries, such as the process startup code in Ntdll.dll
            (a system library explained later in this chapter).




Symmetric Multiprocessing



Multitasking is the operating system
        technique for sharing a single processor among multiple threads of
        execution. When a computer has more than one processor, however, it
        can execute multiple threads simultaneously. Thus, whereas a
        multitasking operating system only appears to execute multiple threads
        at the same time, a multiprocessing operating system actually does it,
        executing one thread on each of its processors.
As mentioned at the beginning of this chapter, one of the key
        design goals for Windows was that it had to run well on multiprocessor
        computer systems. Windows is a symmetric
        multiprocessing (SMP) operating system. There is no master
        processor—the operating system as well as user threads can be
        scheduled to run on any processor. Also, all the processors share just
        one memory space. This model contrasts with asymmetric
        multiprocessing (ASMP), in which the operating system
        typically selects one processor to execute operating system kernel
        code while other processors run only user code. The differences in the
        two multiprocessing models are illustrated in Figure 2-2.
Windows also supports three modern types of multiprocessor
        systems: multicore, Hyper-Threading enabled, and NUMA (non-uniform
        memory architecture). These are briefly mentioned in the following
        paragraphs. (For a complete, detailed description of the scheduling
        support for these systems, see the thread scheduling section in Chapter 5.)
[image: Symmetric vs. asymmetric multiprocessing]

Figure 2-2. Symmetric vs. asymmetric multiprocessing

Hyper-Threading is a technology
        introduced by Intel that provides two logical processors for each
        physical core. Each logical processor has its own CPU state, but the
        execution engine and onboard cache are shared. This permits one
        logical CPU to make progress while the other logical CPU is stalled
        (such as after a cache miss or branch misprediction). The scheduling
        algorithms are enhanced to make optimal use of Hyper-Threading-enabled
        machines, such as by scheduling threads on an idle physical processor
        versus choosing an idle logical processor on a physical processor
        whose other logical processors are busy. For more details on thread
        scheduling, see Chapter 5.
In NUMA systems, processors are grouped in smaller units called
        nodes. Each node has its own processors and
        memory and is connected to the larger system through a cache-coherent
        interconnect bus. Windows on a NUMA system still runs as an SMP
        system, in that all processors have access to all memory—it’s just
        that node-local memory is faster to reference than memory attached to
        other nodes. The system attempts to improve performance by scheduling
        threads on processors that are in the same node as the memory being
        used. It attempts to satisfy memory-allocation requests from within
        the node, but it will allocate memory from other nodes if
        necessary.
Naturally, Windows also natively supports multicore
        systems—because these systems have real physical cores (simply on the
        same package), the original SMP code in Windows treats them as
        discrete processors, except for certain accounting and identification
        tasks (such as licensing, described shortly) that distinguish between
        cores on the same processor and cores on different sockets.
Windows was not originally designed with a specific
        processor number limit in mind, other than the licensing policies that
        differentiate the various Windows editions. However, for convenience
        and efficiency, Windows does keep track of processors (total number,
        idle, busy, and other such details) in a bitmask (sometimes called an
        affinity mask) that is the same number of bits as
        the native data type of the machine (32-bit or 64-bit), which allows
        the processor to manipulate bits directly within a register. Due to
        this fact, Windows systems were originally limited to the number of
        CPUs in a native word, because the affinity mask couldn’t arbitrarily
        be increased. To maintain compatibility, as well as support larger
        processor systems, Windows implements a higher-order construct called
        a processor group. The processor group is a set
        of processors that can all be defined by a single affinity bitmask,
        and the kernel as well as the applications can choose which group they
        refer to during affinity updates. Compatible applications can query
        the number of supported groups (currently limited to 4) and then
        enumerate the bitmask for each group. Meanwhile, legacy applications
        continue to function by seeing only their current group. More
        information on how exactly Windows assigns processors to groups (which
        is also related to NUMA) is detailed in Chapter 5.
As mentioned, the actual number of supported
        licensed processors depends on the edition of
        Windows being used. (See Table 2-2 later in this
        chapter.) This number is stored in the system license policy file
        (\Windows\ServiceProfiles\NetworkService\AppData\Roaming\Microsoft\SoftwareProtectionPlatform\tokens.dat)
        as a policy value called “Kernel-RegisteredProcessors.” (Keep in mind
        that tampering with that data is a violation of the software license,
        and modifying licensing policies to allow the use of more processors
        involves more than just changing this value.)

Scalability



One of the key issues with multiprocessor systems is
        scalability. To run correctly on an SMP system,
        operating system code must adhere to strict guidelines and rules.
        Resource contention and other performance issues are more complicated
        in multiprocessing systems than in uniprocessor systems and must be
        accounted for in the system’s design. Windows incorporates several
        features that are crucial to its success as a multiprocessor operating
        system:
	The ability to run operating system code on any available
            processor and on multiple processors at the same time

	Multiple threads of execution within a single process, each
            of which can execute simultaneously on different processors

	Fine-grained synchronization within the kernel (such as
            spinlocks, queued spinlocks, and pushlocks, described in Chapter 3) as well as within device drivers
            and server processes, which allows more components to run
            concurrently on multiple processors

	Programming mechanisms such as I/O completion ports
            (described in Chapter 8, “I/O System,” in Part 2) that facilitate
            the efficient implementation of multithreaded server processes
            that can scale well on multiprocessor systems



The scalability of the Windows kernel has evolved over
        time. For example, Windows Server 2003 introduced per-CPU scheduling
        queues, which permit thread scheduling decisions to occur in parallel
        on multiple processors. Windows 7 and Windows Server 2008 R2
        eliminated global locking on the scheduling database. This step-wise
        improvement of the granularity of locking has also occurred in other
        areas, such as the memory manager. Further details on multiprocessor
        synchronization can be found in Chapter 3.

Differences Between Client and Server Versions



Windows ships in both client and server retail packages. As of
        this writing, there are six client versions of Windows 7: Windows 7
        Home Basic, Windows 7 Home Premium, Windows 7 Professional, Windows 7
        Ultimate, Windows 7 Enterprise, and Windows 7 Starter.
There are seven different versions of Windows Server 2008 R2:
        Windows Server 2008 R2 Foundation, Windows Server 2008 R2 Standard,
        Windows Server 2008 R2 Enterprise, Windows Server 2008 R2 Datacenter,
        Windows Web Server 2008 R2, Windows HPC Server 2008 R2, and Windows
        Server 2008 R2 for Itanium-Based Systems (which is the last release of
        Windows to support the Intel Itanium processor).
Additionally, there are “N” versions of the client that do not
        include Windows Media Player. Finally, the Standard, Enterprise, and
        Datacenter editions of Windows Server 2008 R2 also include “with
        Hyper-V” editions, which include Hyper-V. (Hyper-V virtualization is
        discussed in Chapter 3.)
These versions differ by
	The number of processors supported (in terms of sockets, not
            cores or threads)

	The amount of physical memory supported (actually highest
            physical address usable for RAM—see Chapter 10 in Part 2 for more
            information on physical memory limits)

	The number of concurrent network connections supported (For
            example, a maximum of 10 concurrent connections are allowed to the
            file and print services in the client version.)

	Support for Media Center

	Support for Multi-Touch, Aero, and Desktop
            Compositing

	Support for features such as BitLocker, VHD Booting,
            AppLocker, Windows XP Compatibility Mode, and more than 100 other
            configurable licensing policy values

	Layered services that come with Windows Server editions that
            don’t come with the client editions (for example, directory
            services and clustering)



Table 2-2
        lists the differences in memory and processor support for Windows 7
        and Windows Server 2008 R2. For a detailed comparison chart of the
        different editions of Windows Server 2008 R2, see www.microsoft.com/windowsserver2008/en/us/r2-compare-specs.aspx.
Table 2-2. Differences Between Windows 7 and Windows Server 2008
          R2
	 	Number of Sockets Supported (32-Bit
                Edition)
	Physical Memory Supported (32-Bit
                Edition)
	Number of Sockets Supported
                (64-Bit Edition)
	Physical Memory Supported
                (Itanium Editions)
	Physical Memory Supported (x64
                Editions)

	Windows 7 Starter
	1
	2 GB
	Not available
	Not available
	2 GB

	Windows 7 Home Basic
	1
	4 GB
	1
	Not available
	8 GB

	Windows 7 Home
                Premium
	1
	4 GB
	1
	Not available
	16 GB

	Windows 7
                Professional
	2
	4 GB
	2
	Not available
	192 GB

	Windows 7 Enterprise
	2
	4 GB
	2
	Not available
	192 GB

	Windows 7 Ultimate
	2
	4 GB
	2
	Not available
	192 GB

	Windows Server 2008 R2
                Foundation
	Not available
	Not available
	1
	Not available
	8 GB

	Windows Web Server 2008
                R2
	Not available
	Not available
	4
	Not available
	32 GB

	Windows Server 2008 R2
                Standard
	Not available
	Not available
	4
	Not available
	32 GB

	Windows HPC Server 2008
                R2
	Not available
	Not available
	4
	Not available
	128 GB

	Windows Server 2008 R2
                Enterprise
	Not available
	Not available
	8
	Not available
	2048 GB

	Windows Server 2008 R2
                Datacenter
	Not available
	Not available
	64
	Not available
	2048 GB

	Windows Server 2008 R2 for
                Itanium-Based Systems
	Not available
	Not available
	64
	2048 GB
	Not available




Although there are several client and server retail packages of
        the Windows operating system, they share a common set of core system
        files, including the kernel image, Ntoskrnl.exe (and the PAE version,
        Ntkrnlpa.exe); the HAL libraries; the device drivers; and the base
        system utilities and DLLs. These files are identical for all editions
        of Windows 7 and Windows Server 2008 R2.
With so many different editions of Windows and each having the
        same kernel image, how does the system know which edition is booted?
        By querying the registry values ProductType and ProductSuite under the
        HKLM\SYSTEM\CurrentControlSet\Control\ProductOptions key. ProductType
        is used to distinguish whether the system is a client system or a
        server system (of any flavor). These values are loaded into the
        registry based on the licensing policy file described earlier. The
        valid values are listed in Table 2-3. This can be queried from the
        user-mode GetVersionEx function or from a device
        driver using the kernel-mode support function
        RtlGetVersion.
Table 2-3. ProductType Registry Values
	Edition of Windows
	Value of ProductType

	Windows client
	WinNT

	Windows server (domain
                controller)
	LanmanNT

	Windows server (server
                only)
	ServerNT




A different registry value, ProductPolicy, contains a cached
        copy of the data inside the tokens.dat file, which differentiates
        between the editions of Windows and the features that they
        enable.
If user programs need to determine which edition of Windows is
        running, they can call the Windows
        VerifyVersionInfo function, documented in the
        Windows Software Development Kit (SDK). Device drivers can call the
        kernel-mode function RtlVerifyVersionInfo,
        documented in the WDK.
So if the core files are essentially the same for the client and
        server versions, how do the systems differ in operation? In short,
        server systems are optimized by default for system throughput as
        high-performance application servers, whereas the client version
        (although it has server capabilities) is optimized for response time
        for interactive desktop use. For example, based on the product type,
        several resource allocation decisions are made differently at system
        boot time, such as the size and number of operating system heaps (or
        pools), the number of internal system worker threads, and the size of
        the system data cache. Also, run-time policy decisions, such as the
        way the memory manager trades off system and process memory demands,
        differ between the server and client editions. Even some thread
        scheduling details have different default behavior in the two families
        (the default length of the time slice, or thread
        quantum—see Chapter 5 for details).
        Where there are significant operational differences in the two
        products, these are highlighted in the pertinent chapters throughout
        the rest of this book. Unless otherwise noted, everything in this book
        applies to both the client and server versions.
EXPERIMENT: Determining Features Enabled by Licensing
          Policy
As mentioned earlier, Windows supports more than 100 different
          features that can be enabled through the software licensing
          mechanism. These policy settings determine the various differences
          not only between a client and server installation, but also between
          each edition (or SKU) of the operating system, such as BitLocker
          support (available on Windows server as well as the Ultimate and
          Enterprise editions of Windows client). You can use the SlPolicy
          tool available from Winsider Seminars & Solutions
          (www.winsiderss.com/tools/slpolicy.htm)
          to display these policy values on your machine.
Policy settings are organized by a
          facility, which represents the owner module for
          which the policy applies. You can display a list of all facilities
          on your system by running Slpolicy.exe with the
          –f switch:
C:\>SlPolicy.exe -f
SlPolicy v1.05 - Show Software Licensing Policies
Copyright (C) 2008-2011 Winsider Seminars & Solutions Inc.
www.winsiderss.com

Software Licensing Facilities:

Kernel
Licensing and Activation
Core
DWM
SMB
IIS
.
.
.
You can then add the name of any facility after the switch to
          display the policy value for that facility. For example, to look at
          the limitations on CPUs and available memory, use the Kernel
          facility. Here’s the expected output on a machine running Windows 7
          Ultimate:
C:\>SlPolicy.exe -f Kernel


SlPolicy v1.05 - Show Software Licensing Policies
Copyright (C) 2008-2011 Winsider Seminars & Solutions Inc.
www.winsiderss.com

Kernel
------
Processor Limit: 2
Maximum Memory Allowed (x86): 4096
Maximum Memory Allowed (x64): 196608
Maximum Memory Allowed (IA64): 196608
Maximum Physical Page: 4096
Addition of Physical Memory Allowed: No
Addition of Physical Memory Allowed, if virtualized: Yes
Product Information: 1
Dynamic Partitioning Supported: No
Virtual Dynamic Partitioning Supported: No
Memory Mirroring Supported: No
Native VHD Boot Supported: Yes
Bad Memory List Persistance Supported: No
Number of MUI Languages Allowed: 1000
List of Allowed Languages: EMPTY
List of Disallowed Languages: EMPTY
MUI Language SKU:
Expiration Date: 0


Checked Build



There is a special debug version of Windows called the
        checked build (available only with an MSDN
        Operating Systems subscription). It is a recompilation of the Windows
        source code with a compile-time flag defined called “DBG” (to cause
        compile-time, conditional debugging and tracing code to be included).
        Also, to make it easier to understand the machine code, the
        post-processing of the Windows binaries to optimize code layout for
        faster execution is not performed. (See the section “Debugging
        Performance-Optimized Code” in the Debugging Tools for Windows help
        file.)
The checked build is provided primarily to aid device driver
        developers because it performs more stringent error checking on
        kernel-mode functions called by device drivers or other system code.
        For example, if a driver (or some other piece of kernel-mode code)
        makes an invalid call to a system function that is checking parameters
        (such as acquiring a spinlock at the wrong interrupt level), the
        system will stop execution when the problem is detected rather than
        allow some data structure to be corrupted and the system to possibly
        crash at a later time.
EXPERIMENT: Determining If You Are Running the Checked
          Build
There is no built-in tool to display whether you are running
          the checked build or the retail build (called the free
          build). However, this information is available through
          the “Debug” property of the Windows Management Instrumentation (WMI)
          Win32_OperatingSystem class. The following sample Microsoft Visual
          Basic script displays this property:
strComputer = "."
Set objWMIService = GetObject("winmgmts:" _
 & "{impersonationLevel=impersonate}!\\" & strComputer & "\root\cimv2")
Set colOperatingSystems = objWMIService.ExecQuery _
 ("SELECT * FROM Win32_OperatingSystem")
For Each objOperatingSystem in colOperatingSystems
 Wscript.Echo "Caption: " & objOperatingSystem.Caption
 Wscript.Echo "Debug: " & objOperatingSystem.Debug
 Wscript.Echo "Version: " & objOperatingSystem.Version
Next
To try this, type in the preceding script and save it as file.
          The following is the output from running the script:
C:\>cscript osversion.vbs
Microsoft (R) Windows Script Host Version 5.8
Copyright (C) Microsoft Corporation. All rights reserved.

Caption: Microsoft Windows Server 2008 R2 Enterprise
Debug: False
Version: 6.1.7600
This system is not running the checked build, because the
          Debug flag shown here says False.

Much of the additional code in the checked-build binaries is a
        result of using the ASSERT and/or NT_ASSERT macros, which are defined
        in the WDK header file Wdm.h and documented in the WDK documentation.
        These macros test a condition (such as the validity of a data
        structure or parameter), and if the expression evaluates to FALSE, the macros
        call the kernel-mode function RtlAssert, which
        calls DbgPrintEx to send the text of the debug
        message to a debug message buffer. If a kernel debugger is attached,
        this message is displayed automatically followed by a prompt asking
        the user what to do about the assertion failure (breakpoint, ignore,
        terminate process, or terminate thread). If the system wasn’t booted
        with the kernel debugger (using the debug option
        in the Boot Configuration Database—BCD) and no kernel debugger is
        currently attached, failure of an ASSERT test will bugcheck the
        system. For a list of ASSERT checks made by some of the kernel support
        routines, see the section “Checked Build ASSERTs” in the WDK
        documentation.
The checked build is also useful for system administrators
        because of the additional detailed informational tracing that can be
        enabled for certain components. (For detailed instructions, see the
        Microsoft Knowledge Base Article number 314743, titled
        HOWTO: Enable Verbose Debug Tracing in Various Drivers and
        Subsystems.) This information output is sent to an internal
        debug message buffer using the DbgPrintEx
        function referred to earlier. To view the debug messages, you can
        either attach a kernel debugger to the target system (which requires
        booting the target system in debugging mode), use the
        !dbgprint command while performing local kernel
        debugging, or use the Dbgview.exe tool from Sysinternals
        (www.microsoft.com/technet/sysinternals).
You don’t have to install the entire checked build to take
        advantage of the debug version of the operating system. You can just
        copy the checked version of the kernel image (Ntoskrnl.exe) and the
        appropriate HAL (Hal.dll) to a normal retail installation. The
        advantage of this approach is that device drivers and other kernel
        code get the rigorous checking of the checked build without having to
        run the slower debug versions of all components in the system. For
        detailed instructions on how to do this, see the section “Installing
        Just the Checked Operating System and HAL” in the WDK
        documentation.
Finally, the checked build can also be useful for testing
        user-mode code only because the timing of the system is different.
        (This is because of the additional checking taking place within the
        kernel and the fact that the components are compiled without
        optimizations.) Often, multithreaded synchronization bugs are related
        to specific timing conditions. By running your tests on a system
        running the checked build (or at least the checked kernel and HAL),
        the fact that the timing of the whole system is different might cause
        latent timing bugs to surface that do not occur on a normal retail
        system.


Key System Components



Now that we’ve looked at the high-level architecture of Windows,
      let’s delve deeper into the internal structure and the role each key
      operating system component plays. Figure 2-3 is a more detailed and complete
      diagram of the core Windows system architecture and components than was
      shown earlier in the chapter (in Figure 2-1). Note that it still does
      not show all components (networking in particular, which is explained in
      Chapter 7.
The following sections elaborate on each major element of this
      diagram. Chapter 3 explains the primary
      control mechanisms the system uses (such as the object manager,
      interrupts, and so forth). Chapter 13, “Startup and Shutdown,” in Part 2
      describes the process of starting and shutting down Windows, and Chapter 4
      details management mechanisms such as the registry, service processes,
      and Windows Management Instrumentation. Other chapters explore in even
      more detail the internal structure and operation of key areas such as
      processes and threads, memory management, security, the I/O manager,
      storage management, the cache manager, the Windows file system (NTFS),
      and networking.
[image: Windows architecture]

Figure 2-3. Windows architecture

Environment Subsystems and Subsystem DLLs



The role of an environment subsystem is to expose some
        subset of the base Windows executive system services to application
        programs. Each subsystem can provide access to different subsets of
        the native services in Windows. That means that some things can be
        done from an application built on one subsystem that can’t be done by
        an application built on another subsystem. For example, a Windows
        application can’t use the SUA fork
        function.
Each executable image (.exe) is bound to one and only one
        subsystem. When an image is run, the process creation code examines
        the subsystem type code in the image header so that it can notify the
        proper subsystem of the new process. This type code is specified with
        the /SUBSYSTEM qualifier of the link command in
        Microsoft Visual C++.
As mentioned earlier, user applications don’t call Windows
        system services directly. Instead, they go through one or more
        subsystem DLLs. These libraries export the documented interface that
        the programs linked to that subsystem can call. For example, the
        Windows subsystem DLLs (such as Kernel32.dll, Advapi32.dll,
        User32.dll, and Gdi32.dll) implement the Windows API functions. The
        SUA subsystem DLL (Psxdll.dll) implements the SUA API
        functions.
EXPERIMENT: Viewing the Image Subsystem Type
You can see the image subsystem type by using the Dependency
          Walker tool (Depends.exe) (available at www.dependencywalker.com).
          For example, notice the image types for two different Windows
          images, Notepad.exe (the simple text editor) and Cmd.exe (the
          Windows command prompt):
[image: image with no caption]
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This shows that Notepad is a GUI program, while Cmd is a
          console, or character-based, program. And although this implies
          there are two different subsystems for GUI and character-based
          programs, there is just one Windows subsystem, and GUI programs can
          have consoles, just like console programs can display GUIs.

When an application calls a function in a subsystem DLL,
        one of three things can occur:
	The function is entirely implemented in user mode inside the
            subsystem DLL. In other words, no message is sent to the
            environment subsystem process, and no Windows executive system
            services are called. The function is performed in user mode, and
            the results are returned to the caller. Examples of such functions
            include GetCurrentProcess (which always
            returns –1, a value that is defined to refer to the current
            process in all process-related functions) and
            GetCurrentProcessId. (The process ID doesn’t
            change for a running process, so this ID is retrieved from a
            cached location, thus avoiding the need to call into the
            kernel.)

	The function requires one or more calls to the Windows
            executive. For example, the Windows ReadFile
            and WriteFile functions involve calling the
            underlying internal (and undocumented) Windows I/O system services
            NtReadFile and
            NtWriteFile, respectively.

	The function requires some work to be done in the
            environment subsystem process. (The environment subsystem
            processes, running in user mode, are responsible for maintaining
            the state of the client applications running under their control.)
            In this case, a client/server request is made to the environment
            subsystem via a message sent to the subsystem to perform some
            operation. The subsystem DLL then waits for a reply before
            returning to the caller.



Some functions can be a combination of the second and third
        items just listed, such as the Windows
        CreateProcess and
        CreateThread functions.
Subsystem Startup



Subsystems are started by the Session Manager (Smss.exe)
          process. The subsystem startup information is stored under the
          registry key HKLM\SYSTEM\CurrentControlSet\Control\Session
          Manager\SubSystems. Figure 2-4 shows the
          values under this key.
[image: Registry Editor showing Windows startup information]

Figure 2-4. Registry Editor showing Windows startup information

The Required value lists the subsystems
          that load when the system boots. The value has two strings: Windows
          and Debug. The Windows value contains the file specification of the
          Windows subsystem, Csrss.exe, which stands for Client/Server
          Run-Time Subsystem. Debug is blank (because
          it’s used for internal testing) and therefore does nothing. The
          Optional value indicates that the SUA subsystem will be started on demand. The registry
          value Kmode contains the file name of the
          kernel-mode portion of the Windows subsystem, Win32k.sys (explained
          later in this chapter).
Let’s take a closer look at each of the environment
          subsystems.

Windows Subsystem



Although Windows was designed to support multiple, independent
          environment subsystems, from a practical perspective, having each
          subsystem implement all the code to handle windowing and display I/O
          would result in a large amount of duplication of system functions
          that, ultimately, would negatively affect both system size and
          performance. Because Windows was the primary subsystem, the Windows
          designers decided to locate these basic functions there and have the
          other subsystems call on the Windows subsystem to perform display
          I/O. Thus, the SUA subsystem calls services in the Windows subsystem
          to perform display I/O.
As a result of this design decision, the Windows subsystem is
          a required component for any Windows system, even on server systems
          with no interactive users logged in. Because of this, the process is
          marked as a critical process (which means if for any reason it
          exits, the system crashes).
The Windows subsystem consists of the following major
          components:
	For each session, an instance of the environment subsystem
              process (Csrss.exe) loads three DLLs (Basesrv.dll, Winsrv.dll,
              and Csrsrv.dll) that contain support for the following:
	Creating and deleting processes and threads

	Portions of the support for 16-bit virtual DOS machine
                  (VDM) processes (32-bit Windows only)

	Side-by-Side (SxS)/Fusion and manifest support

	Other miscellaneous functions—such as
                  GetTempFile,
                  DefineDosDevice,
                  ExitWindowsEx, and several natural
                  language support functions




	A kernel-mode device driver (Win32k.sys) that contains the
              following:
	The window manager, which controls window displays;
                  manages screen output; collects input from keyboard, mouse,
                  and other devices; and passes user messages to
                  applications.

	The Graphics Device Interface (GDI), which is a
                  library of functions for graphics output devices. It
                  includes functions for line, text, and figure drawing and
                  for graphics manipulation.

	Wrappers for DirectX support that is implemented in
                  another kernel driver (Dxgkrnl.sys).




	The console host process (Conhost.exe), which provides
              support for console (character cell) applications.

	Subsystem DLLs (such as Kernel32.dll, Advapi32.dll,
              User32.dll, and Gdi32.dll) that translate documented Windows API
              functions into the appropriate and mostly undocumented
              kernel-mode system service calls in Ntoskrnl.exe and
              Win32k.sys.

	Graphics device drivers for hardware-dependent
              graphics display drivers, printer drivers, and video miniport
              drivers.



Note
As part of a refactoring effort in the Windows architecture
            called MinWin, the subsystem DLLs are now generally composed of
            specific libraries that implement API Sets,
            which are then linked together into the subsystem DLL and resolved
            using a special redirection scheme. More information on this
            refactoring is available in Chapter 5 in the Image Loader section.

Applications call the standard USER functions to create user
          interface controls, such as windows and buttons, on the display. The
          window manager communicates these requests to the GDI, which passes
          them to the graphics device drivers, where they are formatted for
          the display device. A display driver is paired with a video miniport
          driver to complete video display support.
The GDI provides a set of standard two-dimensional functions
          that let applications communicate with graphics devices without
          knowing anything about the devices. GDI functions mediate between
          applications and graphics devices such as display drivers and
          printer drivers. The GDI interprets application requests for graphic
          output and sends the requests to graphics display drivers. It also
          provides a standard interface for applications to use varying
          graphics output devices. This interface enables application code to
          be independent of the hardware devices and their drivers. The GDI
          tailors its messages to the capabilities of the device, often
          dividing the request into manageable parts. For example, some
          devices can understand directions to draw an ellipse; others require
          the GDI to interpret the command as a series of pixels placed at
          certain coordinates. For more information about the graphics and
          video driver architecture, see the “Design Guide” section of the
          “Display (Adapters and Monitors)” chapter in the Windows Driver
          Kit.
Because much of the subsystem—in particular, display I/O
          functionality—runs in kernel mode, only a few Windows functions
          result in sending a message to the Windows subsystem process:
          process and thread creation and termination, network drive letter
          mapping, and creation of temporary files. In general, a running
          Windows application won’t be causing many, if any, context switches
          to the Windows subsystem process.
Console Window Host
In the original Windows subsystem design, the subsystem
            process (Csrss.exe) was responsible for the managing of console
            windows and each console application (such as Cmd.exe, the command
            prompt) communicated with Csrss. Windows now uses a separate
            process, the console window host (Conhost.exe), for each console
            window on the system. (A single console window can be shared by
            multiple console applications, such as when you launch a command
            prompt from the command prompt. By default, the second command
            prompt shares the console window of the first.)
Whenever a console application registers itself with
            the Csrss instance running in the current session, Csrss creates a
            new instance of Conhost using the client process’ security token
            instead of Csrss’ System token. It then maps a shared memory
            section that is used to allow all Conhosts to share part of their
            memory with Csrss for efficient buffer handling (because these
            threads do not live within Csrss anymore) and creates a named
            Asynchronous Local Procedure Call (ALPC) port in the \RPC Control
            object directory. (For more information on ALPC, see Chapter 3.) The name of the port is of the
            format console-PID-lpc-handle, where
            PID is the process ID of the Conhost process.
            It then registers its PID with the kernel process structure
            associated with the user application, which can then query this
            information to open the newly created ALPC port. This process also
            creates a mapping of a shared section memory object between the
            command-line application and its Conhost so that the two can share
            data. Finally, a wait event is created in the session 0
            BaseNamedObjects directory (named
            ConsoleEvent-PID) so that the command-line
            application and the Conhost can notify each other of new buffer
            data. The following figure shows a Conhost process with handles
            open to its ALPC port and event.
[image: image with no caption]

Because the Conhost is running with the user’s credentials
            (which also implies the user’s privilege level), as well as in a
            process associated with the console application itself, the User
            Interface Privilege Isolation (UIPI, described in Chapter 6) security mechanism covers console
            processes. In addition, CPU-bound console applications can be
            identified with their supporting console host process (which a
            user can kill if needed). As a side effect, because Conhost
            processes now run outside the special enclave of the Csrss
            subsystem, console applications (whose windows are actually owned
            by Conhost) can be fully themed, load third-party DLLs, and run
            with full windowing capabilities.


Subsystem for Unix-based Applications



The Subsystem for UNIX-based Applications (SUA)
          enables compiling and running custom UNIX-based applications on a
          computer running Windows Server or the Enterprise or Ultimate
          editions of Windows client. SUA provides nearly 2000 UNIX functions
          and 300 UNIX-like tools and utilities. (See http://technet.microsoft.com/en-us/library/cc771470.aspx
          for more information on SUA.) For more information on how Windows
          handles running SUA applications, see the section Flow of CreateProcess in Chapter 5.
Original POSIX Subsystem
POSIX, an acronym loosely defined as “a portable operating
            system interface based on UNIX,” refers to a collection of
            international standards for UNIX-style operating system
            interfaces. The POSIX standards encourage vendors implementing
            UNIX-style interfaces to make them compatible so that programmers
            can move their applications easily from one system to
            another.
Windows initially implemented only one of the many POSIX
            standards, POSIX.1, formally known as ISO/IEC 9945-1:1990 or IEEE
            POSIX standard 1003.1-1990. This standard was included primarily
            to meet U.S. government procurement requirements set in the
            mid-to-late 1980s that mandated POSIX.1 compliance as specified in
            Federal Information Processing Standard (FIPS) 151-2, developed by
            the National Institute of Standards and Technology. Windows NT
            3.5, 3.51, and 4 were formally tested and certified according to
            FIPS 151-2.
Because POSIX.1 compliance was a mandatory goal for Windows,
            the operating system was designed to ensure that the required base
            system support was present to allow for the implementation of a
            POSIX.1 subsystem (such as the fork function,
            which is implemented in the Windows executive, and the support for
            hard file links in the Windows file system).



Ntdll.dll



Ntdll.dll is a special system support library primarily for the
        use of subsystem DLLs. It contains two types of functions:
	System service dispatch stubs to Windows executive system
            services

	Internal support functions used by subsystems, subsystem
            DLLs, and other native images



The first group of functions provides the interface to the
        Windows executive system services that can be called from user mode.
        There are more than 400 such functions, such as
        NtCreateFile, NtSetEvent,
        and so on. As noted earlier, most of the capabilities of these
        functions are accessible through the Windows API. (A number are not,
        however, and are for use only within the operating system.)
For each of these functions, Ntdll contains an entry
        point with the same name. The code inside the function contains the
        architecture-specific instruction that causes a transition into kernel
        mode to invoke the system service dispatcher (explained in more detail
        in Chapter 3), which, after verifying some
        parameters, calls the actual kernel-mode system service that contains
        the real code inside Ntoskrnl.exe.
Ntdll also contains many support functions, such as the image
        loader (functions that start with Ldr), the heap
        manager, and Windows subsystem process communication functions
        (functions that start with Csr). Ntdll also
        includes general run-time library routines (functions that start with
        Rtl), support for user-mode debugging (functions
        that start with DbgUi), and Event Tracing for
        Windows (functions starting in Etw), and the
        user-mode asynchronous procedure call (APC) dispatcher and exception
        dispatcher. (APCs and exceptions are explained in Chapter 3.) Finally, you’ll find a small subset
        of the C Run-Time (CRT) routines in Ntdll, limited to those routines
        that are part of the string and standard libraries (such as
        memcpy, strcpy, itoa, and so on).

Executive



The Windows executive is the upper layer of Ntoskrnl.exe. (The
        kernel is the lower layer.) The executive includes the following types
        of functions:
	Functions that are exported and callable from user mode.
            These functions are called system services
            and are exported via Ntdll. Most of the services are accessible
            through the Windows API or the APIs of another environment
            subsystem. A few services, however, aren’t available through any
            documented subsystem function. (Examples include ALPC and various
            query functions such as
            NtQueryInformationProcess, specialized
            functions such as NtCreatePagingFile, and so
            on.)

	Device driver functions that are called through the use of
            the DeviceIoControl function. This provides a
            general interface from user mode to kernel mode to call functions
            in device drivers that are not associated with a read or
            write.

	Functions that can be called only from kernel mode that are
            exported and are documented in the WDK.

	Functions that are exported and callable from kernel mode
            but are not documented in the WDK (such as the functions called by
            the boot video driver, which start with
            Inbv).

	Functions that are defined as global symbols but are not
            exported. These include internal support functions called within
            Ntoskrnl, such as those that start with Iop
            (internal I/O manager support functions) or
            Mi (internal memory management support
            functions).

	Functions that are internal to a module that are not defined
            as global symbols.



The executive contains the following major components, each of
        which is covered in detail in a subsequent chapter of this
        book:
	The configuration manager (explained in
            Chapter 4) is responsible for
            implementing and managing the system registry.

	The process manager (explained
            in Chapter 5)
            creates and terminates processes and threads. The underlying
            support for processes and threads is implemented in the Windows
            kernel; the executive adds additional semantics and functions to
            these lower-level objects.

	The security reference monitor (or SRM,
            described in Chapter 6) enforces
            security policies on the local computer. It guards operating
            system resources, performing run-time object protection and
            auditing.

	The I/O manager (explained in Chapter 8
            in Part 2) implements device-independent I/O and is responsible
            for dispatching to the appropriate device drivers for further
            processing.

	The Plug and Play (PnP) manager
            (explained in Chapter 8 in Part 2) determines which drivers are
            required to support a particular device and loads those drivers.
            It retrieves the hardware resource requirements for each device
            during enumeration. Based on the resource requirements of each
            device, the PnP manager assigns the appropriate hardware resources
            such as I/O ports, IRQs, DMA channels, and memory locations. It is
            also responsible for sending proper event notification for device
            changes (addition or removal of a device) on the system.

	The power manager (explained in Chapter
            8 in Part 2) coordinates power events and generates power
            management I/O notifications to device drivers. When the system is
            idle, the power manager can be configured to reduce power
            consumption by putting the CPU to sleep. Changes in power
            consumption by individual devices are handled by device drivers
            but are coordinated by the power manager.

	The Windows Driver Model Windows Management
            Instrumentation routines (explained in Chapter 4) enable device drivers to
            publish performance and configuration information and receive
            commands from the user-mode WMI service. Consumers of WMI
            information can be on the local machine or remote across the
            network.

	The cache manager (explained in Chapter
            11, “Cache Manager,” in Part 2) improves the performance of
            file-based I/O by causing recently referenced disk data to reside
            in main memory for quick access (and by deferring disk writes by
            holding the updates in memory for a short time before sending them
            to the disk). As you’ll see, it does this by using the memory
            manager’s support for mapped files.

	The memory manager (explained in
            Chapter 10 in Part 2) implements virtual
            memory, a memory management scheme that provides a
            large, private address space for each process that can exceed
            available physical memory. The memory manager also provides the
            underlying support for the cache manager.

	The logical prefetcher and
            Superfetch (explained in Chapter 10 in Part
            2) accelerate system and process startup by optimizing the loading
            of data referenced during the startup of the system or a
            process.



In addition, the executive contains four main groups of
        support functions that are used by the executive components just
        listed. About a third of these support functions are documented in the
        WDK because device drivers also use them. These are the four
        categories of support functions:
	The object manager, which creates,
            manages, and deletes Windows executive objects and abstract data
            types that are used to represent operating system resources such
            as processes, threads, and the various synchronization objects.
            The object manager is explained in Chapter 3.

	The Advanced LPC facility (ALPC,
            explained in Chapter 3) passes messages
            between a client process and a server process on the same
            computer. Among other things, ALPC is used as a local transport
            for remote procedure call (RPC), an
            industry-standard communication facility for client and server
            processes across a network.

	A broad set of common run-time library
            functions, such as string processing, arithmetic operations, data
            type conversion, and security structure processing.

	Executive support routines, such as system memory allocation
            (paged and nonpaged pool), interlocked memory access, as well as
            three special types of synchronization objects: resources, fast
            mutexes, and pushlocks.



The executive also contains a variety of other infrastructure
        routines, some of which we will mention only briefly throughout the
        book:
	The kernel debugger library, which
            allows debugging of the kernel from a debugger supporting KD, a
            portable protocol supported over a variety of transports (such as
            USB and IEEE 1394) and implemented by WinDbg and the Kd.exe
            utilities.

	The user-mode debugging framework,
            which is responsible for sending events to the user-mode debugging
            API and allowing breakpoints and stepping through code to work, as
            well as for changing contexts of running threads.

	The kernel transaction manager, which
            provides a common, two-phase commit mechanism to resource
            managers, such as the transactional registry (TxR) and
            transactional NTFS (TxF).

	The hypervisor library, part of the
            Hyper-V stack in Windows Server 2008, provides kernel support for
            the virtual machine environment and optimizes certain parts of the
            code when the system knows it’s running in a client partition
            (virtual environment).

	The errata manager provides workarounds
            for nonstandard or noncompliant hardware devices.

	The Driver Verifier implements optional
            integrity checks of kernel-mode drivers and code.

	Event Tracing for Windows provides
            helper routines for systemwide event tracing for kernel-mode and
            user-mode components.

	The Windows diagnostic infrastructure
            enables intelligent tracing of system activity based on diagnostic
            scenarios.

	The Windows hardware error
            architecture support routines provide a common
            framework for reporting hardware errors.

	The file-system runtime library
            provides common support routines for file system drivers.




Kernel



The kernel consists of a set of functions in Ntoskrnl.exe that
        provides fundamental mechanisms (such as thread scheduling and
        synchronization services) used by the executive components, as well as
        low-level hardware architecture–dependent support (such as interrupt
        and exception dispatching) that is different on each processor
        architecture. The kernel code is written primarily in C, with assembly
        code reserved for those tasks that require access to specialized
        processor instructions and registers not easily accessible from
        C.
Like the various executive support functions mentioned in the
        preceding section, a number of functions in the kernel are documented
        in the WDK (and can be found by searching for functions beginning with
        Ke) because they are needed to implement device
        drivers.
Kernel Objects



The kernel provides a low-level base of well-defined,
          predictable operating system primitives and mechanisms that allow
          higher-level components of the executive to do what they need to do.
          The kernel separates itself from the rest of the executive by
          implementing operating system mechanisms and avoiding policy making.
          It leaves nearly all policy decisions to the executive, with the
          exception of thread scheduling and dispatching, which the kernel
          implements.
Outside the kernel, the executive represents threads and other
          shareable resources as objects. These objects require some policy
          overhead, such as object handles to manipulate them, security checks
          to protect them, and resource quotas to be deducted when they are
          created. This overhead is eliminated in the kernel, which implements
          a set of simpler objects, called kernel
          objects, that help the kernel control central processing
          and support the creation of executive objects. Most executive-level
          objects encapsulate one or more kernel objects, incorporating their
          kernel-defined attributes.
One set of kernel objects, called control
          objects, establishes semantics for controlling various
          operating system functions. This set includes the APC object, the
          deferred procedure call (DPC) object, and
          several objects the I/O manager uses, such as the interrupt
          object.
Another set of kernel objects, known as dispatcher
          objects, incorporates synchronization capabilities that
          alter or affect thread scheduling. The dispatcher objects include
          the kernel thread, mutex (called mutant
          internally), event, kernel event pair, semaphore, timer, and
          waitable timer. The executive uses kernel functions to create
          instances of kernel objects, to manipulate them, and to construct
          the more complex objects it provides to user mode. Objects are
          explained in more detail in Chapter 3,
          and processes and threads are described in Chapter 5.

Kernel Processor Control Region and Control Block (KPCR and
          KPRCB)



The kernel uses a data structure called the
          processor control region, or KPCR, to store
          processor-specific data. The KPCR contains basic information such as
          the processor’s interrupt dispatch table (IDT), task-state segment
          (TSS), and global descriptor table (GDT). It also includes the
          interrupt controller state, which it shares with other modules, such
          as the ACPI driver and the HAL. To provide easy access to the KPCR,
          the kernel stores a pointer to it in the fs
          register on 32-bit Windows and in the gs
          register on an x64 Windows system. On IA64 systems, the KPCR is
          always located at 0xe0000000ffff0000.
The KPCR also contains an embedded data structure called the
          kernel processor control block (KPRCB). Unlike
          the KPCR, which is documented for third-party drivers and other
          internal Windows kernel components, the KPRCB is a private structure
          used only by the kernel code in Ntoskrnl.exe. It contains scheduling
          information such as the current, next, and idle threads scheduled
          for execution on the processor; the dispatcher database for the
          processor (which includes the ready queues for each priority level);
          the DPC queue; CPU vendor and identifier information (model,
          stepping, speed, feature bits); CPU and NUMA topology (node
          information, cores per package, logical processors per core, and so
          on); cache sizes; time accounting information (such as the DPC and
          interrupt time); and more. The KPRCB also contains all the
          statistics for the processor, such as I/O statistics, cache manager
          statistics (see Chapter 11, “Cache Manager,” in Part 2 for a
          description of these), DPC statistics, and memory manager
          statistics. (See Chapter 10 in Part 2 for more information.)
          Finally, the KPRCB is sometimes used to store cache-aligned,
          per-processor structures to optimize memory access, especially on
          NUMA systems. For example, the nonpaged and paged-pool system
          look-aside lists are stored in the KPRCB.
EXPERIMENT: Viewing the KPCR and KPRCB
You can view the contents of the KPCR and KPRCB by using the
            !pcr and !prcb kernel
            debugger commands. If you don’t include flags, the debugger will
            display information for CPU 0 by default; otherwise, you can
            specify a CPU by adding its number after the command (for example,
            !pcr 2). The following example shows what the
            output of the !pcr and
            !prcb commands looks like. If the system had
            pending DPCs, those would also be shown.
lkd> !pcr
KPCR for Processor 0 at 81d09800:
    Major 1 Minor 1
    NtTib.ExceptionList: 9b31ca3c
        NtTib.StackBase: 00000000
       NtTib.StackLimit: 00000000
     NtTib.SubSystemTib: 80150000
          NtTib.Version: 1c47209e
      NtTib.UserPointer: 00000001
          NtTib.SelfTib: 7ffde000

                SelfPcr: 81d09800
                   Prcb: 81d09920
                   Irql: 00000002
                    IRR: 00000000
                    IDR: ffffffff

          InterruptMode: 00000000
                    IDT: 82fb8400
                    GDT: 82fb8000
                    TSS: 80150000

          CurrentThread: 86d317e8
             NextThread: 00000000
             IdleThread: 81d0d640

              DpcQueue:

lkd> !prcb
PRCB for Processor 0 at 81d09920:
Current IRQL -- 0
Threads--  Current 86d317e8 Next 00000000
Idle 81d0d640
Number 0 SetMember 1
Interrupt Count -- 294ccce0
Times -- Dpc    0002a87f Interrupt 00010b87
         Kernel 026270a1 User      00140e5e
You can use the dt command to
            directly dump the _KPCR and _KPRCB data structures because both
            debugger commands give you the address of the structure (shown in
            bold for clarity in the previous output). For example, if you
            wanted to determine the speed of the processor, you could look at
            the MHz field with the following command:
lkd> dt nt!_KPRCB 81d09920 MHz

   +0x3c4 MHz : 0xbb4
lkd> ? bb4
Evaluate expression: 2996 = 00000bb4
On this machine, the processor was running at about 3
            GHz.


Hardware Support



The other major job of the kernel is to abstract or isolate
          the executive and device drivers from variations between the
          hardware architectures supported by Windows. This job includes
          handling variations in functions such as interrupt handling,
          exception dispatching, and multiprocessor synchronization.
Even for these hardware-related functions, the design of the
          kernel attempts to maximize the amount of common code. The kernel
          supports a set of interfaces that are portable and semantically
          identical across architectures. Most of the code that implements
          these portable interfaces is also identical across
          architectures.
Some of these interfaces are implemented differently on
          different architectures or are partially implemented with
          architecture-specific code. These architecturally independent
          interfaces can be called on any machine, and the semantics of the
          interface will be the same whether or not the code varies by
          architecture. Some kernel interfaces (such as spinlock routines,
          which are described in Chapter 3) are actually
          implemented in the HAL (described in the next section) because their
          implementation can vary for systems within the same architecture
          family.
The kernel also contains a small amount of code with
          x86-specific interfaces needed to support old MS-DOS programs. These
          x86 interfaces aren’t portable in the sense that they can’t be
          called on a machine based on any other architecture; they won’t be
          present. This x86-specific code, for example, supports calls to
          manipulate global descriptor tables (GDTs) and local descriptor
          tables (LDTs), which are hardware features of the x86.
Other examples of architecture-specific code in the kernel
          include the interfaces to provide translation buffer and CPU cache
          support. This support requires different code for the different
          architectures because of the way caches are implemented.
Another example is context switching. Although at a high level
          the same algorithm is used for thread selection and context
          switching (the context of the previous thread is saved, the context
          of the new thread is loaded, and the new thread is started), there
          are architectural differences among the implementations on different
          processors. Because the context is described by the processor state
          (registers and so on), what is saved and loaded varies depending on
          the architecture.


Hardware Abstraction Layer



As mentioned at the beginning of this chapter, one of the
        crucial elements of the Windows design is its portability across a
        variety of hardware platforms. The hardware abstraction layer (HAL) is
        a key part of making this portability possible. The HAL is a loadable
        kernel-mode module (Hal.dll) that provides the low-level interface to
        the hardware platform on which Windows is running. It hides
        hardware-dependent details such as I/O interfaces, interrupt
        controllers, and multiprocessor communication mechanisms—any functions
        that are both architecture-specific and machine-dependent.
So rather than access hardware directly, Windows internal
        components as well as user-written device drivers maintain portability
        by calling the HAL routines when they need platform-dependent
        information. For this reason, the HAL routines are documented in the
        WDK. To find out more about the HAL and its use by device drivers,
        refer to the WDK.
Although several HALs are included (as shown in Table 2-4), Windows has the ability to detect at
        boot-up time which HAL should be used, eliminating the problem that
        existed on earlier versions of Windows when attempting to boot a
        Windows installation on a different kind of system.
Table 2-4. List of x86 HALs
	HAL File Name
	Systems Supported

	Halacpi.dll
	Advanced Configuration and Power
                Interface (ACPI) PCs. Implies uniprocessor-only machine,
                without APIC support (the presence of either one would make
                the system use the HAL below instead).

	Halmacpi.dll
	Advanced Programmable Interrupt
                Controller (APIC) PCs with an ACPI. The existence of an APIC
                implies SMP support.




Note
On x64 machines, there is only one HAL image, called
          Hal.dll. This results from all x64 machines having the same
          motherboard configuration, because the processors require ACPI and
          APIC support. Therefore, there is no need to support machines
          without ACPI or with a standard PIC.

EXPERIMENT: Determining Which HAL You’re Running
You can determine which version of the HAL you’re running by
          using WinDbg and opening a local kernel debugging session. Be sure
          you have the symbols loaded by entering .reload, and then typing lm vm hal. For example, the following
          output is from a system running the ACPI HAL:
lkd> lm vm hal
start    end        module name
fffff800'0181b000 fffff800'01864000   hal        (deferred)
    Loaded symbol image file: halmacpi.dll
    Image path: halmacpi.dll
    Image name: halmacpi.dll
    Timestamp:        Mon Jul 13 21:27:36 2009 (4A5BDF08)
    CheckSum:         0004BD36
    ImageSize:        00049000
    File version:     6.1.7600.16385
    Product version:  6.1.7600.16385
    File flags:       0 (Mask 3F)
    File OS:          40004 NT Win32
    File type:        2.0 Dll
    File date:        00000000.00000000
    Translations:     0409.04b0
    CompanyName:      Microsoft Corporation
    ProductName:      Microsoft® Windows® Operating System
    InternalName:     halmacpi.dll
    OriginalFilename: halmacpi.dll
    ProductVersion:   6.1.7600.16385
    FileVersion:      6.1.7600.16385 (win7_rtm.090713-1255)
    FileDescription:  Hardware Abstraction Layer DLL
    LegalCopyright:   © Microsoft Corporation. All rights reserved.

EXPERIMENT: Viewing NTOSKRNL and HAL Image
          Dependencies
You can view the relationship of the kernel and HAL images by
          examining their export and import tables using the Dependency Walker
          tool (Depends.exe). To examine an image in the Dependency Walker,
          select Open from the File menu to open the desired image
          file.
Here is a sample of output you can see by viewing the
          dependencies of Ntoskrnl using this tool:
[image: image with no caption]

Notice that Ntoskrnl is linked against the HAL, which is in
          turn linked against Ntoskrnl. (They both use functions in each
          other.) Ntoskrnl is also linked to the following binaries:
	Pshed.dll, the Platform-Specific Hardware Error Driver.
              PSHED provides an abstraction of the hardware error reporting
              facilities of the underlying platform by hiding the details of a
              platform’s error-handling mechanisms from the operating system
              and exposing a consistent interface to the Windows operating
              system.

	On 32-bit systems only, Bootvid.dll, the Boot Video
              Driver. Bootvid provides support for the VGA commands required
              to display boot text and the boot logo during startup. On x64
              systems, this library is built into the kernel to avoid
              conflicts with Kernel Patch Protection (KPP). (See Chapter 3 for more information on KPP and
              PatchGuard.)

	Kdcom.dll, the Kernel Debugger Protocol (KD)
              Communications Library.

	Ci.dll, the code integrity library. (See Chapter 3 for more information on code
              integrity.)

	Clfs.sys, the common logging file system driver, used by,
              among other things, the Kernel Transaction Manager (KTM). (See
              Chapter 3 for more information on the
              KTM.)



For a detailed description of the information displayed by
          this tool, see the Dependency Walker help file (Depends.hlp).


Device Drivers



Although device drivers are explained in detail in
        Chapter 8 in Part 2, this section provides a brief overview of the
        types of drivers and explains how to list the drivers installed and
        loaded on your system.
Device drivers are loadable kernel-mode modules (typically
        ending in .sys) that interface between the I/O manager and the
        relevant hardware. They run in kernel mode in one of three
        contexts:
	In the context of the user thread that initiated an I/O
            function

	In the context of a kernel-mode system thread

	As a result of an interrupt (and therefore not in the
            context of any particular process or thread—whichever process or
            thread was current when the interrupt occurred)



As stated in the preceding section, device drivers in Windows
        don’t manipulate hardware directly, but rather they call functions in
        the HAL to interface with the hardware. Drivers are typically written
        in C (sometimes C++) and therefore, with proper use of HAL routines,
        can be source-code portable across the CPU architectures supported by
        Windows and binary portable within an architecture family.
There are several types of device drivers:
	Hardware device drivers manipulate
            hardware (using the HAL) to write output to or retrieve input from
            a physical device or network. There are many types of hardware
            device drivers, such as bus drivers, human interface drivers, mass
            storage drivers, and so on.

	File system drivers are Windows drivers
            that accept file-oriented I/O requests and translate them into I/O
            requests bound for a particular device.

	File system filter drivers, such as
            those that perform disk mirroring and encryption, intercept I/Os,
            and perform some added-value processing before passing the I/O to
            the next layer.

	Network redirectors and servers are
            file system drivers that transmit file system I/O requests to a
            machine on the network and receive such requests,
            respectively.

	Protocol drivers implement a networking
            protocol such as TCP/IP, NetBEUI, and IPX/SPX.

	Kernel streaming filter drivers are
            chained together to perform signal processing on data streams,
            such as recording or displaying audio and video.



Because installing a device driver is the only way to add
        user-written kernel-mode code to the system, some programmers have
        written device drivers simply as a way to access internal operating
        system functions or data structures that are not accessible from user
        mode (but that are documented and supported in the WDK). For example,
        many of the utilities from Sysinternals combine a Windows GUI
        application and a device driver that is used to gather internal system
        state and call kernel-mode-only accessible functions not available
        from the user-mode Windows API.
Windows Driver Model (WDM)



Windows 2000 added support for Plug and Play, Power
          Options, and an extension to the Windows NT driver model called the
          Windows Driver Model (WDM). Windows 2000 and later can run legacy
          Windows NT 4 drivers, but because these don’t support Plug and Play
          and Power Options, systems running these drivers will have reduced
          capabilities in these two areas.
From the WDM perspective, there are three kinds of
          drivers:
	A bus driver services a bus
              controller, adapter, bridge, or any device that has child
              devices. Bus drivers are required drivers, and Microsoft
              generally provides them; each type of bus (such as PCI, PCMCIA,
              and USB) on a system has one bus driver. Third parties can write
              bus drivers to provide support for new buses, such as VMEbus,
              Multibus, and Futurebus.

	A function driver is the main device
              driver and provides the operational interface for its device. It
              is a required driver unless the device is used raw (an
              implementation in which I/O is done by the bus driver and any
              bus filter drivers, such as SCSI PassThru). A function driver is
              by definition the driver that knows the most about a particular
              device, and it is usually the only driver that accesses
              device-specific registers.

	A filter driver is used to add
              functionality to a device (or existing driver) or to modify I/O
              requests or responses from other drivers (and is often used to
              fix hardware that provides incorrect information about its
              hardware resource requirements). Filter drivers are optional and
              can exist in any number, placed above or below a function driver
              and above a bus driver. Usually, system original equipment
              manufacturers (OEMs) or independent hardware vendors (IHVs)
              supply filter drivers.



In the WDM driver environment, no single driver controls all
          aspects of a device: a bus driver is concerned with reporting the
          devices on its bus to the PnP manager, while a function driver
          manipulates the device.
In most cases, lower-level filter drivers modify the behavior
          of device hardware. For example, if a device reports to its bus
          driver that it requires 4 I/O ports when it actually requires 16 I/O
          ports, a lower-level, device-specific function filter driver could
          intercept the list of hardware resources reported by the bus driver
          to the PnP manager and update the count of I/O ports.
Upper-level filter drivers usually provide added-value
          features for a device. For example, an upper-level device filter
          driver for a keyboard can enforce additional security checks.
Interrupt processing is explained in Chapter 3. Further details about the I/O
          manager, WDM, Plug and Play, and Power Options are included in
          Chapter 8 in Part 2.

Windows Driver Foundation



The Windows Driver Foundation (WDF) simplifies Windows driver
          development by providing two frameworks: the Kernel-Mode Driver
          Framework (KMDF) and the User-Mode Driver Framework (UMDF).
          Developers can use KMDF to write drivers for Windows 2000 SP4 and
          later, while UMDF supports Windows XP and later.
KMDF provides a simple interface to WDM and hides its
          complexity from the driver writer without modifying the underlying
          bus/function/filter model. KMDF drivers respond to events that they
          can register and call into the KMDF library to perform work that
          isn’t specific to the hardware they are managing, such as generic
          power management or synchronization. (Previously, each driver had to
          implement this on its own.) In some cases, more than 200 lines of
          WDM code can be replaced by a single KMDF function call.
UMDF enables certain classes of drivers (mostly USB-based or
          other high-latency protocol buses)—such as those for video cameras,
          MP3 players, cell phones, PDAs, and printers—to be implemented as
          user-mode drivers. UMDF runs each user-mode driver in what is
          essentially a user-mode service, and it uses ALPC to communicate to
          a kernel-mode wrapper driver that provides actual access to
          hardware. If a UMDF driver crashes, the process dies and usually
          restarts, so the system doesn’t become unstable—the device simply
          becomes unavailable while the service hosting the driver restarts.
          Finally, UMDF drivers are written in C++ using COM-like classes and
          semantics, further lowering the bar for programmers to write device
          drivers.
EXPERIMENT: Viewing the Installed Device Drivers
You can list the installed drivers by running Msinfo32. (To
            launch this, click Start and then type Msinfo32 and then press Enter.) Under
            System Summary, expand Software Environment and open System
            Drivers. Here’s an example output of the list of installed
            drivers:
[image: image with no caption]

This window displays the list of device drivers defined in
            the registry, their type, and their state (Running or Stopped).
            Device drivers and Windows service processes are both defined in
            the same place: HKLM\SYSTEM\CurrentControlSet\Services. However,
            they are distinguished by a type code—for example, type
            1 is a kernel-mode device driver. (For a complete list
            of the information stored in the registry for device drivers, see
            Table 4-7 in Chapter 4.)
Alternatively, you can list the currently loaded device
            drivers by selecting the System process in Process Explorer and
            opening the DLL view.

Peering into Undocumented Interfaces
Examining the names of the exported or global
            symbols in key system images (such as Ntoskrnl.exe, Hal.dll, or
            Ntdll.dll) can be enlightening—you can get an idea of the kinds of
            things Windows can do versus what happens to be documented and
            supported today. Of course, just because you know the names of
            these functions doesn’t mean that you can or should call them—the
            interfaces are undocumented and are subject to change. We suggest
            that you look at these functions purely to gain more insight into
            the kinds of internal functions Windows performs, not to bypass
            supported interfaces.
For example, looking at the list of functions in Ntdll.dll
            gives you the list of all the system services that Windows
            provides to user-mode subsystem DLLs versus the subset that each
            subsystem exposes. Although many of these functions map clearly to
            documented and supported Windows functions, several are not
            exposed via the Windows API.
Conversely, it’s also interesting to examine the imports of
            Windows subsystem DLLs (such as Kernel32.dll or Advapi32.dll) and
            which functions they call in Ntdll.
Another interesting image to dump is Ntoskrnl.exe—although
            many of the exported routines that kernel-mode device drivers use
            are documented in the Windows Driver Kit, quite a few are not. You
            might also find it interesting to take a look at the import table
            for Ntoskrnl and the HAL; this table shows the list of functions
            in the HAL that Ntoskrnl uses and vice versa.
Table 2-5 lists most of the
            commonly used function name prefixes for the executive components.
            Each of these major executive components also uses a variation of
            the prefix to denote internal functions—either the first letter of
            the prefix followed by an i (for
            internal) or the full prefix followed by a
            p (for private). For
            example, Ki represents internal kernel
            functions, and Psp refers to internal process
            support functions.
Table 2-5. Commonly Used Prefixes
	Prefix
	Component

	Alpc
	Advanced Local Inter-Process
                    Communication

	Cc
	Common Cache

	Cm
	Configuration
                    manager

	Dbgk
	Debugging Framework for
                    User-Mode

	Em
	Errata Manager

	Etw
	Event Tracing for
                    Windows

	Ex
	Executive support
                    routines

	FsRtl
	File system driver run-time
                    library

	Hvl
	Hypervisor
                    Library

	Io
	I/O manager

	Kd
	Kernel Debugger

	Ke
	Kernel

	Lsa
	Local Security
                    Authority

	Mm
	Memory manager

	Nt
	NT system services (most of
                    which are exported as Windows functions)

	Ob
	Object manager

	Pf
	Prefetcher

	Po
	Power manager

	Pp
	PnP manager

	Ps
	Process support

	Rtl
	Run-time library

	Se
	Security

	Sm
	Store Manager

	Tm
	Transaction
                    Manager

	Vf
	Verifier

	Wdi
	Windows Diagnostic
                    Infrastructure

	Whea
	Windows Hardware Error
                    Architecture

	Wmi
	Windows Management
                    Instrumentation

	Zw
	Mirror entry point for system
                    services (beginning with Nt) that sets previous access
                    mode to kernel, which eliminates parameter validation,
                    because Nt system services validate parameters only if
                    previous access mode is user




You can decipher the names of these exported functions more
            easily if you understand the naming convention for Windows system
            routines. The general format is
<Prefix><Operation><Object>
In this format, Prefix is the internal
            component that exports the routine, Operation
            tells what is being done to the object or resource, and
            Object identifies what is being operated
            on.
For example, ExAllocatePoolWithTag is
            the executive support routine to allocate from a paged or nonpaged
            pool. KeInitializeThread is the routine that
            allocates and sets up a kernel thread object.



System Processes



The following system processes appear on every Windows
        system. (Two of these—Idle and System—are not full processes because
        they are not running a user-mode executable.)
	Idle process (contains one thread per CPU to account for
            idle CPU time)

	System process (contains the majority of the kernel-mode
            system threads)

	Session manager (Smss.exe)

	Local session manager (Lsm.exe)

	Windows subsystem (Csrss.exe)

	Session 0 initialization (Wininit.exe)

	Logon process (Winlogon.exe)

	Service control manager (Services.exe) and the child service
            processes it creates (such as the system-supplied generic
            service-host process, Svchost.exe)

	Local security authentication server (Lsass.exe)



To understand the relationship of these processes, it is helpful
        to view the process “tree”—that is, the parent/child relationship
        between processes. Seeing which process created each process helps to
        understand where each process comes from. Figure 2-5 is a screen snapshot of the
        process tree viewed after taking a Process Monitor boot trace. Using
        Process Monitor allows you to see processes that have since exited
        (indicated by the muted icon).
[image: Initial system process tree]

Figure 2-5. Initial system process tree

The next sections explain the key system processes shown
        in Figure 2-5. Although these
        sections briefly indicate the order of process startup, Chapter 13 in
        Part 2 contains a detailed description of the steps involved in
        booting and starting Windows.
System Idle Process



The first process listed in Figure 2-5 is the system idle process.
          As we’ll explain in Chapter 5, processes are
          identified by their image name. However, this process (as well as
          the process named System) isn’t running a real user-mode image (in
          that there is no “System Idle Process.exe” in the \Windows
          directory). In addition, the name shown for this process differs
          from utility to utility (because of implementation details). Table 2-6 lists several
          of the names given to the Idle process (process ID 0). The Idle
          process is explained in detail in Chapter 5.
Table 2-6. Names for Process ID 0 in Various Utilities
	Utility
	Name for Process ID
                  0

	Task Manager
	System Idle Process

	Process Status
                  (Pstat.exe)
	Idle Process

	Process Explorer
                  (Procexp.exe)
	System Idle Process

	Task List
                  (Tasklist.exe)
	System Idle Process

	Tlist (Tlist.exe)
	System Process




Now let’s look at system threads and the purpose of each of
          the system processes that are running real images.

System Process and System Threads



The System process (process ID 4) is the home for a special
          kind of thread that runs only in kernel mode: a
          kernel-mode system thread. System threads have
          all the attributes and contexts of regular user-mode threads (such
          as a hardware context, priority, and so on) but are different in
          that they run only in kernel-mode executing code loaded in system
          space, whether that is in Ntoskrnl.exe or in any other loaded device
          driver. In addition, system threads don’t have a user process
          address space and hence must allocate any dynamic storage from
          operating system memory heaps, such as a paged or nonpaged
          pool.
System threads are created by the
          PsCreateSystemThread function (documented in
          the WDK), which can be called only from kernel mode. Windows, as
          well as various device drivers, create system threads during system
          initialization to perform operations that require thread context,
          such as issuing and waiting for I/Os or other objects or polling a
          device. For example, the memory manager uses system threads to
          implement such functions as writing dirty pages to the page file or
          mapped files, swapping processes in and out of memory, and so forth.
          The kernel creates a system thread called the balance set
          manager that wakes up once per second to possibly
          initiate various scheduling and memory management related events.
          The cache manager also uses system threads to implement both read-ahead and write-behind I/Os. The file server
          device driver (Srv2.sys) uses system threads to respond to network
          I/O requests for file data on disk partitions shared to the network.
          Even the floppy driver has a system thread to poll the floppy
          device. (Polling is more efficient in this case because an
          interrupt-driven floppy driver consumes a large amount of system
          resources.) Further information on specific system threads is
          included in the chapters in which the component is described.
By default, system threads are owned by the System process,
          but a device driver can create a system thread in any process. For
          example, the Windows subsystem device driver (Win32k.sys) creates a
          system thread inside the Canonical Display Driver (Cdd.dll) part of
          the Windows subsystem process (Csrss.exe) so that it can easily
          access data in the user-mode address space of that process.
When you’re troubleshooting or going through a system
          analysis, it’s useful to be able to map the execution of individual
          system threads back to the driver or even to the subroutine that
          contains the code. For example, on a heavily loaded file server, the
          System process will likely be consuming considerable CPU time. But
          the knowledge that when the System process is running that “some
          system thread” is running isn’t enough to determine which device
          driver or operating system component is running.
So if threads in the System process are running, first
          determine which ones are running (for example, with the Performance
          Monitor tool). Once you find the thread (or threads) that is
          running, look up in which driver the system thread began execution
          (which at least tells you which driver likely created the thread) or
          examine the call stack (or at least the current address) of the
          thread in question, which would indicate where the thread is
          currently executing.
Both of these techniques are illustrated in the following
          experiment.
EXPERIMENT: Mapping a System Thread to a Device
            Driver
In this experiment, we’ll see how to map CPU activity in the
            System process to the responsible system thread (and the driver it
            falls in) generating the activity. This is important because when
            the System process is running, you must go to the thread
            granularity to really understand what’s going on. For this
            experiment, we will generate system thread activity by generating
            file server activity on your machine. (The file server driver,
            Srv2.sys, creates system threads to handle inbound requests for
            file I/O. See Chapter 7 for more information
            on this component.)
	Open a command prompt.

	Do a directory listing of your entire C drive using a
                network path to access your C drive. For example, if your
                computer name is COMPUTER1, type dir
                \\computer1\c$ /s (The /s
                switch lists all subdirectories.)

	Run Process Explorer, and double-click on the System
                process.

	Click on the Threads tab.

	Sort by the CSwitch Delta (context switch delta) column.
                You should see one or more threads in Srv2.sys running, such
                as the following:
[image: image with no caption]

If you see a system thread running and you are not sure
                what the driver is, click the Module button, which will bring
                up the file properties. Clicking the Module button while
                highlighting the thread in the Srv2.sys previously shown
                results in the following display.
[image: image with no caption]






Session Manager (Smss)



The session manager (%SystemRoot%\System32\Smss.exe)
          is the first user-mode process created in the system. The
          kernel-mode system thread that performs the final phase of the
          initialization of the executive and kernel creates this
          process.
When Smss starts, it checks whether it is the first instance
          (the master Smss) or an instance of itself that the master Smss
          launched to create a session. (If command-line arguments are
          present, it is the latter.) By creating multiple instances of itself
          during boot-up and Terminal Services session creation, Smss can
          create multiple sessions at the same time (at maximum, four
          concurrent sessions, plus one more for each extra CPU beyond one).
          This ability enhances logon performance on Terminal Server systems
          where multiple users connect at the same time. Once a session
          finishes initializing, the copy of Smss terminates. As a result,
          only the initial Smss.exe process remains active. (For a description
          of Terminal Services, see the section Terminal Services and Multiple Sessions in Chapter 1.)
The master Smss performs the following one-time initialization
          steps:
	Marks the process and the initial thread as critical. (If
              a process or thread marked critical exits for any reason,
              Windows crashes. See Chapter 5 for more
              information.)

	Increases the process base priority to 11.

	If the system supports hot processor add, enables
              automatic processor affinity updates so that if new processors
              are added new sessions will take advantage of the new
              processors. (For more information about dynamic processor
              additions, see Chapter 5.)

	Creates named pipes and mailslots used for
              communication between Smss, Csrss, and Lsm (described in
              upcoming paragraphs).

	Creates ALPC port to receive commands.

	Creates systemwide environment variables as defined in
              HKLM\SYSTEM\CurrentControlSet\Control\Session
              Manager\Environment.

	Creates symbolic links for devices defined in
              HKLM\SYSTEM\CurrentControlSet\Control\Session Manager\DOS
              Devices under the \Global?? directory in the Object Manager
              namespace.

	Creates root \Sessions directory in the Object Manager
              namespace.

	Runs the programs in
              HKLM\SYSTEM\CurrentControlSet\Control\Session
              Manager\BootExecute. (The default is Autochk.exe, which performs
              a check disk.)

	Processes pending file renames as specified in
              HKLM\SYSTEM\CurrentControlSet\Control\Session
              Manager\PendingFileRenameOperations.

	Initializes paging file(s).

	Initializes the rest of the registry (HKLM Software, SAM,
              and Security hives).

	Runs the programs in
              HKLM\SYSTEM\CurrentControlSet\Control\Session
              Manager\SetupExecute.

	Opens known DLLs
              (HKLM\SYSTEM\CurrentControlSet\Control\Session
              Manager\KnownDLLs) and maps them as permanent sections (mapped
              files).

	Creates a thread to respond to session create
              requests.

	Creates the Smss to initialize session 0 (noninteractive
              session).

	Creates the Smss to initialize session 1 (interactive
              session).



Once these steps have been completed, Smss waits forever on
          the handle to the session 0 instance of Csrss.exe. Because Csrss is
          marked as a critical process (see Chapter 5), if Csrss
          exits, this wait will never complete because the system will
          crash.
A session startup instance of Smss does the following:
	Calls NtSetSystemInformation with a
              request to set up kernel-mode session data structures. This in
              turn calls the internal memory manager function
              MmSessionCreate, which sets up the session
              virtual address space that will contain the session paged pool
              and the per-session data structures allocated by the kernel-mode
              part of the Windows subsystem (Win32k.sys) and other
              session-space device drivers. (See Chapter 10 in Part 2 for more
              details.)

	Creates the subsystem process(es) for the session (by
              default, the Windows subsystem Csrss.exe).

	Creates an instance of Winlogon (interactive sessions) or
              Wininit (for session 0). See the upcoming paragraphs for more
              information on these two processes.



Then this intermediate Smss process exits (leaving the
          subsystem processes and Winlogon or Wininit as parent-less
          processes).

Windows Initialization Process (Wininit.exe)



The Wininit.exe process performs the following system
          initialization functions:
	Marks itself critical so that if it exits prematurely and
              the system is booted in debugging mode, it will break into the
              debugger (if not, the system will crash).

	Initializes the user-mode scheduling
              infrastructure.

	Creates the %windir%\temp folder.

	Creates a window station (Winsta0) and two desktops
              (Winlogon and Default) for processes to run on in session
              0.

	Creates Services.exe (Service Control Manager or SCM). See
              upcoming paragraphs for a brief description or Chapter 4 for more details.

	Starts Lsass.exe (Local Security Authentication Subsystem
              Server). See Chapter 6 for more
              information on Lsass.

	Starts Lsm.exe (Local Session Manager). See the upcoming
              Local Session Manager (Lsm.exe),
              section for a brief description.

	Waits forever for system shutdown.




Service Control Manager (SCM)



Recall from earlier in the chapter that “services” on Windows
          can refer either to a server process or to a device driver. This
          section deals with services that are user-mode processes. Services
          are like UNIX “daemon processes” or VMS “detached processes” in that
          they can be configured to start automatically at system boot time
          without requiring an interactive logon. They can also be started
          manually (such as by running the Services administrative tool or by
          calling the Windows StartService function).
          Typically, services do not interact with the logged-on user,
          although there are special conditions when this is possible. (See
          Chapter 4.)
The service control manager is a special system process
          running the image %SystemRoot%\System32\Services.exe that is
          responsible for starting, stopping, and interacting with service
          processes. Service programs are really just Windows images that call
          special Windows functions to interact with the service control
          manager to perform such actions as registering the service’s
          successful startup, responding to status requests, or pausing or
          shutting down the service. Services are defined in the registry
          under HKLM\SYSTEM\CurrentControlSet\Services.
Keep in mind that services have three names: the process name
          you see running on the system, the internal name in the registry,
          and the display name shown in the Services administrative tool. (Not
          all services have a display name—if a service doesn’t have a display
          name, the internal name is shown.) With Windows, services can also
          have a description field that further details what the service
          does.
To map a service process to the services contained in
          that process, use the tlist /s or
          tasklist /svc command. Note that there isn’t
          always one-to-one mapping between service processes and running
          services, however, because some services share a process with other
          services. In the registry, the type code indicates whether the
          service runs in its own process or shares a process with other
          services in the image.
A number of Windows components are implemented as services,
          such as the Print Spooler, Event Log, Task Scheduler, and various
          networking components. For more details on services, see Chapter 4.
EXPERIMENT: Listing Installed Services
To list the installed services, select Administrative Tools
            from Control Panel, and then select Services. You should see
            output like this:
[image: image with no caption]

To see the detailed properties about a service, right-click
            on a service and select Properties. For example, here are the
            properties for the Print Spooler service (highlighted in the
            previous screen shot):
[image: image with no caption]

Notice that the Path To Executable field identifies
            the program that contains this service. Remember that some
            services share a process with other services—mapping isn’t always
            one to one.

EXPERIMENT: Viewing Service Details Inside Service
            Processes
Process Explorer highlights processes hosting one service or
            more. (You can configure this by selecting the Configure Colors
            entry in the Options menu.) If you double-click on a
            service-hosting process, you will see a Services tab that lists
            the services inside the process, the name of the registry key that
            defines the service, the display name seen by the administrator,
            the description text for that service (if present), and for
            Svchost services, the path to the DLL that implements the service.
            For example, listing the services in a Svchost.exe process running
            under the System account looks like the following:
[image: image with no caption]



Local Session Manager (Lsm.exe)



The Local Session Manager (Lsm.exe) manages the state of
          terminal server sessions on the local machine. It sends requests to
          Smss through the ALPC port SmSsWinStationApiPort to start new
          sessions (for example, creating the Csrss and Winlogon processes)
          such as when a user selects Switch User from Explorer. Lsm also
          communicates with Winlogon and Csrss (using a local system RPC). It
          notifies Csrss of events such as connect, disconnect, terminate, and
          broadcast system message. It receives notification from Winlogon for
          the following events:
	Logon and logoff

	Shell start and termination

	Connect to a session

	Disconnect from a session

	Lock or unlock desktop




Winlogon, LogonUI, and Userinit



The Windows logon process (%SystemRoot%\System32\Winlogon.exe)
          handles interactive user logons and logoffs. Winlogon is notified of
          a user logon request when the secure attention
          sequence (SAS) keystroke combination is entered. The
          default SAS on Windows is the combination Ctrl+Alt+Delete. The
          reason for the SAS is to protect users from password-capture
          programs that simulate the logon process, because this keyboard
          sequence cannot be intercepted by a user-mode application.
The identification and authentication aspects of the logon
          process are implemented through DLLs called credential
          providers. The standard Windows credential providers
          implement the default Windows authentication interfaces: password
          and smartcard. However, developers can provide their own credential
          providers to implement other identification and authentication
          mechanisms in place of the standard Windows user name/password
          method (such as one based on a voice print or a biometric device
          such as a fingerprint reader). Because Winlogon is a critical system
          process on which the system depends, credential providers and the UI
          to display the logon dialog box run inside a child process of
          Winlogon called LogonUI. When Winlogon detects the SAS, it launches
          this process, which initializes the credential providers. Once the
          user enters her credentials or dismisses the logon interface, the
          LogonUI process terminates.
In addition, Winlogon can load additional network provider
          DLLs that need to perform secondary authentication. This capability
          allows multiple network providers to gather identification and
          authentication information all at one time during normal
          logon.
Once the user name and password have been captured, they are
          sent to the local security authentication server process
          (%SystemRoot%\System32\Lsass.exe, described in Chapter 6) to be authenticated. LSASS calls the
          appropriate authentication package (implemented as a DLL) to perform
          the actual verification, such as checking whether a password matches
          what is stored in the Active Directory or the SAM (the part of the
          registry that contains the definition of the local users and
          groups).
Upon a successful authentication, LSASS calls a function in
          the security reference monitor (for example,
          NtCreateToken) to generate an access token
          object that contains the user’s security profile. If User Account
          Control (UAC) is used and the user logging on is a member of the
          administrators group or has administrator privileges, LSASS will
          create a second, restricted version of the
          token. This access token is then used by Winlogon to create the
          initial process(es) in the user’s session. The initial process(es)
          are stored in the registry value Userinit under
          the registry key HKLM\SOFTWARE\Microsoft\Windows
          NT\CurrentVersion\Winlogon. (The default is Userinit.exe, but there
          can be more than one image in the list.)
Userinit performs some initialization of the user
          environment (such as running the login script and reestablishing
          network connections) and then looks in the registry at the
          Shell value (under the same Winlogon key
          referred to previously) and creates a process to run the
          system-defined shell (by default, Explorer.exe). Then Userinit
          exits. This is the reason Explorer.exe is shown with no parent—its
          parent has exited, and as explained in Chapter 1, tlist left-justifies processes
          whose parent isn’t running. (Another way of looking at it is that
          Explorer is the grandchild of Winlogon.)
Winlogon is active not only during user logon and logoff but
          also whenever it intercepts the SAS from the keyboard. For example,
          when you press Ctrl+Alt+Delete while logged on, the Windows Security
          screen comes up, providing the options to log off, start the Task
          Manager, lock the workstation, shut down the system, and so forth.
          Winlogon and LogonUI are the processes that handle this
          interaction.
For a complete description of the steps involved in the logon
          process, see the section “Smss, Csrss, and Wininit” in Chapter 13 in
          Part 2. For more details on security authentication, see Chapter 6. For details on the callable functions
          that interface with LSASS (the functions that start with
          Lsa), see the documentation in the Windows
          SDK.



Conclusion



In this chapter, we’ve taken a broad look at the overall system
      architecture of Windows. We’ve examined the key components of Windows
      and seen how they interrelate. In the next chapter, we’ll look in more
      detail at the core system mechanisms that these components are built on,
      such as the object manager and synchronization.

Chapter 3. System Mechanisms



The Windows operating system provides several base
    mechanisms that kernel-mode components such as the executive, the kernel,
    and device drivers use. This chapter explains the following system
    mechanisms and describes how they are used:
	Trap dispatching, including interrupts, deferred procedure calls
        (DPCs), asynchronous procedure calls (APCs), exception dispatching,
        and system service dispatching

	The executive object manager

	Synchronization, including spinlocks, kernel dispatcher objects,
        how waits are implemented, as well as user-mode-specific
        synchronization primitives that avoid trips to kernel mode (unlike
        typical dispatcher objects)

	System worker threads

	Miscellaneous mechanisms such as Windows global flags

	Advanced Local Procedure Calls (ALPCs)

	Kernel event tracing

	Wow64

	User-mode debugging

	The image loader

	Hypervisor (Hyper-V)

	Kernel Transaction Manager (KTM)

	Kernel Patch Protection (KPP)

	Code integrity




Trap Dispatching



Interrupts and exceptions are operating system conditions that
      divert the processor to code outside the normal flow of control. Either
      hardware or software can detect them. The term trap
      refers to a processor’s mechanism for capturing an executing thread when
      an exception or an interrupt occurs and transferring control to a fixed location in the
      operating system. In Windows, the processor transfers control to a
      trap handler, which is a function specific to a
      particular interrupt or exception. Figure 3-1 illustrates some of the conditions
      that activate trap handlers.
The kernel distinguishes between interrupts and exceptions in the
      following way. An interrupt is an asynchronous
      event (one that can occur at any time) that is unrelated to what the
      processor is executing. Interrupts are generated primarily by I/O
      devices, processor clocks, or timers, and they can be enabled (turned
      on) or disabled (turned off). An exception, in
      contrast, is a synchronous condition that usually results from the
      execution of a particular instruction. (Aborts, such as machine checks,
      is a type of processor exception that’s typically not associated with
      instruction execution.) Running a program a second time with the same
      data under the same conditions can reproduce exceptions. Examples of
      exceptions include memory-access violations, certain debugger
      instructions, and divide-by-zero errors. The kernel also regards system
      service calls as exceptions (although technically they’re system
      traps).
[image: Trap dispatching]

Figure 3-1. Trap dispatching

Either hardware or software can generate exceptions and
      interrupts. For example, a bus error exception is caused by a hardware
      problem, whereas a divide-by-zero exception is the result of a software
      bug. Likewise, an I/O device can generate an interrupt, or the kernel
      itself can issue a software interrupt (such as an APC or DPC, both of
      which are described later in this chapter).
When a hardware exception or interrupt is generated, the processor
      records enough machine state on the kernel stack of the thread that’s
      interrupted to return to that point in the control flow and continue
      execution as if nothing had happened. If the thread was executing in
      user mode, Windows switches to the thread’s kernel-mode stack. Windows then
      creates a trap frame on the kernel stack of the
      interrupted thread into which it stores the execution state of the
      thread. The trap frame is a subset of a thread’s complete context, and
      you can view its definition by typing dt
      nt!_ktrap_frame in the kernel debugger. (Thread context is
      described in Chapter 5.) The kernel
      handles software interrupts either as part of hardware interrupt
      handling or synchronously when a thread invokes kernel functions related
      to the software interrupt.
In most cases, the kernel installs front-end, trap-handling
      functions that perform general trap-handling tasks before and after
      transferring control to other functions that field the trap. For
      example, if the condition was a device interrupt, a kernel hardware
      interrupt trap handler transfers control to the interrupt
      service routine (ISR) that the device driver provided for the
      interrupting device. If the condition was caused by a call to a system
      service, the general system service trap handler transfers control to
      the specified system service function in the executive. The kernel also
      installs trap handlers for traps that it doesn’t expect to see or
      doesn’t handle. These trap handlers typically execute the system
      function KeBugCheckEx, which halts the computer
      when the kernel detects problematic or incorrect behavior that, if left
      unchecked, could result in data corruption. (For more information on bug
      checks, see Chapter 14, “Crash Dump Analysis,” in Part 2.) The following
      sections describe interrupt, exception, and system service dispatching
      in greater detail.
Interrupt Dispatching



Hardware-generated interrupts typically originate from I/O
        devices that must notify the processor when they need service.
        Interrupt-driven devices allow the operating system to get the maximum
        use out of the processor by overlapping central processing with I/O
        operations. A thread starts an I/O transfer to or from a device and
        then can execute other useful work while the device completes the
        transfer. When the device is finished, it interrupts the processor for
        service. Pointing devices, printers, keyboards, disk drives, and
        network cards are generally interrupt driven.
System software can also generate interrupts. For example, the
        kernel can issue a software interrupt to initiate thread dispatching
        and to asynchronously break into the execution of a thread. The kernel
        can also disable interrupts so that the processor isn’t interrupted,
        but it does so only infrequently—at critical moments while it’s
        programming an interrupt controller or dispatching an exception, for
        example.
The kernel installs interrupt trap handlers to respond to device
        interrupts. Interrupt trap handlers transfer control either to an
        external routine (the ISR) that handles the interrupt or to an
        internal kernel routine that responds to the interrupt. Device drivers
        supply ISRs to service device interrupts, and the kernel provides
        interrupt-handling routines for other types of interrupts.
In the following subsections, you’ll find out how the hardware
        notifies the processor of device interrupts, the types of interrupts
        the kernel supports, the way device drivers interact with the kernel
        (as a part of interrupt processing), and the software interrupts the
        kernel recognizes (plus the kernel objects that are used to implement
        them).
Hardware Interrupt Processing



On the hardware platforms supported by Windows,
          external I/O interrupts come into one of the lines on an interrupt
          controller. The controller, in turn, interrupts the processor on a
          single line. Once the processor is interrupted, it queries the
          controller to get the interrupt request (IRQ).
          The interrupt controller translates the IRQ to an interrupt number,
          uses this number as an index into a structure called the
          interrupt dispatch table (IDT), and transfers
          control to the appropriate interrupt dispatch routine. At system
          boot time, Windows fills in the IDT with pointers to the kernel
          routines that handle each interrupt and exception.
Windows maps hardware IRQs to interrupt numbers in the IDT,
          and the system also uses the IDT to configure trap handlers for
          exceptions. For example, the x86 and x64 exception number for a page
          fault (an exception that occurs when a thread attempts to access a
          page of virtual memory that isn’t defined or present) is 0xe (14).
          Thus, entry 0xe in the IDT points to the system’s page-fault
          handler. Although the architectures supported by Windows allow up to
          256 IDT entries, the number of IRQs a particular machine can support
          is determined by the design of the interrupt controller the machine
          uses.
EXPERIMENT: Viewing the IDT
You can view the contents of the IDT, including information
            on what trap handlers Windows has assigned to interrupts
            (including exceptions and IRQs), using the
            !idt kernel debugger command. The
            !idt command with no flags shows simplified
            output that includes only registered hardware interrupts (and, on
            64-bit machines, the processor trap handlers).
The following example shows what the output of the
            !idt command looks like:
lkd> !idt

Dumping IDT:


00:    fffff80001a7ec40 nt!KiDivideErrorFault
01:    fffff80001a7ed40 nt!KiDebugTrapOrFault
02:    fffff80001a7ef00 nt!KiNmiInterrupt    Stack = 0xFFFFF80001865000
03:    fffff80001a7f280 nt!KiBreakpointTrap
04:    fffff80001a7f380 nt!KiOverflowTrap
05:    fffff80001a7f480 nt!KiBoundFault
06:    fffff80001a7f580 nt!KiInvalidOpcodeFault
07:    fffff80001a7f7c0 nt!KiNpxNotAvailableFault
08:    fffff80001a7f880 nt!KiDoubleFaultAbort    Stack = 0xFFFFF80001863000
09:    fffff80001a7f940 nt!KiNpxSegmentOverrunAbort
0a:    fffff80001a7fa00 nt!KiInvalidTssFault
0b:    fffff80001a7fac0 nt!KiSegmentNotPresentFault
0c:    fffff80001a7fc00 nt!KiStackFault
0d:    fffff80001a7fd40 nt!KiGeneralProtectionFault
0e:    fffff80001a7fe80 nt!KiPageFault
10:    fffff80001a80240 nt!KiFloatingErrorFault
11:    fffff80001a803c0 nt!KiAlignmentFault
12:    fffff80001a804c0 nt!KiMcheckAbort    Stack = 0xFFFFF80001867000
13:    fffff80001a80840 nt!KiXmmException
1f:    fffff80001a5ec10 nt!KiApcInterrupt
2c:    fffff80001a80a00 nt!KiRaiseAssertion
2d:    fffff80001a80b00 nt!KiDebugServiceTrap
2f:    fffff80001acd590 nt!KiDpcInterrupt
37:    fffff8000201c090 hal!PicSpuriousService37 (KINTERRUPT fffff8000201c000)
3f:    fffff8000201c130 hal!PicSpuriousService37 (KINTERRUPT fffff8000201c0a0)
51:    fffffa80045babd0 dxgkrnl!DpiFdoLineInterruptRoutine (KINTERRUPT fffffa80045bab40)
52:    fffffa80029f1390 USBPORT!USBPORT_InterruptService (KINTERRUPT fffffa80029f1300)
62:    fffffa80029f15d0 USBPORT!USBPORT_InterruptService (KINTERRUPT fffffa80029f1540)
                    USBPORT!USBPORT_InterruptService (KINTERRUPT fffffa80029f1240)
72:    fffffa80029f1e10 ataport!IdePortInterrupt (KINTERRUPT fffffa80029f1d80)
81:    fffffa80045bae10 i8042prt!I8042KeyboardInterruptService (KINTERRUPT fffffa80045bad80)
82:    fffffa80029f1ed0 ataport!IdePortInterrupt (KINTERRUPT fffffa80029f1e40)
90:    fffffa80045bad50 Vid+0x7918 (KINTERRUPT fffffa80045bacc0)
91:    fffffa80045baed0 i8042prt!I8042MouseInterruptService (KINTERRUPT fffffa80045bae40)
a0:    fffffa80045bac90 vmbus!XPartPncIsr (KINTERRUPT fffffa80045bac00)
a2:    fffffa80029f1210 sdbus!SdbusInterrupt (KINTERRUPT fffffa80029f1180)
                     rimmpx64+0x9FFC (KINTERRUPT fffffa80029f10c0)
                     rimspx64+0x7A14 (KINTERRUPT fffffa80029f1000)
                     rixdpx64+0x9C50 (KINTERRUPT fffffa80045baf00)
a3:    fffffa80029f1510 USBPORT!USBPORT_InterruptService (KINTERRUPT fffffa80029f1480)
                     HDAudBus!HdaController::Isr (KINTERRUPT fffffa80029f1c00)
a8:    fffffa80029f1bd0 NDIS!ndisMiniportMessageIsr (KINTERRUPT fffffa80029f1b40)
a9:    fffffa80029f1b10 NDIS!ndisMiniportMessageIsr (KINTERRUPT fffffa80029f1a80)
aa:    fffffa80029f1a50 NDIS!ndisMiniportMessageIsr (KINTERRUPT fffffa80029f19c0)
ab:    fffffa80029f1990 NDIS!ndisMiniportMessageIsr (KINTERRUPT fffffa80029f1900)
ac:    fffffa80029f18d0 NDIS!ndisMiniportMessageIsr (KINTERRUPT fffffa80029f1840)
ad:    fffffa80029f1810 NDIS!ndisMiniportMessageIsr (KINTERRUPT fffffa80029f1780)
ae:    fffffa80029f1750 NDIS!ndisMiniportMessageIsr (KINTERRUPT fffffa80029f16c0)
af:    fffffa80029f1690 NDIS!ndisMiniportMessageIsr (KINTERRUPT fffffa80029f1600)
b0:    fffffa80029f1d50 NDIS!ndisMiniportMessageIsr (KINTERRUPT fffffa80029f1cc0)
b1:    fffffa80029f1f90 ACPI!ACPIInterruptServiceRoutine (KINTERRUPT fffffa80029f1f00)
b3:    fffffa80029f1450 USBPORT!USBPORT_InterruptService (KINTERRUPT fffffa80029f13c0)
c1:    fffff8000201c3b0 hal!HalpBroadcastCallService (KINTERRUPT fffff8000201c320)
d1:    fffff8000201c450 hal!HalpHpetClockInterrupt (KINTERRUPT fffff8000201c3c0)
d2:    fffff8000201c4f0 hal!HalpHpetRolloverInterrupt (KINTERRUPT fffff8000201c460)
df:    fffff8000201c310 hal!HalpApicRebootService (KINTERRUPT fffff8000201c280)
e1:    fffff80001a8e1f0 nt!KiIpiInterrupt
e2:    fffff8000201c270 hal!HalpDeferredRecoveryService (KINTERRUPT fffff8000201c1e0)
e3:    fffff8000201c1d0 hal!HalpLocalApicErrorService (KINTERRUPT fffff8000201c140)
fd:    fffff8000201c590 hal!HalpProfileInterrupt (KINTERRUPT fffff8000201c500)
fe:    fffff8000201c630 hal!HalpPerfInterrupt (KINTERRUPT fffff8000201c5a0)
On the system used to provide the output for this
            experiment, the keyboard device driver’s (I8042prt.sys) keyboard
            ISR is at interrupt number 0x81. You can also see that interrupt
            0xe corresponds to KiPageFault, as explained
            earlier.

Each processor has a separate IDT so that different processors
          can run different ISRs, if appropriate. For example, in a
          multiprocessor system, each processor receives the clock interrupt,
          but only one processor updates the system clock in response to this
          interrupt. All the processors, however, use the interrupt to measure
          thread quantum and to initiate rescheduling when a thread’s quantum
          ends. Similarly, some system configurations might require
          that a particular processor handle certain device interrupts.

x86 Interrupt Controllers



Most x86 systems rely on either the i8259A Programmable
          Interrupt Controller (PIC) or a variant of the i82489 Advanced
          Programmable Interrupt Controller (APIC); today’s computers include
          an APIC. The PIC standard originates with the original IBM PC. The
          i8259A PIC works only with uniprocessor systems and has only eight
          interrupt lines. However, the IBM PC architecture defined the
          addition of a second PIC, called the slave,
          whose interrupts are multiplexed into one of the master PIC’s
          interrupt lines. This provides 15 total interrupts (seven on the
          master and eight on the slave, multiplexed through the master’s
          eighth interrupt line). APICs and Streamlined Advanced Programmable
          Interrupt Controllers (SAPICs, discussed shortly) work with
          multiprocessor systems and have 256 interrupt lines. Intel and other
          companies have defined the Multiprocessor Specification (MP
          Specification), a design standard for x86 multiprocessor systems
          that centers on the use of APIC. To provide compatibility with
          uniprocessor operating systems and boot code that starts a
          multiprocessor system in uniprocessor mode, APICs support a PIC
          compatibility mode with 15 interrupts and delivery of interrupts to
          only the primary processor. Figure 3-2
          depicts the APIC architecture.
The APIC actually consists of several components: an I/O APIC
          that receives interrupts from devices, local APICs that receive
          interrupts from the I/O APIC on the bus and that interrupt the CPU
          they are associated with, and an i8259A-compatible interrupt
          controller that translates APIC input into PIC-equivalent signals.
          Because there can be multiple I/O APICs on the system, motherboards
          typically have a piece of core logic that sits between them and the
          processors. This logic is responsible for implementing interrupt
          routing algorithms that both balance the device interrupt load
          across processors and attempt to take advantage of locality,
          delivering device interrupts to the same processor that has just
          fielded a previous interrupt of the same type. Software programs can
          reprogram the I/O APICs with a fixed routing algorithm that bypasses
          this piece of chipset logic. Windows does this by programming the
          APICs in an “interrupt one processor in the following set” routing
          mode.
[image: x86 APIC architecture]

Figure 3-2. x86 APIC architecture


x64 Interrupt Controllers



Because the x64 architecture is compatible with x86
          operating systems, x64 systems must provide the same interrupt
          controllers as the x86. A significant difference, however, is that
          the x64 versions of Windows will not run on systems that do not have
          an APIC because they use the APIC for interrupt control.

IA64 Interrupt Controllers



The IA64 architecture relies on the Streamlined Advanced
          Programmable Interrupt Controller (SAPIC), which is an evolution of
          the APIC. Even if load balancing and routing are present in the
          firmware, Windows does not take advantage of it; instead, it
          statically assigns interrupts to processors in a round-robin
          manner.
EXPERIMENT: Viewing the PIC and APIC
You can view the configuration of the PIC on a uniprocessor
            and the current local APIC on a multiprocessor by using the
            !pic and !apic kernel
            debugger commands, respectively. Here’s the output of the
            !pic command on a uniprocessor. (Note that
            the !pic command doesn’t work if your system
            is using an APIC HAL.)
lkd> !pic
----- IRQ Number ----- 00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F
Physically in service:  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .
Physically masked:      .  .  .  Y  .  .  Y  Y  .  .  Y  .  .  Y  .  .
Physically requested:   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .
Level Triggered:        .  .  .  .  .  Y  .  .  .  Y  .  Y  .  .  .  .
Here’s the output of the !apic command
            on a system running with an APIC HAL. Note that during local
            kernel debugging, this command shows the APIC associated with the
            current processor—in other words, whichever processor the
            debugger’s thread happens to be running on as you enter the
            command. When looking at a crash dump or remote system, you can
            use the ~(tilde) command followed by the
            processor number to switch the processor of whose local APIC you
            want to see.
lkd> !apic
Apic @ fffe0000  ID:0 (50014)  LogDesc:01000000  DestFmt:ffffffff  TPR 20
TimeCnt: 00000000clk  SpurVec:3f  FaultVec:e3  error:0
Ipi Cmd: 01000000'0000002f  Vec:2F  FixedDel  Ph:01000000      edg high
Timer..: 00000000'000300fd  Vec:FD  FixedDel    Dest=Self      edg high      m
Linti0.: 00000000'0001003f  Vec:3F  FixedDel    Dest=Self      edg high      m
Linti1.: 00000000'000004ff  Vec:FF  NMI         Dest=Self      edg high
TMR: 51-52, 62, A3, B1, B3
IRR:
ISR::
The various numbers following the Vec
            labels indicate the associated vector in the IDT with the given
            command. For example, in this output, interrupt number 0xFD is
            associated with the APIC Timer, and interrupt number 0xE3 handles
            APIC errors. Because this experiment was run on the same machine as the earlier
            !idt experiment, you can notice that 0xFD is
            the HAL’s Profiling Interrupt (which uses a timer for profile
            intervals), and 0xe3 is the HAL’s Local APIC Error Handler, as
            expected.
The following output is for the !ioapic
            command, which displays the configuration of the I/O APICs, the
            interrupt controller components connected to devices:
lkd> !ioapic
IoApic @ FEC00000  ID:0 (51)  Arb:A951
Inti00.: 0000a951'0000a951  Vec:51  LowestDl  Lg:0000a951      lvl low


Software Interrupt Request Levels (IRQLs)



Although interrupt controllers perform interrupt
          prioritization, Windows imposes its own interrupt priority scheme
          known as interrupt request levels (IRQLs). The
          kernel represents IRQLs internally as a number from 0 through 31 on
          x86 and from 0 to 15 on x64 and IA64, with higher numbers
          representing higher-priority interrupts. Although the kernel defines
          the standard set of IRQLs for software interrupts, the HAL maps
          hardware-interrupt numbers to the IRQLs. Figure 3-3 shows IRQLs
          defined for the x86 architecture, and Figure 3-4 shows IRQLs
          for the x64 and IA64 architectures.
[image: x86 interrupt request levels (IRQLs)]

Figure 3-3. x86 interrupt request levels (IRQLs)

Interrupts are serviced in priority order, and a
          higher-priority interrupt preempts the servicing of a lower-priority
          interrupt. When a high-priority interrupt occurs, the processor
          saves the interrupted thread’s state and invokes the trap
          dispatchers associated with the interrupt. The trap dispatcher
          raises the IRQL and calls the interrupt’s service routine.
          After the service routine executes, the interrupt dispatcher lowers
          the processor’s IRQL to where it was before the interrupt occurred
          and then loads the saved machine state. The interrupted thread
          resumes executing where it left off. When the kernel lowers the
          IRQL, lower-priority interrupts that were masked might materialize.
          If this happens, the kernel repeats the process to handle the new
          interrupts.
[image: x64 and IA64 interrupt request levels (IRQLs)]

Figure 3-4. x64 and IA64 interrupt request levels (IRQLs)

IRQL priority levels have a completely different meaning than
          thread-scheduling priorities (which are described in Chapter 5). A scheduling
          priority is an attribute of a thread, whereas an IRQL is an
          attribute of an interrupt source, such as a keyboard or a mouse. In
          addition, each processor has an IRQL setting that changes as
          operating system code executes.
Each processor’s IRQL setting determines which interrupts that
          processor can receive. IRQLs are also used to synchronize access to
          kernel-mode data structures. (You’ll find out more about
          synchronization later in this chapter.) As a kernel-mode thread
          runs, it raises or lowers the processor’s IRQL either directly by
          calling KeRaiseIrql and
          KeLowerIrql or, more commonly, indirectly via
          calls to functions that acquire kernel synchronization objects. As
          Figure 3-5 illustrates, interrupts from a
          source with an IRQL above the current level interrupt the processor,
          whereas interrupts from sources with IRQLs equal to or below the
          current level are masked until an executing
          thread lowers the IRQL.
Because accessing a PIC is a relatively slow operation, HALs
          that require accessing the I/O bus to change IRQLs, such as for PIC
          and 32-bit Advanced Configuration and Power Interface (ACPI)
          systems, implement a performance optimization, called lazy
          IRQL, that avoids PIC accesses. When the IRQL is raised,
          the HAL notes the new IRQL internally instead of changing the
          interrupt mask. If a lower-priority interrupt subsequently occurs,
          the HAL sets the interrupt mask to the settings appropriate for the
          first interrupt and does not quiesce the lower-priority interrupt
          until the IRQL is lowered (thus keeping the interrupt pending).
          Thus, if no lower-priority interrupts occur while the IRQL is
          raised, the HAL doesn’t need to modify the PIC.
[image: Masking interrupts]

Figure 3-5. Masking interrupts

A kernel-mode thread raises and lowers the IRQL of the
          processor on which it’s running, depending on what it’s trying to
          do. For example, when an interrupt occurs, the trap handler (or
          perhaps the processor) raises the processor’s IRQL to the assigned
          IRQL of the interrupt source. This elevation masks all interrupts at
          and below that IRQL (on that processor only), which ensures that the
          processor servicing the interrupt isn’t waylaid by an interrupt at
          the same level or a lower level. The masked interrupts are either
          handled by another processor or held back until the IRQL drops.
          Therefore, all components of the system, including the kernel and
          device drivers, attempt to keep the IRQL at
          passive level (sometimes called
          low level). They do this because device drivers
          can respond to hardware interrupts in a timelier manner if the IRQL
          isn’t kept unnecessarily elevated for long periods.
Note
An exception to the rule that raising the IRQL blocks
            interrupts of that level and lower relates to APC-level
            interrupts. If a thread raises the IRQL to APC level and then is
            rescheduled because of a dispatch/DPC-level interrupt, the system
            might deliver an APC-level interrupt to the newly scheduled
            thread. Thus, APC level can be considered a thread-local rather
            than processor-wide IRQL.

EXPERIMENT: Viewing the IRQL
You can view a processor’s saved IRQL with the
            !irql debugger command. The saved IRQL
            represents the IRQL at the time just before the break-in to the
            debugger, which raises the IRQL to a static, meaningless
            value:
kd> !irql
Debugger saved IRQL for processor 0x0 -- 0 (LOW_LEVEL)
Note that the IRQL value is saved in two locations.
            The first, which represents the current IRQL, is the processor
            control region (PCR), while its extension, the processor region
            control block (PRCB), contains the saved IRQL in the
            DebuggerSaveIrql field. The PCR and PRCB
            contain information about the state of each processor in the
            system, such as the current IRQL, a pointer to the hardware IDT,
            the currently running thread, and the next thread selected to run.
            The kernel and the HAL use this information to perform
            architecture-specific and machine-specific actions. Portions of
            the PCR and PRCB structures are defined publicly in the Windows
            Driver Kit (WDK) header file Ntddk.h.
You can view the contents of the current processor’s PCR
            with the kernel debugger by using the !pcr
            command. To view the PCR of a specific processor, add the
            processor’s number after the command, separated with a
            space:
lkd> !pcr 0
KPCR for Processor 0 at fffff80001bfad00:
    Major 1 Minor 1
    NtTib.ExceptionList: fffff80001853000
        NtTib.StackBase: fffff80001854080
       NtTib.StackLimit: 000000000026ea28
     NtTib.SubSystemTib: fffff80001bfad00
          NtTib.Version: 0000000001bfae80
      NtTib.UserPointer: fffff80001bfb4f0
          NtTib.SelfTib: 000007fffffdb000

                SelfPcr: 0000000000000000
                   Prcb: fffff80001bfae80
                   Irql: 0000000000000000
                    IRR: 0000000000000000
                    IDR: 0000000000000000
          InterruptMode: 0000000000000000
                    IDT: 0000000000000000
                    GDT: 0000000000000000
                    TSS: 0000000000000000

          CurrentThread: fffff80001c08c40
             NextThread: 0000000000000000
             IdleThread: fffff80001c08c40

              DpcQueue:
Because changing a processor’s IRQL has such a significant
            effect on system operation, the change can be made only in kernel
            mode—user-mode threads can’t change the processor’s IRQL. This
            means that a processor’s IRQL is always at passive level when it’s
            executing user-mode code. Only when the processor is executing
            kernel-mode code can the IRQL be higher.
Each interrupt level has a specific purpose. For example,
            the kernel issues an interprocessor interrupt
            (IPI) to request that another processor perform an action, such as
            dispatching a particular thread for execution or updating its
            translation look-aside buffer (TLB) cache. The system clock
            generates an interrupt at regular intervals, and the kernel
            responds by updating the clock and measuring thread execution
            time. If a hardware platform supports two clocks, the kernel
            adds another clock interrupt level to measure
            performance. The HAL provides a number of interrupt levels for use
            by interrupt-driven devices; the exact number varies with the
            processor and system configuration. The kernel uses software
            interrupts (described later in this chapter) to initiate thread
            scheduling and to asynchronously break into a thread’s
            execution.
Mapping Interrupts to
            IRQLs
IRQL levels aren’t the same as the interrupt requests (IRQs)
            defined by interrupt controllers—the architectures on which
            Windows runs don’t implement the concept of IRQLs in hardware. So
            how does Windows determine what IRQL to assign to an interrupt?
            The answer lies in the HAL. In Windows, a type of device driver
            called a bus driver determines the presence
            of devices on its bus (PCI, USB, and so on) and what interrupts
            can be assigned to a device. The bus driver reports this
            information to the Plug and Play manager, which decides, after
            taking into account the acceptable interrupt assignments for all
            other devices, which interrupt will be assigned to each device.
            Then it calls a Plug and Play interrupt arbiter, which maps
            interrupts to IRQLs. (The root arbiter is used on non-ACPI
            systems, while the ACPI HAL has its own arbiter on ACPI-compatible
            systems.)
The algorithm for assignment differs for the various HALs
            that Windows includes. On ACPI systems (including x86, x64, and
            IA64), the HAL computes the IRQL for a given interrupt by dividing
            the interrupt vector assigned to the IRQ by 16. As for selecting
            an interrupt vector for the IRQ, this depends on the type of
            interrupt controller present on the system. On today’s APIC
            systems, this number is generated in a round-robin fashion, so
            there is no computable way to figure out the IRQ based on the
            interrupt vector or the IRQL. However, an experiment later in this
            section shows how the debugger can query this information from the
            interrupt arbiter.
Predefined IRQLs
Let’s take a closer look at the use of the predefined IRQLs,
            starting from the highest level shown in Figure 3-4:
	The kernel uses high level only
                when it’s halting the system in
                KeBugCheckEx and masking out all
                interrupts.

	Power fail level originated in the
                original Windows NT design documents, which specified the
                behavior of system power failure code, but this IRQL has never
                been used.

	Interprocessor interrupt level is
                used to request another processor to perform an action, such
                as updating the processor’s TLB cache, system shutdown, or
                system crash.

	Clock level is used for the
                system’s clock, which the kernel uses to track the time of day
                as well as to measure and allot CPU time to threads.

	The system’s real-time clock (or another source, such as
                the local APIC timer) uses profile level
                when kernel profiling (a performance-measurement mechanism) is
                enabled. When kernel profiling is active, the kernel’s
                profiling trap handler records the address of the code
                that was executing when the interrupt occurred.
                A table of address samples is constructed over time that tools
                can extract and analyze. You can obtain Kernrate, a kernel
                profiling tool that you can use to configure and view
                profiling-generated statistics, from the Windows Driver Kit
                (WDK). See the Kernrate experiment for more information on
                using this tool.

	The synchronization IRQL is
                internally used by the dispatcher and scheduler code to
                protect access to global thread scheduling and
                wait/synchronization code. It is typically defined as the
                highest level right after the device IRQLs.

	The device IRQLs are used to
                prioritize device interrupts. (See the previous section for
                how hardware interrupt levels are mapped to IRQLs.)

	The corrected machine check
                interrupt level is used to signal the operating
                system after a serious but corrected hardware condition or
                error that was reported by the CPU or firmware through the
                Machine Check Error (MCE)
                interface.

	DPC/dispatch-level and
                APC-level interrupts are software
                interrupts that the kernel and device drivers generate. (DPCs
                and APCs are explained in more detail later in this
                chapter.)

	The lowest IRQL, passive level,
                isn’t really an interrupt level at all; it’s the setting at
                which normal thread execution takes place and all interrupts
                are allowed to occur.




EXPERIMENT: Using Kernel Profiler (Kernrate) to Profile
            Execution
You can use the Kernel Profiler tool (Kernrate) to enable
            the system-profiling timer, collect samples of the code that is
            executing when the timer fires, and display a summary showing the
            frequency distribution across image files and functions. It can be
            used to track CPU usage consumed by individual processes and/or
            time spent in kernel mode independent of processes (for example,
            interrupt service routines). Kernel profiling is useful when you
            want to obtain a breakdown of where the system is spending
            time.
In its simplest form, Kernrate samples where time has been
            spent in each kernel module (for example, Ntoskrnl, drivers, and
            so on). For example, after installing the Windows Driver Kit, try
            performing the following steps:
	Open a command prompt.

	Type cd
                C:\WinDDK\7600.16385.1\tools\other (the path to
                your installation of the Windows 7/Server 2008R2 WDK).

	Type dir. (You will
                see directories for each platform.)

	Run the image that matches your platform (with no
                arguments or switches). For example,
                i386\kernrate.exe is the image for an x86
                system.

	While Kernrate is running, perform some other activity
                on the system. For example, run Windows Media Player and play
                some music, run a graphics-intensive game, or perform network
                activity such as doing a directory listing of a remote network
                share.

	Press Ctrl+C to stop Kernrate. This causes Kernrate to
                display the statistics from the sampling period.



In the following sample output from Kernrate, Windows Media
            Player was running, playing a recorded movie from disk:
C:\WinDDK\7600.16385.1\tools\Other\i386>kernrate.exe

 /==============================\
<         KERNRATE LOG           >
 \==============================/
Date: 2011/03/09   Time: 16:44:24
Machine Name: TEST-LAPTOP
Number of Processors: 2
PROCESSOR_ARCHITECTURE: x86
PROCESSOR_LEVEL: 6
PROCESSOR_REVISION: 0f06
Physical Memory: 3310 MB
Pagefile Total: 7285 MB
Virtual Total: 2047 MB
PageFile1: \??\C:\pagefile.sys, 4100MB
OS Version: 6.1 Build 7601 Service-Pack: 1.0
WinDir: C:\Windows

Kernrate Executable Location: C:\WINDDK\7600.16385.1\TOOLS\OTHER\I386

Kernrate User-Specified Command Line:
kernrate.exe


Kernel Profile (PID = 0): Source= Time,
Using Kernrate Default Rate of 25000 events/hit
Starting to collect profile data

***> Press ctrl-c to finish collecting profile data
===> Finished Collecting Data, Starting to Process Results

------------Overall Summary:--------------

P0     K 0:00:00.000 ( 0.0%)  U 0:00:00.234 ( 4.7%)  I 0:00:04.789 (95.3%)
DPC 0:00:00.000 ( 0.0%)  Interrupt 0:00:00.000 ( 0.0%)
       Interrupts= 9254, Interrupt Rate= 1842/sec.

P1     K 0:00:00.031 ( 0.6%)  U 0:00:00.140 ( 2.8%)  I 0:00:04.851 (96.6%)
DPC 0:00:00.000 ( 0.0%)  Interrupt 0:00:00.000 ( 0.0%)
       Interrupts= 7051, Interrupt Rate= 1404/sec.

TOTAL  K 0:00:00.031 ( 0.3%)  U 0:00:00.374 ( 3.7%)  I 0:00:09.640 (96.0%)
DPC 0:00:00.000 ( 0.0%)  Interrupt 0:00:00.000 ( 0.0%)
       Total Interrupts= 16305, Total Interrupt Rate= 3246/sec.


Total Profile Time = 5023 msec


                                       BytesStart          BytesStop        BytesDiff.
    Available Physical Memory   ,      1716359168,      1716195328,         -163840
    Available Pagefile(s)       ,      5973733376,      5972783104,         -950272
    Available Virtual           ,      2122145792,      2122145792,               0
    Available Extended Virtual  ,               0,               0,               0
    Committed Memory Bytes      ,      1665404928,      1666355200,          950272
    Non Paged Pool Usage Bytes  ,        66211840,        66211840,               0
    Paged Pool Usage Bytes      ,       189083648,       189087744,            4096
    Paged Pool Available Bytes  ,       150593536,       150593536,               0
    Free System PTEs            ,           37322,           37322,               0

                                  Total          Avg. Rate
    Context Switches     ,        30152,         6003/sec.
    System Calls         ,       110807,         22059/sec.
    Page Faults          ,          226,         45/sec.
    I/O Read Operations  ,          730,         145/sec.
    I/O Write Operations ,         1038,         207/sec.
    I/O Other Operations ,          858,         171/sec.
    I/O Read Bytes       ,      2013850,         2759/ I/O
    I/O Write Bytes      ,        28212,         27/ I/O
    I/O Other Bytes      ,        19902,         23/ I/O

-----------------------------

Results for Kernel Mode:
-----------------------------

OutputResults: KernelModuleCount = 167
Percentage in the following table is based on the Total Hits for the Kernel

Time   3814 hits, 25000 events per hit --------
Module                                Hits       msec  %Total  Events/Sec
NTKRNLPA                              3768       5036    98 %    18705321
NVLDDMKM                                12       5036     0 %       59571
HAL                                     12       5036     0 %       59571
WIN32K                                  10       5037     0 %       49632
DXGKRNL                                  9       5036     0 %       44678
NETW4V32                                 2       5036     0 %        9928
FLTMGR                                   1       5036     0 %        4964

================================= END OF RUN ==================================
============================== NORMAL END OF RUN ==============================
The overall summary shows that the system spent 0.3 percent
            of the time in kernel mode, 3.7 percent in user mode, 96.0 percent
            idle, 0.0 percent at DPC level, and 0.0 percent at interrupt
            level. The module with the highest hit rate was Ntkrnlpa.exe, the
            kernel for machines with Physical Address Extension (PAE) or NX
            support. The module with the second highest hit rate was
            nvlddmkm.sys, the driver for the video card on the machine used
            for the test. This makes sense because the major activity going on
            in the system was Windows Media Player sending video I/O to the
            video driver.
If you have symbols available, you can zoom in on
            individual modules and see the time spent by function name. For
            example, profiling the system while rapidly dragging a window
            around the screen resulted in the following (partial)
            output:
 C:\WinDDK\7600.16385.1\tools\Other\i386>kernrate.exe -z ntkrnlpa -z win32k
 /==============================\
<         KERNRATE LOG           >
 \==============================/
Date: 2011/03/09   Time: 16:49:56

Time   4191 hits, 25000 events per hit --------
Module                                 Hits       msec  %Total  Events/Sec
NTKRNLPA                               3623       5695    86 %    15904302
WIN32K                                  303       5696     7 %     1329880
INTELPPM                                141       5696     3 %      618855
HAL                                      61       5695     1 %      267778
CDD                                      30       5696     0 %      131671
NVLDDMKM                                 13       5696     0 %       57057

----- Zoomed module WIN32K.SYS (Bucket size = 16 bytes, Rounding Down) --------
Module                                 Hits       msec  %Total  Events/Sec
BltLnkReadPat                            34       5696    10 %      149227
memmove                                  21       5696     6 %       92169
vSrcTranCopyS8D32                        17       5696     5 %       74613
memcpy                                   12       5696     3 %       52668
RGNOBJ::bMerge                           10       5696     3 %       43890
HANDLELOCK::vLockHandle                   8       5696     2 %       35112

----- Zoomed module NTKRNLPA.EXE (Bucket size = 16 bytes, Rounding Down) --------
Module                                 Hits       msec  %Total  Events/Sec
KiIdleLoop                             3288       5695    87 %    14433713
READ_REGISTER_USHORT                     95       5695     2 %      417032
READ_REGISTER_ULONG                      93       5695     2 %      408252
RtlFillMemoryUlong                       31       5695     0 %      136084
KiFastCallEntry                          18       5695     0 %       79016
The module with the second hit rate was Win32k.sys, the
            windowing system driver. Also high on the list were the video
            driver and Cdd.dll, a global video driver used for the
            3D-accelerated Aero desktop theme. These results make sense
            because the main activity in the system was drawing on the screen.
            Note that in the zoomed display for Win32k.sys, the functions with
            the highest hits are related to merging, copying, and moving bits,
            the main GDI operations for painting a window dragged on the
            screen.
One important restriction on code running at DPC/dispatch
            level or above is that it can’t wait for an object if doing so
            necessitates the scheduler to select another thread to execute,
            which is an illegal operation because the scheduler relies on
            DPC-level software interrupts to schedule threads. Another
            restriction is that only nonpaged memory can be accessed at IRQL
            DPC/dispatch level or higher.
This rule is actually a side effect of the first restriction
            because attempting to access memory that isn’t resident results in
            a page fault. When a page fault occurs, the memory manager
            initiates a disk I/O and then needs to wait for the file system
            driver to read the page in from disk. This wait would, in turn, require the scheduler to
            perform a context switch (perhaps to the idle thread if no user
            thread is waiting to run), thus violating the rule that the
            scheduler can’t be invoked (because the IRQL is still DPC/dispatch
            level or higher at the time of the disk read). A further problem
            results in the fact that I/O completion typically occurs at
            APC_LEVEL, so even in cases where a wait wouldn’t be required, the
            I/O would never complete because the completion APC would not get
            a chance to run.
If either of these two restrictions is violated, the system
            crashes with an IRQL_NOT_LESS_OR_EQUAL or a
            DRIVER_IRQL_NOT_LESS_OR_EQUAL crash code. (See Chapter 14 in Part
            2 for a thorough discussion of system crashes.) Violating these
            restrictions is a common bug in device drivers. The Windows Driver
            Verifier (explained in the section “Driver Verifier” in Chapter
            10, “Memory Management,” in Part 2) has an option you can set to
            assist in finding this particular type of bug.
Interrupt Objects
The kernel provides a portable mechanism—a kernel control
            object called an interrupt object—that allows
            device drivers to register ISRs for their devices. An interrupt
            object contains all the information the kernel needs to associate
            a device ISR with a particular level of interrupt, including the
            address of the ISR, the IRQL at which the device interrupts, and
            the entry in the kernel’s interrupt dispatch table (IDT) with
            which the ISR should be associated. When an interrupt object is
            initialized, a few instructions of assembly language code, called
            the dispatch code, are copied from an
            interrupt-handling template,
            KiInterruptTemplate, and stored in the
            object. When an interrupt occurs, this code is executed.
This interrupt-object resident code calls the real interrupt
            dispatcher, which is typically either the kernel’s
            KiInterruptDispatch or
            KiChainedDispatch routine, passing it a
            pointer to the interrupt object.
            KiInterruptDispatch is the routine used for
            interrupt vectors for which only one interrupt object is
            registered, and KiChainedDispatch is for
            vectors shared among multiple interrupt objects. The interrupt
            object contains information that this second dispatcher routine
            needs to locate and properly call the ISR the device driver
            provides.
The interrupt object also stores the IRQL associated with
            the interrupt so that KiInterruptDispatch or
            KiChainedDispatch can raise the IRQL to the
            correct level before calling the ISR and then lower the IRQL after
            the ISR has returned. This two-step process is required because
            there’s no way to pass a pointer to the interrupt object (or any
            other argument for that matter) on the initial dispatch because
            the initial dispatch is done by hardware. On a multiprocessor
            system, the kernel allocates and initializes an interrupt object
            for each CPU, enabling the local APIC on that CPU to accept the
            particular interrupt.

On x64 Windows systems, the kernel optimizes interrupt
          dispatch by using specific routines that save processor cycles by
          omitting functionality that isn’t needed, such as
          KiInterruptDispatchNoLock, which is used for
          interrupts that do not have an associated kernel-managed spinlock
          (typically used by drivers that want to synchronize with their
          ISRs), and KiInterruptDispatchNoEOI, which is
          used for interrupts that have programmed the APIC in
          “Auto-End-of-Interrupt”
          (Auto-EOI) mode—because the interrupt controller will send the EOI signal
          automatically, the kernel does not need to the extra code to do
          perform the EOI itself. Finally, for the performance/profiling
          interrupt specifically, the
          KiInterruptDispatchLBControl handler is used,
          which supports the Last Branch Control MSR
          available on modern CPUs. This register enables the kernel to
          track/save the branch instruction when tracing; during an interrupt,
          this information would be lost because it’s not stored in the normal
          thread register context, so special code must be added to preserve
          it. The HAL’s performance and profiling interrupts use this
          functionality, for example, while the other HAL interrupt routines
          take advantage of the “no-lock” dispatch code, because the HAL does
          not require the kernel to synchronize with its ISR.
Another kernel interrupt handler is
          KiFloatingDispatch, which is used for
          interrupts that require saving the floating-point state. Unlike
          kernel-mode code, which typically is not allowed to use
          floating-point (MMX, SSE, 3DNow!) operations because these registers
          won’t be saved across context switches, ISRs might need to use these
          registers (such as the video card ISR performing a quick drawing
          operation). When connecting an interrupt, drivers can set the
          FloatingSave argument to
          TRUE, requesting that the kernel use the
          floating-point dispatch routine, which will save the floating
          registers. (However, this greatly increases interrupt latency.) Note
          that this is supported only on 32-bit systems.
Figure 3-6 shows
          typical interrupt control flow for interrupts associated with
          interrupt objects.
[image: Typical interrupt control flow]

Figure 3-6. Typical interrupt control flow

EXPERIMENT: Examining Interrupt Internals
Using the kernel debugger, you can view details of
            an interrupt object, including its IRQL, ISR address, and custom
            interrupt-dispatching code. First, execute the
            !idt command and locate the entry that
            includes a reference to
            I8042KeyboardInterruptService, the ISR
            routine for the PS/2 keyboard device:
81:    fffffa80045bae10 i8042prt!I8042KeyboardInterruptService (KINTERRUPT
fffffa80045bad80)
To view the contents of the interrupt object associated with
            the interrupt, execute dt nt!_kinterrupt with
            the address following KINTERRUPT:
lkd> dt nt!_KINTERRUPT fffffa80045bad80
   +0x000 Type             : 22
   +0x002 Size             : 160
   +0x008 InterruptListEntry : _LIST_ENTRY [ 0x00000000'00000000 - 0x0 ]
   +0x018 ServiceRoutine   : 0xfffff880'0356ca04     unsigned char
  i8042prt!I8042KeyboardInterruptService+0
   +0x020 MessageServiceRoutine : (null)
   +0x028 MessageIndex     : 0
   +0x030 ServiceContext   : 0xfffffa80'02c839f0
   +0x038 SpinLock         : 0
   +0x040 TickCount        : 0
   +0x048 ActualLock       : 0xfffffa80'02c83b50  -> 0
   +0x050 DispatchAddress  : 0xfffff800'01a7db90     void  nt!KiInterruptDispatch+0
   +0x058 Vector           : 0x81
   +0x05c Irql             : 0x8 ''
   +0x05d SynchronizeIrql  : 0x9 ''
   +0x05e FloatingSave     : 0 ''
   +0x05f Connected        : 0x1 ''
   +0x060 Number           : 0
   +0x064 ShareVector      : 0 ''
   +0x065 Pad              : [3]  ""
   +0x068 Mode             : 1 ( Latched )
   +0x06c Polarity         : 0 ( InterruptPolarityUnknown )
   +0x070 ServiceCount     : 0
   +0x074 DispatchCount    : 0
   +0x078 Rsvd1            : 0
   +0x080 TrapFrame        : 0xfffff800'0185ab00 _KTRAP_FRAME
   +0x088 Reserved         : (null)
   +0x090 DispatchCode     : [4] 0x8d485550
In this example, the IRQL that Windows assigned to the
            interrupt is 8. Although there is no direct mapping between an
            interrupt vector and an IRQ, Windows does keep track of this
            translation when managing device resources through what are called
            arbiters. For each resource type, an arbiter
            maintains the relationship between virtual resource usage (such as
            an interrupt vector) and physical resources (such as an interrupt
            line). As such, you can query either the root IRQ arbiter (on
            systems without ACPI) or the ACPI IRQ arbiter and obtain this
            mapping. Use the !apciirqarb command to
            obtain information on the ACPI IRQ arbiter:
lkd> !acpiirqarb

Processor 0 (0, 0):
Device Object: 0000000000000000
Current IDT Allocation:
...
   0000000000000081 - 0000000000000081   D   fffffa80029b4c20  (i8042prt)
A:0000000000000000 IRQ:0
...
If you don’t have an ACPI system, you can use
            !arbiter 4 (4 tells the
            debugger to display only IRQ arbiters):
lkd> !arbiter 4

DEVNODE fffffa80027c6d90 (HTREE\ROOT\0)
  Interrupt Arbiter "RootIRQ" at fffff80001c82500
    Allocated ranges:
      0000000000000081 - 0000000000000081   Owner    fffffa80029b4c20 (i8042prt)
In both cases, you will be given the owner of the vector, in
            the type of a device object. You can then use
            the !devobj command to get information on the
            i8042prt device in this example (which corresponds to the PS/2
            driver):
lkd> !devobj fffffa80029b4c20
Device object (fffffa80029b4c20) is for:
 00000061 \Driver\ACPI DriverObject fffffa8002888e70
Current Irp 00000000 RefCount 1 Type 00000032 Flags 00003040
Dacl fffff9a100096a41 DevExt fffffa800299f740 DevObjExt fffffa80029b4d70 DevNode fffffa80029b54b0
The device object is associated to a device
            node, which stores all the device’s physical resources.
            You can now dump these resources with the
            !devnode command, and using the 6 flag to ask
            for resource information:
lkd> !devnode fffffa80029b54b0 6
DevNode 0xfffffa80029b54b0 for PDO 0xfffffa80029b4c20
  Parent 0xfffffa800299b390   Sibling 0xfffffa80029b5230   Child 0000000000
  InstancePath is "ACPI\PNP0303\4&17aa870d&0"
  ServiceName is "i8042prt"
...
  CmResourceList at 0xfffff8a00185bf40  Version 1.1  Interface 0xf  Bus #0
    Entry 0 - Port (0x1) Device Exclusive (0x1)
      Flags (0x11) - PORT_MEMORY PORT_IO 16_BIT_DECODE
      Range starts at 0x60 for 0x1 bytes
    Entry 1 - Port (0x1) Device Exclusive (0x1)
      Flags (0x11) - PORT_MEMORY PORT_IO 16_BIT_DECODE
      Range starts at 0x64 for 0x1 bytes
    Entry 2 - Port (0x1) Device Exclusive (0x1)
      Flags (0x11) - PORT_MEMORY PORT_IO 16_BIT_DECODE
      Range starts at 0x62 for 0x1 bytes
    Entry 3 - Port (0x1) Device Exclusive (0x1)
      Flags (0x11) - PORT_MEMORY PORT_IO 16_BIT_DECODE
      Range starts at 0x66 for 0x1 bytes
    Entry 4 - Interrupt (0x2) Device Exclusive (0x1)
      Flags (0x01) - LATCHED
      Level 0x1, Vector 0x1, Group 0, Affinity 0xffffffff
The device node tells you that this device has a
            resource list with 4 entries, one of which is an interrupt entry
            corresponding to IRQ 1. (The level and vector numbers represent
            the IRQ vector, not the interrupt vector.) IRQ 1 is the
            traditional PC/AT IRQ number associated with the PS/2 keyboard
            device, so this is the expected value. (A USB keyboard would have
            a different interrupt.)
On ACPI systems, you can obtain this information in a
            slightly easier way by reading the extended output of the
            !acpiirqarb command introduced earlier. As
            part of its output, it displays the IRQ to IDT mapping
            table:
Interrupt Controller (Inputs: 0x0-0x17  Dev: 0000000000000000):
     (00)Cur:IDT-a1 Ref-1 edg hi   Pos:IDT-00 Ref-0 edg hi
    (01)Cur:IDT-81 Ref-1 edg hi   Pos:IDT-00 Ref-0 edg hi
    (02)Cur:IDT-00 Ref-0 edg hi   Pos:IDT-00 Ref-0 edg hi
    (03)Cur:IDT-00 Ref-0 edg hi   Pos:IDT-00 Ref-0 edg hi
    (04)Cur:IDT-00 Ref-0 edg hi   Pos:IDT-00 Ref-0 edg hi
    (05)Cur:IDT-00 Ref-0 edg hi   Pos:IDT-00 Ref-0 edg hi
    (06)Cur:IDT-00 Ref-0 edg hi   Pos:IDT-00 Ref-0 edg hi
    (07)Cur:IDT-00 Ref-0 edg hi   Pos:IDT-00 Ref-0 edg hi
    (08)Cur:IDT-71 Ref-1 edg hi   Pos:IDT-00 Ref-0 edg hi
    (09)Cur:IDT-b1 Ref-1 lev hi   Pos:IDT-00 Ref-0 edg hi
    (0a)Cur:IDT-00 Ref-0 edg hi   Pos:IDT-00 Ref-0 edg hi
    (0b)Cur:IDT-00 Ref-0 edg hi   Pos:IDT-00 Ref-0 edg hi
    (0c)Cur:IDT-91 Ref-1 edg hi   Pos:IDT-00 Ref-0 edg hi
    (0d)Cur:IDT-61 Ref-1 edg hi   Pos:IDT-00 Ref-0 edg hi
    (0e)Cur:IDT-82 Ref-1 edg hi   Pos:IDT-00 Ref-0 edg hi
    (0f)Cur:IDT-72 Ref-1 edg hi   Pos:IDT-00 Ref-0 edg hi
    (10)Cur:IDT-51 Ref-3 lev low  Pos:IDT-00 Ref-0 edg hi
    (11)Cur:IDT-b2 Ref-1 lev low  Pos:IDT-00 Ref-0 edg hi
    (12)Cur:IDT-a2 Ref-5 lev low  Pos:IDT-00 Ref-0 edg hi
    (13)Cur:IDT-92 Ref-1 lev low  Pos:IDT-00 Ref-0 edg hi
    (14)Cur:IDT-62 Ref-2 lev low  Pos:IDT-00 Ref-0 edg hi
    (15)Cur:IDT-a3 Ref-2 lev low  Pos:IDT-00 Ref-0 edg hi
     (16)Cur:IDT-b3 Ref-1 lev low  Pos:IDT-00 Ref-0 edg hi
     (17)Cur:IDT-52 Ref-1 lev low  Pos:IDT-00 Ref-0 edg hi
As expected, IRQ 1 is associated with IDT entry 0x81. For
            more information on device objects, resources, and other related
            concepts, see Chapter 8, “I/O System,” in Part 2.
The ISR’s address for the interrupt object is stored in the
            ServiceRoutine field (which is what
            !idt displays in its output), and the
            interrupt code that actually executes when an interrupt occurs is
            stored in the DispatchCode array at the end
            of the interrupt object. The interrupt code stored there is
            programmed to build the trap frame on the stack and then call the
            function stored in the DispatchAddress field
            (KiInterruptDispatch in the example), passing
            it a pointer to the interrupt object.

Windows and Real-Time Processing
Deadline requirements, either hard or soft,
            characterize real-time environments. Hard real-time systems (for
            example, a nuclear power plant control system) have deadlines the
            system must meet to avoid catastrophic failures, such as loss of
            equipment or life. Soft real-time systems (for example, a car’s
            fuel-economy optimization system) have deadlines the system can
            miss, but timeliness is still a desirable trait. In real-time
            systems, computers have sensor input devices and control output
            devices. The designer of a real-time computer system must know
            worst-case delays between the time an input device generates an
            interrupt and the time the device’s driver can control the output
            device to respond. This worst-case analysis must take into account
            the delays the operating system introduces as well as the delays
            the application and device drivers impose.
Because Windows doesn’t enable controlled prioritization of
            device IRQs and user-level applications execute only when a
            processor’s IRQL is at passive level, Windows isn’t typically
            suitable as a real-time operating system. The system’s devices and
            device drivers—not Windows—ultimately determine the worst-case
            delay. This factor becomes a problem when the real-time system’s
            designer uses off-the-shelf hardware. The designer can have
            difficulty determining how long every off-the-shelf device’s ISR
            or DPC might take in the worst case. Even after testing, the
            designer can’t guarantee that a special case in a live system
            won’t cause the system to miss an important deadline. Furthermore,
            the sum of all the delays a system’s DPCs and ISRs can introduce
            usually far exceeds the tolerance of a time-sensitive
            system.
Although many types of embedded systems (for example,
            printers and automotive computers) have real-time requirements,
            Windows Embedded Standard 7 doesn’t have real-time
            characteristics. It is simply a version of Windows 7 that makes it
            possible to produce small-footprint versions of Windows 7 suitable
            for running on devices with limited resources. For example, a
            device that has no networking capability would omit all the
            Windows 7 components related to networking, including network
            management tools and adapter and protocol stack device
            drivers.
Still, there are third-party vendors that supply real-time
            kernels for Windows. The approach these vendors take is to embed
            their real-time kernel in a custom HAL and to have Windows run as
            a task in the real-time operating system. The task running Windows
            serves as the user interface to the system and has a lower
            priority than the tasks responsible for managing the
            device.

Associating an ISR with a particular level of interrupt is
          called connecting an interrupt object, and
          dissociating an ISR from an IDT entry is called
          disconnecting an interrupt object. These
          operations, accomplished by calling the kernel functions
          IoConnectInterruptEx and
          IoDisconnectInterruptEx, allow a device driver
          to “turn on” an ISR when the driver is loaded into the system and to
          “turn off” the ISR if the driver is unloaded.
Using the interrupt object to register an ISR prevents
          device drivers from fiddling directly with interrupt hardware (which
          differs among processor architectures) and from needing to know any
          details about the IDT. This kernel feature aids in creating portable
          device drivers because it eliminates the need to code in assembly
          language or to reflect processor differences in device
          drivers.
Interrupt objects provide other benefits as well. By using the
          interrupt object, the kernel can synchronize the execution of the
          ISR with other parts of a device driver that might share data with
          the ISR. (See Chapter 8 in Part 2 for more information about how
          device drivers respond to interrupts.)
Furthermore, interrupt objects allow the kernel to easily call
          more than one ISR for any interrupt level. If multiple device
          drivers create interrupt objects and connect them to the same IDT
          entry, the interrupt dispatcher calls each routine when an interrupt
          occurs at the specified interrupt line. This capability allows the
          kernel to easily support daisy-chain
          configurations, in which several devices share the same interrupt
          line. The chain breaks when one of the ISRs claims ownership for the
          interrupt by returning a status to the interrupt dispatcher.
If multiple devices sharing the same interrupt require service
          at the same time, devices not acknowledged by their ISRs will
          interrupt the system again once the interrupt dispatcher has lowered
          the IRQL. Chaining is permitted only if all the device drivers
          wanting to use the same interrupt indicate to the kernel that they
          can share the interrupt; if they can’t, the Plug and Play manager
          reorganizes their interrupt assignments to ensure that it honors the
          sharing requirements of each. If the interrupt vector is shared, the
          interrupt object invokes KiChainedDispatch,
          which will invoke the ISRs of each registered interrupt object in
          turn until one of them claims the interrupt or all have been
          executed. In the earlier sample !idt output (in
          the EXPERIMENT: Viewing the IDT section), vector
          0xa2 is connected to several chained interrupt objects. On the
          system it was run on, it happens to correspond to an integrated
          7-in-1 media card reader, which is a combination of Secure Digital
          (SD), Compact Flash (CF), MultiMedia Card (MMC) and other types of
          readers, each having their individual interrupt. Because it’s
          packaged as one device by the same vendor, it makes sense that its
          interrupts share the same vector.
Line-Based vs. Message Signaled-Based Interrupts
Shared interrupts are often the cause of high interrupt
            latency and can also cause stability issues. They are typically
            undesirable and a side effect of the limited number of physical
            interrupt lines on a computer. For example, in the previous
            example of the 7-in-1 media card reader, a much better solution is
            for each device to have its own interrupt and for one driver to
            manage the different interrupts knowing which device they came
            from. However, consuming four IRQ lines for a single device
            quickly leads to IRQ line exhaustion. Additionally, PCI devices
            are each connected to only one IRQ line anyway, so the media card
            reader cannot use more than one IRQ in the first place.
Other problems with generating interrupts through an IRQ
            line is that incorrect management of the IRQ signal can lead to
            interrupt storms or other kinds of deadlocks on the machine,
            because the signal is driven “high” or “low” until the ISR
            acknowledges it. (Furthermore, the interrupt controller must
            typically receive an EOI signal as well.) If either of these does not happen due to a bug, the system
            can end up in an interrupt state forever, further interrupts could
            be masked away, or both. Finally, line-based interrupts provide
            poor scalability in multiprocessor environments. In many cases,
            the hardware has the final decision as to which processor will be
            interrupted out of the possible set that the Plug and Play manager
            selected for this interrupt, and there is little device drivers
            can do.
A solution to all these problems is a new interrupt
            mechanism first introduced in the PCI 2.2 standard called
            message-signaled interrupts (MSI). Although
            it remains an optional component of the standard that is seldom
            found in client machines, an increasing number of servers and
            workstations implement MSI support, which is fully supported by
            the all recent versions of Windows. In the MSI model, a device
            delivers a message to its driver by writing to a specific memory
            address. This action causes an interrupt, and Windows then calls
            the ISR with the message content (value) and the address where the
            message was delivered. A device can also deliver multiple messages
            (up to 32) to the memory address, delivering different payloads
            based on the event.
Because communication is based across a memory value, and
            because the content is delivered with the interrupt, the need for
            IRQ lines is removed (making the total system limit of MSIs equal
            to the number of interrupt vectors, not IRQ lines), as is the need
            for a driver ISR to query the device for data related to the
            interrupt, decreasing latency. Due to the large number of device
            interrupts available through this model, this effectively
            nullifies any benefit of sharing interrupts, decreasing latency
            further by directly delivering the interrupt data to the concerned
            ISR.
Finally, MSI-X, an extension to the MSI model, which is
            introduced in PCI 3.0, adds support for 32-bit messages (instead
            of 16-bit), a maximum of 2048 different messages (instead of just
            32), and more importantly, the ability to use a different address
            (which can be dynamically determined) for each of the MSI
            payloads. Using a different address allows the MSI payload to be
            written to a different physical address range that belongs to a
            different processor, or a different set of target processors,
            effectively enabling nonuniform memory access (NUMA)-aware
            interrupt delivery by sending the interrupt to the processor that
            initiated the related device request. This improves latency and
            scalability by monitoring both load and closest NUMA node during
            interrupt completion.

Interrupt Affinity and Priority
On systems that both support ACPI and contain an APIC,
            Windows enables driver developers and administrators to somewhat
            control the processor affinity (selecting the processor or group
            of processors that receives the interrupt) and affinity policy
            (selecting how processors will be chosen and which processors in a
            group will be chosen). Furthermore, it enables a primitive
            mechanism of interrupt prioritization based on IRQL
            selection. Affinity policy is defined according to Table 3-1, and it’s configurable through
            a registry value called InterruptPolicyValue in the Interrupt
            Management\Affinity Policy key under the device’s instance key in
            the registry. Because of this, it does not require any code to
            configure—an administrator can add this value to a given driver’s
            key to influence its behavior. Microsoft provides such a tool,
            called the Interrupt Affinity policy Tool, which can be downloaded
            from http://www.microsoft.com/whdc/system/sysperf/intpolicy.mspx.
Table 3-1. IRQ Affinity Policies
	Policy
	Meaning

	IrqPolicyMachineDefault
	The device does not require a
                    particular affinity policy. Windows uses the default
                    machine policy, which (for machines with less than eight
                    logical processors) is to select any available processor
                    on the machine.

	IrqPolicyAllCloseProcessors
	On a NUMA machine, the Plug and
                    Play manager assigns the interrupt to all the processors
                    that are close to the device (on the same node). On
                    non-NUMA machines, this is the same as
                    IrqPolicyAllProcessorsInMachine.

	IrqPolicyOneCloseProcessor
	On a NUMA machine, the Plug and
                    Play manager assigns the interrupt to one processor that
                    is close to the device (on the same node). On non-NUMA
                    machines, the chosen processor will be any available on
                    the system.

	IrqPolicyAllProcessorsInMachine
	The interrupt is processed by
                    any available processor on the machine.

	IrqPolicySpecifiedProcessors
	The interrupt is processed only
                    by one of the processors specified in the affinity mask
                    under the AssignmentSetOverride registry
                    value.

	IrqPolicySpreadMessagesAcrossAllProcessors
	Different message-signaled
                    interrupts are distributed across an optimal set of
                    eligible processors, keeping track of NUMA topology
                    issues, if possible. This requires MSI-X support on the
                    device and platform.




Other than setting this affinity policy, another registry
            value can also be used to set the interrupt’s priority, based on
            the values in Table 3-2.
Table 3-2. IRQ Priorities
	Priority
	Meaning

	IrqPriorityUndefined
	No particular priority is
                    required by the device. It receives the default priority
                    (IrqPriorityNormal).

	IrqPriorityLow
	The device can tolerate high
                    latency and should receive a lower IRQL than
                    usual.

	IrqPriorityNormal
	The device expects average
                    latency. It receives the default IRQL associated with its
                    interrupt vector.

	IrqPriorityHigh
	The device requires as little
                    latency as possible. It receives an elevated IRQL beyond
                    its normal assignment.




As discussed earlier, it is important to note that
            Windows is not a real-time operating system, and as such, these
            IRQ priorities are hints given to the system that control only the
            IRQL associated with the interrupt and provide no extra priority
            other than the Windows IRQL priority-scheme mechanism. Because the
            IRQ priority is also stored in the registry, administrators are
            free to set these values for drivers should there be a requirement
            of lower latency for a driver not taking advantage of this
            feature.


Software Interrupts



Although hardware generates most interrupts, the Windows
          kernel also generates software interrupts for a variety of tasks,
          including these:
	Initiating thread dispatching

	Non-time-critical interrupt processing

	Handling timer expiration

	Asynchronously executing a procedure in the context of a
              particular thread

	Supporting asynchronous I/O operations



These tasks are described in the following subsections.
Dispatch or Deferred Procedure Call (DPC)
            Interrupts



When a thread can no longer continue executing, perhaps
            because it has terminated or because it voluntarily enters a wait
            state, the kernel calls the dispatcher directly to effect an
            immediate context switch. Sometimes, however, the kernel detects
            that rescheduling should occur when it is deep within many layers
            of code. In this situation, the kernel requests dispatching but
            defers its occurrence until it completes its current activity.
            Using a DPC software interrupt is a convenient way to achieve this
            delay.
The kernel always raises the processor’s IRQL to
            DPC/dispatch level or above when it needs to synchronize access to
            shared kernel structures. This disables additional software
            interrupts and thread dispatching. When the kernel detects that
            dispatching should occur, it requests a DPC/dispatch-level
            interrupt; but because the IRQL is at or above that level, the
            processor holds the interrupt in check. When the kernel completes
            its current activity, it sees that it’s going to lower the IRQL
            below DPC/dispatch level and checks to see whether any dispatch
            interrupts are pending. If there are, the IRQL drops to
            DPC/dispatch level and the dispatch interrupts are processed.
            Activating the thread dispatcher by using a software interrupt is
            a way to defer dispatching until conditions are right. However,
            Windows uses software interrupts to defer other types of
            processing as well.
In addition to thread dispatching, the kernel also
            processes deferred procedure calls (DPCs) at this IRQL. A DPC is a
            function that performs a system task—a task that is less
            time-critical than the current one. The functions are called
            deferred because they might not execute
            immediately.
DPCs provide the operating system with the capability to
            generate an interrupt and execute a system function in kernel
            mode. The kernel uses DPCs to process timer expiration (and
            release threads waiting for the timers) and to reschedule the
            processor after a thread’s quantum expires. Device drivers use
            DPCs to process interrupts. To provide timely service for hardware
            interrupts, Windows—with the cooperation of device
            drivers—attempts to keep the IRQL below device IRQL levels. One
            way that this goal is achieved is for device driver ISRs to
            perform the minimal work necessary to acknowledge their device,
            save volatile interrupt state, and defer data transfer or other
            less time-critical interrupt processing activity for execution in
            a DPC at DPC/dispatch IRQL. (See Chapter 8 in Part 2 for more
            information on DPCs and the I/O system.)
A DPC is represented by a DPC object, a
            kernel control object that is not visible to user-mode programs
            but is visible to device drivers and other system code. The most
            important piece of information the DPC object contains is the
            address of the system function that the kernel will call when it
            processes the DPC interrupt. DPC routines that are waiting to
            execute are stored in kernel-managed queues, one per processor,
            called DPC queues. To request a DPC, system
            code calls the kernel to initialize a DPC object and then places
            it in a DPC queue.
By default, the kernel places DPC objects at the end of the
            DPC queue of the processor on which the DPC was requested
            (typically the processor on which the ISR executed). A device
            driver can override this behavior, however, by specifying a DPC
            priority (low, medium, medium-high, or high, where medium is the
            default) and by targeting the DPC at a particular processor. A DPC
            aimed at a specific CPU is known as a targeted
            DPC. If the DPC has a high priority, the kernel inserts
            the DPC object at the front of the queue; otherwise, it is placed
            at the end of the queue for all other priorities.
When the processor’s IRQL is about to drop from an IRQL of
            DPC/dispatch level or higher to a lower IRQL (APC or passive
            level), the kernel processes DPCs. Windows ensures that the IRQL
            remains at DPC/dispatch level and pulls DPC objects off the
            current processor’s queue until the queue is empty (that is, the
            kernel “drains” the queue), calling each DPC function in turn.
            Only when the queue is empty will the kernel let the IRQL drop
            below DPC/dispatch level and let regular thread execution
            continue. DPC processing is depicted in Figure 3-7.
DPC priorities can affect system behavior another way. The
            kernel usually initiates DPC queue draining with a
            DPC/dispatch-level interrupt. The kernel generates such an
            interrupt only if the DPC is directed at the current processor
            (the one on which the ISR executes) and the DPC has a priority
            higher than low. If the DPC has a low priority, the kernel
            requests the interrupt only if the number of outstanding DPC
            requests for the processor rises above a threshold or if the
            number of DPCs requested on the processor within a time window is
            low.
[image: Delivering a DPC]

Figure 3-7. Delivering a DPC

If a DPC is targeted at a CPU different from the one
            on which the ISR is running and the DPC’s priority is either high
            or medium-high, the kernel immediately signals the target CPU (by
            sending it a dispatch IPI) to drain its DPC queue, but only as
            long as the target processor is idle. If the priority is medium or
            low, the number of DPCs queued on the target processor must exceed
            a threshold for the kernel to trigger a DPC/dispatch interrupt.
            The system idle thread also drains the DPC queue for the processor
            it runs on. Although DPC targeting and priority levels are
            flexible, device drivers rarely need to change the default
            behavior of their DPC objects. Table 3-3 summarizes the
            situations that initiate DPC queue draining. Medium-high and high
            appear and are, in fact, equal priorities when looking at the
            generation rules. The difference comes from their insertion in the
            list, with high interrupts being at the head and medium-high
            interrupts at the tail.
Table 3-3. DPC Interrupt Generation Rules
	DPC Priority
	DPC Targeted at ISR’s
                    Processor
	DPC Targeted at Another
                    Processor

	Low
	DPC queue length exceeds maximum
                    DPC queue length, or DPC request rate is less than minimum
                    DPC request rate
	DPC queue length exceeds maximum
                    DPC queue length, or system is idle

	Medium
	Always
	DPC queue length exceeds maximum
                    DPC queue length, or system is idle

	Medium-High
	Always
	Target processor is
                    idle

	High
	Always
	Target processor is
                    idle




Because user-mode threads execute at low IRQL, the
            chances are good that a DPC will interrupt the execution of an
            ordinary user’s thread. DPC routines execute without regard to
            what thread is running, meaning that when a DPC routine runs, it
            can’t assume what process address space is currently mapped. DPC
            routines can call kernel functions, but they can’t call system
            services, generate page faults, or create or wait for dispatcher
            objects (explained later in this chapter). They can, however,
            access nonpaged system memory addresses, because system address
            space is always mapped regardless of what the current process
            is.
DPCs are provided primarily for device drivers, but the
            kernel uses them too. The kernel most frequently uses a DPC to
            handle quantum expiration. At every tick of the system clock, an
            interrupt occurs at clock IRQL. The clock interrupt
            handler (running at clock IRQL) updates the system time
            and then decrements a counter that tracks how long the current
            thread has run. When the counter reaches 0, the thread’s time
            quantum has expired and the kernel might need to reschedule the
            processor, a lower-priority task that should be done at
            DPC/dispatch IRQL. The clock interrupt handler queues a DPC to
            initiate thread dispatching and then finishes its work and lowers
            the processor’s IRQL. Because the DPC interrupt has a lower
            priority than do device interrupts, any pending device interrupts
            that surface before the clock interrupt completes are handled
            before the DPC interrupt occurs.
Because DPCs execute regardless of whichever thread is
            currently running on the system (much like interrupts), they are a
            primary cause for perceived system unresponsiveness of client
            systems or workstation workloads because even the highest-priority
            thread will be interrupted by a pending DPC. Some DPCs run long
            enough that users might perceive video or sound lagging, and even
            abnormal mouse or keyboard latencies, so for the benefit of
            drivers with long-running DPCs, Windows supports
            threaded DPCs.
Threaded DPCs, as their name implies, function by executing
            the DPC routine at passive level on a real-time priority (priority
            31) thread. This allows the DPC to preempt most user-mode threads
            (because most application threads don’t run at real-time priority
            ranges), but it allows other interrupts, nonthreaded DPCs, APCs,
            and higher-priority threads to preempt the routine.
The threaded DPC mechanism is enabled by default, but you
            can disable it by adding a DWORD value
            HKEY_LOCAL_MACHINE\System\CurrentControlSet\Control\Session
            Manager\kernel\ThreadDpcEnable and setting it to 0. Because
            threaded DPCs can be disabled, driver developers who make use of
            threaded DPCs must write their routines following the same rules
            as for nonthreaded DPC routines and cannot access paged memory,
            perform dispatcher waits, or make assumptions about the IRQL level
            at which they are executing. In addition, they must not use the
            KeAcquire/ReleaseSpinLockAtDpcLevel APIs
            because the functions assume the CPU is at dispatch level.
            Instead, threaded DPCs must use
            KeAcquire/ReleaseSpinLockForDpc, which
            performs the appropriate action after checking the current
            IRQL.
EXPERIMENT: Monitoring Interrupt and DPC Activity
You can use Process Explorer to monitor interrupt
              and DPC activity by opening the System Information dialog and
              switching to the CPU tab, where it lists the number of
              interrupts and DPCs executed each time Process Explorer
              refreshes the display (1 second by default):
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You can also trace the execution of specific interrupt
              service routines and deferred procedure calls with the built-in
              event tracing support (described later in this chapter):
	Start capturing events by opening an elevated command
                  prompt, navigating to the Microsoft Windows Performance
                  Toolkit directory (typically in c:\Program Files) and typing
                  the following command (make sure no other program is
                  capturing events, such as Process Explorer or Process
                  Monitor, or this will fail with an error):
xperf –on PROC_THREAD+LOADER+DPC+INTERRUPT

	Stop capturing events by typing the following:
xperf –d dpcisr.etl

	Generate reports for the event capture by typing
                  this:
xperf dpcisr.etl
tracerpt \kernel.etl –report dpcisr.html –f html
This will generate a web page called
                  dpcisr.html.

	Open report.html, and expand the DPC/ISR subsection.
                  Expand the DPC/ISR Breakdown area, and you will see
                  summaries of the time spent in ISRs and DPCs by each driver.
                  For example:
[image: image with no caption]




Running an ln command in the kernel
              debugger on the address of each event record shows the name of
              the function that executed the DPC or ISR:
lkd> ln 0x806321C7
(806321c7)   ndis!ndisInterruptDpc

lkd> ln 0x820AED3F
(820aed3f)   nt!IopTimerDispatch

lkd> ln 0x82051312
(82051312)   nt!PpmPerfIdleDpc
The first is a DPC queued by a network card NDIS miniport
              driver. The second is a DPC for a generic I/O timer expiration.
              The third address is the address of a DPC for an idle
              performance operation.

Other than using it to get an HTML report, you can
            use the Xperf Viewer to show a detailed overview of all DPC and
            ISR events by right-clicking on the DPC and/or ISR CPU Usage
            graphs in the main Xperf window and choosing Summary Table. You
            will be able to see a per-driver view of each DPC and ISR in
            detail, along with its duration and count, just as shown in the
            following graphic:
[image: image with no caption]


Asynchronous Procedure Call Interrupts



Asynchronous procedure calls (APCs) provide a way for user
            programs and system code to execute in the context of a particular
            user thread (and hence a particular process address space).
            Because APCs are queued to execute in the context of a particular
            thread and run at an IRQL less than DPC/dispatch level, they don’t
            operate under the same restrictions as a DPC. An APC routine can
            acquire resources (objects), wait for object handles, incur page
            faults, and call system services.
APCs are described by a kernel control object, called an
            APC object. APCs waiting to execute reside in
            a kernel-managed APC queue. Unlike the DPC
            queue, which is systemwide, the APC queue is thread-specific—each
            thread has its own APC queue. When asked to queue an APC, the
            kernel inserts it into the queue belonging to the thread that will
            execute the APC routine. The kernel, in turn, requests a software
            interrupt at APC level, and when the thread eventually begins
            running, it executes the APC.
There are two kinds of APCs: kernel mode and user mode.
            Kernel-mode APCs don’t require permission from a target thread to
            run in that thread’s context, while user-mode APCs do. Kernel-mode
            APCs interrupt a thread and execute a procedure without the
            thread’s intervention or consent. There are also two types of
            kernel-mode APCs: normal and special. Special APCs execute at APC
            level and allow the APC routine to modify some of the APC
            parameters. Normal APCs execute at passive level and receive the
            modified parameters from the special APC routine (or the original
            parameters if they weren’t modified).
Both normal and special APCs can be disabled by
            raising the IRQL to APC level or by calling
            KeEnterGuardedRegion.
            KeEnterGuardedRegion disables APC delivery by
            setting the SpecialApcDisable field in the
            calling thread’s KTHREAD structure (described further in Chapter 5). A thread
            can disable normal APCs only by calling
            KeEnterCriticalRegion, which sets the
            KernelApcDisable field in the thread’s
            KTHREAD structure. Table 3-4
            summarizes the APC insertion and delivery behavior for each type
            of APC.
The executive uses kernel-mode APCs to perform operating
            system work that must be completed within the address space (in
            the context) of a particular thread. It can use special
            kernel-mode APCs to direct a thread to stop executing an
            interruptible system service, for example, or to record the
            results of an asynchronous I/O operation in a thread’s address
            space. Environment subsystems use special kernel-mode APCs to make
            a thread suspend or terminate itself or to get or set its
            user-mode execution context. The Subsystem for UNIX Applications
            uses kernel-mode APCs to emulate the delivery of UNIX signals to
            Subsystem for UNIX Application processes.
Another important use of kernel-mode APCs is related to
            thread suspension and termination. Because these operations can be
            initiated from arbitrary threads and directed to other arbitrary
            threads, the kernel uses an APC to query the thread context as
            well as to terminate the thread. Device drivers often block APCs
            or enter a critical or guarded region to prevent these operations
            from occurring while they are holding a lock; otherwise, the lock
            might never be released, and the system would hang.
Table 3-4. APC Insertion and Delivery
	APC Type
	Insertion
                    Behavior
	Delivery Behavior

	Special (kernel)
	Inserted at the tail of the
                    kernel-mode APC list
	Delivered at APC level as soon
                    as IRQL drops and the thread is not in a guarded region.
                    It is given pointers to arguments specified when inserting
                    the APC.

	Normal (kernel)
	Inserted right after the last
                    special APC (at the head of all other normal
                    APCs)
	Delivered at PASSIVE_LEVEL after
                    the associated special APC was executed. It is given
                    arguments returned by the associated special APC (which
                    can be the original arguments used during insertion or new
                    ones).

	Normal (user)
	Inserted at the tail of the
                    user-mode APC list
	Delivered at PASSIVE_LEVEL as
                    soon as IRQL drops, the thread is not in a critical (or
                    guarded) region, and the thread is in an alerted state. It
                    is given arguments returned by the associated special APC
                    (which can be the original arguments used during insertion
                    or new ones).

	Normal (user) Thread Exit
                    (PsExitSpecialApc)
	Inserted at the head of the
                    user-mode APC list
	Delivered at PASSIVE_LEVEL on
                    return to user mode, if the thread is doing an alerted
                    user-mode wait. It is given arguments returned by the
                    thread-termination special APC.




Device drivers also use kernel-mode APCs. For example, if an
            I/O operation is initiated and a thread goes into a wait state,
            another thread in another process can be scheduled to run. When
            the device finishes transferring data, the I/O system must somehow
            get back into the context of the thread that initiated the I/O so
            that it can copy the results of the I/O operation to the buffer in
            the address space of the process containing that thread. The I/O
            system uses a special kernel-mode APC to perform this action,
            unless the application used the
            SetFileIoOverlappedRange API or I/O
            completion ports—in which case, the buffer will either be
            global in memory or copied only after the thread pulls a
            completion item from the port. (The use of APCs in the I/O system
            is discussed in more detail in Chapter 8 in Part 2.)
Several Windows APIs—such as
            ReadFileEx, WriteFileEx,
            and QueueUserAPC—use user-mode APCs. For
            example, the ReadFileEx and
            WriteFileEx functions allow the caller to
            specify a completion routine to be called when the I/O operation
            finishes. The I/O completion is implemented by queuing an APC to
            the thread that issued the I/O. However, the callback to the
            completion routine doesn’t necessarily take place when the APC is
            queued because user-mode APCs are delivered to a thread only when
            it’s in an alertable wait state. A thread can
            enter a wait state either by waiting for an object handle and
            specifying that its wait is alertable (with the Windows
            WaitForMultipleObjectsEx function) or by
            testing directly whether it has a pending APC (using
            SleepEx). In both cases, if a user-mode APC
            is pending, the kernel interrupts (alerts) the thread, transfers
            control to the APC routine, and resumes the thread’s execution
            when the APC routine completes. Unlike kernel-mode APCs, which can
            execute at APC level, user-mode APCs execute at passive
            level.
APC delivery can reorder the wait queues—the lists of which
            threads are waiting for what, and in what order they are waiting.
            (Wait resolution is described in the section Low-IRQL Synchronization, later in this chapter.) If
            the thread is in a wait state when an APC is delivered, after the
            APC routine completes, the wait is reissued or re-executed. If the
            wait still isn’t resolved, the thread returns to the wait state,
            but now it will be at the end of the list of objects it’s waiting
            for. For example, because APCs are used to suspend a thread from
            execution, if the thread is waiting for any objects, its wait is
            removed until the thread is resumed, after which that thread will
            be at the end of the list of threads waiting to access the objects
            it was waiting for. A thread performing an alertable kernel-mode
            wait will also be woken up during thread termination, allowing
            such a thread to check whether it woke up as a result of
            termination or for a different reason.



Timer Processing



The system’s clock interval timer is probably the most important
        device on a Windows machine, as evidenced by its high IRQL value
        (CLOCK_LEVEL) and due to the critical nature of the work it is
        responsible for. Without this interrupt, Windows would lose track of
        time, causing erroneous results in calculations of uptime and clock
        time—and worse, causing timers not to expire anymore and threads never
        to lose their quantum anymore. Windows would also not be a preemptive
        operating system, and unless the current running thread yielded the
        CPU, critical background tasks and scheduling could never occur on a
        given processor.
Windows programs the system clock to fire at the most
        appropriate interval for the machine, and subsequently allows drivers,
        applications, and administrators to modify the clock interval for
        their needs. Typically, the system clock is maintained either by the
        PIT (Programmable Interrupt Timer) chip that is present on all
        computers since the PC/AT, or the RTC (Real Time Clock). The PIT works
        on a crystal that is tuned at one-third the NTSC color carrier
        frequency (because it was originally used for TV-Out on the first CGA
        video cards), and the HAL uses various achievable multiples to reach
        millisecond-unit intervals, starting at 1 ms all the way up to 15 ms.
        The RTC, on the other hand, runs at 32.768 KHz, which, by being a
        power of two, is easily configured to run at various intervals that
        are also powers of two. On today’s machines, the APIC
        Multiprocessor HAL configures the RTC to fire every 15.6 milliseconds,
        which corresponds to about 64 times a second.
Some types of Windows applications require very fast response
        times, such as multimedia applications. In fact, some multimedia tasks
        require rates as low as 1 ms. For this reason, Windows implements APIs
        and mechanisms that enable lowering the interval of the system’s clock
        interrupt, which results in more clock interrupts (at least on
        processor 0). Note that this increases the resolution of all timers in
        the system, potentially causing other timers to expire more
        frequently.
Windows tries its best to restore the clock timer back to its
        original value whenever it can. Each time a process requests a clock
        interval change, Windows increases an internal reference count and
        associates it with the process. Similarly, drivers (which can also
        change the clock rate) get added to the global reference count. When
        all drivers have restored the clock and all processes that modified
        the clock either have exited or restored it, Windows restores the
        clock to its default value (or, barring that, to the next highest
        value that’s been required by a process or driver).
EXPERIMENT: Identifying High-Frequency Timers
Due to the problems that high-frequency timers can cause,
          Windows uses Event Tracing for Windows (ETW) to trace all processes
          and drivers that request a change in the system’s clock interval,
          displaying the time of the occurrence and the requested interval.
          The current interval is also shown. This data is of great use to
          both developers and system administrators in identifying the causes
          of poor battery performance on otherwise healthy systems, and to
          decrease overall power consumption on large systems as well. To
          obtain it, simply run powercfg
          /energy and you should obtain an HTML file called
          energy-report.html similar to the one shown
          here:
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Scroll down to the section on Platform Timer
          Resolution, and you will be shown all the applications that have
          modified the timer resolution and are still active, along with the
          call stacks that caused this call. Timer resolutions are shown in
          hundreds of nanoseconds, so a period of 20,000 corresponds to 2 ms.
          In the sample shown, two applications—namely, Microsoft PowerPoint
          and the UltraVNC remote desktop server—each requested a higher
          resolution.
You can also use the debugger to obtain this information. For
          each process, the EPROCESS structure contains a number of fields,
          shown next, that help identify changes in timer resolution:
+0x4a8 TimerResolutionLink : _LIST_ENTRY [ 0xfffffa80'05218fd8 - 0xfffffa80'059cd508 ]
+0x4b8 RequestedTimerResolution : 0
+0x4bc ActiveThreadsHighWatermark : 0x1d
+0x4c0 SmallestTimerResolution : 0x2710
+0x4c8 TimerResolutionStackRecord : 0xfffff8a0'0476ecd0 _PO_DIAG_STACK_RECORD
Note that the debugger shows you an additional piece of
          information: the smallest timer resolution that was ever requested
          by a given process. In this example, the process shown corresponds
          to PowerPoint 2010, which typically requests a lower timer
          resolution during slide-shows, but not during slide editing mode.
          The EPROCESS fields of PowerPoint, shown in the preceding code,
          prove this, and the stack could be parsed by dumping the
          PO_DIAG_STACK_RECORD structure.
Finally, the TimerResolutionLink field
          connects all processes that have made changes to timer resolution,
          through the ExpTimerResolutionListHead doubly
          linked list. Parsing this list with the !list
          debugger command can reveal all processes on the system that have,
          or had, made changes to the timer resolution, when the
          powercfg command is unavailable or information
          on past processes is required:
lkd> !list "-e -x \"dt nt!_EPROCESS @$extret-@@(#FIELD_OFFSET(nt!_EPROCESS,
TimerResolutionLink))
ImageFileName SmallestTimerResolution RequestedTimerResolution\"
nt!ExpTimerResolutionListHead"

dt nt!_EPROCESS @$extret-@@(#FIELD_OFFSET(nt!_EPROCESS, TimerResolutionLink))
ImageFileName
SmallestTimerResolution RequestedTimerResolution
   +0x2e0 ImageFileName            : [15]  "audiodg.exe"
   +0x4b8 RequestedTimerResolution : 0
   +0x4c0 SmallestTimerResolution  : 0x2710

dt nt!_EPROCESS @$extret-@@(#FIELD_OFFSET(nt!_EPROCESS, TimerResolutionLink))
ImageFileName
SmallestTimerResolution RequestedTimerResolution
   +0x2e0 ImageFileName            : [15]  "chrome.exe"
   +0x4b8 RequestedTimerResolution : 0
   +0x4c0 SmallestTimerResolution  : 0x2710

dt nt!_EPROCESS @$extret-@@(#FIELD_OFFSET(nt!_EPROCESS, TimerResolutionLink))
ImageFileName
SmallestTimerResolution RequestedTimerResolution
   +0x2e0 ImageFileName            : [15]  "calc.exe"
   +0x4b8 RequestedTimerResolution : 0
   +0x4c0 SmallestTimerResolution  : 0x2710

dt nt!_EPROCESS @$extret-@@(#FIELD_OFFSET(nt!_EPROCESS, TimerResolutionLink))
ImageFileName
SmallestTimerResolution RequestedTimerResolution
   +0x2e0 ImageFileName            : [15]  "devenv.exe"
   +0x4b8 RequestedTimerResolution : 0
   +0x4c0 SmallestTimerResolution  : 0x2710

dt nt!_EPROCESS @$extret-@@(#FIELD_OFFSET(nt!_EPROCESS, TimerResolutionLink))
ImageFileName
SmallestTimerResolution RequestedTimerResolution
   +0x2e0 ImageFileName            : [15]  "POWERPNT.EXE"
   +0x4b8 RequestedTimerResolution : 0
   +0x4c0 SmallestTimerResolution  : 0x2710

dt nt!_EPROCESS @$extret-@@(#FIELD_OFFSET(nt!_EPROCESS, TimerResolutionLink))
ImageFileName
SmallestTimerResolution RequestedTimerResolution
   +0x2e0 ImageFileName            : [15]  "winvnc.exe"
   +0x4b8 RequestedTimerResolution : 0x2710
   +0x4c0 SmallestTimerResolution  : 0x2710

Timer Expiration



As we said, one of the main tasks of the ISR
          associated with the interrupt that the RTC or PIT will generate is
          to keep track of system time, which is mainly done by the
          KeUpdateSystemTime routine. Its second job is
          to keep track of logical run time, such as process/thread execution
          times and the system tick time, which is the
          underlying number used by APIs such as
          GetTickCount that developers use to time
          operations in their applications. This part of the work is performed
          by KeUpdateRunTime. Before doing any of that
          work, however, KeUpdateRunTime checks whether
          any timers have expired.
Windows timers can be either absolute
          timers, which implies a distinct expiration time in the future, or
          relative timers, which contain a negative
          expiration value used as a positive offset from the current time
          during timer insertion. Internally, all timers are converted to an
          absolute expiration time, although the system keeps track of whether
          or not this is the “true” absolute time or a converted relative
          time. This difference is important in certain scenarios, such as
          Daylight Saving Time (or even manual clock changes). An absolute
          timer would still fire at “8PM” if the user moved the clock from 1PM
          to 7PM, but a relative timer—say, one set to expire “in two
          hours”—would not feel the effect of the clock change because two
          hours haven’t really elapsed. During system time-change events such
          as these, the kernel reprograms the absolute time associated with
          relative timers to match the new settings.
Because the clock fires at known interval multiples, the
          bottom bits of the current system time will be at one of 64 known
          positions (on an APIC HAL). Windows uses that fact to organize all
          driver and application timers into linked lists based on an array
          where each entry corresponds to a possible multiple of the system
          time. This table, called the timer table, is
          located in the PRCB, which enables each processor to perform its own independent timer
          expiration without needing to acquire a global lock, as shown in
          Figure 3-8. Later, you
          will see what determines which logical processor’s timer table a
          timer is inserted on. Because each processor has its own timer
          table, each processor also does its own timer expiration work. As
          each processor gets initialized, the table is filled with absolute
          timers with an infinite expiration time, to avoid any incoherent
          state. Each multiple of the system time that a timer can be
          associated with is called the hand, and it’s
          stored in the timer object’s dispatcher header. Therefore, to
          determine if a clock has expired, it is only necessary to check if
          there are any timers on the linked list associated with the current
          hand.
[image: Example of per-processor timer lists]

Figure 3-8. Example of per-processor timer lists

Although updating counters and checking a linked list are fast
          operations, going through every timer and expiring it is a
          potentially costly operation—keep in mind that all this work is
          currently being performed at CLOCK_LEVEL, an exceptionally elevated
          IRQL. Similarly to how a driver ISR queues a DPC to defer work, the
          clock ISR requests a DPC software interrupt, setting a flag in the
          PRCB so that the DPC draining mechanism knows timers need
          expiration. Likewise, when updating process/thread runtime, if the
          clock ISR determines that a thread has expired its quantum, it also
          queues a DPC software interrupt and sets a different PRCB flag.
          These flags are per-PRCB because each processor normally does its
          own processing of run-time updates, because each processor is
          running a different thread and has different tasks associated with
          it. Table 3-5 displays the
          various fields used in timer expiration and processing.
Once the IRQL eventually drops down back to DISPATCH_LEVEL, as
          part of DPC processing, these two flags will be picked up.
Table 3-5. Timer Processing KPRCB Fields
	KPRCB Field
	Type
	Description

	ReadySummary
	Bitmask (32 bits)
	Bitmask of priority levels that
                  have one or more ready threads

	DeferredReadyListHead
	Singly linked list
	Single list head for the deferred
                  ready queue

	DispatcherReadyListHead
	Array of 32 list
                  entries
	List heads for the 32 ready
                  queues




Chapter 5
          covers the actions related to thread scheduling and quantum
          expiration. Here we will take a look at the timer expiration work.
          Because the timers are linked together by hand, the expiration code
          (executed by the DPC associated with the PRCB in the
          TimerExpiryDpc field) parses this list from
          head to tail. (At insertion time, the timers nearest to the clock
          interval multiple will be first, followed by timers closer and
          closer to the next interval, but still within this hand.) There are
          two primary tasks to expiring a timer:
	The timer is treated as a dispatcher synchronization
              object (threads are waiting on the timer as part of a timeout or
              directly as part of a wait). The wait-testing and
              wait-satisfaction algorithms will be run on the timer. This work
              is described in a later section on synchronization in this
              chapter. This is how user-mode applications, and some drivers,
              make use of timers.

	The timer is treated as a control object associated with a
              DPC callback routine that executes when the timer expires. This
              method is reserved only for drivers and enables very low latency
              response to timer expiration. (The wait/dispatcher method
              requires all the extra logic of wait signaling.) Additionally,
              because timer expiration itself executes at DISPATCH_LEVEL,
              where DPCs also run, it is perfectly suited as a timer
              callback.



As each processor wakes up to handle the clock interval timer
          to perform system-time and run-time processing, it therefore also
          processes timer expirations after a slight latency/delay in which
          the IRQL drops from CLOCK_LEVEL to DISPATCH_LEVEL. Figure 3-9 shows this behavior on two
          processors—the solid arrows indicate the clock interrupt firing,
          while the dotted arrows indicate any timer expiration processing
          that might occur if the processor had associated timers.
[image: Timer expiration]

Figure 3-9. Timer expiration


Processor Selection



A critical determination that must be made when a
          timer is inserted is to pick the appropriate table to use—in other
          words, the most optimal processor choice. If the timer has no DPC
          associated with it, the kernel scans all processors in the current
          processor’s group that have not been parked. (For more information
          on Core Parking, see Chapter 5.) If the
          current processor is parked, it picks the next processor in the
          group; otherwise, the current processor is used. On the other hand,
          if the timer does have an associated DPC, the insertion code simply
          looks at the target processor associated with the DPC and selects
          that processor’s timer table.
In the case where the driver developer did not specify a
          target processor for the DPC, the kernel must make the choice.
          Because driver developers typically expect the DPC to execute on the
          same processor as the one the driver code was running on at
          insertion time, the kernel typically chooses CPU 0, since CPU 0 is
          the timekeeping processor that will always be active to pick up
          clock interrupts (more on this later). However, on server systems,
          the kernel picks a processor, just as it normally does when there is
          no DPC, by using the same checks just described.
This behavior is intended to improve performance and
          scalablity on server systems that make use of Hyper-V, although it
          can improve performance on any heavily loaded system. As system
          timers pile up—because most drivers do not affinitize their DPCs—CPU
          0 becomes more and more congested with the execution of timer
          expiration code, which increases latency and can even cause heavy
          delays or missed DPCs. Additionally, the timer expiration can start
          competing with the DPC timer typically associated with driver
          interrupt processing, such as network packet code, causing
          systemwide slowdowns. This process is exacerbated in a Hyper-V
          scenario, where CPU 0 must process the timers and DPCs associated
          with potentially numerous virtual machines, each with their own
          timers and associated devices.
By spreading the timers across processors, as shown in Figure 3-10, each processor’s
          timer-expiration load is fully distributed among unparked logical
          processors. The timer object stores its associated processor number
          in the dispatcher header on 32-bit systems and in the object itself
          on 64-bit systems.
Note
This behavior is controlled by the kernel variable
            KiDistributeTimers, which is initialized
            based on a registry key whose value is different between a server
            and client installation. By modifying, or creating, the value
            DistributeTimers under
            HKLM\SYSTEM\CurrentControlSet\Control\Session Manager\kernel, this
            behavior can be configured differently from its SKU-based
            default.

[image: Timer queuing behaviors]

Figure 3-10. Timer queuing behaviors

EXPERIMENT: Listing System Timers
You can use the kernel debugger to dump all the
            current registered timers on the system, as well as information on
            the DPC associated with each timer (if any). See the following
            output for a sample:
[lkd> !timer
Dump system timers

Interrupt time: 61876995 000003df [ 4/ 5/2010 18:58:09.189]

List Timer    Interrupt Low/High     Fire Time              DPC/thread
PROCESSOR 0 (nt!_KTIMER_TABLE fffff80001bfd080)
  5 fffffa8003099810   627684ac 000003df [ 4/ 5/2010 18:58:10.756]
NDIS!ndisMTimerObjectDpc (DPC @ fffffa8003099850)
13 fffffa8003027278   272dde78 000004cf [ 4/ 6/2010 23:34:30.510]  NDIS!ndisMWakeUpDpcX
(DPC @ fffffa80030272b8)
    fffffa8003029278   272e0588 000004cf [ 4/ 6/2010 23:34:30.511]  NDIS!ndisMWakeUpDpcX
(DPC @ fffffa80030292b8)
    fffffa8003025278   272e0588 000004cf [ 4/ 6/2010 23:34:30.511]  NDIS!ndisMWakeUpDpcX
(DPC @ fffffa80030252b8)
    fffffa8003023278   272e2c99 000004cf [ 4/ 6/2010 23:34:30.512]  NDIS!ndisMWakeUpDpcX
(DPC @ fffffa80030232b8)
 16 fffffa8006096c20   6c1613a6 000003df [ 4/ 5/2010 18:58:26.901]  thread
fffffa8006096b60
 19 fffff80001c85c40   64f9aeb5 000003df [ 4/ 5/2010 18:58:14.971]
nt!CmpLazyFlushDpcRoutine (DPC @ fffff80001c85c00)
31 fffffa8002c43660 P dc527b9b 000003e8 [ 4/ 5/2010 20:06:00.673]
intelppm!LongCapTraceDpc (DPC @ fffffa8002c436a0)
 40 fffff80001c86f60   62ca1080 000003df [ 4/ 5/2010 18:58:11.304]  nt!CcScanDpc (DPC @
fffff80001c86f20)
    fffff88004039710   62ca1080 000003df [ 4/ 5/2010 18:58:11.304]
luafv!ScavengerTimerRoutine (DPC @ fffff88004039750)
...
252 fffffa800458ed50   62619a91 000003df [ 4/ 5/2010 18:58:10.619]  netbt!TimerExpiry (DPC
@ fffffa800458ed10)
    fffffa8004599b60   fe2fc6ce 000003e0 [ 4/ 5/2010 19:09:41.514]  netbt!TimerExpiry (DPC
@ fffffa8004599b20)
PROCESSOR 1 (nt!_KTIMER_TABLE fffff880009ba380)
  0 fffffa8004ec9700   626be121 000003df [ 4/ 5/2010 18:58:10.686]  thread
fffffa80027f3060
    fffff80001c84dd0 P 70b3f446 000003df [ 4/ 5/2010 18:58:34.647]
nt!IopIrpStackProfilerTimer (DPC @ fffff80001c84e10)
11 fffffa8005c26cd0   62859842 000003df [ 4/ 5/2010 18:58:10.855]  afd!AfdTimeoutPoll (DPC
@ fffffa8005c26c90)
    fffffa8002ce8160   6e6c45f4 000003df [ 4/ 5/2010 18:58:30.822]  thread
fffffa80053c2b60
    fffffa8004fdb3d0   77f0c2cb 000003df [ 4/ 5/2010 18:58:46.789]  thread
fffffa8004f4bb60
 13 fffffa8005051c20   60713a93 800003df [         NEVER         ]  thread
fffffa8005051b60
 15 fffffa8005ede120   77f9fb8c 000003df [ 4/ 5/2010 18:58:46.850]  thread
fffffa8005ede060
 20 fffffa8004f40ef0   629a3748 000003df [ 4/ 5/2010 18:58:10.990]  thread
fffffa8004f4bb60
 22 fffffa8005195120   6500ec7a 000003df [ 4/ 5/2010 18:58:15.019]  thread
fffffa8005195060
 28 fffffa8004760e20   62ad4e07 000003df [ 4/ 5/2010 18:58:11.115]  btaudio (DPC @
fffffa8004760e60)+12d10
 31 fffffa8002c40660 P dc527b9b 000003e8 [ 4/ 5/2010 20:06:00.673]
intelppm!LongCapTraceDpc (DPC @ fffffa8002c406a0)
 ...
232 fffff80001c85040 P 62317a00 000003df [ 4/ 5/2010 18:58:10.304]  nt!IopTimerDispatch
(DPC @ fffff80001c85080)
    fffff80001c26fc0 P 6493d400 000003df [ 4/ 5/2010 18:58:14.304]
nt!EtwpAdjustBuffersDpcRoutine (DPC @ fffff80001c26f80)
235 fffffa80047471a8   6238ba5c 000003df [ 4/ 5/2010 18:58:10.351]  stwrt64 (DPC @
fffffa80047471e8)+67d4
242 fffff880023ae480   11228580 000003e1 [ 4/ 5/2010 19:10:13.304]  dfsc!DfscTimerDispatch
(DPC @ fffff880023ae4c0)
245 fffff800020156b8 P 72fb2569 000003df [ 4/ 5/2010 18:58:38.469]
hal!HalpCmcDeferredRoutine (DPC @ fffff800020156f8)
248 fffffa80029ee460 P 62578455 000003df [ 4/ 5/2010 18:58:10.553]
ataport!IdePortTickHandler (DPC @ fffffa80029ee4a0)
    fffffa8002776460 P 62578455 000003df [ 4/ 5/2010 18:58:10.553]
ataport!IdePortTickHandler (DPC @ fffffa80027764a0)
    fffff88001678500   fe2f836f 000003e0 [ 4/ 5/2010 19:09:41.512]  cng!seedFileDpcRoutine
(DPC @ fffff880016784c0)
    fffff80001c25b80   885e52b3 0064a048 [12/31/2099 23:00:00.008]
nt!ExpCenturyDpcRoutine (DPC @ fffff80001c25bc0)


Total Timers: 254, Maximum List: 8
In this example, there are multiple driver-associated
            timers, due to expire shortly, associated with the Ndis.sys and
            Afd.sys drivers (both related to networking), as well as audio,
            Bluetooth, and ATA/IDE drivers. There are also background
            housekeeping timers due to expire, such as those related to power
            management, ETW, registry flushing, and Users Account Control
            (UAC) virtualization. Additionally, there are a dozen or so timers
            that don’t have any DPC associated with them—this likely indicates
            user-mode or kernel-mode timers that are used for wait dispatching. You can use
            !thread on the thread pointers to verify
            this. Finally, three interesting timers that are always present on
            a Windows system are the timer that checks for Daylight Savings
            Time time-zone changes, the timer that checks for the arrival of
            the upcoming year, and the timer that checks for entry into the
            next century. One can easily locate them based on their typically
            distant expiration time, unless this experiment is performed on
            the eve of one of these events.


Intelligent Timer Tick Distribution



Figure 3-11,
          which shows processors handling the clock ISR and expiring timers,
          reveals that processor 1 wakes up a number of times (the solid
          arrows) even when there are no associated expiring timers (the
          dotted arrows). Although that behavior is required as long as
          processor 1 is running (to update the thread/process run times and
          scheduling state), what if processor 1 is idle (and has no expiring
          timers). Does it still need to handle the clock interrupt? Because
          the only other work required that was referenced earlier is to
          update the overall system time/clock ticks, it’s sufficient to
          designate merely one processor as the time-keeping processor (in
          this case, processor 0) and allow other processors to remain in
          their sleep state; if they wake, any time-related adjustments can be
          performed by resynchronizing with processor 0.
Windows does, in fact, make this realization (internally
          called intelligent timer tick distribution),
          and Figure 3-11
          shows the processor states under the scenario where processor 1 is
          sleeping (unlike earlier, when we assumed it was running code). As
          you can see, processor 1 wakes up only 5 times to handle its
          expiring timers, creating a much larger gap (sleeping period). The
          kernel uses a variable KiPendingTimer, which
          contains an array of affinity mask structures that indicate which
          logical processors need to receive a clock interval for the given
          timer hand (clock-tick interval). It can then appropriately program
          the interrupt controller, as well as determine to which processors
          it will send an IPI to initiate timer processing.
[image: Intelligent timer tick distribution applied to processor 1]

Figure 3-11. Intelligent timer tick distribution applied to processor
            1

Leaving as large a gap as possible is important due to
          the way power management works in processors: as the processor
          detects that the work load is going lower and lower, it decreases
          its power consumption (P states), until it finally reaches an idle
          state. The processor then has the ability to selectively turn off
          parts of itself and enter deeper and deeper idle/sleep states, such
          as turning off caches. However, if the processor has to wake again,
          it will consume energy and take time to power up; for this reason,
          processor designers will risk entering these lower idle/sleep states
          (C states) only if the time spent in a given state outweighs the
          time and energy it takes to enter and exit the state. Obviously, it
          makes no sense to spend 10 ms to enter a sleep state that will last
          only 1 ms. By preventing clock interrupts from waking sleeping
          processors unless needed (due to timers), they can enter deeper
          C-states and stay there longer.

Timer Coalescing



Although minimizing clock interrupts to sleeping processors
          during periods of no timer expiration gives a big boost to longer
          C-state intervals, with a timer granularity of 15 ms, many timers
          likely will be queued at any given hand and expiring often, even if
          just on processor 0. Reducing the amount of software
          timer-expiration work would both help to decrease latency (by
          requiring less work at DISPATCH_LEVEL) as well as allow other
          processors to stay in their sleep states even longer (because we’ve
          established that the processors wake up only to handle expiring
          timers, fewer timer expirations result in longer sleep times). In
          truth, it is not just the amount of expiring timers that really
          affects sleep state (it does affect latency), but the periodicity of
          these timer expirations—six timers all expiring at the same hand is
          a better option than six timers expiring at six different hands.
          Therefore, to fully optimize idle-time duration, the kernel needs to
          employ a coalescing mechanism to combine
          separate timer hands into an individual hand with multiple
          expirations.
Timer coalescing works on the assumption that most drivers and
          user-mode applications do not particularly care about the exact
          firing period of their timers (except in the case of multimedia
          applications, for example). This “don’t care” region actually grows
          as the original timer period grows—an application waking up every 30
          seconds probably doesn’t mind waking up every 31 or 29 seconds
          instead, while a driver polling every second could probably poll
          every second plus or minus 50 ms without too many problems. The
          important guarantee most periodic timers depend on is that their
          firing period remains constant within a certain range—for example,
          when a timer has been changed to fire every second plus 50 ms, it
          continues to fire within that range forever, not sometimes at every
          two seconds and other times at half a second. Even so, not all
          timers are ready to be coalesced into coarser granularities, so
          Windows enables this mechanism only for timers that have marked
          themselves as coalescable, either through the
          KeSetCoalescableTimer kernel API or through its
          user-mode counterpart,
          SetWaitableTimerEx.
With these APIs, driver and application developers are free to
          provide the kernel with the maximum tolerance
          (or tolerably delay) that their timer will endure, which is defined
          as the maximum amount of time past the requested period at which the
          timer will still function correctly. (In the previous example, the
          1-second timer had a tolerance of 50 milliseconds.) The recommended
          minimum tolerance is 32 ms, which corresponds to about twice the
          15.6-ms clock tick—any smaller value wouldn’t really result in any
          coalescing, because the expiring timer could not be moved even from
          one clock tick to the next. Regardless of the tolerance that is
          specified, Windows aligns the timer to one of four
          preferred coalescing intervals: 1 second, 250
          ms, 100 ms, or 50 ms.
When a tolerable delay is set for a periodic timer,
          Windows uses a process called shifting, which
          causes the timer to drift between periods until it gets aligned to
          the most optimal multiple of the period interval within the
          preferred coalescing interval associated with the specified
          tolerance (which is then encoded in the dispatcher header). For
          absolute timers, the list of preferred coalescing intervals is
          scanned, and a preferred expiration time is generated based on the
          closest acceptable coalescing interval to the maximum tolerance the
          caller specified. This behavior means that absolute timers are
          always pushed out as far as possible past their real expiration
          point, which spreads out timers as far as possible and creates
          longer sleep times on the processors.
Now with timer coalescing, refer back to Figure 3-11 and assume all
          the timers specified tolerances and are thus coalescable. In one
          scenario, Windows could decide to coalesce the timers as shown in
          Figure 3-12. Notice that now,
          processor 1 receives a total of only three clock interrupts,
          significantly increasing the periods of idle sleep, thus achieving a
          lower C-state. Furthermore, there is less work to do for some of the
          clock interrupts on processor 0, possibly removing the latency of
          requiring a drop to DISPATCH_LEVEL at each clock interrupt.
[image: Timer coalescing]

Figure 3-12. Timer coalescing



Exception Dispatching



In contrast to interrupts, which can occur at any time,
        exceptions are conditions that result directly from the execution of
        the program that is running. Windows uses a facility known as
        structured exception handling, which allows
        applications to gain control when exceptions occur. The application
        can then fix the condition and return to the place the exception
        occurred, unwind the stack (thus terminating execution of the
        subroutine that raised the exception), or declare back to the system
        that the exception isn’t recognized and the system should continue
        searching for an exception handler that might process the exception.
        This section assumes you’re familiar with the basic concepts behind
        Windows structured exception handling—if you’re not, you should read
        the overview in the Windows API reference documentation in the Windows
        SDK or Chapters 23 through 25 in Jeffrey Richter and Christophe
        Nasarre’s book Windows via C/C++ (Microsoft
        Press, 2007) before proceeding. Keep in mind that although exception
        handling is made accessible through language extensions (for example,
        the __try construct in Microsoft Visual C++), it
        is a system mechanism and hence isn’t language specific.
On the x86 and x64 processors, all exceptions have
        predefined interrupt numbers that directly correspond to the entry in
        the IDT that points to the trap handler for a particular exception.
        Table 3-6 shows
        x86-defined exceptions and their assigned interrupt numbers. Because
        the first entries of the IDT are used for exceptions, hardware
        interrupts are assigned entries later in the table, as mentioned
        earlier.
All exceptions, except those simple enough to be resolved by the
        trap handler, are serviced by a kernel module called the
        exception dispatcher. The exception dispatcher’s
        job is to find an exception handler that can dispose of the exception.
        Examples of architecture-independent exceptions that the kernel
        defines include memory-access violations, integer divide-by-zero,
        integer overflow, floating-point exceptions, and debugger breakpoints.
        For a complete list of architecture-independent exceptions, consult
        the Windows SDK reference documentation.
Table 3-6. x86 Exceptions and Their Interrupt Numbers
	Interrupt Number
	Exception

	0
	Divide Error

	1
	Debug (Single Step)

	2
	Non-Maskable Interrupt
                (NMI)

	3
	Breakpoint

	4
	Overflow

	5
	Bounds Check

	6
	Invalid Opcode

	7
	NPX Not Available

	8
	Double Fault

	9
	NPX Segment Overrun

	10
	Invalid Task State Segment
                (TSS)

	11
	Segment Not Present

	12
	Stack Fault

	13
	General Protection

	14
	Page Fault

	15
	Intel Reserved

	16
	Floating Point

	17
	Alignment Check

	18
	Machine Check

	19
	SIMD Floating Point




The kernel traps and handles some of these exceptions
        transparently to user programs. For example, encountering a breakpoint
        while executing a program being debugged generates an exception, which
        the kernel handles by calling the debugger. The kernel handles certain
        other exceptions by returning an unsuccessful status code to the
        caller.
A few exceptions are allowed to filter back, untouched,
        to user mode. For example, certain types of memory-access violations
        or an arithmetic overflow generate an exception that the operating
        system doesn’t handle. 32-bit applications can establish
        frame-based exception handlers to deal with these
        exceptions. The term frame-based refers to an
        exception handler’s association with a particular procedure
        activation. When a procedure is invoked, a stack
        frame representing that activation of the procedure is
        pushed onto the stack. A stack frame can have one or more exception
        handlers associated with it, each of which protects a particular block
        of code in the source program. When an exception occurs, the kernel
        searches for an exception handler associated with the current stack
        frame. If none exists, the kernel searches for an exception handler
        associated with the previous stack frame, and so on, until it finds a
        frame-based exception handler. If no exception handler is found, the
        kernel calls its own default exception handlers.
For 64-bit applications, structured exception handling does not
        use frame-based handlers. Instead, a table of handlers for each
        function is built into the image during compilation. The kernel looks
        for handlers associated with each function and generally follows the
        same algorithm we described for 32-bit code.
Structured exception handling is heavily used within the kernel
        itself so that it can safely verify whether pointers from user mode
        can be safely accessed for read or write access. Drivers can make use
        of this same technique when dealing with pointers sent during I/O
        control codes (IOCTLs).
Another mechanism of exception handling is called
        vectored exception handling. This method can be
        used only by user-mode applications. You can find more information
        about it in the Windows SDK or the MSDN Library.
When an exception occurs, whether it is explicitly raised by
        software or implicitly raised by hardware, a chain of events begins in
        the kernel. The CPU hardware transfers control to the kernel trap
        handler, which creates a trap frame (as it does when an interrupt
        occurs). The trap frame allows the system to resume where it left off
        if the exception is resolved. The trap handler also creates an
        exception record that contains the reason for the exception and other
        pertinent information.
If the exception occurred in kernel mode, the exception
        dispatcher simply calls a routine to locate a frame-based exception
        handler that will handle the exception. Because unhandled kernel-mode
        exceptions are considered fatal operating system errors, you can
        assume that the dispatcher always finds an exception handler. Some
        traps, however, do not lead into an exception handler because the
        kernel always assumes such errors to be fatal—these are errors that
        could have been caused only by severe bugs in the internal kernel code
        or by major inconsistencies in driver code (that could have occurred
        only through deliberate, low-level system modifications that drivers
        should not be responsible for). Such fatal errors will result in a bug
        check with the UNEXPECTED_KERNEL_MODE_TRAP code.
If the exception occurred in user mode, the exception dispatcher
        does something more elaborate. As you’ll see in Chapter 5, the Windows
        subsystem has a debugger port (this is actually a debugger object,
        which will be discussed later) and an exception port to receive
        notification of user-mode exceptions in Windows processes. (In this
        case, by “port” we mean an LPC port object, which will be discussed
        later in this chapter.) The kernel uses these ports in its default
        exception handling, as illustrated in Figure 3-13.
Debugger breakpoints are common sources of exceptions.
        Therefore, the first action the exception dispatcher takes is to see
        whether the process that incurred the exception has an associated
        debugger process. If it does, the exception dispatcher sends a
        debugger object message to the debug object
        associated with the process (which internally the system refers to as
        a “port” for compatibility with programs that might rely on behavior
        in Windows 2000, which used an LPC port instead of a debug
        object).
[image: Dispatching an exception]

Figure 3-13. Dispatching an exception

If the process has no debugger process attached or if the
        debugger doesn’t handle the exception, the exception dispatcher
        switches into user mode, copies the trap frame to the user stack
        formatted as a CONTEXT data structure (documented in the Windows SDK),
        and calls a routine to find a structured or vectored exception
        handler. If none is found or if none handles the exception, the
        exception dispatcher switches back into kernel mode and calls the
        debugger again to allow the user to do more debugging. (This is called
        the second-chance notification.)
If the debugger isn’t running and no user-mode exception
        handlers are found, the kernel sends a message to the exception port
        associated with the thread’s process. This exception port, if one
        exists, was registered by the environment subsystem that controls this
        thread. The exception port gives the environment subsystem, which
        presumably is listening at the port, the opportunity to translate the
        exception into an environment-specific signal or exception. For
        example, when Subsystem for UNIX Applications gets a message from the
        kernel that one of its threads generated an exception, Subsystem for
        UNIX Applications sends a UNIX-style signal to the thread that caused
        the exception. However, if the kernel progresses this far in
        processing the exception and the subsystem doesn’t handle the exception, the kernel sends a message to a
        systemwide error port that Csrss (Client/Server
        Run-Time Subsystem) uses for Windows Error Reporting (WER)—which will
        be discussed shortly—and executes a default exception handler that
        simply terminates the process whose thread caused the
        exception.
Unhandled Exceptions



All Windows threads have an exception handler that processes
          unhandled exceptions. This exception handler is declared in the
          internal Windows start-of-thread function. The
          start-of-thread function runs when a user creates a process or any
          additional threads. It calls the environment-supplied thread start
          routine specified in the initial thread context structure, which in
          turn calls the user-supplied thread start routine specified in the
          CreateThread call.
EXPERIMENT: Viewing the Real User Start Address for Windows
            Threads
The fact that each Windows thread begins execution in a
            system-supplied function (and not the user-supplied function)
            explains why the start address for thread 0 is the same for every
            Windows process in the system (and why the start addresses for
            secondary threads are also the same). To see the user-supplied
            function address, use Process Explorer or the kernel
            debugger.
Because most threads in Windows processes start at one of
            the system-supplied wrapper functions, Process Explorer, when
            displaying the start address of threads in a process, skips the
            initial call frame that represents the wrapper function and
            instead shows the second frame on the stack. For example, notice
            the thread start address of a process running Notepad.exe:
[image: image with no caption]

Process Explorer does display the complete call
            hierarchy when it displays the call stack. Notice the following
            results when the Stack button is clicked:
[image: image with no caption]

Line 18 in the preceding screen shot is the first frame on
            the stack—the start of the internal thread wrapper. The second
            frame (line 17) is the environment subsystem’s thread wrapper—in
            this case, kernel32, because you are dealing with a Windows
            subsystem application. The third frame (line 16) is the main entry
            point into Notepad.exe.

The generic code for the internal thread start functions is
          shown here:
VOID RtlUserThreadStart(VOID)
{
    LPVOID lpStartAddr = (R/E)AX; // Located in the initial thread context structure
    LPVOID lpvThreadParam = (R/E)BX; // Located in the initial thread context structure
    LPVOID lpWin32StartAddr;

    lpWin32StartAddr = Kernel32ThreadInitThunkFunction ? Kernel32ThreadInitThunkFunction :
lpStartAddr;
    __try
    {
        DWORD dwThreadExitCode = lpWin32StartAddr(lpvThreadParam);
        RtlExitUserThread(dwThreadExitCode);
    }
    __except(RtlpGetExceptionFilter(GetExceptionInformation()))
    {
        NtTerminateProcess(NtCurrentProcess(), GetExceptionCode());
    }
}
VOID Win32StartOfProcess(
    LPTHREAD_START_ROUTINE lpStartAddr,
    LPVOID lpvThreadParam)
{
    lpStartAddr(lpvThreadParam);
}
Notice that the Windows unhandled exception filter is
          called if the thread has an exception that it doesn’t handle. The
          purpose of this function is to provide the system-defined behavior
          for what to do when an exception is not handled, which is to launch
          the WerFault.exe process. However, in a default configuration the
          Windows Error Reporting service, described next, will handle the
          exception and this unhandled exception filter never executes.
WerFault.exe checks the contents of the
          HKLM\SOFTWARE\Microsoft\Windows NT\CurrentVersion\AeDebug registry
          key and makes sure that the process isn’t on the exclusion list.
          There are two important values in the key: Auto
          and Debugger. Auto tells
          the unhandled exception filter whether to automatically run the
          debugger or ask the user what to do. Installing development tools,
          such as Microsoft Visual Studio, changes this value to
          0 if it is already set. (If the value was not
          set, 0 is the default option.) The
          Debugger value is a string that points to the
          path of the debugger executable to run in the case of an unhandled
          exception, and WerFault passes the process ID
          of the crashing process and an event name to signal when the
          debugger has started as command-line arguments when it starts the
          debugger.

Windows Error Reporting



Windows Error Reporting (WER) is a sophisticated mechanism
          that automates the submission of both user-mode process crashes as
          well as kernel-mode system crashes. (For a description of how this
          applies to system crashes, see Chapter 14 in Part 2.)
Windows Error Reporting can be configured by going to Control
          Panel, choosing Action Center, Change Action Center settings, and
          then Problem Reporting Settings.
When an unhandled exception is caught by the unhandled
          exception filter (described in the previous section), it builds
          context information (such as the current value of the registers and
          stack) and opens an ALPC port connection to the WER service. This
          service begins to analyze the crashed program’s state and performs
          the appropriate actions to notify the user. As described previously,
          in most cases this means launching the WerFault.exe program, which
          executes with the current user’s credentials and, unless the system
          is configured not to, displays a message box informing the user of
          the crash. On systems where a debugger is installed, an additional
          option to debug the process is shown, as you can see in Figure 3-14. When you click the
          Debug button, the debugger (registered in the Debugger string value
          described earlier in the AeDebug key) will be
          launched so that it can attach to the crashing process.
[image: Windows Error Reporting dialog box]

Figure 3-14. Windows Error Reporting dialog box

On default configured systems, an error report (a
          minidump and an XML file with various details, such as the DLL
          version numbers loaded in the process) is sent to Microsoft’s online
          crash analysis server. Eventually, as the service is notified of a
          solution for a problem, it will display a tooltip to the user
          informing her of steps that should be taken to solve the problem. An
          entry will also be displayed in the Action Center. Furthermore, the
          Reliability Monitor will also show all instances of application and
          system crashes.
Note
WER will actively (visually) inform the user of a crashed
            application only if the application has at least one
            visible/interactive window; otherwise, the crash will be logged,
            but the user will have to manually visit the Action Center to view
            it. This behavior attempts to avoid user confusion by not
            displaying a WER dialog box about an invisible crashed process the
            user might not be aware of, such as a background service.

In environments where systems are not connected to the
          Internet or where the administrator wants to control which error
          reports are submitted to Microsoft, the destination for the error
          report can be configured to be an internal file server. Microsoft
          System Center Desktop Error Monitoring understands the directory
          structure created by Windows Error Reporting and provides the
          administrator with the option to take selective error reports and
          submit them to Microsoft.
If all the operations we’ve described had to occur within the
          crashing thread’s context—that is, as part of the unhandled
          exception filter that was initially set up—these complex steps would
          sometimes become impossible for a badly damaged thread to perform,
          and the unhandled exception filter itself would crash. This “silent
          process death” would be impossible to log, making it hard to debug
          and also resulting in invisible crashes in cases where no user was
          present on the machine. To avoid such issues, Windows’ WER mechanism
          performs this work externally from the crashed thread if the
          unhandled exception filter itself crashes, which allows any kind of
          process or thread crash to be logged and for the user to be
          notified.
WER contains many customizable settings that can be configured
          by the user through the Group Policy editor or by manually making
          changes to the registry. Table 3-7
          lists the WER registry configuration options, their use, and
          possible values. These values are located under the
          HKLM\SOFTWARE\Microsoft\Windows\Windows Error Reporting subkey for
          computer configuration and in the equivalent path under
          HKEY_CURRENT_USER for per-user configuration.
Table 3-7. WER Registry Settings
	Setting
	Meaning
	Values

	ConfigureArchive
	Contents of archived
                  data
	1 for parameters, 2 for all
                  data

	Consent\DefaultConsent
	What kind of data should require
                  consent
	1 for any data, 2 for parameters
                  only, 3 for parameters and safe data, 4 for all
                  data.

	Consent\DefaultOverrideBehavior
	Whether the
                  DefaultConsent overrides WER plug-in
                  consent values
	1 to enable
                  override

	Consent\PluginName
	Consent value for a specific WER
                  plug-in
	Same as
                  DefaultConsent

	CorporateWERDirectory
	Directory for a corporate WER
                  store
	String containing the
                  path

	CorporateWERPortNumber
	Port to use for a corporate WER
                  store
	Port number

	CorporateWERServer
	Name to use for a corporate WER
                  store
	String containing the
                  name

	CorporateWERUseAuthentication
	Use Windows Integrated
                  Authentication for corporate WER store
	1 to enable built-in
                  authentication

	CorporateWERUseSSL
	Use Secure Sockets Layer (SSL) for
                  corporate WER store
	1 to enable SSL

	DebugApplications
	List of applications that require
                  the user to choose between Debug and Continue
	1 to require the user to
                  choose

	DisableArchive
	Whether the archive is
                  enabled
	1 to disable
                  archive

	Disabled
	Whether WER is
                  disabled
	1 to disable WER

	DisableQueue
	Determines whether reports are to
                  be queued
	1 to disable queue

	DontShowUI
	Disables or enables the WER
                  UI
	1 to disable UI

	DontSendAdditionalData
	Prevents additional crash data
                  from being sent
	1 not to send

	ExcludedApplications\AppName
	List of applications excluded from
                  WER
	String containing the application
                  list

	ForceQueue
	Whether reports should be sent to
                  the user queue
	1 to send reports to the
                  queue

	LocalDumps\DumpFolder
	Path at which to store the dump
                  files
	String containing the
                  path

	LocalDumps\DumpCount
	Maximum number of dump files in
                  the path
	Count

	LocalDumps\DumpType
	Type of dump to generate during a
                  crash
	0 for a custom dump, 1 for a
                  minidump, 2 for a full dump

	LocalDumps\CustomDumpFlags
	For custom dumps, specifies custom
                  options
	Values defined in MINIDUMP_TYPE
                  (see Chapter 13, “Startup and Shutdown,” in Part 2 for more
                  information)

	LoggingDisabled
	Enables or disables
                  logging
	1 to disable
                  logging

	MaxArchiveCount
	Maximum size of the archive (in
                  files)
	Value between
                  1–5000

	MaxQueueCount
	Maximum size of the
                  queue
	Value between 1–500

	QueuePesterInterval
	Days between requests to have the
                  user check for solutions
	Number of days




Note
The values listed under LocalDumps can
            also be configured per application by adding the application name
            in the subkey path between LocalDumps and the
            relevant value. However, they cannot be configured per user; they
            exist only in the HKLM path.

As discussed, the WER service uses an ALPC port for
          communicating with crashed processes. This mechanism uses a
          systemwide error port that the WER service registers through
          NtSetInformationProcess (which uses
          DbgkRegisterErrorPort). As a result, all
          Windows processes now have an error port that is actually an ALPC
          port object registered by the WER service. The kernel, which is
          first notified of an exception, uses this port to send a message to
          the WER service, which then analyzes the crashing process. This
          means that even in severe cases of thread state damage, WER will
          still be able to receive notifications and launch WerFault.exe to
          display a user interface instead of having to do this work within
          the crashing thread itself. Additionally, WER will be able to
          generate a crash dump for the process, and a message will be written
          to the Event Log. This solves all the problems of silent process
          death: users are notified, debugging can occur, and service
          administrators can see the crash event.


System Service Dispatching



As Figure 3-1 illustrated, the
        kernel’s trap handlers dispatch interrupts, exceptions, and system
        service calls. In the preceding sections, you saw how interrupt and
        exception handling work; in this section, you’ll learn about system
        services. A system service dispatch is triggered as a result of
        executing an instruction assigned to system service dispatching. The
        instruction that Windows uses for system service dispatching depends
        on the processor on which it’s executing.
System Service Dispatching



On x86 processors prior to the Pentium II, Windows uses the
          int 0x2e instruction (46 decimal), which
          results in a trap. Windows fills in entry 46 in the IDT to point to
          the system service dispatcher. (Refer to Table 3-3.) The trap causes the
          executing thread to transition into kernel mode and enter the system
          service dispatcher. A numeric argument passed in the EAX processor
          register indicates the system service number being requested. The
          EDX register points to the list of parameters the caller passes to
          the system service. To return to user mode, the system service
          dispatcher uses the iret (interrupt return
          instruction).
On x86 Pentium II processors and higher, Windows uses
          the sysenter instruction, which Intel defined
          specifically for fast system service dispatches. To support the
          instruction, Windows stores at boot time the address of the kernel’s
          system service dispatcher routine in a machine-specific
          register (MSR) associated with the instruction. The
          execution of the instruction causes the change to kernel mode and
          execution of the system service dispatcher. The system service
          number is passed in the EAX processor register, and the EDX register
          points to the list of caller arguments. To return to user mode, the
          system service dispatcher usually executes the
          sysexit instruction. (In some cases, like when
          the single-step flag is enabled on the processor, the system service
          dispatcher uses the iret instead because
          sysexit does not allow returning to user-mode
          with a different EFLAGS register, which is needed if
          sysenter was executed while the trap
          flag was set as a result of a user-mode debugger tracing
          or stepping over a system call.)
Note
Because certain older applications might have been hardcoded
            to use the int 0x2e instruction to manually
            perform a system call (an unsupported operation), 32-bit Windows
            keeps this mechanism usable even on systems that support the
            sysenter instruction by still having the
            handler registered.

On the x64 architecture, Windows uses the
          syscall instruction, passing the system call
          number in the EAX register, the first four parameters in registers,
          and any parameters beyond those four on the stack.
On the IA64 architecture, Windows uses the
          epc (Enter Privileged Mode) instruction. The
          first eight system call arguments are passed in registers, and the
          rest are passed on the stack.
EXPERIMENT: Locating the System Service Dispatcher
As mentioned, 32-bit system calls occur through an
            interrupt, which means that the handler needs to be registered in
            the IDT or through a special sysenter
            instruction that uses an MSR to store the handler address at boot
            time. On certain 32-bit AMD systems, Windows uses the
            syscall instruction instead, which is similar
            to the 64-bit syscall instruction. Here’s how
            you can locate the appropriate routine for either method:
	To see the handler on 32-bit systems for the interrupt
                2E version of the system call dispatcher, type !idt 2e in the kernel
                debugger.
lkd> !idt 2e

Dumping IDT:

2e:    8208c8ee nt!KiSystemService

	To see the handler for the sysenter
                version, use the rdmsr debugger command
                to read from the MSR register 0x176, which stores the
                handler:
lkd> rdmsr 176
msr[176] = 00000000'8208c9c0
lkd> ln 00000000'8208c9c0
(8208c9c0)   nt!KiFastCallEntry
If you have a 64-bit machine, you can look at
                the 64-bit service call dispatcher by repeating this step, but
                using the 0xC0000082 MSR instead, which is used by the
                syscall version for 64-bit code. You will
                see it corresponds to
                nt!KiSystemCall64:
lkd> rdmsr c0000082
msr[c0000082] = fffff800'01a71ec0
lkd> ln fffff800'01a71ec0
(fffff800'01a71ec0)   nt!KiSystemCall64

	You can disassemble the
                KiSystemService or
                KiSystemCall64 routine with the
                u command. On a 32-bit system, you’ll
                eventually notice the following instructions:
nt!KiSystemService+0x7b:
8208c969 897d04          mov     dword ptr [ebp+4],edi
8208c96c fb              sti
8208c96d e9dd000000      jmp     nt!KiFastCallEntry+0x8f (8208ca4f)



Because the actual system call dispatching operations are
            common regardless of the mechanism used to reach the handler, the
            older interrupt-based handler simply calls into the middle of the
            newer sysenter-based handler to perform the
            same generic tasks. The only parts of the handlers that are
            different are related to the generation of the trap frame and the
            setup of certain registers.

At boot time, 32-bit Windows detects the type of processor on
          which it’s executing and sets up the appropriate system call code to
          use by storing a pointer to the correct code in the
          SharedUserData structure. The system service
          code for NtReadFile in user mode looks like
          this:
0:000> u ntdll!NtReadFile
ntdll!ZwReadFile:
77020074 b802010000      mov     eax,102h
77020079 ba0003fe7f      mov     edx,offset SharedUserData!SystemCallStub (7ffe0300)
7702007e ff12            call    dword ptr [edx]
77020080 c22400          ret     24h
77020083 90              nop
The system service number is 0x102 (258 in decimal), and the
          call instruction executes the system service
          dispatch code set up by the kernel, whose pointer is at address
          0x7ffe0300. (This corresponds to the
          SystemCallStub member of the KUSER_SHARED_DATA
          structure, which starts at 0x7FFE0000.) Because the following output
          was taken from an Intel Core 2 Duo, it contains a pointer to
          sysenter:
0:000> dd SharedUserData!SystemCallStub l 1
7ffe0300  77020f30
0:000> u 77020f30
ntdll!KiFastSystemCall:
77020f30 8bd4            mov     edx,esp
77020f32 0f34            sysenter
Because 64-bit systems have only one mechanism for
          performing system calls, the system service entry points in
          Ntdll.dll use the syscall instruction directly,
          as shown here:
ntdll!NtReadFile:
00000000'77f9fc60 4c8bd1           mov     r10,rcx
00000000'77f9fc63 b810200000       mov     eax,0x102
00000000'77f9fc68 0f05             syscall
00000000'77f9fc6a c3               ret

Kernel-Mode System Service Dispatching
As Figure 3-15 illustrates,
          the kernel uses the system call number to locate the system service
          information in the system service dispatch
          table. On 32-bit systems, this table is similar to the
          interrupt dispatch table described earlier in the chapter except
          that each entry contains a pointer to a system service rather than
          to an interrupt-handling routine. On 64-bit systems, the table is
          implemented slightly differently—instead of containing pointers to
          the system service, it contains offsets relative to the table
          itself. This addressing mechanism is more suited to the x64
          application binary interface (ABI) and instruction-encoding
          format.
Note
System service numbers can change between service
            packs—Microsoft occasionally adds or removes system services, and
            the system service numbers are generated automatically as part of
            a kernel compile.

[image: System service exceptions]

Figure 3-15. System service exceptions

The system service dispatcher,
          KiSystemService, copies the caller’s arguments
          from the thread’s user-mode stack to its kernel-mode stack (so that
          the user can’t change the arguments as the kernel is accessing them)
          and then executes the system service. The kernel knows how many
          stack bytes require copying by using a second table, called the
          argument table, which is a byte array (instead
          of a pointer array like the dispatch table), each entry describing
          the number of bytes to copy. On 64-bit systems, Windows actually
          encodes this information within the service table itself through a
          process called system call table compaction. If
          the arguments passed to a system service point to buffers in
          user space, these buffers must be probed for
          accessibility before kernel-mode code can copy data to or from them.
          This probing is performed only if the previous
          mode of the thread is set to user mode. The
          previous mode is a value (kernel or user) that
          the kernel saves in the thread whenever it executes a trap handler
          and identifies the privilege level of the incoming exception, trap,
          or system call. As an optimization, if a system call comes from a
          driver or the kernel itself, the probing and capturing of parameters
          is skipped, and all parameters are assumed to be pointing to valid
          kernel-mode buffers (also, access to kernel-mode data is
          allowed).
Because kernel-mode code can also make system calls, let’s
          look at the way these are done. Because the code for each system
          call is in kernel mode and the caller is already in kernel mode, you
          can see that there shouldn’t be a need for an interrupt or
          sysenter operation: the CPU is already at the
          right privilege level, and drivers, as well as the kernel, should
          only be able to directly call the function required. In the
          executive’s case, this is actually what happens: the kernel has
          access to all its own routines and can simply call them just like
          standard routines. Externally, however, drivers can access these
          system calls only if they have been exported just like other
          standard kernel-mode APIs. In fact, quite a few of the system calls
          are exported. Drivers, however, are not supposed to access system
          calls this way. Instead, drivers must use the
          Zw versions of these calls—that is, instead of
          NtCreateFile, they must use
          ZwCreateFile. These Zw
          versions must also be manually exported by the kernel, and only a
          handful are, but they are fully documented and supported.
The Zw versions are officially available
          only for drivers because of the previous mode
          concept discussed earlier. Because this value is updated only each
          time the kernel builds a trap frame, its value won’t actually change
          across a simple API call—no trap frame is being generated. By
          calling a function such as NtCreateFile
          directly, the kernel preserves the previous
          mode value that indicates that it is user mode, detects
          that the address passed is a kernel-mode address, and fails the
          call, correctly asserting that user-mode applications should not
          pass kernel-mode pointers. However, this is not actually what
          happens, so how can the kernel be aware of the correct
          previous mode? The answer lies in the
          Zw calls.
These exported APIs are not actually simple aliases or
          wrappers around the Nt versions. Instead, they
          are “trampolines” to the appropriate Nt system
          call, which use the same system call-dispatching mechanism. Instead
          of generating an interrupt or a sysenter, which
          would be slow and/or unsupported, they build a fake interrupt stack
          (the stack that the CPU would generate after an interrupt) and call
          the KiSystemService routine directly,
          essentially emulating the CPU interrupt. The handler executes the
          same operations as if this call came from user mode, except it
          detects the actual privilege level this call came from and set the
          previous mode to kernel. Now
          NtCreateFile sees that the call came from the
          kernel and does not fail anymore. Here’s what the kernel-mode
          trampolines look like on both 32-bit and 64-bit systems. The system
          call number is highlighted in bold.
lkd> u nt!ZwReadFile
nt!ZwReadFile:
8207f118 b802010000      mov     eax,102h
8207f11d 8d542404        lea     edx,[esp+4]
8207f121 9c              pushfd
8207f122 6a08            push    8
8207f124 e8c5d70000      call    nt!KiSystemService (8208c8ee)
8207f129 c22400          ret     24h
lkd> uf nt!ZwReadFile
nt!ZwReadFile:
fffff800'01a7a520 488bc4          mov     rax,rsp
fffff800'01a7a523 fa              cli
fffff800'01a7a524 4883ec10        sub     rsp,10h
fffff800'01a7a528 50              push    rax
fffff800'01a7a529 9c              pushfq
fffff800'01a7a52a 6a10            push    10h
fffff800'01a7a52c 488d05bd310000  lea     rax,[nt!KiServiceLinkage (fffff800'01a7d6f0)]
fffff800'01a7a533 50              push    rax
fffff800'01a7a534 b803000000      mov     eax,3
fffff800'01a7a539 e902690000      jmp     nt!KiServiceInternal (fffff800'01a80e40)
As you’ll see in Chapter 5, Windows has
          two system service tables, and third-party drivers cannot extend the
          tables or insert new ones to add their own service calls. On 32-bit
          and IA64 versions of Windows, the system service dispatcher locates
          the tables via a pointer in the thread kernel structure, and on x64
          versions it finds them via their global addresses. The system
          service dispatcher determines which table contains the requested
          service by interpreting a 2-bit field in the 32-bit system service
          number as a table index. The low 12 bits of the system service
          number serve as the index into the table specified by the table
          index. The fields are shown in Figure 3-16.
[image: System service number to system service translation]

Figure 3-16. System service number to system service translation


Service Descriptor Tables



A primary default array table,
          KeServiceDescriptorTable, defines the core
          executive system services implemented in Ntosrknl.exe. The other
          table array, KeServiceDescriptorTableShadow,
          includes the Windows USER and GDI services implemented in the
          kernel-mode part of the Windows subsystem, Win32k.sys. On 32-bit and
          IA64 versions of Windows, the first time a Windows thread calls a
          Windows USER or GDI service, the address of the thread’s system
          service table is changed to point to a table that includes the
          Windows USER and GDI services. The
          KeAddSystemServiceTable function allows
          Win32k.sys to add a system service table.
The system service dispatch instructions for Windows executive
          services exist in the system library Ntdll.dll. Subsystem DLLs call
          functions in Ntdll to implement their documented functions. The
          exception is Windows USER and GDI functions, for which the system
          service dispatch instructions are implemented in User32.dll and
          Gdi32.dll—Ntdll.dll is not involved. These two cases are shown in
          Figure 3-17.
As shown in Figure 3-17, the Windows
          WriteFile function in Kernel32.dll imports and
          calls the WriteFile function in
          API-MS-Win-Core-File-L1-1-0.dll, one of the MinWin redirection DLLs
          (see the next section for more information on API redirection),
          which in turn calls the WriteFile function in
          KernelBase.dll, where the actual implementation lies. After some
          subsystem-specific parameter checks, it then calls the
          NtWriteFile function in Ntdll.dll, which in
          turn executes the appropriate instruction to cause a system service
          trap, passing the system service number representing
          NtWriteFile. The system service dispatcher
          (function KiSystemService in Ntoskrnl.exe) then
          calls the real NtWriteFile to process the I/O
          request. For Windows USER and GDI functions, the system service
          dispatch calls functions in the loadable kernel-mode part of the
          Windows subsystem, Win32k.sys.
[image: System service dispatching]

Figure 3-17. System service dispatching

EXPERIMENT: Mapping System Call Numbers to Functions and
            Arguments
You can duplicate the same lookup performed by the
            kernel when dealing with a system call ID to figure out which
            function is responsible for handling it and how many arguments it
            takes
	The KeServiceDescriptorTable and
                KeServiceDescriptorTableShadow tables
                both point to the same array of pointers (or offsets, on
                64-bit) for kernel system calls, called
                KiServiceTable, and the same array of
                stack bytes, called KiArgumentTable. On a
                32-bit system, you can use the kernel debugger command
                dds to dump the data along with symbolic
                information. The debugger attempts to match each pointer with
                a symbol. Here’s a partial output:
lkd> dds KiServiceTable
820807d0  821be2e5 nt!NtAcceptConnectPort
820807d4  820659a6 nt!NtAccessCheck
820807d8  8224a953 nt!NtAccessCheckAndAuditAlarm
820807dc  820659dd nt!NtAccessCheckByType
820807e0  8224a992 nt!NtAccessCheckByTypeAndAuditAlarm
820807e4  82065a18 nt!NtAccessCheckByTypeResultList
820807e8  8224a9db nt!NtAccessCheckByTypeResultListAndAuditAlarm
820807ec  8224aa24 nt!NtAccessCheckByTypeResultListAndAuditAlarmByHandle
820807f0  822892af nt!NtAddAtom

	As described earlier, 64-bit Windows organizes the
                system call table differently and uses relative pointers (an
                offset) to system calls instead of the absolute addresses used
                by 32-bit Windows. The base of the pointer is the
                KiServiceTable itself, so you’ll have to
                dump the data in its raw format with the
                dq command. Here’s an example of output
                from a 64-bit system:
lkd> dq nt!KiServiceTable
fffff800'01a73b00  02f6f000'04106900 031a0105'fff72d00

	Instead of dumping the entire table, you can also look
                up a specific number. On 32-bit Windows, because each system
                call number is an index into the table and because each
                element is 4 bytes, you can use the following calculation:
                Handler = KiServiceTable + Number * 4.
                Let’s use the number 0x102, obtained during our description of
                the NtReadFile stub code in
                Ntdll.dll.
lkd> ln poi(KiServiceTable + 102 * 4)
(82193023)   nt!NtReadFile
On 64-bit Windows, each offset can be mapped to each
                function with the ln command, by shifting
                right by 4 bits (used as described earlier) and adding the
                remaining value to the base of
                KiServiceTable itself, as shown
                here:
lkd> ln @@c++(((int*)@@(nt!KiServiceTable))[3] >> 4) + nt!KiServiceTable
(fffff800'01d9cb10)   nt!NtReadFile   |  (fffff800'01d9d24c)   nt!NtOpenFile
Exact matches:
    nt!NtReadFile = <no type information>

	Because drivers, including kernel-mode rootkits,
                are able to patch this table on 32-bit versions of Windows,
                which is something the operating system does not support, you
                can use dds to dump the entire table and
                look for any values outside the range of valid kernel
                addresses (dds will also make this clear
                by not being able to look up a symbol for the function). On
                64-bit Windows, Kernel Patch Protection monitors the system
                service tables and crashes the system when it detects
                modifications.




EXPERIMENT: Viewing System Service Activity
You can monitor system service activity by watching the
            System Calls/Sec performance counter in the System object. Run the
            Performance Monitor, click on Performance Monitor under Monitoring
            Tools, and click the Add button to add a counter to the chart.
            Select the System object, select the System Calls/Sec counter, and
            then click the Add button to add the counter to the chart.




Object Manager



As mentioned in Chapter 2, Windows
      implements an object model to provide consistent and secure access to
      the various internal services implemented in the executive. This section
      describes the Windows object manager, the executive
      component responsible for creating, deleting, protecting, and tracking
      objects. The object manager centralizes resource control operations that
      otherwise would be scattered throughout the operating system. It was
      designed to meet the goals listed on the next page.
EXPERIMENT: Exploring the Object Manager
Throughout this section, you’ll find experiments that show you
        how to peer into the object manager database. These experiments use
        the following tools, which you should become familiar with if you
        aren’t already:
	WinObj (available from Sysinternals) displays the internal
            object manager’s namespace and information about objects (such as
            the reference count, the number of open handles, security
            descriptors, and so forth).

	Process Explorer and Handle from Sysinternals, as well as
            Resource Monitor (introduced in Chapter 1) display the open handles for a
            process.

	The Openfiles /query command displays
            the open file handles for a process, but it requires a global flag
            to be set in order to operate.

	The kernel debugger !handle command
            displays the open handles for a process.



WinObj provides a way to traverse the namespace that the
        object manager maintains. (As we’ll explain later, not all objects
        have names.) Run WinObj, and examine the layout, shown next.
[image: image with no caption]

As noted previously, the Windows Openfiles
        /query command requires that a Windows global flag called
        maintain objects list be enabled. (See the Windows Global Flags section later in this chapter for
        more details about global flags.) If you type Openfiles /Local, it will tell you whether
        the flag is enabled. You can enable it with the Openfiles
        /Local ON command. In either case, you must reboot the
        system for the setting to take effect. Process Explorer, Handle, and
        Resource Monitor do not require object tracking to be turned on
        because they query all system handles and create a per-process object
        list.

The object manager was designed to meet the following
      goals:
	Provide a common, uniform mechanism for using system
          resources

	Isolate object protection to one location in the operating
          system to ensure uniform and consistent object access policy

	Provide a mechanism to charge processes for their use of
          objects so that limits can be placed on the usage of system
          resources

	Establish an object-naming scheme that can readily incorporate
          existing objects, such as the devices, files, and directories of a
          file system, or other independent collections of objects

	Support the requirements of various operating system
          environments, such as the ability of a process to inherit resources
          from a parent process (needed by Windows and Subsystem for
          UNIX Applications) and the ability to create
          case-sensitive file names (needed by Subsystem for UNIX
          Applications)

	Establish uniform rules for object retention (that is, for
          keeping an object available until all processes have finished using
          it)

	Provide the ability to isolate objects for a specific session
          to allow for both local and global objects in the namespace



Internally, Windows has three kinds of objects:
      executive objects, kernel
      objects, and GDI/User objects. Executive
      objects are objects implemented by various components of the executive
      (such as the process manager, memory manager, I/O subsystem, and so on).
      Kernel objects are a more primitive set of objects implemented by the
      Windows kernel. These objects are not visible to user-mode code but are
      created and used only within the executive. Kernel objects provide
      fundamental capabilities, such as synchronization, on which executive
      objects are built. Thus, many executive objects contain (encapsulate)
      one or more kernel objects, as shown in Figure 3-18.
[image: Executive objects that contain kernel objects]

Figure 3-18. Executive objects that contain kernel objects

Note
GDI/User objects, on the other hand, belong to the Windows
        subsystem (Win32k.sys) and do not interact with the kernel. For this
        reason, they are outside the scope of this book, but you can get more
        information on them from the Windows SDK.

Details about the structure of kernel objects and how they are
      used to implement synchronization are given later in this chapter. The
      remainder of this section focuses on how the object manager works and on
      the structure of executive objects, handles, and handle tables and just
      briefly describes how objects are involved in implementing Windows
      security access checking; Chapter 6 thoroughly
      covers that topic.
Executive Objects



Each Windows environment subsystem projects to its
        applications a different image of the operating system. The executive
        objects and object services are primitives that the environment
        subsystems use to construct their own versions of objects and other
        resources.
Executive objects are typically created either by an environment
        subsystem on behalf of a user application or by various components of
        the operating system as part of their normal operation. For example,
        to create a file, a Windows application calls the Windows
        CreateFileW function, implemented in the Windows
        subsystem DLL Kernelbase.dll. After some validation and
        initialization, CreateFileW in turn calls the
        native Windows service NtCreateFile to create an
        executive file object.
The set of objects an environment subsystem supplies to its
        applications might be larger or smaller than the set the executive
        provides. The Windows subsystem uses executive objects to export its
        own set of objects, many of which correspond directly to executive
        objects. For example, the Windows mutexes and semaphores are directly
        based on executive objects (which, in turn, are based on corresponding
        kernel objects). In addition, the Windows subsystem supplies named
        pipes and mailslots, resources that are based on executive file
        objects. Some subsystems, such as Subsystem for UNIX Applications,
        don’t support objects as objects at all. Subsystem for UNIX
        Applications uses executive objects and services as the basis for
        presenting UNIX-style processes, pipes, and other resources to its
        applications.
Table 3-8
        lists the primary objects the executive provides and briefly describes
        what they represent. You can find further details on executive objects
        in the chapters that describe the related executive components (or in
        the case of executive objects directly exported to Windows, in the
        Windows API reference documentation). You can see the full list of
        object types by running Winobj with elevated rights and navigating to
        the ObjectTypes directory.
Note
The executive implements a total of 4242 object types. Many of
          these objects are for use only by the executive component that
          defines them and are not directly accessible by Windows APIs.
          Examples of these objects include Driver,
          Device, and
          EventPair.

Table 3-8. Executive Objects Exposed to the Windows API
	Object Type
	Represents

	Process
	The virtual address space and
                control information necessary for the execution of a set of
                thread objects.

	Thread
	An executable entity within a
                process.

	Job
	A collection of processes manageable
                as a single entity through the job.

	Section
	A region of shared memory (known as
                a file-mapping object in Windows).

	File
	An instance of an opened file or an
                I/O device.

	Token
	The security profile (security ID,
                user rights, and so on) of a process or a
                thread.

	Event
	An object with a persistent state
                (signaled or not signaled) that can be used for
                synchronization or notification.

	Semaphore
	A counter that provides a resource
                gate by allowing some maximum number of threads to access the
                resources protected by the semaphore.

	Mutex
	A synchronization mechanism used to
                serialize access to a resource.

	Timer
	A mechanism to notify a thread when
                a fixed period of time elapses.

	IoCompletion
	A method for threads to enqueue and
                dequeue notifications of the completion of I/O operations
                (known as an I/O completion port in the Windows
                API).

	Key
	A mechanism to refer to data in the
                registry. Although keys appear in the object manager
                namespace, they are managed by the configuration manager, in a
                way similar to that in which file objects are managed by file
                system drivers. Zero or more key values are associated with a
                key object; key values contain data about the
                key.

	Directory
	A virtual directory in the object
                manager’s namespace responsible for containing other objects
                or object directories.

	TpWorkerFactory
	A collection of threads assigned to
                perform a specific set of tasks. The kernel can manage the
                number of work items that will be performed on the queue, how
                many threads should be responsible for the work, and dynamic
                creation and termination of worker threads, respecting certain
                limits the caller can set. Windows exposes the worker factory
                object through thread
                pools.

	TmRm (Resource Manager), TmTx
                (Transaction), TmTm (Transaction Manager), TmEn
                (Enlistment)
	Objects used by the Kernel
                Transaction Manager (KTM) for various
                transactions and/or
                enlistments as part of a
                resource manager or transaction
                manager. Objects can be created through the
                CreateTransactionManager, CreateResourceManager,
                CreateTransaction, and
                CreateEnlistment APIs.

	WindowStation
	An object that contains a clipboard,
                a set of global atoms, and a group of Desktop
                objects.

	Desktop
	An object contained within a window
                station. A desktop has a logical display surface and contains
                windows, menus, and hooks.

	PowerRequest
	An object associated with a thread
                that executes, among other things, a call to
                SetThreadExecutionState to request a
                given power change, such as blocking sleeps (due to a movie
                being played, for example).

	EtwConsumer
	Represents a connected ETW real-time
                consumer that has registered with the
                StartTrace API (and can call
                ProcessTrace to receive the events on the
                object queue).

	EtwRegistration
	Represents the registration object
                associated with a user-mode (or kernel-mode) ETW provider that
                registered with the EventRegister
                API.




Note
Because Windows NT was originally supposed to support the OS/2
          operating system, the mutex had to be compatible with the existing
          design of OS/2 mutual-exclusion objects, a design that required that
          a thread be able to abandon the object, leaving it inaccessible.
          Because this behavior was considered unusual for such an object,
          another kernel object—the mutant—was created.
          Eventually, OS/2 support was dropped, and the object became used by
          the Windows 32 subsystem under the name mutex
          (but it is still called mutant
          internally).


Object Structure



As shown in Figure 3-19,
        each object has an object header and an object body. The object
        manager controls the object headers, and the owning executive
        components control the object bodies of the object types they create.
        Each object header also contains an index to a special object, called
        the type object, that contains information common
        to each instance of the object. Additionally, up to five optional
        subheaders exist: the name information header, the quota information
        header, the process information header, the handle information header,
        and the creator information header.
[image: Structure of an object]

Figure 3-19. Structure of an object

Object Headers and Bodies



The object manager uses the data stored in an object’s header
          to manage objects without regard to their type. Table 3-9 briefly describes the object
          header fields, and Table 3-10
          describes the fields found in the optional object subheaders.
Table 3-9. Object Header Fields
	Field
	Purpose

	Handle count
	Maintains a count of the number of
                  currently opened handles to the object.

	Pointer count
	Maintains a count of the number of
                  references to the object (including one reference for each
                  handle). Kernel-mode components can reference an object by
                  pointer without using a handle.

	Security descriptor
	Determines who can use the object
                  and what they can do with it. Note that unnamed objects, by
                  definition, cannot have security.

	Object type index
	Contains the index to a type
                  object that contains attributes common to objects of this
                  type. The table that stores all the type objects is
                  ObTypeIndexTable.

	Subheader mask
	Bitmask describing which of the
                  optional subheader structures described in Table 3-10 are present, except
                  for the creator information subheader, which, if present,
                  always precedes the object. The bitmask is converted to a
                  negative offset by using the ObpInfoMaskToOffset table, with
                  each subheader being associated with a 1-byte index that
                  places it relative to the other subheaders
                  present.

	Flags
	Characteristics and object
                  attributes for the object. See Table 3-12 for a list of all the object
                  flags.

	Lock
	Per-object lock used when
                  modifying fields belonging to this object header or any of
                  its subheaders.




In addition to the object header, which contains information
          that applies to any kind of object, the subheaders contain optional
          information regarding specific aspects of the object. Note that
          these structures are located at a variable offset from the start of
          the object header, the value of which depends on the number of
          subheaders associated with the main object header (except, as
          mentioned earlier, for creator information). For each subheader that
          is present, the InfoMask field is updated to
          reflect its existence. When the object manager checks for a given
          subheader, it checks if the corresponding bit is set in the
          InfoMask and then uses the remaining bits to
          select the correct offset into the
          ObpInfoMaskToOffset table, where it finds the
          offset of the subheader from the start of the object header.
These offsets exist for all possible combinations of subheader
          presence, but because the subheaders, if present, are always
          allocated in a fixed, constant order, a given header will have only
          as many possible locations as the maximum number of subheaders that
          precede it. For example, because the name information subheader is
          always allocated first, it has only one possible offset. On the
          other hand, the handle information subheader (which is allocated
          third) has three possible locations, because it might or might not
          have been allocated after the quota subheader, itself having
          possibly been allocated after the name information. Table 3-10 describes all the optional
          object subheaders and their location. In the case of creator
          information, a value in the object header flags determines whether
          the subheader is present. (See Table 3-12 for
          information about these flags.)
Table 3-10. Optional Object Subheaders
	Name
	Purpose
	Bit
	Location

	Creator information
	Links the object into a list for
                  all the objects of the same type, and records the process
                  that created the object, along with a back
                  trace.
	0 (0x1)
	Object header -
                  ObpInfoMaskToOffset[0])

	Name information
	Contains the object name,
                  responsible for making an object visible to other processes
                  for sharing, and a pointer to the object directory, which
                  provides the hierarchical structure in which the object
                  names are stored.
	1 (0x2)
	Object header -
                  ObpInfoMaskToOffset -
                  ObpInfoMaskToOffset[InfoMask &
                  0x3]

	Handle information
	Contains a database of entries (or
                  just a single entry) for a process that has an open handle
                  to the object (along with a per-process handle
                  count).
	2 (0x4)
	Object header -
                  ObpInfoMaskToOffset[InfoMask &
                  0x7]

	Quota information
	Lists the resource charges levied
                  against a process when it opens a handle to the
                  object.
	3 (0x8)
	Object header -
                  ObpInfoMaskToOffset[InfoMask &
                  0xF]

	Process information
	Contains a pointer to the owning
                  process if this is an exclusive object. More information on
                  exclusive objects follows later in the
                  chapter.
	4 (0x10)
	Object header -
                  ObpInfoMaskToOffset[InfoMask &
                  0x1F]




Each of these subheaders is optional and is present
          only under certain conditions, either during system boot up or at
          object creation time. Table 3-11 describes each
          of these conditions.
Table 3-11. Conditions Required for Presence of Object
            Subheaders
	Name
	Condition

	Name information
	The object must have been created
                  with a name.

	Quota information
	The object must not have been
                  created by the initial (or idle) system
                  process.

	Process information
	The object must have been created
                  with the exclusive object flag. (See
                  Table 3-12 for information about object
                  flags.)

	Handle information
	The object type must have enabled
                  the maintain handle count flag. File
                  objects, ALPC objects, WindowStation objects, and Desktop
                  objects have this flag set in their object type
                  structure.

	Creator information
	The object type must have enabled
                  the maintain type list flag. Driver
                  objects have this flag set if the Driver Verifier is
                  enabled. However, enabling the maintain object
                  type list global flag (discussed earlier) will
                  enable this for all objects, and Type
                  objects always have the flag set.




Finally, a number of attributes and/or flags determine the
          behavior of the object during creation time or during certain
          operations. These flags are received by the object manager whenever
          any new object is being created, in a structure called the
          object attributes. This structure defines the
          object name, the root object directory where it should be inserted,
          the security descriptor for the object, and the object
          attribute flags. Table 3-12 lists
          the various flags that can be associated with an object.
Note
When an object is being created through an API in the
            Windows subsystem (such as CreateEvent or
            CreateFile), the caller does not specify any
            object attributes—the subsystem DLL performs the work behind the
            scenes. For this reason, all named objects created through Win32
            go in the BaseNamedObjects directory, either
            the global or per-session instance, because this is the root
            object directory that Kernelbase.dll specifies as part of the
            object attributes structure. More information on
            BaseNamedObjects and how it relates to the
            per-session namespace will follow later in this chapter.

Table 3-12. Object Flags
	Attributes Flag
	Header Flag
	Purpose

	OBJ_INHERIT
	Saved in the handle table
                  entry
	Determines whether the handle to
                  the object will be inherited by child processes, and whether
                  a process can use DuplicateHandle to
                  make a copy.

	OBJ_PERMANENT
	OB_FLAG_PERMANENT_OBJECT
	Defines object retention behavior
                  related to reference counts, described later.

	OBJ_EXCLUSIVE
	OB_FLAG_EXCLUSIVE_OBJECT
	Specifies that the object can be
                  used only by the process that created it.

	OBJ_CASE_INSENSITIVE
	Stored in the handle table
                  entry
	Specifies that lookups for this
                  object in the namespace should be case insensitive. It can
                  be overridden by the case insensitive
                  flag in the object type.

	OBJ_OPENIF
	Not stored, used at run
                  time
	Specifies that a create operation
                  for this object name should result in an open, if the object
                  exists, instead of a failure.

	OBJ_OPENLINK
	Not stored, used at run
                  time
	Specifies that the object manager
                  should open a handle to the symbolic link, not the
                  target.

	OBJ_KERNEL_HANDLE
	OB_FLAG_KERNEL_OBJECT
	Specifies that the handle to this
                  object should be a kernel handle (more
                  on this later).

	OBJ_FORCE_ACCESS_CHECK
	Not stored, used at run
                  time
	Specifies that even if the object
                  is being opened from kernel mode, full access checks should
                  be performed.

	OBJ_KERNEL_EXCLUSIVE
	OB_FLAG_KERNEL_ONLY_ACCESS
	Disables any user-mode process
                  from opening a handle to the object; used to protect the
                  /Device/PhysicalMemory section
                  object.

	N/A
	OF_FLAG_DEFAULT_SECURITY_QUOTA
	Specifies that the object’s
                  security descriptor is using the default 2-KB
                  quota.

	N/A
	OB_FLAG_SINGLE_HANDLE_ENTRY
	Specifies that the handle
                  information subheader contains only a single entry and not a
                  database.

	N/A
	OB_FLAG_NEW_OBJECT
	Specifies that the object has been
                  created but not yet inserted into the object
                  namespace.

	N/A
	OB_FLAG_DELETED_INLINE
	Specifies that the object is being
                  deleted through the deferred deletion worker
                  thread.




In addition to an object header, each object has an object
          body whose format and contents are unique to its object type; all
          objects of the same type share the same object body format. By
          creating an object type and supplying services for it, an executive
          component can control the manipulation of data in all object bodies
          of that type. Because the object header has a static and well-known
          size, the object manager can easily look up the object header for an
          object simply by subtracting the size of the header from the pointer
          of the object. As explained earlier, to access the subheaders, the
          object manager subtracts yet another well-known value from the
          pointer of the object header.
Because of the standardized object header and
          subheader structures, the object manager is able to provide a small
          set of generic services that can operate on the attributes stored in
          any object header and can be used on objects of any type (although
          some generic services don’t make sense for certain objects). These
          generic services, some of which the Windows subsystem makes
          available to Windows applications, are listed in Table 3-13.
Although these generic object services are supported for all
          object types, each object has its own create, open, and query
          services. For example, the I/O system implements a create file
          service for its file objects, and the process manager implements a
          create process service for its process objects.
Although a single create object service could have been
          implemented, such a routine would have been quite complicated,
          because the set of parameters required to initialize a file object,
          for example, differs markedly from that required to initialize a
          process object. Also, the object manager would have incurred
          additional processing overhead each time a thread called an object
          service to determine the type of object the handle referred to and
          to call the appropriate version of the service.
Table 3-13. Generic Object Services
	Service
	Purpose

	Close
	Closes a handle to an
                  object

	Duplicate
	Shares an object by duplicating a
                  handle and giving it to another process

	Make
                  permanent/temporary
	Changes the retention of an object
                  (described later)

	Query object
	Gets information about an object’s
                  standard attributes

	Query security
	Gets an object’s security
                  descriptor

	Set security
	Changes the protection on an
                  object

	Wait for a single
                  object
	Synchronizes a thread’s execution
                  with one object

	Signal an object and wait for
                  another
	Signals an object (such as an
                  event), and synchronizes a thread’s execution with
                  another

	Wait for multiple
                  objects
	Synchronizes a thread’s execution
                  with multiple objects





Type Objects



Object headers contain data that is common to all objects but
          that can take on different values for each instance of an object.
          For example, each object has a unique name and can have a unique
          security descriptor. However, objects also contain some data that
          remains constant for all objects of a particular type. For example,
          you can select from a set of access rights specific to a type of
          object when you open a handle to objects of that type. The executive
          supplies terminate and suspend access (among others) for thread
          objects and read, write, append, and delete access (among others)
          for file objects. Another example of an object-type-specific
          attribute is synchronization, which is described shortly.
To conserve memory, the object manager stores these static,
          object-type-specific attributes once when creating a new object
          type. It uses an object of its own, a type object, to record this
          data. As Figure 3-20
          illustrates, if the object-tracking debug flag (described in the
          Windows Global Flags section later in this chapter) is set, a type object
          also links together all objects of the same type (in this case, the
          process type), allowing the object manager to find and enumerate
          them, if necessary. This functionality takes advantage of the
          creator information subheader discussed previously.
[image: Process objects and the process type object]

Figure 3-20. Process objects and the process type object

EXPERIMENT: Viewing Object Headers and Type Objects
You can look at the process object type data structure in
            the kernel debugger by first identifying a process object with the
            !process command:
lkd> !process 0 0
**** NT ACTIVE PROCESS DUMP ****
PROCESS fffffa800279cae0
    SessionId: none  Cid: 0004    Peb: 00000000  ParentCid: 0000
    DirBase: 00187000  ObjectTable: fffff8a000001920  HandleCount: 541.
    Image: System
Then execute the !object command with
            the process object address as the argument:
lkd> !object fffffa800279cae0
Object: fffffa800279cae0  Type: (fffffa8002755b60) Process
    ObjectHeader: fffffa800279cab0 (new version)
    HandleCount: 3  PointerCount: 172 3172
Notice that on 32-bit Windows, the object header starts 0x18
            (24 decimal) bytes prior to the start of the object body, and on
            64-bit Windows, it starts 0x30 (48 decimal) bytes prior—the size
            of the object header itself. You can view the object header with
            this command:
lkd> dt nt!_OBJECT_HEADER fffffa800279cab0
   +0x000 PointerCount     : 172
   +0x008 HandleCount      : 33
   +0x008 NextToFree       : 0x000000000x00000000'00000003
   +0x010 Lock             : _EX_PUSH_LOCK
   +0x018 TypeIndex        : 0x7 ''
   +0x019 TraceFlags       : 0 ''
   +0x01a InfoMask         : 0 ''
   +0x01b Flags            : 0x2 ''
   +0x020 ObjectCreateInfo : 0xfffff800'01c53a80 _OBJECT_CREATE_INFORMATION
   +0x020 QuotaBlockCharged : 0xfffff800'01c53a80
   +0x028 SecurityDescriptor : 0xfffff8a0'00004b29
   +0x030 Body             : _QUAD
Now look at the object type data structure by obtaining its
            address from the ObTypeIndexTable table for
            the entry associated with the TypeIndex field
            of the object header data structure:
lkd> ?? ((nt!_OBJECT_TYPE**)@@(nt!ObTypeIndexTable))[((nt!_OBJECT_HEADER*)0xfffffa800279cab0)->TypeIndex]
struct _OBJECT_TYPE * 0xfffffa80'02755b60
   +0x000 TypeList         : _LIST_ENTRY [ 0xfffffa80'02755b60 - 0xfffffa80'02755b60 ]
   +0x010 Name             : _UNICODE_STRING "Process"
   +0x020 DefaultObject    : (null)
   +0x028 Index            : 0x70x7 ''
   +0x02c TotalNumberOfObjects : 0x380x38
   +0x030 TotalNumberOfHandles : 0x1320x132
   +0x034 HighWaterNumberOfObjects : 0x3d
   +0x038 HighWaterNumberOfHandles : 0x13c
   +0x040 TypeInfo         : _OBJECT_TYPE_INITIALIZER
   +0x0b0 TypeLock         : _EX_PUSH_LOCK
   +0x0b8 Key              : 0x636f7250
   +0x0c0 CallbackList     : _LIST_ENTRY [ 0xfffffa80'02755c20 - 0xfffffa80'02755c20 ]
The output shows that the object type structure includes the
            name of the object type, tracks the total number of active objects
            of that type, and tracks the peak number of handles and objects of
            that type. The CallbackList also keeps track
            of any object manager filtering callbacks that are associated with
            this object type. The TypeInfo field stores
            the pointer to the data structure that stores attributes common to
            all objects of the object type as well as pointers to the object
            type’s methods:
lkd> ?? ((nt!_OBJECT_TYPE*)0xfffffa8002755b60)->TypeInfo*)
   +0x000 Length           : 0x70
   +0x002 ObjectTypeFlags  : 0x4a 'J'
   +0x002 CaseInsensitive  : 0y0
   +0x002 UnnamedObjectsOnly : 0y1
   +0x002 UseDefaultObject : 0y0
   +0x002 SecurityRequired : 0y1
   +0x002 MaintainHandleCount : 0y0
   +0x002 MaintainTypeList : 0y0
   +0x002 SupportsObjectCallbacks : 0y1
   +0x004 ObjectTypeCode   : 0
   +0x008 InvalidAttributes : 0xb0
   +0x00c GenericMapping   : _GENERIC_MAPPING
   +0x01c ValidAccessMask  : 0x1fffff
   +0x020 RetainAccess     : 0x101000
   +0x024 PoolType         : 0 ( NonPagedPool )
   +0x028 DefaultPagedPoolCharge : 0x1000
   +0x02c DefaultNonPagedPoolCharge : 0x528
   +0x030 DumpProcedure    : (null)
   +0x038 OpenProcedure    : 0xfffff800'01d98d58     long  nt!PspProcessOpen+0
   +0x040 CloseProcedure   : 0xfffff800'01d833c4     void  nt!PspProcessClose+0
   +0x048 DeleteProcedure  : 0xfffff800'01d83090     void  nt!PspProcessDelete+0
   +0x050 ParseProcedure   : (null)
   +0x058 SecurityProcedure : 0xfffff800'01d8bb50     long  nt!SeDefaultObjectMethod+0
   +0x060 QueryNameProcedure : (null)
   +0x068 OkayToCloseProcedure : (null)

Type objects can’t be manipulated from user mode
          because the object manager supplies no services for them. However,
          some of the attributes they define are visible through certain
          native services and through Windows API routines. The information
          stored in the type initializers is described in Table 3-14.
Table 3-14. Type Initializer Fields
	Attribute
	Purpose

	Type name
	The name for objects of this type
                  (“process,” “event,” “port,” and so on).

	Pool type
	Indicates whether objects of this
                  type should be allocated from paged or nonpaged
                  memory.

	Default quota
                  charges
	Default paged and nonpaged pool
                  values to charge to process quotas.

	Valid access mask
	The types of access a thread can
                  request when opening a handle to an object of this type
                  (“read,” “write,” “terminate,” “suspend,” and so
                  on).

	Generic access rights
                  mapping
	A mapping between the four generic
                  access rights (read, write, execute, and all) to the
                  type-specific access rights.

	Flags
	Indicate whether objects must
                  never have names (such as process objects), whether their
                  names are case-sensitive, whether they require a security
                  descriptor, whether they support object-filtering callbacks,
                  and whether a handle database (handle information subheader)
                  and/or a type-list linkage (creator information subheader)
                  should be maintained. The use default
                  object flag also defines the behavior for the
                  default object field shown later in
                  this table.

	Object type code
	Used to describe the type of
                  object this is (versus comparing with a well-known name
                  value). File objects set this to 1,
                  synchronization objects set this to 2,
                  and thread objects set this to 4. This
                  field is also used by ALPC to store handle attribute
                  information associated with a message.

	Invalid attributes
	Specifies object attribute flags
                  (shown earlier in Table 3-12) that are
                  invalid for this object type.

	Default object
	Specifies the internal object
                  manager event that should be used during waits for this
                  object, if the object type creator requested one. Note that
                  certain objects, such as File objects and ALPC port objects
                  already contain their own embedded dispatcher object; in
                  this case, this field is an offset into the object body. For
                  example, the event inside the FILE_OBJECT structure is
                  embedded in a field called
                  Event.

	Methods
	One or more routines that the
                  object manager calls automatically at certain points in an
                  object’s lifetime.




Synchronization, one of the
          attributes visible to Windows applications, refers to a thread’s
          ability to synchronize its execution by waiting for an object to
          change from one state to another. A thread can synchronize with
          executive job, process, thread, file, event, semaphore, mutex, and
          timer objects. Other executive objects don’t support
          synchronization. An object’s ability to support synchronization is
          based on three possibilities:
	The executive object is a wrapper for a dispatcher object
              and contains a dispatcher header, a kernel structure that is
              covered in the section Low-IRQL Synchronization later in this
              chapter.

	The creator of the object type requested a
              default object, and the object manager
              provided one.

	The executive object has an embedded dispatcher object,
              such as an event somewhere inside the object body, and the
              object’s owner supplied its offset to the object manager when
              registering the object type (described in Table 3-14).




Object Methods



The last attribute in Table 3-14, methods, comprises a set of
          internal routines that are similar to C++ constructors and
          destructors—that is, routines that are automatically called when an
          object is created or destroyed. The object manager extends this idea
          by calling an object method in other situations as well, such as
          when someone opens or closes a handle to an object or when someone
          attempts to change the protection on an object. Some object types
          specify methods whereas others don’t, depending on how the object
          type is to be used.
When an executive component creates a new object type, it can
          register one or more methods with the object manager. Thereafter,
          the object manager calls the methods at well-defined points in the
          lifetime of objects of that type, usually when an object is created,
          deleted, or modified in some way. The methods that the object
          manager supports are listed in Table 3-15.
The reason for these object methods is to address the fact
          that, as you’ve seen, certain object operations are generic (close,
          duplicate, security, and so on). Fully generalizing these generic
          routines would have required the designers of the object manager to
          anticipate all object types. However, the routines to create an
          object type are exported by the kernel, enabling external kernel
          components to create their own object types. Although this
          functionality is not documented for driver developers, it is
          internally used by Win32k.sys to define WindowStation and Desktop
          objects. Through object-method extensibility, Win32k.sys defines its
          routines for handling operations such as create and query.
One exception to this rule is the
          security routine, which does, unless otherwise
          instructed, default to SeDefaultObjectMethod.
          This routine does not need to know the internal structure of the
          object because it deals only with the security descriptor for the
          object, and you’ve seen that the pointer to the security descriptor
          is stored in the generic object header, not inside the object body.
          However, if an object does require its own additional security
          checks, it can define a custom security routine. The other reason
          for having a generic security method is to avoid complexity, because
          most objects rely on the security reference monitor to manage their
          security.
Table 3-15. Object Methods
	Method
	When Method Is
                  Called

	Open
	When an object handle is
                  opened

	Close
	When an object handle is
                  closed

	Delete
	Before the object manager deletes
                  an object

	Query name
	When a thread requests the name of
                  an object, such as a file, that exists in a secondary object
                  namespace

	Parse
	When the object manager is
                  searching for an object name that exists in a secondary
                  object namespace

	Dump
	Not used

	Okay to close
	When the object manager is
                  instructed to close a handle

	Security
	When a process reads or changes
                  the protection of an object, such as a file, that exists in
                  a secondary object namespace




The object manager calls the open method whenever it creates a
          handle to an object, which it does when an object is created or
          opened. The WindowStation and Desktop objects provide an open
          method; for example, the WindowStation object type requires an open
          method so that Win32k.sys can share a piece of memory with the
          process that serves as a desktop-related memory pool.
An example of the use of a close method occurs in the I/O
          system. The I/O manager registers a close method for the file object
          type, and the object manager calls the close method each time it
          closes a file object handle. This close method checks whether the
          process that is closing the file handle owns any outstanding locks
          on the file and, if so, removes them. Checking for file locks isn’t
          something the object manager itself can or should do.
The object manager calls a delete method, if one is
          registered, before it deletes a temporary object from memory. The
          memory manager, for example, registers a delete method for the
          section object type that frees the physical pages being used by the
          section. It also verifies that any internal data structures the
          memory manager has allocated for a section are deleted before the
          section object is deleted. Once again, the object manager can’t do
          this work because it knows nothing about the internal workings of
          the memory manager. Delete methods for other types of objects
          perform similar functions.
The parse method (and similarly, the query name method) allows
          the object manager to relinquish control of finding an object to a
          secondary object manager if it finds an object that exists outside
          the object manager namespace. When the object manager looks up an
          object name, it suspends its search when it encounters an object in
          the path that has an associated parse method. The object manager
          calls the parse method, passing to it the remainder of the object
          name it is looking for. There are two namespaces in Windows in
          addition to the object manager’s: the registry namespace, which the
          configuration manager implements, and the file system namespace,
          which the I/O manager implements with the aid of file system
          drivers. (See Chapter 4, for more
          information on the configuration manager and Chapter 8 in Part 2 for
          more details about the I/O manager and file system drivers.)
For example, when a process opens a handle to the
          object named \Device\HarddiskVolume1\docs\resume.doc, the object
          manager traverses its name tree until it reaches the device object
          named HarddiskVolume1. It sees that a parse
          method is associated with this object, and it calls the method,
          passing to it the rest of the object name it was searching for—in
          this case, the string docs\resume.doc. The
          parse method for device objects is an I/O routine because the I/O
          manager defines the device object type and registers a parse method
          for it. The I/O manager’s parse routine takes the name string and
          passes it to the appropriate file system, which finds the file on
          the disk and opens it.
The security method, which the I/O system also uses, is
          similar to the parse method. It is called whenever a thread tries to
          query or change the security information protecting a file. This
          information is different for files than for other objects because
          security information is stored in the file itself rather than in
          memory. The I/O system, therefore, must be called to find the
          security information and read or change it.
Finally, the okay-to-close method is used as an additional
          layer of protection around the malicious—or incorrect—closing of
          handles being used for system purposes. For example, each process
          has a handle to the Desktop object or objects on which its thread or
          threads have windows visible. Under the standard security model, it
          is possible for those threads to close their handles to their
          desktops because the process has full control of its own objects. In
          this scenario, the threads end up without a desktop associated with
          them—a violation of the windowing model. Win32k.sys registers an
          okay-to-close routine for the Desktop and WindowStation objects to
          prevent this behavior.

Object Handles and the Process Handle Table



When a process creates or opens an object by name, it receives
          a handle that represents its access to the
          object. Referring to an object by its handle is faster than using
          its name because the object manager can skip the name lookup and
          find the object directly. Processes can also acquire handles to
          objects by inheriting handles at process creation time (if the
          creator specifies the inherit handle flag on the
          CreateProcess call and the handle was marked as
          inheritable, either at the time it was created or afterward by using
          the Windows SetHandleInformation function) or
          by receiving a duplicated handle from another process. (See the
          Windows DuplicateHandle function.)
All user-mode processes must own a handle to an object before
          their threads can use the object. Using handles to manipulate system
          resources isn’t a new idea. C and Pascal (an older programming
          language similar to Delphi) run-time libraries, for example, return
          handles to opened files. Handles serve as indirect pointers to
          system resources; this indirection keeps application programs from
          fiddling directly with system data structures.
Object handles provide additional benefits. First, except for
          what they refer to, there is no difference between a file handle, an
          event handle, and a process handle. This similarity provides a
          consistent interface to reference objects, regardless of their type.
          Second, the object manager has the exclusive right to create handles
          and to locate an object that a handle refers to. This means that the
          object manager can scrutinize every user-mode action that affects an
          object to see whether the security profile of the caller allows the
          operation requested on the object in question.
Note
Executive components and device drivers can access
            objects directly because they are running in kernel mode and
            therefore have access to the object structures in system memory.
            However, they must declare their usage of the object by
            incrementing the reference count so that the object won’t be
            de-allocated while it’s still being used. (See the section Object Retention later in this chapter for more
            details.) To successfully make use of this object, however, device
            drivers need to know the internal structure definition of the
            object, and this is not provided for most objects. Instead, device
            drivers are encouraged to use the appropriate kernel APIs to
            modify or read information from the object. For example, although
            device drivers can get a pointer to the Process object (EPROCESS),
            the structure is opaque, and Ps* APIs must be
            used. For other objects, the type itself is opaque (such as most
            executive objects that wrap a dispatcher object—for example,
            events or mutexes). For these objects, drivers must use the same
            system calls that user-mode applications end up calling (such as
            ZwCreateEvent) and use handles instead of
            object pointers.

EXPERIMENT: Viewing Open Handles
Run Process Explorer, and make sure the lower pane is
            enabled and configured to show open handles. (Click on View, Lower
            Pane View, and then Handles). Then open a command prompt and view
            the handle table for the new Cmd.exe process. You should see an
            open file handle to the current directory. For example, assuming
            the current directory is C:\Users\Administrator, Process Explorer
            shows the following:
[image: image with no caption]

Now pause Process Explorer by pressing the space bar or
            clicking on View, Update Speed and choosing Pause. Then change the
            current directory with the cd command and
            press F5 to refresh the display. You will see in Process Explorer
            that the handle to the previous current directory is closed and a
            new handle is opened to the new current directory. The previous
            handle is highlighted in red and the new handle is highlighted in
            green.
Process Explorer’s differences-highlighting feature
            makes it easy to see changes in the handle table. For example, if
            a process is leaking handles, viewing the handle table with
            Process Explorer can quickly show what handle or handles are being
            opened but not closed. (Typically, you see a long list of handles
            to the same object.) This information can help the programmer find
            the handle leak.
Resource Monitor also shows open handles to named handles
            for the processes you select by checking the boxes next to their
            names. Here are the command prompt’s open handles:
[image: image with no caption]

You can also display the open handle table by using the
            command-line Handle tool from Sysinternals. For example, note the
            following partial output of Handle when examining the file object
            handles located in the handle table for a Cmd.exe process before
            and after changing the directory. By default, Handle filters out
            nonfile handles unless the –a switch is used,
            which displays all the handles in the process, similar to Process
            Explorer.
C:\>handle -p cmd.exe

Handle v3.46
Copyright (C) 1997-2011 Mark Russinovich
Sysinternals - www.sysinternals.com

------------------------------------------------------------------------------
cmd.exe pid: 5124 Alex-Laptop\Alex Ionescu
   3C: File  (R-D)   C:\Windows\System32\en-US\KernelBase.dll.mui
   44: File  (RW-)   C:\

C:\>cd windows

C:\Windows>handle -p cmd.exe

Handle v3.46
Copyright (C) 1997-2011 Mark Russinovich
Sysinternals - www.sysinternals.com

------------------------------------------------------------------------------
cmd.exe pid: 5124 Alex-Laptop\Alex Ionescu
   3C: File  (R-D)   C:\Windows\System32\en-US\KernelBase.dll.mui
   40: File  (RW-)   C:\Windows

An object handle is an index into
          a process-specific handle table, pointed to by
          the executive process (EPROCESS) block (described in Chapter 5). The first
          handle index is 4, the second 8, and so on. A process’ handle table
          contains pointers to all the objects that the process has opened a
          handle to. Handle tables are implemented as a three-level scheme,
          similar to the way that the x86 memory management unit implements
          virtual-to-physical address translation, giving a maximum of more
          than 16,000,000 handles per process. (See Chapter 10 in Part 2 for
          details about memory management in x86 systems.)
Note
With a three-table scheme, the top-level table can contain a
            page full of pointers to mid-level tables, allowing for well over
            half a billion handles. However, to maintain compatibility with
            Windows 2000’s handle scheme and inherent limitation of 16,777,216
            handles, the top-level table only contains up to a maximum of 32
            pointers to the mid-level tables, capping newer versions of
            Windows at the same limit.

Only the lowest-level handle table is allocated on process
          creation—the other levels are created as needed. The subhandle table
          consists of as many entries as will fit in a page minus one entry
          that is used for handle auditing. For example, for x86 systems a
          page is 4096 bytes, divided by the size of a handle table entry (8
          bytes), which is 512, minus 1, which is a total of 511 entries in
          the lowest-level handle table. The mid-level handle table contains a
          full page of pointers to subhandle tables, so the number of
          subhandle tables depends on the size of the page and the size of a
          pointer for the platform. Figure 3-21 describes the
          handle table layout on Windows.
[image: Windows process handle table architecture]

Figure 3-21. Windows process handle table architecture

EXPERIMENT: Creating the Maximum Number of Handles
The test program Testlimit from Sysinternals has an
            option to open handles to an object until it cannot open any more
            handles. You can use this to see how many handles can be created
            in a single process on your system. Because handle tables are
            allocated from paged pool, you might run out of paged pool before
            you hit the maximum number of handles that can be created in a
            single process. To see how many handles you can create on your
            system, follow these steps:
	Download the Testlimit executable file corresponding to
                the 32/64 bit Windows you need from http://live.sysinternals.com/WindowsInternals.

	Run Process Explorer, click View and then System
                Information, and then click on the Memory tab. Notice the
                current and maximum size of paged pool. (To display the
                maximum pool size values, Process Explorer must be configured
                properly to access the symbols for the kernel image,
                Ntoskrnl.exe.) Leave this system information display running
                so that you can see pool utilization when you run the
                Testlimit program.

	Open a command prompt.

	Run the Testlimit program with the
                –h switch (do this by typing testlimit –h). When Testlimit fails
                to open a new handle, it displays the total number of handles
                it was able to create. If the number is less than
                approximately 16 million, you are probably running out of
                paged pool before hitting the theoretical per-process handle
                limit.

	Close the Command Prompt window; doing this kills the
                Testlimit process, thus closing all the open handles.




As shown in Figure 3-22, on x86 systems, each
          handle entry consists of a structure with two 32-bit members: a
          pointer to the object (with flags), and the granted access mask. On
          64-bit systems, a handle table entry is 12 bytes long: a 64-bit
          pointer to the object header and a 32-bit access mask. (Access masks
          are described in Chapter 6.)
[image: Structure of a handle table entry]

Figure 3-22. Structure of a handle table entry

The first flag is a lock bit, indicating whether the
          entry is currently in use. The second flag is the inheritance
          designation—that is, it indicates whether processes created by this
          process will get a copy of this handle in their handle tables. As
          already noted, handle inheritance can be specified on handle
          creation or later with the SetHandleInformation
          function. The third flag indicates whether closing the object should
          generate an audit message. (This flag isn’t exposed to Windows—the
          object manager uses it internally.) Finally, the protect-from-close
          bit, stored in an unused portion of the access mask, indicates
          whether the caller is allowed to close this handle. (This flag can
          be set with the NtSetInformationObject system
          call.)
System components and device drivers often need to open
          handles to objects that user-mode applications shouldn’t have access
          to. This is done by creating handles in the kernel handle
          table (referenced internally with the name
          ObpKernelHandleTable). The handles in this
          table are accessible only from kernel mode and in any process
          context. This means that a kernel-mode function can reference the
          handle in any process context with no performance impact. The object
          manager recognizes references to handles from the kernel handle
          table when the high bit of the handle is set—that is, when
          references to kernel-handle-table handles have values greater than
          0x80000000. The kernel handle table also serves as the handle table
          for the System process, and all handles created by the System
          process (such as code running in system threads) are automatically
          marked as kernel handles because they live in the kernel handle
          table by definition.
EXPERIMENT: Viewing the Handle Table with the Kernel
            Debugger
The !handle command in the kernel
            debugger takes three arguments:
!handle <handle index> <flags> <processid>
The handle index identifies the handle entry in the handle
            table. (Zero means “display all handles.”) The first handle is
            index 4, the second 8, and so on. For example, typing !handle 4 will show the first handle for
            the current process.
The flags you can specify are a bitmask, where bit 0 means
            “display only the information in the handle entry,” bit 1 means
            “display free handles (not just used handles),” and bit 2 means
            “display information about the object that the handle refers to.”
            The following command displays full details about the handle table
            for process ID 0x62C:
lkd> !handle 0 7 62c
processor number 0, process 000000000000062c
Searching for Process with Cid == 62c
PROCESS fffffa80052a7060
    SessionId: 1  Cid: 062c    Peb: 7fffffdb000  ParentCid: 0558
    DirBase: 7e401000  ObjectTable: fffff8a00381fc80  HandleCount: 111.
    Image: windbg.exe

Handle table at fffff8a0038fa000 with 113 Entries in use
0000: free handle, Entry address fffff8a0038fa000, Next Entry 00000000fffffffe
0004: Object: fffff8a005022b70  GrantedAccess: 00000003 Entry: fffff8a0038fa010
Object: fffff8a005022b70  Type: (fffffa8002778f30) Directory
    ObjectHeader: fffff8a005022b40fffff8a005022b40 (new version)
        HandleCount: 25  PointerCount: 63
        Directory Object: fffff8a000004980  Name: KnownDlls

0008: Object: fffffa8005226070  GrantedAccess: 00100020 Entry: fffff8a0038fa020
Object: fffffa8005226070  Type: (fffffa80027b3080) File
    ObjectHeader: fffffa8005226040fffffa8005226040 (new version)
        HandleCount: 1  PointerCount: 1
        Directory Object: 00000000  Name: \Program Files\Debugging Tools for Windows (x64)
{HarddiskVolume2}

EXPERIMENT: Searching for Open Files with the Kernel
            Debugger
Although you can use Process Explorer, Handle, and
            the OpenFiles.exe utility to search for open file handles, these
            tools are not available when looking at a crash dump or analyzing
            a system remotely. You can instead use the
            !devhandles command to search for handles
            opened to files on a specific volume. (See Chapter 8 in Part 2 for
            more information on devices, files, and volumes.)
	First you need to pick the drive letter you are
                interested in and obtain the pointer to its Device
                object. You can use the
                !object command as shown here:
1: kd> !object \Global??\C:
Object: fffff8a00016ea40  Type: (fffffa8000c38bb0) SymbolicLink
    ObjectHeader: fffff8a00016ea10 (new version)
    HandleCount: 0  PointerCount: 1
    Directory Object: fffff8a000008060  Name: C:
    Target String is '\Device\HarddiskVolume1'
    Drive Letter Index is 3 (C:)

	Next use the !object command to get
                the Device object of the target volume
                name:
1: kd> !object \Device\HarddiskVolume1
Object: fffffa8001bd3cd0  Type: (fffffa8000ca0750) Device

	Now you can use the pointer of the
                Device object with the
                !devhandles command. Each object shown
                points to a file:
!devhandles fffffa8001bd3cd0
Checking handle table for process 0xfffffa8000c819e0
Kernel handle table at fffff8a000001830 with 434 entries in use

PROCESS fffffa8000c819e0
    SessionId: none  Cid: 0004    Peb: 00000000  ParentCid: 0000
    DirBase: 00187000  ObjectTable: fffff8a000001830  HandleCount: 434.
    Image: System

0048: Object: fffffa8001d4f2a0  GrantedAccess: 0013008b Entry: fffff8a000003120
Object: fffffa8001d4f2a0  Type: (fffffa8000ca0360) File
    ObjectHeader: fffffa8001d4f270 (new version)
        HandleCount: 1  PointerCount: 19
        Directory Object: 00000000  Name: \Windows\System32\LogFiles\WMI\
RtBackup\EtwRTEventLog-Application.etl {HarddiskVolume1}





Reserve Objects



Because objects represent anything from events to
          files to interprocess messages, the ability for applications and
          kernel code to create objects is essential to the normal and desired
          runtime behavior of any piece of Windows code. If an object
          allocation fails, this usually causes anywhere from loss of
          functionality (the process cannot open a file) to data loss or
          crashes (the process cannot allocate a synchronization object).
          Worse, in certain situations, the reporting of errors that led to
          object creation failure might themselves require new objects to be
          allocated. Windows implements two special reserve
          objects to deal with such situations: the User APC
          reserve object and the I/O Completion packet reserve object. Note
          that the reserve-object mechanism itself is fully extensible, and
          future versions of Windows might add other reserve object types—from
          a broad view, the reserve object is a mechanism enabling any
          kernel-mode data structure to be wrapped as an object (with an
          associated handle, name, and security) for later use.
As was discussed in the APC section earlier in this chapter,
          APCs are used for operations such as suspension, termination, and
          I/O completion, as well as communication between user-mode
          applications that want to provide asynchronous callbacks. When a
          user-mode application requests a User APC to be targeted to another
          thread, it uses the QueueUserApc API in
          Kernelbase.dll, which calls the
          NtQueueUserApcThread system call. In the
          kernel, this system call attempts to allocate a piece of paged pool
          in which to store the KAPC control object
          structure associated with an APC. In low-memory situations, this
          operation fails, preventing the delivery of the APC, which,
          depending on what the APC was used for, could cause loss of data or
          functionality.
To prevent this, the user-mode application, can, on startup,
          use the NtAllocateReserveObject system call to
          request the kernel to pre-allocate the KAPC structure. Then the
          application uses a different system call,
          NtQueueUserApcThreadEx, that contains an extra
          parameter that is used to store the handle to the reserve object.
          Instead of allocating a new structure, the kernel attempts to
          acquire the reserve object (by setting its
          InUse bit to true) and use
          it until the KAPC object is not needed anymore, at which point the
          reserve object is released back to the system. Currently, to prevent
          mismanagement of system resources by third-party developers, the
          reserve object API is available only internally through system calls
          for operating system components. For example, the RPC library uses
          reserved APC objects to guarantee asynchronous callbacks will still
          be able to return in low-memory situations.
A similar scenario can occur when applications need
          failure-free delivery of an I/O completion port message, or packet.
          Typically, packets are sent with the
          PostQueuedCompletionStatus API in
          Kernelbase.dll, which calls the
          NtSetIoCompletion API. Similarly to the user
          APC, the kernel must allocate an I/O manager structure to contain
          the completion-packet information, and if this allocation fails, the
          packet cannot be created. With reserve objects, the application can
          use the NtAllocateReserveObject API on startup
          to have the kernel pre-allocate the I/O completion packet, and the
          NtSetIoCompletionEx system call can be used to
          supply a handle to this reserve object, guaranteeing a success path.
          Just like User APC reserve objects, this functionality is reserved
          for system components and is used both by the RPC library
          and the Windows Peer-To-Peer BranchCache service (see Chapter 7, for more information on networking) to
          guarantee completion of asynchronous I/O operations.

Object Security



When you open a file, you must specify whether you intend to
          read or to write. If you try to write to a file that is opened for
          read access, you get an error. Likewise, in the executive, when a
          process creates an object or opens a handle to an existing object,
          the process must specify a set of desired access
          rights—that is, what it wants to do with the object. It
          can request either a set of standard access rights (such as read,
          write, and execute) that apply to all object types or specific
          access rights that vary depending on the object type. For example,
          the process can request delete access or append access to a file
          object. Similarly, it might require the ability to suspend or
          terminate a thread object.
When a process opens a handle to an object, the object manager
          calls the security reference monitor, the
          kernel-mode portion of the security system, sending it the process’
          set of desired access rights. The security reference monitor checks
          whether the object’s security descriptor permits the type of access
          the process is requesting. If it does, the reference monitor returns
          a set of granted access rights that the process
          is allowed, and the object manager stores them in the object handle
          it creates. How the security system determines who gets access to
          which objects is explored in Chapter 6.
Thereafter, whenever the process’ threads use the handle
          through a service call, the object manager can quickly check whether
          the set of granted access rights stored in the handle corresponds to
          the usage implied by the object service the threads have called. For
          example, if the caller asked for read access to a section object but
          then calls a service to write to it, the service fails.
EXPERIMENT: Looking at Object Security
You can look at the various permissions on an object by
            using either Process Explorer, WinObj, or AccessCheck, which are
            all tools from Sysinternals. Let’s look at different ways you can
            display the access control list (ACL) for an object:
	You can use WinObj to navigate to any object on the
                system, including object directories, right-click on the
                object, and select Properties. For example, select the
                BaseNamedObjects directory, select Properties, and click on
                the Security tab. You should see a dialog box similar to the
                one shown next.
By examining the settings in the dialog box, you can see
                that the Everyone group doesn’t have
                delete access to the directory, for
                example, but the SYSTEM account does (because this is where
                session 0 services with SYSTEM privileges will store their
                objects).
[image: image with no caption]


	Instead of using WinObj, you can view the handle
                table of a process using Process Explorer, as shown in the
                experiment EXPERIMENT: Viewing Open Handles
                earlier in the chapter. Look at the handle table for the
                Explorer.exe process. You should notice a Directory object
                handle to the \Sessions\n\BaseNamedObjects directory. (We’ll
                describe the per-session namespace shortly.) You can
                double-click on the object handle and then click on the
                Security tab and see a similar dialog box (with more users and
                rights granted). Process Explorer cannot decode the specific
                object directory access rights, so all you’ll see are generic
                rights.

	Finally, you can use AccessCheck to query the security
                information of any object by using the –o
                switch as shown in the following output. Note that using
                AccessCheck will also show you the integrity
                level of the object. (See Chapter 6 for more information on
                integrity levels and the security reference monitor.)
C:\Windows>accesschk -o \Sessions\1\BaseNamedObjects

Accesschk v5.02 - Reports effective permissions for securable objects
Copyright (C) 2006-2011 Mark Russinovich
Sysinternals - www.sysinternals.com

\sessions\2\BaseNamedObjects
  Type: Directory
  RW NT AUTHORITY\SYSTEM
  RW NTDEV\markruss
  RW NTDEV\S-1-5-5-0-5491067-markruss
  RW BUILTIN\Administrators
  R  Everyone
     NT AUTHORITY\RESTRICTED




Windows also supports Ex
          (Extended) versions of the APIs—CreateEventEx,
          CreateMutexEx, CreateSemaphoreEx—that add another
          argument for specifying the access mask. This makes it possible for
          applications to properly use discretionary access control lists
          (DACLs) to secure their objects without breaking their ability to
          use the create object APIs to open a handle to them. You might be
          wondering why a client application would not simply use
          OpenEvent, which does support a desired access
          argument. Using the open object APIs leads to an inherent race
          condition when dealing with a failure in the open call—that is, when
          the client application has attempted to open the event before it has
          been created. In most applications of this kind, the open API is
          followed by a create API in the failure case. Unfortunately, there
          is no guaranteed way to make this create operation
          atomic—in other words, to occur only once.
          Indeed, it would be possible for multiple threads and/or processes
          to have executed the create API concurrently and all attempt to
          create the event at the same time. This race condition and the extra
          complexity required to try and handle it makes using the open object
          APIs an inappropriate solution to the problem, which is why the
          Ex APIs should be used instead.

Object Retention



There are two types of objects: temporary and permanent. Most
          objects are temporary—that is, they remain while they are in use and
          are freed when they are no longer needed. Permanent objects remain
          until they are explicitly freed. Because most objects are temporary,
          the rest of this section describes how the object manager implements
          object retention—that is, retaining temporary
          objects only as long as they are in use and then deleting them.
          Because all user-mode processes that access an object must first
          open a handle to it, the object manager can easily track how many of
          these processes, and even which ones, are using an object. Tracking
          these handles represents one part of implementing retention. The
          object manager implements object retention in two phases. The first
          phase is called name retention, and it is
          controlled by the number of open handles to an object that exist.
          Every time a process opens a handle to an object, the object manager
          increments the open handle counter in the object’s header. As
          processes finish using the object and close their handles to it, the
          object manager decrements the open handle counter. When the counter
          drops to 0, the object manager deletes the object’s name from its
          global namespace. This deletion prevents processes from opening a
          handle to the object.
The second phase of object retention is to stop retaining the
          objects themselves (that is, to delete them) when they are no longer
          in use. Because operating system code usually accesses objects by
          using pointers instead of handles, the object manager must also
          record how many object pointers it has dispensed to operating system
          processes. It increments a reference count for
          an object each time it gives out a pointer to the object; when
          kernel-mode components finish using the pointer, they call the
          object manager to decrement the object’s reference count. The system
          also increments the reference count when it increments the handle
          count, and likewise decrements the reference count when the handle
          count decrements, because a handle is also a reference to the object
          that must be tracked.
Figure 3-23 illustrates
          two event objects that are in use. Process A has the first event
          open. Process B has both events open. In addition, the first event
          is being referenced by some kernel-mode structure; thus, the
          reference count is 3. So even if Processes A and B closed their
          handles to the first event object, it would continue to exist
          because its reference count is 1. However, when Process B closes its
          handle to the second event object, the object would be
          deallocated.
So even after an object’s open handle counter reaches
          0, the object’s reference count might remain positive, indicating
          that the operating system is still using the object. Ultimately,
          when the reference count drops to 0, the object manager deletes the
          object from memory. This deletion has to respect certain rules and
          also requires cooperation from the caller in certain cases. For
          example, because objects can be present both in paged or nonpaged
          pool memory (depending on the settings located in their object
          type), if a dereference occurs at an IRQL level of dispatch or
          higher and this dereference causes the pointer count to drop to 0,
          the system would crash if it attempted to immediately free the
          memory of a paged-pool object. (Recall that such access is illegal
          because the page fault will never be serviced.) In this scenario,
          the object manager performs a deferred delete
          operation, queuing the operation on a worker thread running at
          passive level (IRQL 0). We’ll describe more about system worker
          threads later in this chapter.
Another scenario that requires deferred deletion is when
          dealing with Kernel Transaction Manager (KTM) objects. In some
          scenarios, certain drivers might hold a lock related to this object,
          and attempting to delete the object will result in the system
          attempting to acquire this lock. However, the driver might never get
          the chance to release its lock, causing a deadlock. When dealing
          with KTM objects, driver developers must use
          ObDereferenceObjectDeferDelete to force
          deferred deletion regardless of IRQL level. Finally, the I/O manager
          also uses this mechanism as an optimization so that certain I/Os can
          complete more quickly, instead of waiting for the object manager to
          delete the object.
[image: Handles and reference counts]

Figure 3-23. Handles and reference counts

Because of the way object retention works, an
          application can ensure that an object and its name remain in memory
          simply by keeping a handle open to the object. Programmers who write
          applications that contain two or more cooperating processes need not
          be concerned that one process might delete an object before the
          other process has finished using it. In addition, closing an
          application’s object handles won’t cause an object to be deleted if
          the operating system is still using it. For example, one process
          might create a second process to execute a program in the
          background; it then immediately closes its handle to the process.
          Because the operating system needs the second process to run the
          program, it maintains a reference to its process object. Only when
          the background program finishes executing does the object manager
          decrement the second process’ reference count and then delete
          it.
Because object leaks can be dangerous to the system by leaking
          kernel pool memory and eventually causing systemwide memory
          starvation—and can also break applications in subtle ways—Windows
          includes a number of debugging mechanisms that can be enabled to
          monitor, analyze, and debug issues with handles and objects.
          Additionally, Debugging Tools for Windows come with two extensions
          that tap into these mechanisms and provide easy graphical analysis.
          Table 3-16 describes
          them.
Table 3-16. Debugging Mechanisms for Object Handles
	Mechanism
	Enabled By
	Kernel Debugger
                  Extension

	Handle Tracing
                  Database
	Kernel Stack Trace systemwide
                  and/or per-process with the User Stack Trace option checked
                  with Gflags.exe.
	!htrace <handle
                  value> <process ID>

	Object Reference
                  Tracing
	Per-process-name(s), or
                  per-object-type-pool-tag(s), with Gflags.exe, under Object
                  Reference Tracing.
	!obtrace <object
                  pointer>

	Object Reference
                  Tagging
	Drivers must call appropriate
                  API.
	N/A




Enabling the handle-tracing database is useful when attempting
          to understand the use of each handle within an application or the
          system context. The !htrace debugger extension
          can display the stack trace captured at the time a specified handle
          was opened. After you discover a handle leak, the stack trace can
          pinpoint the code that is creating the handle, and it can be
          analyzed for a missing call to a function such as
          CloseHandle.
The object-reference-tracing !obtrace
          extension monitors even more by showing the stack trace for each new
          handle created as well as each time a handle is referenced by the
          kernel (and also each time it is opened, duplicated, or inherited)
          and dereferenced. By analyzing these patterns, misuse of an object
          at the system level can be more easily debugged. Additionally, these
          reference traces provide a way to understand the behavior of the
          system when dealing with certain objects. Tracing processes, for
          example, display references from all the drivers on the system that
          have registered callback notifications (such as Process Monitor) and
          help detect rogue or buggy third-party drivers that might be
          referencing handles in kernel mode but never dereferencing
          them.
Note
When enabling object-reference tracing for a
            specific object type, you can obtain the name of its pool tag by
            looking at the key member of the OBJECT_TYPE
            structure when using the dt command. Each
            object type on the system has a global variable that references
            this structure—for example, PsProcessType.
            Alternatively, you can use the !object
            command, which displays the pointer to this structure.

Unlike the previous two mechanisms, object-reference tagging
          is not a debugging feature that must be enabled with global flags or
          the debugger, but rather a set of APIs that should be used by
          device-driver developers to reference and dereference objects,
          including ObReferenceObjectWithTag and
          ObDereferenceObjectWithTag. Similar to pool
          tagging (see Chapter 10 in Part 2 for more information on pool
          tagging), these APIs allow developers to supply a four-character tag
          identifying each reference/dereference pair. When using the
          !obtrace extension just described, the tag for
          each reference or dereference operation is also shown, which avoids
          solely using the call stack as a mechanism to identify where leaks
          or under-references might occur, especially if a given call is
          performed thousands of times by the driver.

Resource Accounting



Resource accounting, like object retention, is closely related
          to the use of object handles. A positive open handle count indicates
          that some process is using that resource. It also indicates that
          some process is being charged for the memory the object occupies.
          When an object’s handle count and reference count drop to 0, the
          process that was using the object should no longer be charged for
          it.
Many operating systems use a quota system to limit processes’
          access to system resources. However, the types of quotas imposed on
          processes are sometimes diverse and complicated, and the code to
          track the quotas is spread throughout the operating system. For
          example, in some operating systems, an I/O component might record
          and limit the number of files a process can open, whereas a memory
          component might impose a limit on the amount of memory a process’
          threads can allocate. A process component might limit users to some
          maximum number of new processes they can create or a maximum number
          of threads within a process. Each of these limits is tracked and
          enforced in different parts of the operating system.
In contrast, the Windows object manager provides a central
          facility for resource accounting. Each object header contains an
          attribute called quota charges that records how
          much the object manager subtracts from a process’ allotted paged
          and/or nonpaged pool quota when a thread in the process opens a
          handle to the object.
Each process on Windows points to a quota structure that
          records the limits and current values for nonpaged-pool, paged-pool,
          and page-file usage. These quotas default to 0 (no limit) but can be
          specified by modifying registry values. (You need to add/edit
          NonPagedPoolQuota,
          PagedPoolQuota, and
          PagingFileQuota under
          HKLM\SYSTEM\CurrentControlSet\Control\Session Manager\Memory
          Management.) Note that all the processes in an interactive session
          share the same quota block (and there’s no documented way to create
          processes with their own quota blocks).

Object Names



An important consideration in creating a multitude of
          objects is the need to devise a successful system for keeping track
          of them. The object manager requires the following information to
          help you do so:
	A way to distinguish one object from another

	A method for finding and retrieving a particular
              object



The first requirement is served by allowing names to be
          assigned to objects. This is an extension of what most operating
          systems provide—the ability to name selected resources, files,
          pipes, or a block of shared memory, for example. The executive, in
          contrast, allows any resource represented by an object to have a
          name. The second requirement, finding and retrieving an object, is
          also satisfied by object names. If the object manager stores objects
          by name, it can find an object by looking up its name.
Object names also satisfy a third requirement, which is to
          allow processes to share objects. The executive’s object namespace
          is a global one, visible to all processes in the system. One process
          can create an object and place its name in the global namespace, and
          a second process can open a handle to the object by specifying the
          object’s name. If an object isn’t meant to be shared in this way,
          its creator doesn’t need to give it a name.
To increase efficiency, the object manager doesn’t look up an
          object’s name each time someone uses the object. Instead, it looks
          up a name under only two circumstances. The first is when a process
          creates a named object: the object manager looks up the name to
          verify that it doesn’t already exist before storing the new name in
          the global namespace. The second is when a process opens a handle to
          a named object: the object manager looks up the name, finds the
          object, and then returns an object handle to the caller; thereafter,
          the caller uses the handle to refer to the object. When looking up a
          name, the object manager allows the caller to select either a
          case-sensitive or case-insensitive search, a feature that supports
          Subsystem for UNIX Applications and other environments that use
          case-sensitive file names.

Object Directories



The object directory object is the object manager’s means for
          supporting this hierarchical naming structure. This object is
          analogous to a file system directory and contains the names of other
          objects, possibly even other object directories. The object
          directory object maintains enough information to translate these
          object names into pointers to the objects themselves. The object
          manager uses the pointers to construct the object handles that it
          returns to user-mode callers. Both kernel-mode code (including
          executive components and device drivers) and user-mode code (such as
          subsystems) can create object directories in which to store objects.
          For example, the I/O manager creates an object directory named
          \Device, which contains the names of objects representing I/O
          devices.
Where the names of objects are stored depends on the object
          type. Table 3-17 lists the
          standard object directories found on all Windows systems and what
          types of objects have their names stored there. Of the directories
          listed, only \BaseNamedObjects and \Global?? are visible to
          standard Windows applications. (See the Session Namespace section later in this chapter for
          more information.)
Table 3-17. Standard Object Directories
	Directory
	Types of Object Names
                  Stored

	\ArcName
	Symbolic links mapping ARC-style
                  paths to NT-style paths.

	\BaseNamedObjects
	Global mutexes, events,
                  semaphores, waitable timers, jobs, ALPC ports, symbolic
                  links, and section objects.

	\Callback
	Callback objects.

	\Device
	Device objects.

	\Driver
	Driver objects.

	\FileSystem
	File-system driver objects and
                  file-system-recognizer device objects. The Filter Manager
                  also creates its own device objects under the Filters
                  subkey.

	\GLOBAL??
	MS-DOS device names. (The
                  \Sessions\0\DosDevices\<LUID>\Global directories are
                  symbolic links to this directory.)

	\KernelObjects
	Contains event objects that signal
                  low resource conditions, memory errors, the completion of
                  certain operating system tasks, as well as objects
                  representing Sessions.

	\KnownDlls
	Section names and path for known
                  DLLs (DLLs mapped by the system at startup
                  time).

	\KnownDlls32
	On a 64-bit Windows installation,
                  \KnownDlls contains the native 64-bit binaries, so this
                  directory is used instead to store Wow64 32-bit versions of
                  those DLLs.

	\Nls
	Section names for mapped national
                  language support tables.

	\ObjectTypes
	Names of types of
                  objects.

	\PSXSS
	If Subsystem for UNIX Applications
                  is enabled (through installation of the SUA component), this
                  contains ALPC ports used by Subsystem for UNIX
                  Applications.

	\RPC Control
	ALPC ports used by remote
                  procedure calls (RPCs), and events used by Conhost.exe as
                  part of the console isolation mechanism.

	\Security
	ALPC ports and events used by
                  names of objects specific to the security
                  subsystem.

	\Sessions
	Per-session namespace directory.
                  (See the next subsection.)

	\UMDFCommunicationPorts
	ALPC ports used by the User-Mode
                  Driver Framework (UMDF).

	\Windows
	Windows subsystem ALPC ports,
                  shared section, and window stations.




Because the base kernel objects such as mutexes, events,
          semaphores, waitable timers, and sections have their names stored in
          a single object directory, no two of these objects can have the same
          name, even if they are of a different type. This restriction
          emphasizes the need to choose names carefully so that they don’t
          collide with other names. For example, you could prefix names with a
          GUID and/or combine the name with the user’s security identifier
          (SID).
Object names are global to a single computer (or to all
          processors on a multiprocessor computer), but they’re not visible
          across a network. However, the object manager’s parse method makes
          it possible to access named objects that exist on other computers.
          For example, the I/O manager, which supplies file-object services,
          extends the functions of the object manager to remote files. When
          asked to open a remote file object, the object manager calls
          a parse method, which allows the I/O manager to intercept the
          request and deliver it to a network redirector, a driver that
          accesses files across the network. Server code on the remote Windows
          system calls the object manager and the I/O manager on that system
          to find the file object and return the information back across the
          network.
One security consideration to keep in mind when dealing with
          named objects is the possibility of object name
          squatting. Although object names in different sessions
          are protected from each other, there’s no standard protection inside
          the current session namespace that can be set with the standard
          Windows API. This makes it possible for an unprivileged application
          running in the same session as a privileged application to access
          its objects, as described earlier in the object security subsection.
          Unfortunately, even if the object creator used a proper DACL to
          secure the object, this doesn’t help against the
          squatting attack, in which the unprivileged
          application creates the object before the
          privileged application, thus denying access to the legitimate
          application.
Windows exposes the concept of a private
          namespace to alleviate this issue. It allows user-mode
          applications to create object directories through the
          CreatePrivateNamespace API and associate these
          directories with boundary descriptors, which
          are special data structures protecting the directories. These
          descriptors contain SIDs describing which security principals are
          allowed access to the object directory. In this manner, a privileged
          application can be sure that unprivileged applications will not be
          able to conduct a denial-of-service attack against its objects.
          (This doesn’t stop a privileged application from doing the same,
          however, but this point is moot.) Additionally, a boundary
          descriptor can also contain an integrity level, protecting objects
          possibly belonging to the same user account as the application,
          based on the integrity level of the process. (See Chapter 6 for more information on integrity
          levels.)
EXPERIMENT: Looking at the Base Named Objects
You can see the list of base objects that have names with
            the WinObj tool from Sysinternals. Run Winobj.exe., and click on
            \BaseNamedObjects, as shown here:
[image: image with no caption]

The named objects are shown on the right. The icons
            indicate the object type:
	Mutexes are indicated with a lock sign.

	Sections (Windows file-mapping objects) are shown as
                memory chips.

	Events are shown as exclamation points.

	Semaphores are indicated with an icon that resembles a
                traffic signal.

	Symbolic links have icons that are curved arrows.

	Folders indicate object directories.

	Gears indicate other objects, such as ALPC ports.




EXPERIMENT: Tampering with Single Instancing
Applications such as Windows Media Player and those in
            Microsoft Office are common examples of single-instancing
            enforcement through named objects. Notice that when launching the
            Wmplayer.exe executable, Windows Media Player appears only
            once—every other launch simply results in the window coming back
            into focus. You can tamper with the handle list by using Process
            Explorer to turn the computer into a media mixer! Here’s
            how:
	Launch Windows Media Player and Process Explorer to view
                the handle table (by clicking View, Lower Pane View, and then
                Handles). You should see a handle whose name column contains
                CheckForOtherInstanceMutex.
[image: image with no caption]


	Right-click on the handle, and select Close Handle.
                Confirm the action when asked.

	Now run Windows Media Player again. Notice that this
                time a second process is created.

	Go ahead and play a different song in each
                instance. You can also use the Sound Mixer in the system tray
                (click on the Volume icon) to select which of the two
                processes will have greater volume, effectively creating a
                mixing environment.



Instead of closing a handle to a named object, an
            application could have run on its own before Windows Media Player
            and created an object with the same name. In this scenario,
            Windows Media Player would never run, fooled into believing it was
            already running on the system.

Symbolic Links



In certain file systems (on NTFS and some UNIX systems, for
            example), a symbolic link lets a user create a file name or a
            directory name that, when used, is translated by the operating
            system into a different file or directory name. Using a symbolic
            link is a simple method for allowing users to indirectly share a
            file or the contents of a directory, creating a cross-link between
            different directories in the ordinarily hierarchical directory
            structure.
The object manager implements an object called a
            symbolic link object, which performs a
            similar function for object names in its object namespace. A
            symbolic link can occur anywhere within an object name string.
            When a caller refers to a symbolic link object’s name, the object
            manager traverses its object namespace until it reaches the
            symbolic link object. It looks inside the symbolic link and finds
            a string that it substitutes for the symbolic link name. It then
            restarts its name lookup.
One place in which the executive uses symbolic link objects
            is in translating MS-DOS-style device names into Windows internal
            device names. In Windows, a user refers to hard disk drives using
            the names C:, D:, and so on and serial ports as COM1, COM2, and so
            on. The Windows subsystem makes these symbolic link objects
            protected, global data by placing them in the object manager
            namespace under the \Global?? directory.


Session Namespace



Services have access to the global
          namespace, a namespace that serves as the first instance of the
          namespace. Additional sessions are given a session-private view of
          the namespace known as a local namespace. The
          parts of the namespace that are localized for each session include
          \DosDevices, \Windows, and \BaseNamedObjects. Making separate copies
          of the same parts of the namespace is known as
          instancing the namespace. Instancing
          \DosDevices makes it possible for each user to have different
          network drive letters and Windows objects such as serial ports. On
          Windows, the global \DosDevices directory is named \Global?? and is
          the directory to which \DosDevices points, and local \DosDevices
          directories are identified by the logon session ID.
The \Windows directory is where Win32k.sys inserts the
          interactive window station created by Winlogon, \WinSta0. A Terminal
          Services environment can support multiple interactive users, but
          each user needs an individual version of WinSta0 to preserve the
          illusion that he is accessing the predefined interactive window
          station in Windows. Finally, applications and the system create
          shared objects in \BaseNamedObjects, including events, mutexes, and
          memory sections. If two users are running an application that
          creates a named object, each user session must have a private
          version of the object so that the two instances of the application
          don’t interfere with one another by accessing the same
          object.
The object manager implements a local namespace by creating
          the private versions of the three directories mentioned under a
          directory associated with the user’s session under
          \Sessions\n (where n is
          the session identifier). When a Windows application in remote
          session two creates a named event, for example, the object manager
          transparently redirects the object’s name from \BaseNamedObjects to
          \Sessions\2\BaseNamedObjects.
All object-manager functions related to namespace management
          are aware of the instanced directories and participate in providing
          the illusion that all sessions use the same namespace. Windows
          subsystem DLLs prefix names passed by Windows applications that
          reference objects in \DosDevices with \?? (for
          example, C:\Windows becomes \??\C:\Windows). When the object manager
          sees the special \?? prefix, the steps it takes depends on the
          version of Windows, but it always relies on a field named
          DeviceMap in the executive process object
          (EPROCESS, which is described further in Chapter 5) that points to
          a data structure shared by other processes in the same
          session.
The DosDevicesDirectory field of the
          DeviceMap structure points at the object
          manager directory that represents the process’ local \DosDevices.
          When the object manager sees a reference to \??, it locates the
          process’ local \DosDevices by using the
          DosDevicesDirectory field of the
          DeviceMap. If the object manager doesn’t find
          the object in that directory, it checks the
          DeviceMap field of the directory object. If
          it’s valid, it looks for the object in the directory pointed to by
          the GlobalDosDevicesDirectory field of the
          DeviceMap structure, which is always
          \Global??.
Under certain circumstances, applications that are
          session–aware need to access objects in the global session even if
          the application is running in another session. The application might
          want to do this to synchronize with instances of itself running in
          other remote sessions or with the console session (that is, session
          0). For these cases, the object manager provides the special
          override “\Global” that an application can prefix to any object name
          to access the global namespace. For example, an application in
          session two opening an object named \Global\ApplicationInitialized
          is directed to \BaseNamedObjects\ApplicationInitialized instead of
          \Sessions\2\BaseNamedObjects\ApplicationInitialized.
An application that wants to access an object in the global
          \DosDevices directory does not need to use the \Global prefix as
          long as the object doesn’t exist in its local \DosDevices directory.
          This is because the object manager automatically looks in the global
          directory for the object if it doesn’t find it in the local
          directory. However, an application can force checking the global
          directory by using \GLOBALROOT.
Session directories are isolated from each other, and
          administrative privileges are required to create a global object
          (except for section objects). A special privilege named
          create global object is verified before
          allowing such operations.
EXPERIMENT: Viewing Namespace Instancing
You can see the separation between the session 0
            namespace and other session namespaces as soon as you log in. The
            reason you can is that the first console user is logged in to
            session 1 (while services run in session 0). Run Winobj.exe, and
            click on the \Sessions directory. You’ll see a subdirectory with a
            numeric name for each active session. If you open one of these
            directories, you’ll see subdirectories named \DosDevices,
            \Windows, and \BaseNamedObjects, which are the local namespace
            subdirectories of the session. The following screen shot shows a
            local namespace:
[image: image with no caption]

Next run Process Explorer and select a process in your
            session (such as Explorer.exe), and then view the handle table (by
            clicking View, Lower Pane View, and then Handles). You should see
            a handle to \Windows\WindowStations\WinSta0
            underneath\Sessions\n, where
            n is the session ID.
[image: image with no caption]



Object Filtering



Windows includes a filtering model in the object
          manager, similar to the file system minifilter model described in
          Chapter 8 in Part 2. One of the primary benefits of this filtering
          model is the ability to use the altitude
          concept that these existing filtering technologies use, which means
          that multiple drivers can filter object-manager events at
          appropriate locations in the filtering stack. Additionally, drivers
          are permitted to intercept calls such as
          NtOpenThread and
          NtOpenProcess and even to modify the access
          masks being requested from the process manager. This allows
          protection against certain operations on an open handle—however, an
          open operation cannot be entirely blocked because doing so would too
          closely resemble a malicious operation (processes that could never
          be managed).
Furthermore, drivers are able to take advantage of both
          pre and post callbacks,
          allowing them to prepare for a certain operation before it occurs,
          as well as to react or finalize information after the operation has
          occurred. These callbacks can be specified for each operation
          (currently, only open, create, and duplicate are supported) and be
          specific for each object type (currently, only process and thread
          objects are supported). For each callback, drivers can specify their
          own internal context value, which can be returned across all calls
          to the driver or across a pre/post pair. These callbacks can be
          registered with the ObRegisterCallbacks API and
          unregistered with the ObUnregisterCallbacks
          API—it is the responsibility of the driver to ensure deregistration
          happens.
Use of the APIs is restricted to images that have certain
          characteristics:
	The image must be signed, even on 32-bit computers,
              according to the same rules set forth in the Kernel Mode Code
              Signing (KMCS) policy. (Code integrity will be discussed later
              in this chapter.) The image must be compiled with the
              /integritycheck linker flag, which sets the
              IMAGE_DLLCHARACTERISTICS_FORCE_INTEGRITY value in the PE header.
              This instructs the memory manager to check the signature of the
              image regardless of any other defaults that might not normally
              result in a check.

	The image must be signed with a catalog containing
              cryptographic per-page hashes of the executable code. This
              allows the system to detect changes to the image after it has
              been loaded in memory.



Before executing a callback, the object manager calls the
          MmVerifyCallbackFunction on the target function
          pointer, which in turn locates the loader data table entry
          associated with the module owning this address, and verifies whether
          or not the LDRP_IMAGE_INTEGRITY_FORCED flag is set. (See the Loaded Module Database section in this chapter for more
          information.)



Synchronization



The concept of mutual exclusion is a crucial
      one in operating systems development. It refers to the guarantee that
      one, and only one, thread can access a particular resource at a time.
      Mutual exclusion is necessary when a resource doesn’t lend itself to
      shared access or when sharing would result in an unpredictable outcome.
      For example, if two threads copy a file to a printer port at the same
      time, their output could be interspersed. Similarly, if one thread reads
      a memory location while another one writes to it, the first thread will
      receive unpredictable data. In general, writable resources can’t
      be shared without restrictions, whereas resources that
      aren’t subject to modification can be shared. Figure 3-24 illustrates what happens when
      two threads running on different processors both write data to a
      circular queue.
[image: Incorrect sharing of memory]

Figure 3-24. Incorrect sharing of memory

Because the second thread obtained the value of the queue tail
      pointer before the first thread finished updating it, the second thread
      inserted its data into the same location that the first thread used,
      overwriting data and leaving one queue location empty. Even though Figure 3-24 illustrates what could happen
      on a multiprocessor system, the same error could occur on a
      single-processor system if the operating system performed a context
      switch to the second thread before the first thread updated the queue
      tail pointer.
Sections of code that access a nonshareable resource are called
      critical sections. To ensure correct code, only one
      thread at a time can execute in a critical section. While one thread is
      writing to a file, updating a database, or modifying a shared variable,
      no other thread can be allowed to access the same resource. The
      pseudocode shown in Figure 3-24 is a
      critical section that incorrectly accesses a shared data structure
      without mutual exclusion.
The issue of mutual exclusion, although important for all
      operating systems, is especially important (and intricate) for a
      tightly coupled, symmetric multiprocessing (SMP)
      operating system such as Windows, in which the same system code runs
      simultaneously on more than one processor, sharing certain data
      structures stored in global memory. In Windows, it is the kernel’s job
      to provide mechanisms that system code can use to prevent two threads
      from modifying the same structure at the same time. The kernel provides
      mutual-exclusion primitives that it and the rest of the executive use to
      synchronize their access to global data structures.
Because the scheduler synchronizes access to its data structures
      at DPC/dispatch level IRQL, the kernel and executive cannot rely on
      synchronization mechanisms that would result in a page fault or
      reschedule operation to synchronize access to data structures when the
      IRQL is DPC/dispatch level or higher (levels known as an
      elevated or high IRQL). In the
      following sections, you’ll find out how the kernel and executive use
      mutual exclusion to protect their global data structures when the IRQL
      is high and what mutual-exclusion and synchronization
      mechanisms the kernel and executive use when the IRQL is
      low (below DPC/dispatch level).
High-IRQL Synchronization



At various stages during its execution, the kernel must
        guarantee that one, and only one, processor at a time is executing
        within a critical section. Kernel critical sections are the code
        segments that modify a global data structure such as the kernel’s
        dispatcher database or its DPC queue. The operating system can’t
        function correctly unless the kernel can guarantee that threads access
        these data structures in a mutually exclusive manner.
The biggest area of concern is interrupts. For example, the
        kernel might be updating a global data structure when an interrupt
        occurs whose interrupt-handling routine also modifies the structure.
        Simple single-processor operating systems sometimes prevent such a
        scenario by disabling all interrupts each time they access global
        data, but the Windows kernel has a more sophisticated solution. Before
        using a global resource, the kernel temporarily masks the interrupts
        whose interrupt handlers also use the resource. It does so by raising
        the processor’s IRQL to the highest level used by any potential
        interrupt source that accesses the global data. For example, an
        interrupt at DPC/dispatch level causes the dispatcher, which uses the
        dispatcher database, to run. Therefore, any other part of the kernel
        that uses the dispatcher database raises the IRQL to DPC/dispatch
        level, masking DPC/dispatch-level interrupts before using the
        dispatcher database.
This strategy is fine for a single-processor system, but it’s
        inadequate for a multiprocessor configuration. Raising the IRQL on one
        processor doesn’t prevent an interrupt from occurring on another
        processor. The kernel also needs to guarantee mutually exclusive
        access across several processors.
Interlocked Operations



The simplest form of synchronization mechanisms rely on
          hardware support for multiprocessor-safe manipulation of integer
          values and for performing comparisons. They include functions such
          as InterlockedIncrement,
          InterlockedDecrement,
          InterlockedExchange, and
          InterlockedCompareExchange. The
          InterlockedDecrement function, for example,
          uses the x86 lock instruction prefix (for
          example, lock xadd) to lock the multiprocessor
          bus during the subtraction operation so that another processor
          that’s also modifying the memory location being decremented won’t be
          able to modify it between the decrementing processor’s read of the
          original value and its write of the decremented value. This form of
          basic synchronization is used by the kernel and drivers. In today’s
          Microsoft compiler suite, these functions are called
          intrinsic because the code for them is
          generated in an inline assembler, directly during the compilation
          phase, instead of going through a function call. (It’s likely that
          pushing the parameters onto the stack, calling the function, copying
          the parameters into registers, and then popping the parameters off
          the stack and returning to the caller would be a more expensive
          operation than the actual work the function is supposed to do in the
          first place.)

Spinlocks



The mechanism the kernel uses to achieve
          multiprocessor mutual exclusion is called a
          spinlock. A spinlock is a locking primitive
          associated with a global data structure such as the DPC queue shown
          in Figure 3-25.
[image: Using a spinlock]

Figure 3-25. Using a spinlock

Before entering either critical section shown in Figure 3-25, the kernel must acquire the spinlock
          associated with the protected DPC queue. If the spinlock isn’t free,
          the kernel keeps trying to acquire the lock until it succeeds. The
          spinlock gets its name from the fact that the kernel (and thus, the
          processor) waits, “spinning,” until it gets the lock.
Spinlocks, like the data structures they protect, reside in
          nonpaged memory mapped into the system address space. The code to
          acquire and release a spinlock is written in assembly language for
          speed and to exploit whatever locking mechanism the underlying
          processor architecture provides. On many architectures, spinlocks
          are implemented with a hardware-supported test-and-set operation,
          which tests the value of a lock variable and acquires the lock in
          one atomic instruction. Testing and acquiring the lock in one
          instruction prevents a second thread from grabbing the lock between
          the time the first thread tests the variable and the time it
          acquires the lock. Additionally, the lock
          instruction mentioned earlier can also be used on the test-and-set
          operation, resulting in the combined lock bts
          assembly operation, which also locks the multiprocessor bus;
          otherwise, it would be possible for more than one processor to
          atomically perform the operation. (Without the
          lock, the operation is guaranteed to be atomic
          only on the current processor.)
All kernel-mode spinlocks in Windows have an associated IRQL
          that is always DPC/dispatch level or higher. Thus, when a thread is
          trying to acquire a spinlock, all other activity at the spinlock’s
          IRQL or lower ceases on that processor. Because thread dispatching
          happens at DPC/dispatch level, a thread that holds a spinlock is
          never preempted because the IRQL masks the dispatching mechanisms.
          This masking allows code executing in a critical section protected
          by a spinlock to continue executing so that it will release the lock quickly. The kernel uses
          spinlocks with great care, minimizing the number of instructions it
          executes while it holds a spinlock. Any processor that attempts to
          acquire the spinlock will essentially be busy, waiting indefinitely,
          consuming power (a busy wait results in 100% CPU usage) and
          performing no actual work.
On x86 and x64 processors, a special
          pause assembly instruction can be inserted in
          busy wait loops. This instruction offers a hint
          to the processor that the loop instructions it is processing are
          part of a spinlock (or a similar construct) acquisition loop. The
          instruction provides three benefits:
	It significantly reduces power usage by delaying the core
              ever so slightly instead of continuously looping.

	On HyperThreaded cores, it allows the CPU to realize that
              the “work” being done by the spinning logical core is not
              terribly important and awards more CPU time to the second
              logical core instead.

	Because a busy wait loop results in a storm of read
              requests coming to the bus from the waiting thread (which might
              be generated out of order), the CPU attempts to correct for
              violations of memory order as soon as it detects a write (that
              is, when the owning thread releases the lock). Thus, as soon as
              the spinlock is released, the CPU reorders any pending memory
              read operations to ensure proper ordering. This reordering
              results in a large penalty in system performance and can be
              avoided with the pause instruction.



The kernel makes spinlocks available to other parts of the
          executive through a set of kernel functions, including
          KeAcquireSpinLock and
          KeReleaseSpinLock. Device drivers, for example,
          require spinlocks to guarantee that device registers and other
          global data structures are accessed by only one part of a device
          driver (and from only one processor) at a time. Spinlocks are not
          for use by user programs—user programs should use the objects
          described in the next section. Device drivers also need to protect
          access to their own data structures from interrupts associated with
          themselves. Because the spinlock APIs typically raise the IRQL only
          to DPC/dispatch level, this isn’t enough to protect against
          interrupts. For this reason, the kernel also exports the
          KeAcquireInterruptSpinLock and
          KeReleaseInterruptSpinLock APIs that take as a
          parameter the KINTERRUPT object discussed at the beginning of this
          chapter. The system looks inside the interrupt object for the
          associated DIRQL with the interrupt and raises the IRQL to the
          appropriate level to ensure correct access to structures shared with
          the ISR. Devices can use the
          KeSynchronizeExecution API to synchronize an
          entire function with an ISR, instead of just a critical section. In
          all cases, the code protected by an interrupt spinlock must execute
          extremely quickly—any delay causes higher-than-normal interrupt
          latency and will have significant negative performance
          effects.
Kernel spinlocks carry with them restrictions for code that
          uses them. Because spinlocks always have an IRQL of DPC/dispatch
          level or higher, as explained earlier, code holding a spinlock will
          crash the system if it attempts to make the scheduler perform a
          dispatch operation or if it causes a page fault.

Queued Spinlocks



To increase the scalability of spinlocks, a special
          type of spinlock, called a queued spinlock, is
          used in most circumstances instead of a standard spinlock. A queued
          spinlock works like this: When a processor wants to acquire a queued
          spinlock that is currently held, it places its identifier in a queue
          associated with the spinlock. When the processor that’s holding the
          spinlock releases it, it hands the lock over to the first processor
          identified in the queue. In the meantime, a processor waiting for a
          busy spinlock checks the status not of the spinlock itself but of a
          per-processor flag that the processor ahead of it in the queue sets
          to indicate that the waiting processor’s turn has arrived.
The fact that queued spinlocks result in spinning on
          per-processor flags rather than global spinlocks has two effects.
          The first is that the multiprocessor’s bus isn’t as heavily
          trafficked by interprocessor synchronization. The second is that
          instead of a random processor in a waiting group acquiring a
          spinlock, the queued spinlock enforces first-in, first-out (FIFO)
          ordering to the lock. FIFO ordering means more consistent
          performance across processors accessing the same locks.
Windows defines a number of global queued spinlocks by storing
          pointers to them in an array contained in each processor’s
          processor region control block (PRCB). A global
          spinlock can be acquired by calling
          KeAcquireQueuedSpinLock with the index into the
          PRCB array at which the pointer to the spinlock is stored. The
          number of global spinlocks has grown in each release of the
          operating system, and the table of index definitions for them is
          published in the WDK header file Wdm.h. Note, however, that
          acquiring one of these queued spinlocks from a device driver is an
          unsupported and heavily frowned-upon operation. These locks are
          reserved for the kernel’s own internal use.
EXPERIMENT: Viewing Global Queued Spinlocks
You can view the state of the global queued spinlocks (the
            ones pointed to by the queued spinlock array in each processor’s
            PCR) by using the !qlocks kernel debugger
            command. In the following example, the page frame number (PFN)
            database queued spinlock is held by processor 1, and the other
            queued spinlocks are not acquired. (The PFN database is described
            in Chapter 10 in Part 2.)
lkd> !qlocks
Key: O = Owner, 1-n = Wait order, blank = not owned/waiting, C = Corrupt

                       Processor Number
    Lock Name         0  1

KE   - Unused Spare
MM   - Expansion
MM   - Unused Spare
MM   - System Space
CC   - Vacb
CC   - Master


Instack Queued Spinlocks



Device drivers can use dynamically allocated queued
          spinlocks with the
          KeAcquireInStackQueuedSpinLock and
          KeReleaseInStackQueuedSpinLock functions.
          Several components—including the cache manager, executive pool
          manager, and NTFS—take advantage of these types of locks instead of
          using global queued spinlocks.
KeAcquireInStackQueuedSpinLock takes a
          pointer to a spinlock data structure and a spinlock queue handle.
          The spinlock handle is actually a data structure in which the kernel
          stores information about the lock’s status, including the lock’s
          ownership and the queue of processors that might be waiting for the
          lock to become available. For this reason, the handle shouldn’t be a
          global variable. It is usually a stack variable, guaranteeing
          locality to the caller thread and is
          responsible for the InStack part of the
          spinlock and API name.

Executive Interlocked Operations



The kernel supplies a number of simple synchronization
          functions constructed on spinlocks for more advanced operations,
          such as adding and removing entries from singly and doubly linked
          lists. Examples include
          ExInterlockedPopEntryList and
          ExInterlockedPushEntryList for singly linked
          lists, and ExInterlockedInsertHeadList and
          ExInterlockedRemoveHeadList for doubly linked
          lists. All these functions require a standard spinlock as a
          parameter and are used throughout the kernel and device
          drivers.
Instead of relying on the standard APIs to acquire and release
          the spinlock parameter, these functions place the code required
          inline and also use a different ordering scheme. Whereas the
          Ke spinlock APIs first test and set the bit to
          see whether the lock is released and then atomically do a locked
          test-and-set operation to actually make the acquisition, these
          routines disable interrupts on the processor and immediately attempt
          an atomic test-and-set. If the initial attempt fails, interrupts are
          enabled again, and the standard busy waiting algorithm continues
          until the test-and-set operation returns 0—in which case, the whole
          function is restarted again. Because of these subtle differences, a
          spinlock used for the executive interlocked functions must not be
          used with the standard kernel APIs discussed previously. Naturally,
          noninterlocked list operations must not be mixed with interlocked
          operations.
Note
Certain executive interlocked operations silently ignore the
            spinlock when possible. For example, the
            ExInterlockedIncrementLong or
            ExInterlockedCompareExchange APIs actually
            use the same lock prefix used by the standard
            interlocked functions and the intrinsic functions. These functions
            were useful on older systems (or non-x86 systems) where the
            lock operation was not suitable or available.
            For this reason, these calls are now deprecated in favor of the
            intrinsic functions.



Low-IRQL Synchronization



Executive software outside the kernel also needs to
        synchronize access to global data structures in a multiprocessor
        environment. For example, the memory manager has only one page frame
        database, which it accesses as a global data structure, and device
        drivers need to ensure that they can gain exclusive access to their
        devices. By calling kernel functions, the executive can create a
        spinlock, acquire it, and release it.
Spinlocks only partially fill the executive’s needs for
        synchronization mechanisms, however. Because waiting for a spinlock
        literally stalls a processor, spinlocks can be used only under the
        following strictly limited circumstances:
	The protected resource must be accessed quickly and without
            complicated interactions with other code.

	The critical section code can’t be paged out of memory,
            can’t make references to pageable data, can’t call external
            procedures (including system services), and can’t generate
            interrupts or exceptions.



These restrictions are confining and can’t be met under all
        circumstances. Furthermore, the executive needs to perform other types
        of synchronization in addition to mutual exclusion, and it must also
        provide synchronization mechanisms to user mode.
There are several additional synchronization mechanisms for use
        when spinlocks are not suitable:
	Kernel dispatcher objects

	Fast mutexes and guarded mutexes

	Pushlocks

	Executive resources



Additionally, user-mode code, which also executes at low IRQL,
        must be able to have its own locking primitives. Windows supports
        various user-mode-specific primitives:
	Condition variables (CondVars)

	Slim Reader-Writer Locks (SRW Locks)

	Run-once initialization (InitOnce)

	Critical sections



We’ll take a look at the user-mode primitives and their
        underlying kernel-mode support later; for now, we’ll focus on
        kernel-mode objects. Table 3-18 serves as a reference
        that compares and contrasts the capabilities of these mechanisms and
        their interaction with kernel-mode APC delivery.
Table 3-18. Kernel Synchronization Mechanisms
	 	Exposed for Use by Device Drivers
	Disables Normal Kernel-Mode
                APCs
	Disables Special Kernel-Mode
                APCs
	Supports Recursive
                Acquisition
	Supports Shared and Exclusive
                Acquisition

	Kernel dispatcher
                mutexes
	Yes
	Yes
	No
	Yes
	No

	Kernel dispatcher semaphores or
                events
	Yes
	No
	No
	No
	No

	Fast mutexes
	Yes
	Yes
	Yes
	No
	No

	Guarded mutexes
	Yes
	Yes
	Yes
	No
	No

	Pushlocks
	No
	No
	No
	No
	Yes

	Executive resources
	Yes
	No
	No
	Yes
	Yes




Kernel Dispatcher Objects



The kernel furnishes additional synchronization mechanisms to
          the executive in the form of kernel objects, known collectively as
          dispatcher objects. The Windows API-visible
          synchronization objects acquire their synchronization capabilities
          from these kernel dispatcher objects. Each Windows API-visible
          object that supports synchronization encapsulates at least one
          kernel dispatcher object. The executive’s synchronization semantics
          are visible to Windows programmers through the
          WaitForSingleObject and
          WaitForMultipleObjects functions, which the
          Windows subsystem implements by calling analogous system services
          that the object manager supplies. A thread in a Windows application
          can synchronize with a variety of objects, including a Windows
          process, thread, event, semaphore, mutex, waitable timer, I/O
          completion port, ALPC port, registry key, or file object. In fact,
          almost all objects exposed by the kernel can be waited on. Some of
          these are proper dispatcher objects, while others are larger objects
          that have a dispatcher object within them (such as ports, keys, or
          files). Table 3-19 shows
          the proper dispatcher objects, so any other object that the Windows
          API allows waiting on probably internally contains one of those
          primitives.
One other type of executive synchronization object worth
          noting is called an executive resource.
          Executive resources provide exclusive access (like a mutex) as well
          as shared read access (multiple readers sharing read-only access to
          a structure). However, they’re available only to kernel-mode code
          and thus are not accessible from the Windows API. The remaining
          subsections describe the implementation details of waiting for
          dispatcher objects.

Waiting for Dispatcher Objects



A thread can synchronize with a dispatcher object by waiting
          for the object’s handle. Doing so causes the kernel to put the
          thread in a wait state.
At any given moment, a synchronization object is in one of two
          states: signaled state or nonsignaled
          state. A thread can’t resume its execution until its wait
          is satisfied, a condition that occurs when the dispatcher object whose handle the thread is
          waiting for also undergoes a state change, from the nonsignaled
          state to the signaled state (when another thread sets an event
          object, for example). To synchronize with an object, a thread calls
          one of the wait system services that the object manager supplies,
          passing a handle to the object it wants to synchronize with. The
          thread can wait for one or several objects and can also specify that
          its wait should be canceled if it hasn’t ended within a certain
          amount of time. Whenever the kernel sets an object to the signaled
          state, one of the kernel’s signal routines checks to see whether any
          threads are waiting for the object and not also waiting for other
          objects to become signaled. If there are, the kernel releases one or
          more of the threads from their waiting state so that they can
          continue executing.
The following example of setting an event illustrates how
          synchronization interacts with thread dispatching:
	A user-mode thread waits for an event object’s
              handle.

	The kernel changes the thread’s scheduling state to
              waiting and then adds the thread to a list of threads waiting
              for the event.

	Another thread sets the event.

	The kernel marches down the list of threads waiting for
              the event. If a thread’s conditions for waiting are satisfied
              (see the following note), the kernel takes the thread out of the
              waiting state. If it is a variable-priority thread, the kernel
              might also boost its execution priority. (For details on thread
              scheduling, see Chapter 5.)



Note
Some threads might be waiting for more than one object, so
            they continue waiting, unless they specified a
            WaitAny wait, which will wake them up as soon
            as one object (instead of all) is signaled.


What Signals an Object?



The signaled state is defined differently for different
          objects. A thread object is in the nonsignaled state during its
          lifetime and is set to the signaled state by the kernel when the
          thread terminates. Similarly, the kernel sets a process object to
          the signaled state when the process’ last thread terminates. In
          contrast, the timer object, like an alarm, is set to “go off” at a
          certain time. When its time expires, the kernel sets the timer
          object to the signaled state.
When choosing a synchronization mechanism, a program must take
          into account the rules governing the behavior of different
          synchronization objects. Whether a thread’s wait ends when an object
          is set to the signaled state varies with the type of object the
          thread is waiting for, as Table 3-19 illustrates.
Table 3-19. Definitions of the Signaled State
	Object Type
	Set to Signaled State
                  When
	Effect on Waiting
                  Threads

	Process
	Last thread
                  terminates
	All are released.

	Thread
	Thread terminates
	All are released.

	Event (notification
                  type)
	Thread sets the
                  event
	All are released.

	Event (synchronization
                  type)
	Thread sets the
                  event
	One thread is released and might
                  receive a boost; the event object is reset.

	Gate (locking type)
	Thread signals the
                  gate
	First waiting thread is released
                  and receives a boost.

	Gate (signaling
                  type)
	Thread signals the
                  type
	First waiting thread is
                  released.

	Keyed event
	Thread sets event with a
                  key
	Thread that’s waiting for the key
                  and which is of the same process as the signaler is
                  released.

	Semaphore
	Semaphore count increases by
                  1
	One or more threads are
                  released.

	Timer (notification
                  type)
	Set time arrives, or time interval
                  expires
	All are released.

	Timer (synchronization
                  type)
	Set time arrives, or time interval
                  expires
	One thread is
                  released.

	Mutex
	Thread releases the
                  mutex
	One thread is released and takes
                  ownership of the mutex.

	Queue
	Item is placed on
                  queue
	One thread is
                  released.




When an object is set to the signaled state, waiting threads
          are generally released from their wait states immediately. Some of
          the kernel dispatcher objects and the system events that induce
          their state changes are shown in Figure 3-26.
For example, a notification event object (called a
          manual reset event in the Windows API) is used
          to announce the occurrence of some event. When the event object is
          set to the signaled state, all threads waiting for the event are
          released. The exception is any thread that is waiting for more than
          one object at a time; such a thread might be required to continue
          waiting until additional objects reach the signaled state.
In contrast to an event object, a mutex object has ownership
          associated with it (unless it was acquired during a DPC). It is used
          to gain mutually exclusive access to a resource, and only one thread
          at a time can hold the mutex. When the mutex object becomes free,
          the kernel sets it to the signaled state and then selects one
          waiting thread to execute, while also inheriting any priority boost
          that had been applied. (See Chapter 5 for more
          information on priority boosting.) The thread selected by the kernel
          acquires the mutex object, and all other threads continue
          waiting.
A mutex object can also be abandoned: this occurs when the
          thread currently owning it becomes terminated. When a thread
          terminate, the kernel enumerates all mutexes owned by the thread and
          sets them to the abandoned state, which, in terms of signaling
          logic, is treated as a signaled state in that ownership of the mutex
          is transferred to a waiting thread.
[image: Selected kernel dispatcher objects]

Figure 3-26. Selected kernel dispatcher objects

This brief discussion wasn’t meant to enumerate all
          the reasons and applications for using the various executive objects
          but rather to list their basic functionality and synchronization
          behavior. For information on how to put these objects to use in
          Windows programs, see the Windows reference documentation on
          synchronization objects or Jeffrey Richter and Christophe Nasarre’s
          book Windows via C/C++.

Data Structures



Three data structures are key to tracking
          who is waiting, how they
          are waiting, what they are waiting for, and
          which state the entire wait operation is at.
          These three structures are the dispatcher
          header, the wait block, and the
          wait status register. The former two structures
          are publicly defined in the WDK include file Wdm.h, while the latter
          is not documented.
The dispatcher header is a packed structure because it needs
          to hold lots of information in a fixed-size structure. (See the
          upcoming EXPERIMENT: Looking at Wait Queues
          section to see the definition of the dispatcher header data
          structure.) One of the main tricks is to define mutually exclusive
          flags at the same memory location (offset) in the structure. By
          using the Type field, the kernel knows which of
          these fields actually applies. For example, a mutex can be
          abandoned, but a timer can be absolute or relative. Similarly, a
          timer can be inserted into the timer list, but the Debug
          Active field makes sense only for processes. On the other
          hand, the dispatcher header does contain information generic for any
          dispatcher object: the object type, signaled state, and a list of
          the threads waiting for that object.
The wait block represents a thread waiting for an object. Each
          thread that is in a wait state has a list of the wait blocks that
          represent the objects the thread is waiting for. Each dispatcher
          object has a list of the wait blocks that represent which threads
          are waiting for the object. This list is kept so that when a
          dispatcher object is signaled, the kernel can quickly determine who
          is waiting for that object. Finally, because the balance-set-manager
          thread running on each CPU (see Chapter 5 for more
          information about the balance set manager) needs to analyze the time
          that each thread has been waiting for (in order to decide whether or
          not to page out the kernel stack), each PRCB has a list of waiting
          threads.
The wait block has a pointer to the object being waited for, a
          pointer to the thread waiting for the object, and a pointer to the
          next wait block (if the thread is waiting for more than one object).
          It also records the type of wait (any or all) as well as the
          position of that entry in the array of handles passed by the thread
          on the WaitForMultipleObjects call (position 0
          if the thread was waiting for only one object). The wait type is
          very important during wait satisfaction, because it determines
          whether or not all the wait blocks belonging to the thread waiting
          on the signaled object should be processed: for a wait
          any, the dispatcher does not care what the state of the
          other objects is because at least one (the current one) of the
          objects is now signaled. On the other hand, for a wait
          all, the dispatcher can wake the thread only if
          all the other objects are also in a signaled
          state, which requires traversing the wait blocks and associated
          objects.
The wait block also contains a volatile wait block
          state, which defines the current state of this wait block
          in the transactional wait operation it is currently being engaged
          in. The different states, their meaning, and their effects in the
          wait logic code, are explained in Table 3-20.
Table 3-20. Wait Block States
	State
	Meaning
	Effect

	WaitBlockActive
                  (2)
	This wait block is actively linked
                  to an object as part of a thread that is in a wait
                  state.
	During wait satisfaction, this
                  wait block will be unlinked from the wait block
                  list.

	WaitBlockInactive
                  (3)
	The thread wait associated with
                  this wait block has been satisfied (or the timeout has
                  already expired while setting it up).
	During wait satisfaction, this
                  wait block will not be unlinked from the wait block list
                  because the wait satisfaction must have aleady unlinked
                  during its active state.

	WaitBlockBypassStart
                  (0)
	A signal is being delivered to the
                  thread while the wait has not yet been
                  committed.
	During wait satisfaction (which
                  would be immediate, before the thread enters the true wait
                  state), the waiting thread must synchronize with the
                  signaler because there is a risk that the wait object might
                  be on the stack—marking the wait block as inactive would
                  cause the waiter to unwind the stack while the signaler
                  might still be accessing it.

	WaitBlockBypassComplete
                  (1)
	The thread wait associated with
                  this wait block has now been properly synchronized (the wait
                  satisfaction has completed), and the bypass scenario is now
                  completed.
	The wait block is now essentially
                  treated the same as an inactive wait block
                  (ignored).




Because the overall state of the thread (or any of the objects
          it is being required to start waiting on) can change while wait
          operations are still being set up (because there is nothing blocking
          another thread executing on a different logical processor from
          attempting to signal one of the objects, or possibly alerting the
          thread, or even sending it an APC), the kernel dispatcher needs to
          keep track of two additional pieces of data for each waiting thread:
          the current fine-grained wait state of the thread, as well as any
          pending state changes that could modify the result of the attempted
          wait operation.
When a thread is instructed to wait for a given object (such
          as due to a WaitForSingleObject call), it first
          attempts to enter the in-progress wait state
          (WaitInProgress) by beginning the wait. This
          operation succeeds if there are no pending alerts to the thread at
          the moment (based on the alertability of the wait and the current
          processor mode of the wait, which determine whether or not the alert
          can preempt the wait). If there is an alert, the wait is not even
          entered at all, and the caller receives the appropriate status code;
          otherwise, the thread now enters the
          WaitInProgress state, at which point the main
          thread state is set to Waiting, and the wait
          reason and wait time are recorded, with any timeout specified also
          being registered.
Once the wait is in progress, the thread can initialize the
          wait blocks as needed (and mark them as
          WaitBlockActive in the process) and then
          proceed to lock all the objects that are part of this wait. Because
          each object has its own lock, it is important that the kernel be
          able to maintain a consistent locking ordering scheme when multiple
          processors might be analyzing a wait chain consisting of many
          objects (caused by a WaitForMultipleObjects
          call). The kernel uses a technique known as address
          ordering to achieve this: because each object has a
          distinct and static kernel-mode address, the objects can be ordered
          in monotonically increasing address order, guaranteeing that locks
          are always acquired and released in the same order by all callers.
          This means that the caller-supplied array of objects will be
          duplicated and sorted accordingly.
The next step is to check for immediate satisfaction
          of the wait, such as when a thread is being told to wait on a mutex
          that has already been released or an event that is already signaled.
          In such cases, the wait is immediately satisfied, which involves
          unlinking the associated wait blocks (however, in this case, no wait
          blocks have yet been inserted) and performing a wait exit
          (processing any pending scheduler operations marked in the wait
          status register). If this shortcut fails, the kernel next attempts
          to check whether the timeout specified for the wait (if any) has
          actually already expired. In this case, the wait is not “satisfied”
          but merely “timed out,” which results in slightly faster processing
          of the exit code, albeit with the same result.
If none of these shortcuts were effective, the wait block is
          inserted into the thread’s wait list, and the thread now attempts to
          commit its wait. (Meanwhile, the object lock or locks have been
          released, allowing other processors to modify the state of any of
          the objects that the thread is now supposed to attempt waiting on.)
          Assuming a noncontended scenario, where other processors are not
          interested in this thread or its wait objects, the wait switches
          into the committed state as long as there are no pending changes
          marked by the wait status register. The commit operation links the
          waiting thread in the PRCB list, activates an extra wait queue
          thread if needed, and inserts the timer associated with the wait
          timeout, if any. Because potentially quite a lot of cycles have
          elapsed by this point, it is again possible that the timeout has
          already elapsed. In this scenario, inserting the timer will cause
          immediate signaling of the thread, and thus a wait satisfaction on
          the timer, and the overall timeout of the wait. Otherwise, in the
          much more common scenario, the CPU now context switches away to the
          next thread that is ready for execution. (See Chapter 5 for more
          information on scheduling.)
In highly contended code paths on multiprocessor machines, it
          is possible and likely that the thread attempting to commit its wait
          has experienced a change while its wait was still in progress. One
          possible scenario is that one of the objects it was waiting on has
          just been signaled. As touched upon earlier, this causes the
          associated wait block to enter the
          WaitBlockBypassStart state, and the thread’s
          wait status register now shows the WaitAborted
          wait state. Another possible scenario is for an alert or APC to have
          been issued to the waiting thread, which does not set the
          WaitAborted state but enables one of the
          corresponding bits in the wait status register. Because APCs can
          break waits (depending on the type of APC, wait mode, and
          alertability), the APC is delivered and the wait is aborted. Other
          operations that will modify the wait status register without
          generating a full abort cycle include modifications to the thread’s
          priority or affinity, which will be processed when exiting the wait
          due to failure to commit, as with the previous cases
          mentioned.
Figure 3-27 shows the relationship
          of dispatcher objects to wait blocks to threads to PRCB. In this
          example, CPU 0 has two waiting (committed) threads: thread 1 is
          waiting for object B, and thread 2 is waiting for objects A
          and B. If object A is signaled, the kernel sees
          that because thread 2 is also waiting for another object, thread 2
          can’t be readied for execution. On the other hand, if object B is
          signaled, the kernel can ready thread 1 for execution right away
          because it isn’t waiting for any other objects. (Alternatively, if
          thread 1 was also waiting for other objects but its wait type was a
          WaitAny, the kernel could still wake it
          up.)
[image: Wait data structures]

Figure 3-27. Wait data structures

EXPERIMENT: Looking at Wait Queues
You can see the list of objects a thread is waiting
            for with the kernel debugger’s !thread
            command. For example, the following excerpt from the output of a
            !process command shows that the thread is
            waiting for an event object:
kd> !process
§
        THREAD fffffa8005292060  Cid 062c062c.0660  Teb: 000007fffffde000 Win32Thread:
fffff900c01c68f0 WAIT: (WrUserRequest) UserMode Non-Alertable
            fffffa80047b8240  SynchronizationEvent
You can use the dt command to
            interpret the dispatcher header of the object like this:
lkd> dt nt!_DISPATCHER_HEADER fffffa80047b8240
   +0x000 Type             : 0x1 ''
   +0x001 TimerControlFlags : 0 ''
   +0x001 Absolute         : 0y0
   +0x001Coalescable      : 0y0
   +0x001 KeepShifting     : 0y0
   +0x001 EncodedTolerableDelay : 0y00000 (0)
   +0x001 Abandoned        : 0 ''
   +0x001 Signalling       : 0 ''
   +0x002 ThreadControlFlags : 0x6 ''
   +0x002 CpuThrottled     : 0y0
   +0x002 CycleProfiling   : 0y1
   +0x002 CounterProfiling : 0y1
   +0x002 Reserved         : 0y00000 (0)
   +0x002 Hand             : 0x6 ''
   +0x002 Size             : 0x6
   +0x003 TimerMiscFlags   : 0 ''
   +0x003 Index            : 0y000000 (0)
   +0x003 Inserted         : 0y0
   +0x003 Expired          : 0y0
   +0x003 DebugActive      : 0 ''
   +0x003 ActiveDR7        : 0y0
   +0x003 Instrumented     : 0y0
   +0x003 Reserved2        : 0y0000
   +0x003 UmsScheduled     : 0y0
   +0x003 UmsPrimary       : 0y0
   +0x003 DpcActive        : 0 ''
   +0x000 Lock             : 393217
   +0x004 SignalState      : 0
   +0x008 WaitListHead     : _LIST_ENTRY [ 0xfffffa80'047b8248 - 0xfffffa80'047b8248 ]
You should ignore any values that do not correspond to the
            given object type, because they might be either incorrectly
            decoded by the debugger (because the wrong type or field is being
            used) or simply contain stale or invalid data from a previous
            allocation value. There is no defined correlation you can see
            between which fields apply to which object, other than by looking
            at the Windows kernel source code or the WDK header files’
            comments. For convenience, Table 3-21 lists the
            dispatcher header flags and the objects to which they
            apply.
Table 3-21. Usage and Meaning of the Dispatcher Header Flags
	Flag
	Applies To
	Meaning

	Absolute
	Timers
	The expiration time is absolute,
                    not relative.

	Coalescable
	Periodic Timers
	Indicates whether coalescing
                    should be used for this timer.

	KeepShifting
	Coalescable
                    Timers
	Indicates whether or not the
                    kernel dispatcher should continue attempting to shift the
                    timer’s expiration time. When alignment is reached with
                    the machine’s periodic interval, this eventually becomes
                    FALSE.

	EncodedTolerableDelay
	Coalescable
                    Timers
	The maximum amount of tolerance
                    (shifted as a power of two) that the timer can support
                    when running outside of its expected
                    periodicity.

	Abandoned
	Mutexes
	The thread holding the mutex was
                    terminated.

	Signaling
	Gates
	A priority boost should be
                    applied to the woken thread when the gate is
                    signaled.

	CpuThrottled
	Threads
	CPU throttling has been enabled
                    for this thread, such as when running under DFSS mode
                    (Dynamic Fair-Share Scheduler).

	CycleProfiling
	Threads
	CPU cycle profiling has been
                    enabled for this thread.

	CounterProfiling
	Threads
	Hardware CPU performance counter
                    monitoring/profiling has been enabled for this
                    thread.

	Size
	All objects
	Size of the object divided by 4,
                    to fit in a single byte.

	Hand
	Timers
	Index into the timer handle
                    table.

	Index
	Timers
	Index into the timer expiration
                    table.

	Inserted
	Timers
	Set if the timer was inserted
                    into the timer handle table.

	Expired
	Timers
	Set if the timer has already
                    expired.

	DebugActive
	Processes
	Specifies whether the process is
                    being debugged.

	ActiveDR7
	Thread
	Hardware breakpoints are being
                    used, so DR7 is active and should be sanitized during
                    context operations.

	Instrumented
	Thread
	Specifies whether the thread has
                    a user-mode instrumentation callback (supported only on
                    Windows for x64 processors).

	UmsScheduled
	Thread
	This thread is a UMS Worker
                    (scheduled) thread.

	UmsPrimary
	Thread
	This thread is a UMS Scheduler
                    (primary) thread.

	DpcActive
	Mutexes
	The mutex was acquired during a
                    DPC.

	Lock
	All objects
	Used for locking an object
                    during wait operations which need to modify its state or
                    linkage; actually corresponds to bit 7 (0x80) of the
                    Type field.




Apart from these flags, the Type field
            contains the identifier for the object. This identifier
            corresponds to a number in the KOBJECTS enumeration, which you can
            dump with the debugger:
lkd> dt nt!_KOBJECTS
   EventNotificationObject = 0
   EventSynchronizationObject = 1
   MutantObject = 2
   ProcessObject = 3
   QueueObject = 4
   SemaphoreObject = 5
   ThreadObject = 6
   GateObject = 7
   TimerNotificationObject = 8
   TimerSynchronizationObject = 9
   Spare2Object = 10
   Spare3Object = 11
   Spare4Object = 12
   Spare5Object = 13
   Spare6Object = 14
   Spare7Object = 15
   Spare8Object = 16
   Spare9Object = 17
   ApcObject = 18
   DpcObject = 19
   DeviceQueueObject = 20
   EventPairObject = 21
   InterruptObject = 22
   ProfileObject = 23
   ThreadedDpcObject = 24
   MaximumKernelObject = 25
When the wait list head pointers are identical,
            there are either zero threads or one thread waiting on this
            object. Dumping a wait block for an object that is part of a
            multiple wait from a thread, or that multiple threads are waiting
            on, can yield the following:
dt nt!_KWAIT_BLOCK 0xfffffa80'053cf628
   +0x000 WaitListEntry    : _LIST_ENTRY [ 0xfffffa80'02efe568 - 0xfffffa80'02803468 ]
   +0x010 Thread           : 0xfffffa80'053cf520 _KTHREAD
   +0x018 Object           : 0xfffffa80'02803460
   +0x020 NextWaitBlock    : 0xfffffa80'053cf628 _KWAIT_BLOCK
   +0x028 WaitKey          : 0
   +0x02a WaitType         : 0x1 ''
   +0x02b BlockState       : 0x2 ''
   +0x02c SpareLong        : 8
If the wait list has more than one entry, you can execute
            the same command on the second pointer value in the
            WaitListEntry field of each wait block (by
            executing !thread on the thread pointer in
            the wait block) to traverse the list and see what other threads
            are waiting for the object. This would indicate more than one
            thread waiting on this object. On the other hand, when dealing
            with an object that’s part of a collection of objects being waited
            on by a single thread, you have to parse the
            NextWaitBlock field instead.


Keyed Events



A synchronization object called a keyed
          event bears special mention because of the role it plays
          in user-mode-exclusive synchronization primitives. Keyed events were
          originally implemented to help processes deal with low-memory
          situations when using critical sections, which are user-mode
          synchronization objects that we’ll see more about shortly. A keyed
          event, which is not documented, allows a thread to specify a “key”
          for which it waits, where the thread wakes when another thread of
          the same process signals the event with the same key.
If there is contention,
          EnterCriticalSection dynamically allocates an
          event object, and the thread wanting to acquire the critical section
          waits for the thread that owns the critical section to signal it in
          LeaveCriticalSection. Unfortunately, this
          introduces a new problem. Without keyed events, the system could be
          critically out of memory and critical-section acquisition could fail
          because the system was unable to allocate the event object required. The
          low-memory condition itself might have been caused by the
          application trying to acquire the critical section, so the system
          would deadlock in this situation. Low memory isn’t the only scenario
          that could cause this to fail: a less likely scenario is handle
          exhaustion. If the process reaches its 16-million-handle limit, the
          new handle for the event object could fail.
The failure caused by low-memory conditions typically are an
          exception from the code responsible for acquiring the critical
          section. Unfortunately, the result is also a damaged critical
          section, which makes the situation hard to debug and makes the
          object useless for a reacquisition attempt. Attempting a
          LeaveCriticalSection results in another
          event-object allocation attempt, further generating exceptions and
          corrupting the structure.
Allocating a global standard event object would not fix the
          issue because standard event primitives can be used only for a
          single object. Each critical section in the process still requires
          its own event object, so the same problem would resurface. The
          implementation of keyed events allows multiple critical sections
          (waiters) to use the same global (per-process) keyed event handle.
          This allows the critical section functions to operate properly even
          when memory is temporarily low.
When a thread signals a keyed event or performs a wait on it,
          it uses a unique identifier called a key, which
          identifies the instance of the keyed event (an association of the
          keyed event to a single critical section). When the owner thread
          releases the keyed event by signaling it, only a single thread
          waiting on the key is woken up (the same behavior as
          synchronization events, in contrast to
          notification events). Additionally, only the
          waiters in the current process are awakened, so the key is even
          isolated across processes, meaning that there is actually only a
          single keyed event object for the entire system. When a critical
          section uses the keyed event,
          EnterCriticalSection sets the key as the
          address of the critical section and performs a wait.
When EnterCriticalSection calls
          NtWaitForKeyedEvent to perform a wait on the
          keyed event, it can now give a NULL handle as parameter for the
          keyed event, telling the kernel that it was unable to create a keyed
          event. The kernel recognizes this behavior and uses a global keyed
          event named ExpCritSecOutOfMemoryEvent. The
          primary benefit is that processes don’t need to waste a handle for a
          named keyed event anymore because the kernel keeps track of the
          object and its references.
However, keyed events are more than just fallback objects for
          low-memory conditions. When multiple waiters are waiting on the same
          key and need to be woken up, the key is actually signaled multiple
          times, which requires the object to keep a list of all the waiters
          so that it can perform a “wake” operation on each of them. (Recall
          that the result of signaling a keyed event is the same as that of
          signaling a synchronization event.) However, a thread can signal a
          keyed event without any threads on the waiter list. In this
          scenario, the signaling thread instead waits on the event itself.
          Without this fallback, a signaling thread could signal the keyed
          event during the time that the user-mode code saw the keyed event as
          unsignaled and attempt a wait. The wait might have come
          after the signaling thread signaled the keyed
          event, resulting in a missed pulse, so the waiting thread would
          deadlock. By forcing the signaling thread to wait in this scenario,
          it actually signals the keyed event only when someone is looking
          (waiting).
Note
When the keyed-event wait code itself needs to
            perform a wait, it uses a built-in semaphore located in the
            kernel-mode thread object (ETHREAD) called
            KeyedWaitSemaphore. (This semaphore actually
            shares its location with the ALPC wait semaphore.) See Chapter 5 for more
            information on thread objects.

Keyed events, however, do not replace standard event objects
          in the critical section implementation. The initial reason, during
          the Windows XP timeframe, was that keyed events do not offer
          scalable performance in heavy-usage scenarios. Recall that all the
          algorithms described were meant to be used only in critical,
          low-memory scenarios, when performance and scalability aren’t all
          that important. To replace the standard event object would place
          strain on keyed events that they weren’t implemented to handle. The
          primary performance bottleneck was that keyed events maintained the
          list of waiters described in a doubly linked list. This kind of list
          has poor traversal speed, meaning the time
          required to loop through the list. In this case, this time depended
          on the number of waiter threads. Because the object is global,
          dozens of threads could be on the list, requiring long traversal
          times every single time a key was set or waited on.
Note
The head of the list is kept in the keyed event object,
            while the threads are actually linked through the
            KeyedWaitChain field (which is actually
            shared with the thread’s exit time, stored as a LARGE_INTEGER, the
            same size as a doubly linked list) in the kernel-mode thread
            object (ETHREAD). See Chapter 5 for more
            information on this object.

Windows improves keyed-event performance by using a hash table
          instead of a linked list to hold the waiter threads. This
          optimization allows Windows to include three new lightweight
          user-mode synchronization primitives (to be discussed shortly) that
          all depend on the keyed event. Critical sections, however, still
          continue to use event objects, primarily for application
          compatibility and debugging, because the event object and internals
          are well known and documented, while keyed events are opaque and not
          exposed to the Win32 API.

Fast Mutexes and Guarded Mutexes



Fast mutexes, which are also known as executive
          mutexes, usually offer better performance than mutex
          objects because, although they are built on dispatcher event
          objects, they perform a wait through the dispatcher only if the fast
          mutex is contended—unlike a standard mutex, which always attempts
          the acquisition through the dispatcher. This gives the fast mutex
          especially good performance in a multiprocessor environment. Fast
          mutexes are used widely in device drivers.
However, fast mutexes are suitable only when normal
          kernel-mode APC (described earlier in this chapter) delivery can be
          disabled. The executive defines two functions for acquiring them:
          ExAcquireFastMutex and
          ExAcquireFastMutexUnsafe. The former function
          blocks all APC delivery by raising the IRQL of the processor to APC
          level. The latter expects to be called with normal kernel-mode APC
          delivery disabled, which can be done by raising the IRQL to APC
          level. ExTryToAcquireFastMutex performs
          similarly to the first, but it does not actually wait if the fast
          mutex is already held, returning FALSE instead. Another
          limitation of fast mutexes is that they can’t be acquired
          recursively, like mutex objects can.
Guarded mutexes are essentially the same as fast mutexes
          (although they use a different synchronization object, the KGATE,
          internally). They are acquired with the
          KeAcquireGuardedMutex and
          KeAcquireGuardedMutexUnsafe functions, but
          instead of disabling APCs by raising the IRQL to APC level, they
          disable all kernel-mode APC delivery by calling
          KeEnterGuardedRegion. Similarly to fast
          mutexes, a KeTryToAcquireGuardedMutex method
          also exists. Recall that a guarded region, unlike a critical region,
          disables both special and normal kernel-mode APCs, which allows the
          guarded mutex to avoid raising the IRQL.
Three differences make guarded mutexes faster than fast
          mutexes:
	By avoiding raising the IRQL, the kernel can avoid talking
              to the local APIC of every processor on the bus, which is a
              significant operation on large SMP systems. On uniprocessor
              systems, this isn’t a problem because of lazy IRQL evaluation,
              but lowering the IRQL might still require accessing the
              PIC.

	The gate primitive is an optimized version of the event.
              By not having both synchronization and notification versions and
              by being the exclusive object that a thread can wait on, the
              code for acquiring and releasing a gate is heavily optimized.
              Gates even have their own dispatcher lock instead of acquiring
              the entire dispatcher database.

	In the noncontended case, the acquisition and release of a
              guarded mutex works on a single bit, with an atomic bit
              test-and-reset operation instead of the more complex integer
              operations fast mutexes perform.



Note
The code for a fast mutex is also optimized to account for
            almost all these optimizations—it uses the same atomic
            lock operation, and the event object is actually a gate
            object (although by dumping the type in the kernel debugger, you
            would still see an event object structure; this is actually a
            compatibility lie). However, fast mutexes still raise the IRQL
            instead of using guarded regions.

Because the flag responsible for special kernel APC delivery
          disabling (and the guarded-region functionality) was not added until
          Windows Server 2003, many drivers do not take advantage of guarded
          mutexes. Doing so would raise compatibility issues with earlier
          versions of Windows, which require a recompiled driver making use
          only of fast mutexes. Internally, however, the Windows kernel has
          replaced almost all uses of fast mutexes with guarded mutexes
          because the two have identical semantics and can be easily
          interchanged.
Another problem related to the guarded mutex was the kernel
          function KeAreApcsDisabled. Prior to Windows
          Server 2003, this function indicated whether normal APCs were
          disabled by checking whether the code was running inside a critical
          section. In Windows Server 2003, this function was changed to
          indicate whether the code was in a critical, or guarded, region,
          changing the functionality to also return TRUE if special kernel
          APCs are also disabled.
Because there are certain operations that drivers
          should not perform when special kernel APCs are disabled, it makes
          sense to call KeGetCurrentIrql to check whether
          the IRQL is APC level or not, which is the only way special kernel
          APCs could have been disabled. However, because the memory manager
          makes use of guarded mutexes instead, this check fails because
          guarded mutexes do not raise IRQL. Drivers should instead call
          KeAreAllApcsDisabled for this purpose. This
          function checks whether special kernel APCs are disabled and/or
          whether the IRQL is APC level—the sure-fire way to detect both
          guarded mutexes and fast mutexes.

Executive Resources



Executive resources are a synchronization mechanism that
          supports shared and exclusive access; like fast mutexes, they
          require that normal kernel-mode APC delivery be disabled before they
          are acquired. They are also built on dispatcher objects that are
          used only when there is contention. Executive resources are used
          throughout the system, especially in file-system drivers, because
          such drivers tend to have long-lasting wait periods in which I/O
          should still be allowed to some extent (such as reads).
Threads waiting to acquire an executive resource for shared
          access wait for a semaphore associated with the resource, and
          threads waiting to acquire an executive resource for exclusive
          access wait for an event. A semaphore with unlimited count is used
          for shared waiters because they can all be woken and granted access
          to the resource when an exclusive holder releases the resource
          simply by signaling the semaphore. When a thread waits for exclusive
          access of a resource that is currently owned, it waits on a
          synchronization event object because only one of the waiters will
          wake when the event is signaled. In the earlier section on
          synchronization events, it was mentioned that some event unwait
          operations can actually cause a priority boost: this scenario occurs
          when executive resources are used, which is one reason why they also
          track ownership like mutexes do. (See Chapter 5 for more
          information on the executive resource priority boost.)
Because of the flexibility that shared and exclusive access
          offer, there are a number of functions for acquiring resources:
          ExAcquireResourceSharedLite,
          ExAcquireResourceExclusiveLite,
          ExAcquireSharedStarveExclusive,
          ExAcquireShareWaitForExclusive. These functions
          are documented in the WDK.
EXPERIMENT: Listing Acquired Executive Resources
The kernel debugger !locks command
            searches paged pool for executive resource objects and dumps their
            state. By default, the command lists only executive resources that
            are currently owned, but the –d option lists
            all executive resources. Here is partial output of the
            command:
lkd> !locks
**** DUMP OF ALL RESOURCE OBJECTS ****
KD: Scanning for held locks.

Resource @ 0x89929320    Exclusively owned
    Contention Count = 3911396
     Threads: 8952d030-01<*>

KD: Scanning for held locks.......................................

Resource @ 0x89da1a68    Shared 1 owning threads
     Threads: 8a4cb533-01<*> *** Actual Thread 8a4cb530
Note that the contention count, which is extracted
            from the resource structure, records the number of times threads
            have tried to acquire the resource and had to wait because it was
            already owned.
You can examine the details of a specific resource object,
            including the thread that owns the resource and any threads that
            are waiting for the resource, by specifying the
            –v switch and the address of the
            resource:
lkd> !locks -v 0x89929320

Resource @ 0x89929320    Exclusively owned
    Contention Count = 3913573
     Threads: 8952d030-01<*>

     THREAD 8952d030  Cid 0acc.050c  Teb: 7ffdf000 Win32Thread: fe82c4c0 RUNNING on processor 0
     Not impersonating
     DeviceMap                 9aa0bdb8
     Owning Process            89e1ead8       Image:         windbg.exe
     Wait Start TickCount      24620588       Ticks: 12 (0:00:00:00.187)
     Context Switch Count      772193
     UserTime                  00:00:02.293
     KernelTime                00:00:09.828
     Win32 Start Address windbg (0x006e63b8)
     Stack Init a7eba000 Current a7eb9c10 Base a7eba000 Limit a7eb7000 Call 0
     Priority 10 BasePriority 8 PriorityDecrement 0 IoPriority 2 PagePriority 5
Unable to get context for thread running on processor 1, HRESULT 0x80004001
1 total locks, 1 locks currently held


Pushlocks



Pushlocks are another optimized synchronization mechanism
          built on gate objects; like guarded mutexes, they wait for a gate
          object only when there’s contention on the lock. They offer
          advantages over the guarded mutex in that they can be acquired in
          shared or exclusive mode. However, their main advantage is their
          size: a resource object is 56 bytes, but a pushlock is pointer-size.
          Unfortunately, they are not documented in the WDK and are therefore
          reserved for use by the operating system (although the APIs are
          exported, so internal drivers do use them).
There are two types of pushlocks: normal and cache-aware.
          Normal pushlocks require only the size of a pointer in storage (4
          bytes on 32-bit systems, and 8 bytes on 64-bit systems). When a
          thread acquires a normal pushlock, the pushlock code marks the
          pushlock as owned if it is not currently owned. If the pushlock is
          owned exclusively or the thread wants to acquire the thread
          exclusively and the pushlock is owned on a shared basis, the thread
          allocates a wait block on the thread’s stack, initializes a gate
          object in the wait block, and adds the wait block to the wait list
          associated with the pushlock. When a thread releases a pushlock, the
          thread wakes a waiter, if any are present, by signaling the event in
          the waiter’s wait block.
Because a pushlock is only pointer-sized, it actually contains
          a variety of bits to describe its state. The meaning of those bits
          changes as the pushlock changes from being contended to
          noncontended. In its initial state, the pushlock contains the
          following structure:
	One lock bit, set to 1 if the lock is acquired

	One waiting bit, set to 1 if the lock is contended and
              someone is waiting on it

	One waking bit, set to 1 if the lock is being granted to a
              thread and the waiter’s list needs to be optimized

	One multiple shared bit, set to 1 if the pushlock is
              shared and currently acquired by more than one thread

	28 (on 32-bit Windows) or 60 (on 64-bit Windows) share
              count bits, containing the number of threads that have acquired
              the pushlock



As discussed previously, when a thread acquires a pushlock
          exclusively while the pushlock is already acquired by either
          multiple readers or a writer, the kernel allocates a pushlock wait
          block. The structure of the pushlock value itself changes. The share
          count bits now become the pointer to the wait block. Because this
          wait block is allocated on the stack and the header files contain a
          special alignment directive to force it to be 16-byte aligned, the
          bottom 4 bits of any pushlock wait-block structure will be all
          zeros. Therefore, those bits are ignored for the purposes of pointer
          dereferencing; instead, the 4 bits shown earlier are combined with
          the pointer value. Because this alignment removes the share count
          bits, the share count is now stored in the wait block
          instead.
A cache-aware pushlock adds layers to the normal (basic)
          pushlock by allocating a pushlock for each processor in the system
          and associating it with the cache-aware pushlock. When a thread
          wants to acquire a cache-aware pushlock for shared access, it simply
          acquires the pushlock allocated for its current processor in shared
          mode; to acquire a cache-aware pushlock exclusively, the thread
          acquires the pushlock for each processor in exclusive mode.
Other than a much smaller memory footprint, one of the large
          advantages that pushlocks have over executive resources is that in
          the noncontended case they do not require lengthy accounting and
          integer operations to perform acquisition or release. By being as
          small as a pointer, the kernel can use atomic CPU instructions to
          perform these tasks. (lock cmpxchg is used,
          which atomically compares and exchanges the old lock with a new
          lock.) If the atomic compare and exchange fails, the lock contains
          values the caller did not expect (callers usually expect the lock to
          be unused or acquired as shared), and a call is then made to the
          more complex contended version. To improve performance even further,
          the kernel exposes the pushlock functionality as inline functions,
          meaning that no function calls are ever generated during
          noncontended acquisition—the assembly code is directly inserted in
          each function. This increases code size slightly, but it avoids the
          slowness of a function call. Finally, pushlocks use several
          algorithmic tricks to avoid lock convoys (a situation that can occur
          when multiple threads of the same priority are all waiting on a lock
          and little actual work gets done), and they are also self-optimizing: the list of threads
          waiting on a pushlock will be periodically rearranged to provide
          fairer behavior when the pushlock is released.
Areas in which pushlocks are used include the object manager,
          where they protect global object-manager data structures and object
          security descriptors, and the memory manager, where their
          cache-aware counterpart is used to protect Address Windowing
          Extension (AWE) data structures.
Deadlock Detection with Driver Verifier
A deadlock is a synchronization issue resulting from two
            threads or processors holding resources that the other wants and
            neither yielding what it has. This situation might result in
            system or process hangs. Driver Verifier, described in Chapter 8
            in Part 2 and Chapter 9 in Part 2, has an option to check for
            deadlocks involving spinlocks, fast mutexes, and mutexes. For
            information on when to enable Driver Verifier to help resolve
            system hangs, see Chapter 14 in Part 2.


Critical Sections



Critical sections are one of the main synchronization
          primitives that Windows provides to user-mode applications on top of
          the kernel-based synchronization primitives. Critical sections and
          the other user-mode primitives you’ll see later have one major
          advantage over their kernel counterparts, which is saving a
          round-trip to kernel mode in cases in which the lock is noncontended
          (which is typically 99 percent of the time or more). Contended cases
          still require calling the kernel, however, because it is the only
          piece of the system that is able to perform the complex waking and
          dispatching logic required to make these objects work.
Critical sections are able to remain in user mode by using a
          local bit to provide the main exclusive locking logic, much like a
          spinlock. If the bit is 0, the critical section can be acquired, and
          the owner sets the bit to 1. This operation doesn’t require calling
          the kernel but uses the interlocked CPU operations discussed
          earlier. Releasing the critical section behaves similarly, with bit
          state changing from 1 to 0 with an interlocked operation. On the
          other hand, as you can probably guess, when the bit is already 1 and
          another caller attempts to acquire the critical section, the kernel
          must be called to put the thread in a wait state.Finally, because
          critical sections are not kernel objects, they have certain
          limitations. The primary one is that you cannot obtain a kernel
          handle to a critical section; as such, no security, naming, or other
          object manager functionality can be applied to a critical section.
          Two processes cannot use the same critical section to coordinate
          their operations, nor can duplication or inheritance be used.

User-Mode Resources



User-mode resources also provide more fine-grained locking
          mechanisms than kernel primitives. A resource can be acquired for
          shared mode or for exclusive mode, allowing it to function as a
          multiple-reader (shared), single-writer (exclusive) lock for data
          structures such as databases. When a resource is acquired in shared
          mode and other threads attempt to acquire the same resource, no trip
          to the kernel is required because none of the threads will be
          waiting. Only when a thread attempts to acquire the resource for
          exclusive access, or the resource is already locked by an exclusive
          owner, will this be required.
To make use of the same dispatching and synchronization
          mechanism you saw in the kernel, resources actually make use of
          existing kernel primitives. A resource data structure (RTL_RESOURCE)
          contains handles to a kernel mutex as well as a kernel semaphore
          object. When the resource is acquired exclusively by more than one
          thread, the resource uses the mutex because it permits only one
          owner. When the resource is acquired in shared mode by more than one
          thread, the resource uses a semaphore because it allows multiple
          owner counts. This level of detail is typically hidden from the
          programmer, and these internal objects should never be used
          directly.
Resources were originally implemented to support the SAM (or
          Security Account Manager, which is discussed in Chapter 6) and not exposed through the Windows
          API for standard applications. Slim Reader-Writer Locks (SRW Locks),
          described next, were implemented in Windows Vista to expose a
          similar locking primitive through a documented API, although some
          system components still use the resource mechanism.

Condition Variables



Condition variables provide a Windows native implementation
          for synchronizing a set of threads that are waiting on a specific
          result to a conditional test. Although this operation was possible
          with other user-mode synchronization methods, there was no
          atomic mechanism to check the result of the
          conditional test and to begin waiting on a change in the result.
          This required that additional synchronization be used around such
          pieces of code.
A user-mode thread initializes a condition variable by calling
          InitializeConditionVariable to set up the
          initial state. When it wants to initiate a wait on the variable, it
          can call SleepConditionVariableCS, which uses a
          critical section (that the thread must have initialized) to wait for
          changes to the variable. The setting thread must use
          WakeConditionVariable (or
          WakeAllConditionVariable) after it has modified
          the variable. (There is no automatic detection mechanism.) This call
          releases the critical section of either one or all waiting threads,
          depending on which function was used.
Before condition variables, it was common to use either a
          notification event or a
          synchronization event (recall that these are
          referred to as auto-reset or
          manual-reset in the Windows API) to signal the
          change to a variable, such as the state of a worker queue. Waiting
          for a change required a critical section to be acquired and then
          released, followed by a wait on an event. After the wait, the
          critical section had to be re-acquired. During this series of
          acquisitions and releases, the thread might have switched contexts,
          causing problems if one of the threads called
          PulseEvent (a similar problem to the one that
          keyed events solve by forcing a wait for the signaling thread if
          there is no waiter). With condition variables, acquisition of the
          critical section can be maintained by the application while
          SleepConditionVariableCS is called and can be
          released only after the actual work is done. This makes writing
          work-queue code (and similar implementations) much simpler and
          predictable.
Internally, condition variables can be thought of as a port of
          the existing pushlock algorithms present in kernel mode, with the
          additional complexity of acquiring and releasing critical sections
          in the SleepConditionVariableCS
          API. Condition variables are pointer-size (just like pushlocks),
          avoid using the dispatcher (which requires a ring transition to
          kernel mode in this scenario, making the advantage even more
          noticeable), automatically optimize the wait list during wait
          operations, and protect against lock convoys. Additionally,
          condition variables make full use of keyed events instead of the
          regular event object that developers would have used on their own,
          which makes even contended cases more optimized.

Slim Reader-Writer Locks



Although condition variables are a synchronization mechanism,
          they are not fully primitive locking objects. As you’ve seen, they
          still depend on the critical section lock, whose acquisition and
          release uses standard dispatcher event objects, so trips through
          kernel mode can still happen and callers still require the
          initialization of the large critical section object. If condition
          variables share a lot of similarities with pushlocks, Slim
          Reader-Writer Locks (SRW Locks) are nearly identical. They are also
          pointer-size, use atomic operations for acquisition and release,
          rearrange their waiter lists, protect against lock convoys, and can
          be acquired both in shared and exclusive mode. Some differences from
          pushlocks, however, include the fact that SRW Locks cannot be
          “upgraded” or converted from shared to exclusive or vice versa.
          Additionally, they cannot be recursively acquired. Finally, SRW
          Locks are exclusive to user-mode code, while pushlocks are exclusive
          to kernel-mode code, and the two cannot be shared or exposed from
          one layer to the other.
Not only can SRW Locks entirely replace critical sections in
          application code, but they also offer multiple-reader, single-writer
          functionality. SRW Locks must first be initialized with
          InitializeSRWLock, after which they can be
          acquired or released in either exclusive or shared mode with the
          appropriate APIs: AcquireSRWLockExclusive,
          ReleaseSRWLockExclusive, AcquireSRWLockShared, and
          ReleaseSRWLockShared.
Note
Unlike most other Windows APIs, the SRW locking functions do
            not return with a value—instead they generate exceptions if the
            lock could not be acquired. This makes it obvious that an
            acquisition has failed so that code that assumes success will
            terminate instead of potentially proceeding to corrupt user
            data.

The Windows SRW Locks do not prefer readers or writers,
          meaning that the performance for either case should be the same.
          This makes them great replacements for critical sections, which are
          writer-only or exclusive synchronization
          mechanisms, and they provide an optimized alternative to resources.
          If SRW Locks were optimized for readers, they would be poor
          exclusive-only locks, but this isn’t the case. As a result, the
          design of the condition variable mechanism introduced earlier also
          allows for the use of SRW Locks instead of critical sections,
          through the SleepConditionVariableSRW API.
          Finally, SRW Locks also use keyed events instead of standard event
          objects, so the combination of condition variables and SRW Locks
          results in scalable, pointer-size synchronization mechanisms with
          very few trips to kernel mode—except in contended cases, which are
          optimized to take less time and memory to wake and set because of
          the use of keyed events.

Run Once Initialization



The ability to guarantee the
          atomic execution of a piece of code responsible
          for performing some sort of initialization task—such as allocating
          memory, initializing certain variables, or even creating objects on
          demand—is a typical problem in multithreaded programming. In a piece
          of code that can be called simultaneously by multiple threads (a
          good example is the DllMain routine, which
          initializes a DLL), there are several ways of attempting to ensure
          the correct, atomic, and unique execution of initialization
          tasks.
In this scenario, Windows implements init
          once, or one-time initialization
          (also called run once initialization
          internally). This mechanism allows for both synchronous (meaning
          that the other threads must wait for initialization to complete)
          execution of a certain piece of code, as well as asynchronous
          (meaning that the other threads can attempt to do their own
          initialization and race) execution. We’ll look at the logic behind
          asynchronous execution after explaining the synchronous
          mechanism.
In the synchronous case, the developer writes the piece of
          code that would normally execute after double-checking the global
          variable in a dedicated function. Any information that this routine
          needs can be passed through the parameter
          variable that the init-once routine accepts. Any output information
          is returned through the context variable. (The
          status of the initialization itself is returned as a Boolean.) All
          the developer has to do to ensure proper execution is call
          InitOnceExecuteOnce with the
          parameter, context, and
          run-once function pointer after initializing an INIT_ONCE object
          with InitOnceInitialize API. The system will
          take care of the rest.
For applications that want to use the asynchronous model
          instead, the threads call
          InitOnceBeginInitialize and receive a BOOLEAN
          pending status and the
          context described earlier. If the
          pending status is FALSE, initialization has
          already taken place, and the thread uses the context value for the
          result. (It’s also possible for the function itself to return FALSE,
          meaning that initialization failed.) However, if the pending status
          comes back as TRUE, the thread should race to
          be the first to create the object. The code that follows performs
          whatever initialization tasks are required, such as creating objects
          or allocating memory. When this work is done, the thread calls
          InitOnceComplete with the result of the work as
          the context and receives a BOOLEAN status. If
          the status is TRUE, the thread won the race, and the object that it
          created or allocated is the one that will be the global object. The
          thread can now save this object or return it to a caller, depending
          on the usage.
In the more complex scenario when the status is FALSE, this
          means that the thread lost the race. The thread must undo all the
          work it did, such as deleting objects or freeing memory, and then
          call InitOnceBeginInitialize again. However,
          instead of requesting to start a race as it did initially, it uses
          the INIT_ONCE_CHECK_ONLY flag, knowing that it
          has lost, and requests the winner’s context instead (for example,
          the objects or memory that were created or allocated by the winner).
          This returns another status, which can be TRUE,
          meaning that the context is valid and should be used or returned to
          the caller, or FALSE, meaning that initialization failed and nobody
          has actually been able to perform the work (such as in the case of a
          low-memory condition, perhaps).
In both cases, the mechanism for run-once initialization is
          similar to the mechanism for condition variables and SRW Locks. The
          init once structure is pointer-size, and inline
          assembly versions of the SRW acquisition/release code are used for the
          noncontended case, while keyed events are used when contention has
          occurred (which happens when the mechanism is used in synchronous
          mode) and the other threads must wait for initialization. In the
          asynchronous case, the locks are used in shared mode, so multiple
          threads can perform initialization at the same time.



System Worker Threads



During system initialization, Windows creates several threads in
      the System process, called system worker threads,
      which exist solely to perform work on behalf of other threads. In many
      cases, threads executing at DPC/dispatch level need to execute functions
      that can be performed only at a lower IRQL. For example, a DPC routine,
      which executes in an arbitrary thread context (because DPC execution can
      usurp any thread in the system) at DPC/dispatch level IRQL, might need
      to access paged pool or wait for a dispatcher object used to synchronize
      execution with an application thread. Because a DPC routine can’t lower
      the IRQL, it must pass such processing to a thread that executes at an
      IRQL below DPC/dispatch level.
Some device drivers and executive components create their own
      threads dedicated to processing work at passive level; however, most use
      system worker threads instead, which avoids the unnecessary scheduling
      and memory overhead associated with having additional threads in the
      system. An executive component requests a system worker thread’s
      services by calling the executive functions
      ExQueueWorkItem or
      IoQueueWorkItem. Device drivers should use only the
      latter (because this associates the work item with a Device object,
      allowing for greater accountability and the handling of scenarios in
      which a driver unloads while its work item is active). These functions
      place a work item on a queue dispatcher object
      where the threads look for work. (Queue dispatcher objects are described
      in more detail in the section “I/O Completion Ports” in Chapter 8 in
      Part 2.)
The IoQueueWorkItemEx, IoSizeofWorkItem,
      IoInitializeWorkItem, and
      IoUninitializeWorkItem APIs act similarly, but they
      create an association with a driver’s Driver object or one of its Device
      objects.
Work items include a pointer to a routine and a parameter that the
      thread passes to the routine when it processes the work item. The device
      driver or executive component that requires passive-level execution
      implements the routine. For example, a DPC routine that must wait for a
      dispatcher object can initialize a work item that points to the routine
      in the driver that waits for the dispatcher object, and perhaps points
      to a pointer to the object. At some stage, a system worker thread will
      remove the work item from its queue and execute the driver’s routine.
      When the driver’s routine finishes, the system worker thread checks to
      see whether there are more work items to process. If there aren’t any
      more, the system worker thread blocks until a work item is placed on the
      queue. The DPC routine might or might not have finished executing when
      the system worker thread processes its work item.
There are three types of system worker threads:
	Delayed worker threads execute at
          priority 12, process work items that aren’t considered
          time-critical, and can have their stack paged out to a paging file
          while they wait for work items. The object manager uses a delayed work item to
          perform deferred object deletion, which deletes kernel objects after
          they have been scheduled for freeing.

	Critical worker threads execute at
          priority 13, process time-critical work items, and on Windows Server
          systems have their stacks present in physical memory at all
          times.

	A single hypercritical worker thread executes at priority 15
          and also keeps its stack in memory. The process manager uses the
          hypercritical work item to execute the thread “reaper” function that
          frees terminated threads.



The number of delayed and critical worker threads created by the
      executive’s ExpWorkerInitialization function, which
      is called early in the boot process, depends on the amount of memory
      present on the system and whether the system is a server. Table 3-22 shows the initial
      number of threads created on default configurations. You can specify
      that ExpInitializeWorker create up to 16 additional
      delayed and 16 additional critical worker threads with the
      AdditionalDelayedWorkerThreads and
      AdditionalCriticalWorkerThreads values under the
      registry key HKLM\SYSTEM\CurrentControlSet\Control\Session
      Manager\Executive.
Table 3-22. Initial Number of System Worker Threads
	Work Queue Type
	Default Number of
              Threads

	Delayed
	7

	Critical
	5

	Hypercritical
	1




The executive tries to match the number of critical worker threads
      with changing workloads as the system executes. Once every second, the
      executive function ExpWorkerThreadBalanceManager
      determines whether it should create a new critical worker thread. The
      critical worker threads that are created by
      ExpWorkerThreadBalanceManager are called
      dynamic worker threads, and all the following
      conditions must be satisfied before such a thread is created:
	Work items exist in the critical work queue.

	The number of inactive critical worker threads (ones that are
          either blocked waiting for work items or that have blocked on
          dispatcher objects while executing a work routine) must be less than
          the number of processors on the system.

	There are fewer than 16 dynamic worker threads.



Dynamic worker threads exit after 10 minutes of inactivity. Thus,
      when the workload dictates, the executive can create up to 16 dynamic
      worker threads.
EXPERIMENT: Listing System Worker Threads
You can use the !exqueue kernel
        debugger command to see a listing of system worker threads classified
        by their type:
lkd> !exqueue
Dumping ExWorkerQueue: 820FDE40

**** Critical WorkQueue( current = 0 maximum = 2 )
THREAD 861160b8  Cid 0004.001c  Teb: 00000000 Win32Thread: 00000000 WAIT
THREAD 8613b020  Cid 0004.0020  Teb: 00000000 Win32Thread: 00000000 WAIT
THREAD 8613bd78  Cid 0004.0024  Teb: 00000000 Win32Thread: 00000000 WAIT
THREAD 8613bad0  Cid 0004.0028  Teb: 00000000 Win32Thread: 00000000 WAIT
THREAD 8613b828  Cid 0004.002c  Teb: 00000000 Win32Thread: 00000000 WAIT

**** Delayed WorkQueue( current = 0 maximum = 2 )
THREAD 8613b580  Cid 0004.0030  Teb: 00000000 Win32Thread: 00000000 WAIT
THREAD 8613b2d8  Cid 0004.0034  Teb: 00000000 Win32Thread: 00000000 WAIT
THREAD 8613c020  Cid 0004.0038  Teb: 00000000 Win32Thread: 00000000 WAIT
THREAD 8613cd78  Cid 0004.003c  Teb: 00000000 Win32Thread: 00000000 WAIT
THREAD 8613cad0  Cid 0004.0040  Teb: 00000000 Win32Thread: 00000000 WAIT
THREAD 8613c828  Cid 0004.0044  Teb: 00000000 Win32Thread: 00000000 WAIT
THREAD 8613c580  Cid 0004.0048  Teb: 00000000 Win32Thread: 00000000 WAIT

**** HyperCritical WorkQueue( current = 0 maximum = 2 )
THREAD 8613c2d8  Cid 0004.004c  Teb: 00000000 Win32Thread: 00000000 WAIT


Windows Global Flags



Windows has a set of flags stored in a systemwide global variable
      named NtGlobalFlag that enable various internal
      debugging, tracing, and validation support in the operating system. The
      system variable NtGlobalFlag is initialized from
      the registry key HKLM\SYSTEM\CurrentControlSet\Control\Session Manager
      in the value GlobalFlag at system boot time. By
      default, this registry value is 0, so it’s likely that on your systems,
      you’re not using any global flags. In addition, each image has a set of
      global flags that also turn on internal tracing and validation code
      (although the bit layout of these flags is entirely different from the
      systemwide global flags).
Fortunately, the debugging tools contains a utility named
      Gflags.exe you can use to view and change the system global flags
      (either in the registry or in the running system) as well as image
      global flags. Gflags has both a command-line and a GUI interface. To see
      the command-line flags, type gflags
      /?. If you run the utility without any switches, the dialog
      box shown in Figure 3-28
      is displayed.
[image: Setting system debugging options with Gflags]

Figure 3-28. Setting system debugging options with Gflags

You can configure a variable’s settings in the registry on
      the System Registry page or the current value of a variable in system
      memory on the Kernel Flags page.
The Image File page requires you to fill in the file name of an
      executable image. Use this option to change a set of global flags that
      apply to an individual image (rather than to the whole system). In Figure 3-29, notice that the
      flags are different from the operating system ones shown in Figure 3-28.
[image: Setting image global flags with Gflags]

Figure 3-29. Setting image global flags with Gflags

EXPERIMENT: Viewing and Setting
        NtGlobalFlag
You can use the !gflag kernel
        debugger command to view and set the state of the
        NtGlobalFlag kernel variable. The
        !gflag command lists all the flags that are
        enabled. You can use !gflag -? to get the entire
        list of supported global flags.


Advanced Local Procedure Call



All modern operating systems require a mechanism for securely
      transferring data between one or more processes in user mode, as well as
      between a service in the kernel and clients in user mode. Typically,
      UNIX mechanisms such as mailslots, files, named pipes, and sockets are
      used for portability, while other developers use window messages for
      graphical applications. Windows implements an internal IPC mechanism
      called Advanced Local Procedure Call, or ALPC, which is a high-speed,
      scalable, and secured facility for message passing arbitrary-size
      messages. Although it is internal, and thus not available for
      third-party developers, ALPC is widely used in various parts of
      Windows:
	Windows applications that use remote procedure call (RPC), a
          documented API, indirectly use ALPC when they specify
          local-RPC over the ncalrpc
          transport, a form of RPC used to communicate between processes on
          the same system. Kernel-mode RPC, used by the network stack, also
          uses ALPC.

	Whenever a Windows process and/or thread starts, as well as
          during any Windows subsystem operation (such as all console I/O),
          ALPC is used to communicate with the subsystem process (CSRSS). All
          subsystems communicate with the session manager (SMSS) over
          ALPC.

	Winlogon uses ALPC to communicate with the local security
          authentication process, LSASS.

	The security reference monitor (an executive component
          explained in Chapter 6) uses ALPC to
          communicate with the LSASS process.

	The user-mode power manager and power monitor communicate with
          the kernel-mode power manager over ALPC, such as whenever the LCD
          brightness is changed.

	Windows Error Reporting uses ALPC to receive context
          information from crashing processes.

	The User-Mode Driver Framework (UMDF) enables user-mode
          drivers to communicate using ALPC.



Note
ALPC is the replacement for an older IPC mechanism initially
        shipped with the very first kernel design of Windows NT, called LPC,
        which is why certain variables, fields, and functions might still
        refer to “LPC” today. Keep in mind that LPC is now emulated on top of
        ALPC for compatibility and has been removed from the kernel (legacy
        system calls still exist, which get wrapped into ALPC calls).

Connection Model



Typically, ALPCs are used between a server process and
        one or more client processes of that server. An ALPC connection can be
        established between two or more user-mode processes or between a
        kernel-mode component and one or more user-mode processes. ALPC
        exports a single executive object called the port
        object to maintain the state needed for communication.
        Although this is just one object, there are actually several kinds of
        ALPC ports that it can represent:
	Server connection
              port. A named port that is a server connection request point.
              Clients can connect to the server by connecting to this
              port.

	Server communication
              port. An unnamed port a server uses to communicate with a
              particular client. The server has one such port per active
              client.

	Client communication
              port. An unnamed port a particular client thread uses to
              communicate with a particular server.

	Unconnected communication
              port. An unnamed port a client can use to communicate locally
              with itself.



ALPC follows a connection and communication model that’s
        somewhat reminiscent of BSD socket programming. A server first creates
        a server connection port (NtAlpcCreatePort),
        while a client attempts to connect to it
        (NtAlpcConnectPort). If the server was in a
        listening state, it receives a connection request message and can
        choose to accept it (NtAlpcAcceptPort). In doing
        so, both the client and server communication ports are created, and
        each respective endpoint process receives a handle to its
        communication port. Messages are then sent across this handle
        (NtAlpcSendWaitReceiveMessage), typically in a
        dedicated thread, so that the server can continue listening for
        connection requests on the original connection port (unless this
        server expects only one client).
The server also has the ability to deny the connection, either
        for security reasons or simply due to protocol or versioning issues.
        Because clients can send a custom payload with a connection request,
        this is usually used by various services to ensure that the correct
        client, or only one client, is talking to the server. If any anomalies
        are found, the server can reject the connection, and, optionally,
        return a payload containing information on why the client was rejected
        (allowing the client to take corrective action, if possible, or for
        debugging purposes).
Once a connection is made, a connection information structure
        (actually, a blob, as will be described shortly) stores the linkage
        between all the different ports, as shown in Figure 3-30.
[image: Use of ALPC ports]

Figure 3-30. Use of ALPC ports


Message Model



Using ALPC, a client and thread using blocking messages
        each take turns performing a loop around the
        NtAlpcSendWaitReplyPort system call, in which one
        side sends a request and waits for a reply while the other side does
        the opposite. However, because ALPC supports asynchronous messages,
        it’s possible for either side not to block and choose instead to
        perform some other runtime task and check for messages later (some of
        these methods will be described shortly). ALPC supports the following
        three methods of exchanging payloads sent with a message:
	A message can be sent to another process through the
            standard double-buffering mechanism, in which the kernel maintains
            a copy of the message (copying it from the source process),
            switches to the target process, and copies the data from the
            kernel’s buffer. For compatibility, if legacy LPC is being used,
            only messages up to 256 bytes can be sent this way, while ALPC has
            the ability to allocate an extension buffer
            for messages up to ~64KB.

	A message can be stored in an ALPC section object from which
            the client and server processes map views. (See Chapter 10 in Part
            2 for more information on section mappings.)

	A message can be stored in a message
            zone, which is an Memory Descriptor List (MDL) that
            backs the physical pages containing the data and that is mapped
            into the kernel’s address space.



An important side effect of the ability to send asynchronuos
        messages is that a message can be canceled—for example, when a request
        takes too long or the user has indicated that she wants to cancel the
        operation it implements. ALPC supports this with the
        NtAlpcCancelMessage system call.
An ALPC message can be on one of four different queues
        implemented by the ALPC port object:
	Main queue. A message has been sent, and the client is processing
              it.

	Pending queue. A message has been sent and the caller is waiting for a
              reply, but the reply has not yet been sent.

	Large message
              queue. A message has been sent, but the caller’s buffer was too
              small to receive it. The caller gets another chance to allocate
              a larger buffer and request the message payload again.

	Canceled queue. A message that was sent to the port, but has since been
              canceled.



Note that a fifth queue, called the wait
        queue, does not link messages together; instead, it links
        all the threads waiting on a message.
EXPERIMENT: Viewing Subsystem ALPC Port Objects
You can see named ALPC port objects with the WinObj tool from
          Sysinternals. Run Winobj.exe, and select the root directory. A gear
          icon identifies the port objects, as shown here:
[image: image with no caption]

You should see the ALPC ports used by the power
          manager, the security manager, and other internal Windows services.
          If you want to see the ALPC port objects used by RPC, you can select
          the \RPC Control directory. One of the primary users of ALPC,
          outside of Local RPC, is the Windows subsystem, which uses ALPC to
          communicate with the Windows subsystem DLLs that are present in all
          Windows processes. (Subsystem for UNIX Applications uses a similar
          mechanism.) Because CSRSS loads once for each session, you will find
          its ALPC port objects under the appropriate \Sessions\X\Windows
          directory, such as shown here:
[image: image with no caption]



Asynchronous Operation



The synchronous model of ALPC is tied to the original LPC
        architecture in the early NT design, and is similar to other blocking
        IPC mechanisms, such as Mach ports. Although it is simple to design, a
        blocking IPC algorithm includes many possibilities for deadlock, and
        working around those scenarios creates complex code that requires
        support for a more flexible asynchronous (nonblocking) model. As such,
        ALPC was primarily designed to support asynchronous operation as well,
        which is a requirement for scalable RPC and other uses, such as
        support for pending I/O in user-mode drivers. A basic feature of ALPC,
        which wasn’t originally present in LPC, is that blocking calls can
        have a timeout parameter. This allows legacy applications to avoid
        certain deadlock scenarios.
However, ALPC is optimized for asynchronous messages and
        provides three different models for asynchronous notifications. The
        first doesn’t actually notify the client or server, but simply copies
        the data payload. Under this model, it’s up to the implementor to
        choose a reliable synchronization method. For example, the client and
        the server can share a notification event object, or the client can
        poll for data arrival. The data structure used by this model is the
        ALPC completion list (not to be confused with the
        Windows I/O completion port). The ALPC completion list is an
        efficient, nonblocking data structure that enables atomic passing of data
        between clients, and its internals are described further in the Performance section.
The next notification model is a waiting model that uses the
        Windows completion-port mechanism (on top of the ALPC completion
        list). This enables a thread to retrieve multiple payloads at once,
        control the maximum number of concurrent requests, and take advantage
        of native completion-port functionality. The user-mode thread pool
        (described later in this chapter) implementation provides internal
        APIs that processes use to manage ALPC messages within the same
        infrastructure as worker threads, which are implemented using this
        model. The RPC system in Windows, when using Local RPC (over
        ncalrpc), also makes use of this functionality to
        provide efficient message delivery by taking advantage of this kernel
        support.
Finally, because drivers can also use asynchronous ALPC, but do
        not typically support completion ports at such a high-level, ALPC also
        provides a mechanism for a more basic, kernel-based notification using
        executive callback objects. A driver can register its own callback and
        context with NtAlpcSetInformation, after which it
        will get called whenever a message is received. The user-mode,
        power-manager interfaces in the kernel employ this mechanism for
        asynchronous LCD backlight operation on laptops, for example.

Views, Regions, and Sections



Instead of sending message buffers between their two respective
        processes, a server and client can choose a more efficient
        data-passing mechanism that is at the core of Windows’ memory manager:
        the section object. (More information is
        available in Chapter 10 in Part 2.) This allows a piece of memory to
        be allocated as shared, and for both client and server to have a
        consistent, and equal, view of this memory. In this scenario, as much
        data as can fit can be transferred, and data is merely copied into one
        address range and immediately available in the other. Unfortunately,
        shared-memory communication, such as LPC traditionally provided, has
        its share of drawbacks, especially when considering security
        ramifications. For one, because both client and server must have
        access to the shared memory, an unprivileged client can use this to
        corrupt the server’s shared memory, and even build executable payloads
        for potential exploits. Additionally, because the client knows the
        location of the server’s data, it can use this information to bypass
        ASLR protections. (See Chapter 8 in Part 2 for more
        information.)
ALPC provides its own security on top of what’s provided by
        section objects. With ALPC, a specific ALPC section object must be
        created with the appropriate
        NtAlpcCreatePortSection API, which will create
        the correct references to the port, as well as allow for automatic
        section garbage collection. (A manual API also exists for deletion.)
        As the owner of the ALPC section object begins using the section, the
        allocated chunks are created as ALPC regions, which represent a range
        of used addresses within the section and add an extra reference to the
        message. Finally, within a range of shared memory, the clients obtain
        views to this memory, which represents the local mapping within their
        address space.
Regions also support a couple of security options. First of all,
        regions can be mapped either using a secure mode or an unsecure mode.
        In the secure mode, only two views (mappings) are allowed to the
        region. This is typically used when a server wants to share data
        privately with a single client process. Additionally, only one region for a given range
        of shared memory can be opened from within the context of a given
        port. Finally, regions can also be marked with write-access
        protection, which enables only one process context (the server) to
        have write access to the view (by using
        MmSecureVirtualMemoryAgainstWrites). Other
        clients, meanwhile, will have read-only access only. These settings
        mitigate many privilege-escalation attacks that could happen due to
        attacks on shared memory, and they make ALPC more resilient than
        typical IPC mechanisms.

Attributes



ALPC provides more than simple message passing: it also enables
        specific contextual information to be added to each message and have
        the kernel track the validity, lifetime, and implementation of that
        information. Users of ALPC have the ability to assign their own custom
        context information as well. Whether it’s system-managed or
        user-managed, ALPC calls this data attributes.
        There are three of these that the kernel manages:
	The security attribute, which holds key information to allow
            impersonation of clients, as well as advanced ALPC security
            functionality (which is described later)

	The data view attribute, responsible for managing the
            different views associated with the regions of an ALPC
            section

	The handle attribute, which contains information about which
            handles to associate with the message (which is described in more
            detail later in the Security
            section).



Normally, these attributes are initially passed in by the server
        or client when the message is sent and converted into the kernel’s own
        internal ALPC representation. If the ALPC user requests this data
        back, it is exposed back securely. By
        implementing this kind of model and combining it with its own internal
        handle table, described next, ALPC can keep critical data opaque
        between clients and servers, while still maintaining the true pointers
        in kernel mode.
Finally, a fourth attribute is supported, called the
        context attribute. This attribute supports the
        traditional, LPC-style, user-specific context pointer that could be
        associated with a given message, and it is still supported for
        scenarios where custom data needs to be associated with a
        client/server pair.
To define attributes correctly, a variety of APIs are available
        for internal ALPC consumers, such as
        AlpcInitializeMessageAttribute and
        AlpcGetMessageAttribute.

Blobs, Handles, and Resources



Although the ALPC library exposes only one Object Manager object
        type (the port), it internally must manage a number of data structures
        that allow it to perform the tasks required by its mechanisms. For
        example, ALPC needs to allocate and track the messages associated with
        each port, as well as the message attributes, which it must track for
        the duration of their lifetime. Instead of using the Object Manager’s
        routines for data management, ALPC implements its own lightweight
        objects called blobs. Just like objects, blobs
        can automatically be allocated and garbage collected, reference
        tracked, and locked through synchronization. Additionally, blobs can
        have custom allocation and deallocation callbacks, which let their
        owners control extra information that might need to be tracked for
        each blob. Finally, ALPC also uses the executive’s handle table
        implementation (used for objects and PIDs/TIDs) to have an
        ALPC-specific handle table, which allows ALPC to generate private
        handles for blobs, instead of using pointers.
In the ALPC model, messages are blobs, for example, and their
        constructor generates a message ID, which is itself a handle into
        ALPC’s handle table. Other ALPC blobs include the following:
	The connection blob, which stores the client and server
            communication ports, as well as the server connection port and
            ALPC handle table.

	The security blob, which stores the security data necessary
            to allow impersonation of a client. It stores the security
            attribute.

	The section, region, and view blobs, which describe ALPC’s
            shared-memory model. The view blob is ultimately responsible for
            storing the data view attribute.

	The reserve blob, which implements support for ALPC Reserve
            Objects. (See the Reserve Objects section in
            this chapter.)

	The handle data blob, which contains the information that
            enables ALPC’s handle attribute support.



Because blobs are allocated from pageable memory, they must
        carefully be tracked to ensure their deletion at the appropriate time.
        For certain kinds of blobs, this is easy: for example, when an ALPC
        message is freed, the blob used to contain it is also deleted.
        However, certain blobs can represent numerous attributes attached to a
        single ALPC message, and the kernel must manage their lifetime
        appropriately. For example, because a message can have multiple views
        associated with it (when many clients have access to the same shared
        memory), the views must be tracked with the messages that reference
        them. ALPC implements this functionality by using a concept of
        resources. Each message is associated with a
        resource list, and whenever a blob associated with a message (that
        isn’t a simple pointer) is allocated, it is also added as a resource
        of the message. In turn, the ALPC library provides functionality for
        looking up, flushing, and deleting associated resources. Security
        blobs, reserve blobs, and view blobs are all stored as
        resources.

Security



ALPC implements several security mechanisms, full security
        boundaries, and mitigations to prevent attacks in case of generic IPC
        parsing bugs. At a base level, ALPC port objects are managed by the
        same object manager interfaces that manage object security, preventing
        nonprivileged applications from obtaining handles to server ports with
        ACL. On top of that, ALPC provides a SID-based trust model, inherited
        from the original LPC design. This model enables clients to validate
        the server they are connecting to by relying on more than just the
        port name. With a secured port, the client process submits to the kernel the SID of the server
        process it expects on the side of the endpoint. At connection time,
        the kernel validates that the client is indeed connecting to the
        expected server, mitigating namespace squatting attacks where an
        untrusted server creates a port to spoof a server.
ALPC also allows both clients and servers to atomically and
        uniquely identify the thread and process responsible for each message.
        It also supports the full Windows impersonation model through the
        NtAlpcImpersonateClientThread API. Other APIs
        give an ALPC server the ability to query the SIDs associated with all
        connected clients and to query the LUID (locally unique identifier) of
        the client’s security token (which is further described in Chapter 6).

Performance



ALPC uses several strategies to enhance performance, primarily
        through its support of completion lists, which were briefly described
        earlier. At the kernel level, a completion list is essentially a user
        MDL that’s been probed and locked and then mapped to an address. (For
        more information on Memory Descriptor Lists, see Chapter 10 in Part
        2.) Because it’s associated with an MDL (which tracks physical pages),
        when a client sends a message to a server, the payload copy can happen
        directly at the physical level, instead of requiring the kernel to
        double-buffer the message, as is common in other IPC
        mechanisms.
The completion list itself is implemented as a 64-bit queue of
        completed entries, and both user-mode and kernel-mode consumers can
        use an interlocked compare-exchange operation to insert and remove
        entries from the queue. Furthermore, to simplify allocations, once an
        MDL has been initialized, a bitmap is used to identify available areas
        of memory that can be used to hold new messages that are still being
        queued. The bitmap algorithm also uses native lock instructions on the
        processor to provide atomic allocation and de-allocation of areas of
        physical memory that can be used by completion lists.
Another ALPC performance optimization is the use of
        message zones. A message zone is simply a
        pre-allocated kernel buffer (also backed by an MDL) in which a message
        can be stored until a server or client retrieves it. A message zone
        associates a system address with the message, allowing it to be made
        visible in any process address space. More importantly, in the case of
        asynchronous operation, it does not require the complex setup of
        delayed payloads because no matter when the consumer finally retrieves
        the message data, the message zone will still be valid. Both
        completion lists and message zones can be set up with
        NtAlpcSetInformation.
A final optimization worth mentioning is that instead of copying
        data as soon as it is sent, the kernel sets up the payload for a
        delayed copy, capturing only the needed information, but without any
        copying. The message data is copied only when the receiver requests
        the message. Obviously, if a message zone or shared memory is being
        used, there’s no advantage to this method, but in asynchronous,
        kernel-buffer message passing, this can be used to optimize
        cancellations and high-traffic scenarios.

Debugging and Tracing



On checked builds of the kernel, ALPC messages can be
        logged. All ALPC attributes, blobs, message zones, and dispatch
        transactions can be individually logged, and undocumented
        !alpc commands in WinDbg can dump the logs. On
        retail systems, IT administrators and troubleshooters can enable the
        ALPC Event Tracing for Windows (ETW) logger to monitor ALPC messages.
        ETW events do not include payload data, but they do contain
        connection, disconnection, and send/receive and wait/unblock
        information. Finally, even on retail systems, certain
        !alpc commands obtain information on ALPC ports
        and messages.
EXPERIMENT: Dumping a Connection Port
In this experiment, you’ll use the CSRSS API port for Windows
          processes running in Session 1, which is the typical interactive
          session for the console user. Whenever a Windows application
          launches, it connects to CSRSS’s API port in the appropriate
          session.
	Start by obtaining a pointer to the connection port with
              the !object command:
0: kd> !object \Sessions\1\Windows\ApiPort
Object: fffffa8004dc2090  Type: (fffffa80027a2ed0) ALPC Port
    ObjectHeader: fffffa8004dc2060 (new version)
    HandleCount: 1  PointerCount: 50
    Directory Object: fffff8a001a5fb30  Name: ApiPort

	Now dump information on the port object itself with
              !alpc /p. This will confirm, for example,
              that CSRSS is the owner:
0: kd> !alpc /p fffffa8004dc2090
Port @ fffffa8004dc2090
  Type                      : ALPC_CONNECTION_PORT
  CommunicationInfo         : fffff8a001a22560
    ConnectionPort          : fffffa8004dc2090
    ClientCommunicationPort : 0000000000000000
    ServerCommunicationPort : 0000000000000000
  OwnerProcess              : fffffa800502db30 (csrss.exe)
  SequenceNo                : 0x000003C9 (969)
  CompletionPort            : 0000000000000000
  CompletionList            : 0000000000000000
  MessageZone               : 0000000000000000
  ConnectionPending         : No
  ConnectionRefused         : No
  Disconnected              : No
  Closed                    : No
  FlushOnClose              : Yes

  ReturnExtendedInfo        : No
  Waitable                  : No
  Security                  : Static
  Wow64CompletionList       : No

  Main queue is empty.
  Large message queue is empty.
  Pending queue is empty.
  Canceled queue is empty.

	You can see what clients are connected to the port, which
              will include all Windows processes running in the session, with
              the undocumented !alpc /lpc command. You
              will also see the server and client communication ports
              associated with each connection and any pending messages on any
              of the queues:
0: kd> !alpc /lpc fffffa8004dc2090

Port @fffffa8004dc2090 has 14 connections

SRV:fffffa8004809c50 (m:0, p:0, l:0) <-> CLI:fffffa8004809e60 (m:0, p:0, l:0),
 Process=fffffa8004ffcb30 ('winlogon.exe')
SRV:fffffa80054dfb30 (m:0, p:0, l:0) <-> CLI:fffffa80054dfe60 (m:0, p:0, l:0),
 Process=fffffa80054de060 ('dwm.exe')
SRV:fffffa8005394dd0 (m:0, p:0, l:0) <-> CLI:fffffa80054e1440 (m:0, p:0, l:0),
 Process=fffffa80054e2290 ('winvnc.exe')
SRV:fffffa80053965d0 (m:0, p:0, l:0) <-> CLI:fffffa8005396900 (m:0, p:0, l:0),
 Process=fffffa80054ed060 ('explorer.exe')
SRV:fffffa80045a8070 (m:0, p:0, l:0) <-> CLI:fffffa80045af070 (m:0, p:0, l:0),
 Process=fffffa80045b1340 ('logonhlp.exe')
SRV:fffffa8005197940 (m:0, p:0, l:0) <-> CLI:fffffa800519a900 (m:0, p:0, l:0),
 Process=fffffa80045da060 ('TSVNCache.exe')
SRV:fffffa800470b070 (m:0, p:0, l:0) <-> CLI:fffffa800470f330 (m:0, p:0, l:0),
 Process=fffffa8004713060 ('vmware-tray.ex')
SRV:fffffa80045d7670 (m:0, p:0, l:0) <-> CLI:fffffa80054b16f0 (m:0, p:0, l:0),
 Process=fffffa80056b8b30 ('WINWORD.EXE')
SRV:fffffa80050e0e60 (m:0, p:0, l:0) <-> CLI:fffffa80056fee60 (m:0, p:0, l:0),
 Process=fffffa800478f060 ('Winobj.exe')
SRV:fffffa800482e670 (m:0, p:0, l:0) <-> CLI:fffffa80047b7680 (m:0, p:0, l:0),
 Process=fffffa80056aab30 ('cmd.exe')
SRV:fffffa8005166e60 (m:0, p:0, l:0) <-> CLI:fffffa80051481e0 (m:0, p:0, l:0),
 Process=fffffa8002823b30 ('conhost.exe')
SRV:fffffa80054a2070 (m:0, p:0, l:0) <-> CLI:fffffa80056e6210 (m:0, p:0, l:0),
 Process=fffffa80055669e0 ('livekd.exe')
SRV:fffffa80056aa390 (m:0, p:0, l:0) <-> CLI:fffffa80055a6c00 (m:0, p:0, l:0),
 Process=fffffa80051b28b0 ('livekd64.exe')
SRV:fffffa8005551d90 (m:0, p:0, l:0) <-> CLI:fffffa80055bfc60 (m:0, p:0, l:0),
 Process=fffffa8002a69b30 ('kd.exe')

	Note that if you have other sessions, you can repeat this
              experiment on those sessions also (as well as with session 0,
              the system session). You will eventually get a list of all the
              Windows processes on your machine. If you are using Subsystem
              for UNIX Applications, you can also use this technique on the
              \PSXSS\ApiPort object.






Kernel Event Tracing



Various components of the Windows kernel and several core
      device drivers are instrumented to record trace data of their operations
      for use in system troubleshooting. They rely on a common infrastructure
      in the kernel that provides trace data to the user-mode Event Tracing
      for Windows (ETW) facility. An application that uses ETW falls into one
      or more of three categories:
	Controller. A controller starts and stops logging sessions and manages
            buffer pools. Example controllers include Reliability and
            Performance Monitor (see the EXPERIMENT: Tracing TCP/IP Activity with the Kernel
        Logger section,
            later in this section) and XPerf from the Windows Performance
            Toolkit (see the EXPERIMENT: Monitoring Interrupt and DPC Activity section,
            earlier in this chapter).

	Provider. A provider defines GUIDs (globally unique identifiers) for
            the event classes it can produce traces for and registers them
            with ETW. The provider accepts commands from a controller for
            starting and stopping traces of the event classes for which it’s
            responsible.

	Consumer. A consumer selects one or more trace sessions for which it
            wants to read trace data. Consumers can receive the events in
            buffers in real time or in log files.



Windows includes dozens of user-mode providers, for everything
      from Active Directory to the Service Control Manager to Explorer. ETW
      also defines a logging session with the name NT Kernel Logger (also
      known as the kernel logger) for use by the kernel and core drivers. The
      providers for the NT Kernel Logger are implemented by ETW code in
      Ntoskrnl.exe and the core drivers.
When a controller in user mode enables the kernel logger, the ETW
      library (which is implemented in \Windows\System32\Ntdll.dll) calls the
      NtTraceControl system function, telling the ETW
      code in the kernel which event classes the controller wants to start
      tracing. If file logging is configured (as opposed to in-memory logging
      to a buffer), the kernel creates a system thread in the system process
      that creates a log file. When the kernel receives trace events from the
      enabled trace sources, it records them to a buffer. If it was started,
      the file logging thread wakes up once per second to dump the contents of
      the buffers to the log file.
Trace records generated by the kernel logger have a standard ETW
      trace event header, which records time stamp, process, and thread IDs,
      as well as information on what class of event the record corresponds to.
      Event classes can provide additional data specific to their events. For
      example, disk event class trace records indicate the operation type
      (read or write), disk number at which the operation is directed, and
      sector offset and length of the operation.
Some of the trace classes that can be enabled for the kernel
      logger and the component that generates each class include the
      following:
	Disk I/O. Disk class driver

	File I/O. File system drivers

	File I/O
            Completion. File system drivers

	Hardware
            Configuration. Plug and Play manager (See Chapter 9 in Part 2 for
            information on the Plug and Play manager.)

	Image
            Load/Unload. The system image loader in the kernel

	Page Faults. Memory manager (See Chapter 10 in Part 2 for more
            information on page faults.)

	Hard Page Faults. Memory manager

	Process
            Create/Delete. Process manager (See Chapter 5 for more
            information on the process manager.)

	Thread
            Create/Delete. Process manager

	Registry
            Activity. Configuration manager (See The Registry section in Chapter 4 for more information on the
            configuration manager.)

	Network TCP/IP. TCP/IP driver

	Process Counters. Process manager

	Context Switches. Kernel dispatcher

	Deferred Procedure
            Calls. Kernel dispatcher

	Interrupts. Kernel dispatcher

	System Calls. Kernel dispatcher

	Sample Based
            Profiling. Kernel dispatcher and HAL

	Driver Delays. I/O manager

	Split I/O. I/O manager

	Power Events. Power manager

	ALPC. Advanced local procedure call

	Scheduler and
            Synchronization. Kernel dispatcher (See Chapter 5 for more
            information about thread scheduling)



You can find more information on ETW and the kernel logger,
      including sample code for controllers and consumers, in the Windows
      SDK.
EXPERIMENT: Tracing TCP/IP Activity with the Kernel
        Logger
To enable the kernel logger and have it generate a log
        file of TCP/IP activity, follow these steps:
	Run the Performance Monitor, and click on Data Collector
            Sets, User Defined.

	Right-click on User Defined, choose New, and select Data
            Collector Set.

	When prompted, enter a name for the data collector set (for
            example, experiment), and
            choose Create Manually (Advanced) before clicking Next.

	In the dialog box that opens, select Create Data Logs, check
            Event Trace Data, and then click Next. In the Providers area,
            click Add, and locate Windows Kernel Trace. In the Properties
            list, select Keywords(Any), and then click Edit.
[image: image with no caption]


	From this list, select only Net for Network TCP/IP, and then
            click OK.
[image: image with no caption]


	Click Next to select a location where the files are saved.
            By default, this location is C:\Perflogs\<User>\experiment\,
            if this is how you named the data collector set. Click Next, and
            in the Run As edit box, enter the Administrator account name and
            set the password to match it. Click Finish. You should now see a
            window similar to the one shown here:
[image: image with no caption]


	Right-click on “experiment” (or whatever name you gave your
            data collector set), and then click Start. Now generate some
            network activity by opening a browser and visiting a web
            site.

	Right-click on the data collector set node again, and then
            click Stop.

	Open a command prompt, and change to the
            C:\Perflogs\experiment\00001 directory (or the directory into
            which you specified that the trace log file be stored).

	Run tracerpt, and pass it the name of
            the trace log file:
tracerpt DataCollector01.etl –o dumpfile.csv –of CSV

	Open dumpfile.csv in Microsoft Excel or in a text editor.
            You should see TCP and/or UDP trace records like the
            following:



	TcpIp
	SendIPV4
	0xFFFFFFFF
	1.28663E+17
	0
	0
	1992
	1388
	157.54.86.28
	172.31.234.35
	80
	49414
	646659
	646661

	UdpIp
	RecvIPV4
	0xFFFFFFFF
	1.28663E+17
	0
	0
	4
	50
	172.31.239.255
	172.31.233.110
	137
	137
	0
	0x0

	UdpIp
	RecvIPV4
	0xFFFFFFFF
	1.28663E+17
	0
	0
	4
	50
	172.31.239.255
	172.31.234.162
	137
	137
	0
	0x0

	TcpIp
	RecvIPV4
	0xFFFFFFFF
	1.28663E+17
	0
	0
	1992
	1425
	157.54.86.28
	172.31.234.35
	80
	49414
	0
	0x0

	TcpIp
	RecvIPV4
	0xFFFFFFFF
	1.28663E+17
	0
	0
	1992
	1380
	157.54.86.28
	172.31.234.35
	80
	49414
	0
	0x0

	TcpIp
	RecvIPV4
	0xFFFFFFFF
	1.28663E+17
	0
	0
	1992
	45
	157.54.86.28
	172.31.234.35
	80
	49414
	0
	0x0

	TcpIp
	RecvIPV4
	0xFFFFFFFF
	1.28663E+17
	0
	0
	1992
	1415
	157.54.86.28
	172.31.234.35
	80
	49414
	0
	0x0

	TcpIp
	RecvIPV4
	0xFFFFFFFF
	1.28663E+17
	0
	0
	1992
	740
	157.54.86.28
	172.31.234.35
	80
	49414
	0
	0x0





Wow64



Wow64 (Win32 emulation on 64-bit Windows) refers to the
      software that permits the execution of 32-bit x86 applications on 64-bit
      Windows. It is implemented as a set of user-mode DLLs, with some support
      from the kernel for creating 32-bit versions of what would normally only
      be 64-bit data structures, such as the process environment block (PEB)
      and thread environment block (TEB). Changing Wow64 contexts through
      Get/SetThreadContext is also implemented by the
      kernel. Here are the user-mode DLLs responsible for Wow64:
	Wow64.dll. Manages process and thread creation, and hooks
            exception-dispatching and base system calls exported by
            Ntoskrnl.exe. It also implements file-system redirection and
            registry redirection.

	Wow64Cpu.dll. Manages the 32-bit CPU context of each running thread inside
            Wow64, and provides processor architecture-specific support for
            switching CPU mode from 32-bit to 64-bit and vice versa.

	Wow64Win.dll. Intercepts the GUI system calls exported by
            Win32k.sys.

	IA32Exec.bin and Wowia32x.dll on
            IA64 systems. Contain the IA-32 software emulator and its interface
            library. Because Itanium processors cannot natively execute x86
            32-bit instructions in an efficient manner (performance is worse
            than 30 percent), software emulation (through binary translation)
            is required through the use of these two additional
            components.



The relationship of these DLLs is shown in Figure 3-31.
[image: Wow64 architecture]

Figure 3-31. Wow64 architecture

Wow64 Process Address Space Layout



Wow64 processes can run with 2 GB or 4 GB of virtual space. If
        the image header has the large-address-aware flag set, the memory
        manager reserves the user-mode address space above the 4-GB boundary
        through the end of the user-mode boundary. If the image is not marked
        as large address space aware, the memory manager reserves the
        user-mode address space above 2 GB. (For more information on
        large-address-space support, see the section “x86 User Address Space
        Layouts” in Chapter 10 in Part 2.)

System Calls



Wow64 hooks all the code paths where 32-bit code would
        transition to the native 64-bit system or when the native system needs
        to call into 32-bit user-mode code. During process creation, the
        process manager maps into the process address space the native 64-bit
        Ntdll.dll, as well as the 32-bit Ntdll.dll for Wow64 processes. When
        the loader initialization is called, it calls the Wow64 initialization
        code inside Wow64.dll. Wow64 then sets up the startup context required
        by the 32-bit Ntdll, switches the CPU mode to 32-bits, and starts
        executing the 32-bit loader. From this point onward, execution
        continues as if the process is running on a native 32-bit
        system.
Special 32-bit versions of Ntdll.dll, User32.dll, and Gdi32.dll
        are located in the \Windows\Syswow64 folder (as well as certain other
        DLLs that perform interprocess communication, such as Rpcrt4.dll).
        These call into Wow64 rather than issuing the native 32-bit system
        call instruction. Wow64 transitions to native 64-bit mode, captures
        the parameters associated with the system call (converting 32-bit
        pointers to 64-bit pointers), and issues the corresponding native
        64-bit system call. When the native system call returns, Wow64
        converts any output parameters if necessary from 64-bit to 32-bit
        formats before returning to 32-bit mode.

Exception Dispatching



Wow64 hooks exception dispatching through Ntdll’s
        KiUserExceptionDispatcher. Whenever the 64-bit
        kernel is about to dispatch an exception to a Wow64 process, Wow64
        captures the native exception and context record in user mode and then
        prepares a 32-bit exception and context record and dispatches it the
        same way the native 32-bit kernel would.

User APC Dispatching



Wow64 also hooks user-mode APC delivery through Ntdll’s
        KiUserApcDispatcher. Whenever the 64-bit kernel
        is about to dispatch a user-mode APC to a Wow64 process, it maps the
        32-bit APC address to a higher range of 64-bit address space. The
        64-bit Ntdll then captures the native APC and context record in user
        mode and maps it back to a 32-bit address. It then prepares a 32-bit
        user-mode APC and context record and dispatches it the same way the
        native 32-bit kernel would.

Console Support



Because console support is implemented in user mode by
        Csrss.exe, of which only a single native binary exists, 32-bit
        applications would be unable to perform console I/O while on 64-bit
        Windows. Similarly to how a special rpcrt4.dll exits to thunk 32-bit
        to 64-bit RPCs, the 32-bit Kernel.dll for Wow64 contains special code
        to call into Wow, for thunking parameters during interaction with
        Csrss and Conhost.exe.

User Callbacks



Wow64 intercepts all callbacks from the kernel into user
        mode. Wow64 treats such calls as system calls; however, the data
        conversion is done in the reverse order: input parameters are
        converted from 64 bits to 32 bits, and output parameters are converted
        when the callback returns from 32 bits to 64 bits.

File System Redirection



To maintain application compatibility and to reduce the effort
        of porting applications from Win32 to 64-bit Windows, system directory
        names were kept the same. Therefore, the \Windows\System32 folder
        contains native 64-bit images. Wow64, as it hooks all the system
        calls, translates all the path-related APIs and replaces the path name
        of the \Windows\System32 folder with \Windows\Syswow64. Wow64 also
        redirects \Windows\LastGood to \Windows\LastGood\syswow64 and \Windows
        \Regedit.exe to \Windows\syswow64\Regedit.exe. Through the use of
        system environment variables, the %PROGRAMFILES% variable is also set
        to \Program Files (x86) for 32-bit applications, while it is set to
        \Program Files folder for 64-bit applications. CommonProgramFiles and
        CommonProgramFiles (x86) also exist, which always point to the 32-bit
        location, while ProgramW6432 and CommonProgramW6432 point to the
        64-bit locations unconditionally.
Note
Because certain 32-bit applications might indeed be aware and
          able to deal with 64-bit images, a virtual directory,
          \Windows\Sysnative, allows any I/Os originating from a 32-bit
          application to this directory to be exempted from file redirection.
          This directory doesn’t actually exist—it is a virtual path that
          allows access to the real System32 directory, even from an
          application running under Wow64.

There are a few subdirectories of \Windows\System32 that, for
        compatibility reasons, are exempted from being redirected such that
        access attempts to them made by 32-bit applications actually access
        the real one. These directories include the following:
	%windir%\system32\drivers\etc

	%windir%\system32\spool

	%windir%\system32\catroot and
            %windir%\system32\catroot2

	%windir%\system32\logfiles

	%windir%\system32\driverstore



Finally, Wow64 provides a mechanism to control the file system
        redirection built into Wow64 on a per-thread basis through the
        Wow64DisableWow64FsRedirection and
        Wow64RevertWow64FsRedirection functions. This
        mechanism can have issues with delay-loaded DLLs, opening files
        through the common file dialog and even internationalization—because
        once redirection is disabled, the system no longer users it during
        internal loading either, and certain 64-bit-only files would then fail
        to be found. Using the c:\windows\sysnative path or some of the other
        consistent paths introduced earlier is usually a safer methodology for
        developers to use.

Registry Redirection



Applications and components store their configuration
        data in the registry. Components usually write their configuration
        data in the registry when they are registered during installation. If
        the same component is installed and registered both as a 32-bit binary
        and a 64-bit binary, the last component registered will override the
        registration of the previous component because they both write to the
        same location in the registry.
To help solve this problem transparently without introducing any
        code changes to 32-bit components, the registry is split into two
        portions: Native and Wow64. By default, 32-bit components access the
        32-bit view and 64-bit components access the 64-bit view. This
        provides a safe execution environment for 32-bit and 64-bit components
        and separates the 32-bit application state from the 64-bit one if it
        exists.
To implement this, Wow64 intercepts all the system calls that
        open registry keys and retranslates the key path to point it to the
        Wow64 view of the registry. Wow64 splits the registry at these
        points:
	HKLM\SOFTWARE

	HKEY_CLASSES_ROOT



However, note that many of the subkeys are actually shared
        between 32-bit and 64-bit apps—that is, not the entire hive is
        split.
Under each of these keys, Wow64 creates a key called
        Wow6432Node. Under this key is stored 32-bit configuration
        information. All other portions of the registry are shared between
        32-bit and 64-bit applications (for example, HKLM\SYSTEM).
As an extra help, if a 32-bit application writes a REG_SZ or
        REG_EXPAND_SZ value that starts with the data “%ProgramFiles%” or
        “%commonprogramfiles%” to the registry, Wow64 modifies the actual
        values to “%ProgramFiles(x86)%” and “%commonprogramfiles(x86)%” to
        match the file system redirection and layout explained earlier. The
        32-bit application must write exactly these strings using this
        case—any other data will be ignored and written normally. Finally, any
        key containing “system32” is replaced with “syswow64” in all cases,
        regardless of flags and case sensitivity, unless KEY_WOW64_64KEY is
        used and the key is on the list of “reflected keys”, which is
        available on MSDN.
For applications that need to explicitly specify a registry key
        for a certain view, the following flags on the
        RegOpenKeyEx,
        RegCreateKeyEx,
        RegOpenKeyTransacted,
        RegCreateKeyTransacted, and
        RegDeleteKeyEx functions permit this:
	KEY_WOW64_64KEY—Explicitly opens a 64-bit key from either a
            32-bit or 64-bit application, and disables the REG_SZ or
            REG_EXPAND_SZ interception explained earlier

	KEY_WOW64_32KEY—Explicitly opens a 32-bit key from either a
            32-bit or 64-bit application




I/O Control Requests



Besides normal read and write operations, applications can
        communicate with some device drivers through device I/O control
        functions using the Windows DeviceIoControl API.
        The application might specify an input and/or output buffer along with
        the call. If the buffer contains pointer-dependent data and the process sending the control request is a
        Wow64 process, the view of the input and/or output structure is
        different between the 32-bit application and the 64-bit driver,
        because pointers are 4 bytes for 32-bit applications and 8 bytes for
        64-bit applications. In this case, the kernel driver is expected to
        convert the associated pointer-dependent structures. Drivers can call
        the IoIs32bitProcess function to detect whether
        or not an I/O request originated from a Wow64 process. Look for
        “Supporting 32-Bit I/O in Your 64-Bit Driver” on MSDN for more
        details.

16-Bit Installer Applications



Wow64 doesn’t support running 16-bit applications. However,
        because many application installers are 16-bit programs, Wow64 has
        special case code to make references to certain well-known 16-bit
        installers work. These installers include the following:
	Microsoft ACME Setup version: 1.2, 2.6, 3.0, and 3.1

	InstallShield version 5.x (where x is
            any minor version number)



Whenever a 16-bit process is about to be created using the
        CreateProcess() API, Ntvdm64.dll is loaded and
        control is transferred to it to inspect whether the 16-bit executable
        is one of the supported installers. If it is, another
        CreateProcess is issued to launch a 32-bit
        version of the installer with the same command-line arguments.

Printing



32-bit printer drivers cannot be used on 64-bit Windows. Print
        drivers must be ported to native 64-bit versions. However, because
        printer drivers run in the user-mode address space of the requesting
        process and only native 64-bit printer drivers are supported on 64-bit
        Windows, a special mechanism is needed to support printing from 32-bit
        processes. This is done by redirecting all printing functions to
        Splwow64.exe, the Wow64 RPC print server. Because Splwow64 is a 64-bit
        process, it can load 64-bit printer drivers.

Restrictions



Wow64 does not support the execution of 16-bit applications
        (this is supported on 32-bit versions of Windows) or the loading of
        32-bit kernel-mode device drivers (they must be ported to native
        64-bits). Wow64 processes can load only 32-bit DLLs and can’t load
        native 64-bit DLLs. Likewise, native 64-bit processes can’t load
        32-bit DLLs. The one exception is the ability to load
        resource or data-only DLLs cross-architecture,
        which is allowed because those DLLs contain only data, not
        code.
In addition to the above, due to page size differences, Wow64 on
        IA64 systems does not support the
        ReadFileScatter,
        WriteFileGather,
        GetWriteWatch, AVX registers, XSAVE, and AWE
        functions. Also, hardware acceleration through DirectX is not
        available. (Software emulation is provided for Wow64
        processes.)


User-Mode Debugging



Support for user-mode debugging is split into three
      different modules. The first one is located in the executive itself and
      has the prefix Dbgk, which stands for
      Debugging Framework. It provides the necessary
      internal functions for registering and listening for debug events,
      managing the debug object, and packaging the information for consumption
      by its user-mode counterpart. The user-mode component that talks
      directly to Dbgk is located in the native system
      library, Ntdll.dll, under a set of APIs that begin with the prefix
      DbgUi. These APIs are responsible for wrapping the
      underlying debug object implementation (which is opaque), and they allow
      all subsystem applications to use debugging by wrapping their own APIs
      around the DbgUi implementation. Finally, the third
      component in user-mode debugging belongs to the subsystem DLLs. It is
      the exposed, documented API (located in KernelBase.dll for the Windows
      subsystem) that each subsystem supports for performing debugging of
      other applications.
Kernel Support



The kernel supports user-mode debugging through an object
        mentioned earlier, the debug object. It provides
        a series of system calls, most of which map directly to the Windows
        debugging API, typically accessed through the
        DbgUi layer first. The debug object itself is a
        simple construct, composed of a series of flags that determine state,
        an event to notify any waiters that debugger events are present, a
        doubly linked list of debug events waiting to be processed, and a fast
        mutex used for locking the object. This is all the information that
        the kernel requires for successfully receiving and sending debugger
        events, and each debugged process has a debug
        port member in its structure pointing to this debug
        object.
Once a process has an associated debug port, the events
        described in Table 3-23 can cause
        a debug event to be inserted into the list of events.
Table 3-23. Kernel-Mode Debugging Events
	Event Identifier
	Meaning
	Triggered By

	DbgKmExceptionApi
	An exception has
                occurred.
	KiDispatchException
                during an exception that occurred in user mode

	DbgKmCreateThreadApi
	A new thread has been
                created.
	Startup of a user-mode
                thread

	DbgKmCreateProcessApi
	A new process has been
                created.
	Startup of a user-mode thread that
                is the first thread in the process

	DbgKmExitThreadApi
	A thread has exited.
	Death of a user-mode
                thread

	DbgKmExitProcessApi
	A process has exited.
	Death of a user-mode thread that was
                the last thread in the process

	DbgKmLoadDllApi
	A DLL was loaded.
	NtMapViewOfSection
                when the section is an image file (could be an EXE as
                well)

	DbgKmUnloadDllApi
	A DLL was unloaded.
	NtUnmapViewOfSection
                when the section is an image file (could be an EXE as
                well)

	DbgKmErrorReportApi
	An exception needs to be forwarded
                to Windows Error Reporting (WER).
	KiDispatchException
                during an exception that occurred in user mode, after the
                debugger was unable to handle it




Apart from the causes mentioned in the table, there are
        a couple of special triggering cases outside the regular scenarios
        that occur at the time a debugger object first becomes associated with
        a process. The first create process and
        create thread messages will be manually sent when
        the debugger is attached, first for the process itself and its main
        thread and followed by create thread messages for all the other
        threads in the process. Finally, load dll events
        for the executable being debugged (Ntdll.dll) and then all the current
        DLLs loaded in the debugged process will be sent.
Once a debugger object has been associated with a process, all
        the threads in the process are suspended. At this point, it is the
        debugger’s responsibility to start requesting that debug events be
        sent through. Debuggers request that debug events be sent back to user
        mode by performing a wait on the debug object.
        This call loops the list of debug events. As each request is removed
        from the list, its contents are converted from the internal
        dbgk structure to the native
        structure that the next layer up understands. As you’ll see, this
        structure is different from the Win32 structure as well, and another
        layer of conversion has to occur. Even after all pending debug
        messages have been processed by the debugger, the kernel does not
        automatically resume the process. It is the debugger’s responsibility
        to call the ContinueDebugEvent function to resume
        execution.
Apart from some more complex handling of certain multithreading
        issues, the basic model for the framework is a simple matter of
        producers—code in the kernel that generates the
        debug events in the previous table—and
        consumers—the debugger waiting on these events
        and acknowledging their receipt.

Native Support



Although the basic protocol for user-mode debugging is quite
        simple, it’s not directly usable by Windows applications—instead, it’s
        wrapped by the DbgUi functions in Ntdll.dll. This
        abstraction is required to allow native applications, as well as
        different subsystems, to use these routines (because code inside
        Ntdll.dll has no dependencies). The functions that this component
        provides are mostly analogous to the Windows API functions and related
        system calls. Internally, the code also provides the functionality
        required to create a debug object associated with the thread. The
        handle to a debug object that is created is never exposed. It is saved
        instead in the thread environment block (TEB) of the debugger thread
        that performs the attachment. (For more information on the TEB, see
        Chapter 5.) This
        value is saved in DbgSsReserved[1].
When a debugger attaches to a process, it expects the process to
        be broken into—that is, an int
        3 (breakpoint) operation should have happened, generated by
        a thread injected into the process. If this didn’t happen, the
        debugger would never actually be able to take control of the process
        and would merely see debug events flying by. Ntdll.dll is responsible
        for creating and injecting that thread into the target process.
Finally, Ntdll.dll also provides APIs to convert the native
        structure for debug events into the structure that the Windows API
        understands.
EXPERIMENT: Viewing Debugger Objects
Although you’ve been using WinDbg to do kernel-mode
          debugging, you can also use it to debug user-mode programs. Go ahead
          and try starting Notepad.exe with the debugger attached using these
          steps:
	Run WinDbg, and then click File, Open Executable.

	Navigate to the \Windows\System32\ directory, and choose
              Notepad.exe.

	You’re not going to do any debugging, so simply ignore
              whatever might come up. You can type g in the command window to instruct
              WinDbg to continue executing Notepad.



Now run Process Explorer, and be sure the lower pane is
          enabled and configured to show open handles. (Click on View, Lower
          Pane View, and then Handles.) You also want to look at unnamed
          handles, so click on View, Show Unnamed Handles And Mappings.
Next, click on the Windbg.exe process and look at its handle
          table. You should see an open, unnamed handle to a debug object.
          (You can organize the table by Type to find this entry more
          readily.) You should see something like the following:
[image: image with no caption]

You can try right-clicking on the handle and closing it.
          Notepad should disappear, and the following message should appear in
          WinDbg:
ERROR: WaitForEvent failed, NTSTATUS 0xC0000354
This usually indicates that the debuggee has been
killed out from underneath the debugger.
You can use .tlist to see if the debuggee still exists.
WaitForEvent failed
In fact, if you look at the description for the NTSTATUS code
          given, you will find the text: “An attempt to do an operation on a
          debug port failed because the port is in the process of being
          deleted,” which is exactly what you’ve done by closing the
          handle.

As you can see, the native DbgUi
        interface doesn’t do much work to support the framework except for
        this abstraction. The most complicated task it does is the conversion
        between native and Win32 debugger structures. This involves several
        additional changes to the structures.

Windows Subsystem Support



The final component responsible for allowing debuggers such as
        Microsoft Visual Studio or WinDbg to debug user-mode applications is
        in Kernel32.dll. It provides the documented Windows APIs. Apart from
        this trivial conversion of one function name to another, there is one
        important management job that this side of the debugging
        infrastructure is responsible for: managing the duplicated file and
        thread handles.
Recall that each time a load DLL event is
        sent, a handle to the image file is duplicated by the kernel and
        handed off in the event structure, as is the case with the handle to
        the process executable during the create process
        event. During each wait call, Kernel32.dll checks
        whether this is an event that results in new duplicated process and/or
        thread handles from the kernel (the two create
        events). If so, it allocates a structure in which it stores the
        process ID, thread ID, and the thread and/or process handle associated
        with the event. This structure is linked into the first
        DbgSsReserved array index in the TEB, where we
        mentioned the debug object handle is stored. Likewise, Kernel32.dll
        also checks for exit events. When it detects such
        an event, it “marks” the handles in the data structure.
Once the debugger is finished using the handles and performs the
        continue call, Kernel32.dll parses these
        structures, looks for any handles whose threads have exited, and
        closes the handles for the debugger. Otherwise, those threads and
        processes would actually never exit, because there would always be
        open handles to them as long as the debugger was running.


Image Loader



When a process is started on the system, the kernel creates a
      process object to represent it (see Chapter 5 for more
      information on processes) and performs various kernel-related
      initialization tasks. However, these tasks do not result in the
      execution of the application, merely in the preparation of its context
      and environment. In fact, unlike drivers, which are kernel-mode code,
      applications execute in user mode. So most of the actual initialization
      work is done outside the kernel. This work is performed by the
      image loader, also internally referred to as
      Ldr.
The image loader lives in the user-mode system DLL
      Ntdll.dll and not in the kernel library. Therefore,
      it behaves just like standard code that is part of a DLL, and it is
      subject to the same restrictions in terms of memory access and security
      rights. What makes this code special is the guaranty that it will always
      be present in the running process (Ntdll.dll is always loaded) and that
      it is the first piece of code to run in user mode as part of a new
      application. (When the system builds the initial context, the program
      counter, or instruction pointer, is set to an initialization function
      inside Ntdll.dll. See Chapter 5 for more
      information.)
Because the loader runs before the actual application
      code, it is usually invisible to users and developers. Additionally,
      although the loader’s initialization tasks are hidden, a program
      typically does interact with its interfaces during the run time of a
      program—for example, whenever loading or unloading a DLL or querying the
      base address of one. Some of the main tasks the loader is responsible
      for include these:
	Initializing the user-mode state for the application, such as
          creating the initial heap and setting up the thread-local storage
          (TLS) and fiber-local storage (FLS) slots

	Parsing the import table (IAT) of the application to look for
          all DLLs that it requires (and then recursively parsing the IAT of
          each DLL), followed by parsing the export table of the DLLs to make
          sure the function is actually present (Special forwarder
          entries can also redirect an export to yet another
          DLL.)

	Loading and unloading DLLs at run time, as well as on demand,
          and maintaining a list of all loaded modules (the module
          database)

	Allowing for run-time patching (called
          hotpatching) support, explained later in the
          chapter

	Handling manifest files

	Reading the application compatibility database for any shims,
          and loading the shim engine DLL if required

	Enabling support for API sets and API redirection, a core part
          of the MinWin refactoring effort

	Enabling dynamic runtime compatibility mitigations through the
          SwitchBranch mechanism



As you can see, most of these tasks are critical to enabling an
      application to actually run its code; without them, everything from
      calling external functions to using the heap would immediately fail.
      After the process has been created, the loader calls a special native
      API to continue execution based on a context frame located on the stack.
      This context frame, built by the kernel, contains the actual entry point
      of the application. Therefore, because the loader doesn’t use a standard
      call or jump into the running application, you’ll never see the loader
      initialization functions as part of the call tree in a stack trace for a
      thread.
EXPERIMENT: Watching the Image Loader
In this experiment, you’ll use global flags to enable a
        debugging feature called loader snaps. This
        allows you to see debug output from the image loader while debugging
        application startup.
	From the directory where you’ve installed WinDbg, launch the
            Gflags.exe application, and then click on the Image File
            tab.

	In the Image field, type Notepad.exe, and then press the Tab key.
            This should enable the check boxes. Select the Show Loader Snaps
            option, and then click OK to dismiss the dialog box.

	Now follow the steps in the EXPERIMENT: Viewing Debugger Objects section to start
            debugging the Notepad.exe application.

	You should now see a couple of screens of debug information
            similar to that shown here:
0924:0248 @ 116983652 - LdrpInitializeProcess - INFO: Initializing process 0x924
0924:0248 @ 116983652 - LdrpInitializeProcess - INFO: Beginning execution of
          notepad.exe (C:\Windows\notepad.exe)
0924:0248 @ 116983652 - LdrpLoadDll - INFO: Loading DLL "kernel32.dll" from path
          "C:\Windows;C:\Windows\system32;C:\Windows\system;C:\Windows;
0924:0248 @ 116983652 - LdrpMapDll - INFO: Mapped DLL "kernel32.dll" at address
           76BD000
0924:0248 @ 116983652 - LdrGetProcedureAddressEx - INFO: Locating procedure
          "BaseThreadInitThunk" by name
0924:0248 @ 116983652 - LdrpRunInitializeRoutines - INFO: Calling init routine
          76C14592 for DLL "C:\Windows\system32\kernel32.dll"
0924:0248 @ 116983652 - LdrGetProcedureAddressEx - INFO: Locating procedure
          "BaseQueryModuleData" by name

	Eventually, the debugger breaks somewhere inside the loader
            code, at a special place where the image loader checks whether a
            debugger is attached and fires a breakpoint. If you press the G
            key to continue execution, you will see more messages from the
            loader, and Notepad will appear.

	Try interacting with Notepad and see how certain operations
            invoke the loader. A good experiment is to open the Save/Open
            dialog. That demonstrates that the loader not only runs at
            startup, but continuously responds to thread requests that can
            cause delayed loads of other modules (which
            can then be unloaded after use).




Early Process Initialization



Because the loader is present in Ntdll.dll, which is a native
        DLL that’s not associated with any particular subsystem, all processes
        are subject to the same loader behavior (with some minor differences).
        In Chapter 5, we’ll
        look in detail at the steps that lead to the creation of a process in
        kernel mode, as well as some of the work performed by the Windows
        function CreateProcess. Here, however, we’ll
        cover the work that takes place in user mode, independent of any
        subsystem, as soon as the first user-mode instruction starts
        execution. When a process starts, the loader performs the following
        steps:
	Build the image path name for the application, and query the
            Image File Execution Options key for the application, as well as
            the DEP and SEH validation linker settings.

	Look inside the executable’s header to see whether it is a
            .NET application (specified by the presence of a .NET-specific
            image directory).

	Initialize the National Language Support (NLS for
            internationalization) tables for the process.

	Initialize the Wow64 engine if the image is 32-bit and is
            running on 64-bit Windows.

	Load any configuration options specified in the
            executable’s header. These options, which a developer can define
            when compiling the application, control the behavior of the
            executable.

	Set the affinity mask if one was specified in the executable
            header.

	Initialize FLS and TLS.

	Initialize the heap manager for the process, and create the
            first process heap.

	Allocate an SxS (Side-by-Side Assembly)/Fusion activation
            context for the process. This allows the system to use the
            appropriate DLL version file, instead of defaulting to the DLL
            that shipped with the operating system. (See Chapter 5 for more
            information.)

	Open the \KnownDlls object directory, and build the known
            DLL path. For a Wow64 process, \KnownDlls32 is used
            instead.

	Determine the process’ current directory and default load
            path (used when loading images and opening files).

	Build the first loader data table entries for the
            application executable and Ntdll.dll, and insert them into the
            module database.



At this point, the image loader is ready to start parsing the
        import table of the executable belonging to the application and start
        loading any DLLs that were dynamically linked during the compilation
        of the application. Because each imported DLL can also have its own
        import table, this operation will continue recursively until all DLLs
        have been satisfied and all functions to be imported have been found.
        As each DLL is loaded, the loader will keep state information for it
        and build the module database.

DLL Name Resolution and Redirection



Name resolution is the process by which the system converts the
        name of a PE-format binary to a physical file in situations where the
        caller has not specified or cannot specify a unique file identity.
        Because the locations of various directories (the application
        directory, the system directory, and so on) cannot be hardcoded at
        link time, this includes the resolution of all binary dependencies as
        well as LoadLibrary operations in which the
        caller does not specify a full path.
When resolving binary dependencies, the basic Windows
        application model locates files in a search path—a list of locations
        that is searched sequentially for a file with a matching base
        name—although various system components override the search path
        mechanism in order to extend the default application model. The notion
        of a search path is a holdover from the era of the command line, when
        an application’s current directory was a meaningful notion; this is
        somewhat anachronistic for modern GUI applications.
However, the placement of the current directory in this ordering
        allowed load operations on system binaries to be overridden by placing
        malicious binaries with the same base name in the application’s
        current directory. To prevent security risks associated with this
        behavior, a feature known as safe DLL search mode
        was added to the path search computation and, starting with Windows XP
        SP2, is enabled by default for all processes. Under safe
        search mode, the current directory is moved behind the three system
        directories, resulting in the following path ordering:
	The directory from which the application was launched

	The native Windows system directory (for example,
            C:\Windows\System32)

	The 16-bit Windows system directory (for example,
            C:\Windows\System)

	The Windows directory (for example, C:\Windows)

	The current directory at application launch time

	Any directories specified by the %PATH% environment
            variable



The DLL search path is recomputed for each subsequent DLL load
        operation. The algorithm used to compute the search path is the same
        as the one used to compute the default search path, but the
        application can change specific path elements by editing the %PATH%
        variable using the SetEnvironmentVariable API,
        changing the current directory using the
        SetCurrentDirectory API, or using the
        SetDllDirectory API to specify a DLL directory
        for the process. When a DLL directory is specified, the directory
        replaces the current directory in the search path and the loader
        ignores the safe DLL search mode setting for the process.
Callers can also modify the DLL search path for specific load
        operations by supplying the LOAD_WITH_ALTERED_SEARCH_PATH flag to the
        LoadLibraryEx API. When this flag is supplied and
        the DLL name supplied to the API specifies a full path string, the
        path containing the DLL file is used in place of the application
        directory when computing the search path for the operation.
DLL Name Redirection



Before attempting to resolve a DLL name string to a file, the
          loader attempts to apply DLL name redirection rules. These
          redirection rules are used to extend or override portions of the DLL
          namespace—which normally corresponds to the Win32 file system
          namespace—to extend the Windows application model. In order of
          application, they are
	MinWin API Set
                Redirection. The API set mechanism is designed to allow the Windows
                team to change the binary that exports a given system API in a
                manner that is transparent to applications.

	.LOCAL
                Redirection. The .LOCAL redirection mechanism allows applications to
                redirect all loads of a specific DLL base name, regardless of
                whether a full path is specified, to a local copy of the DLL
                in the application directory—either by creating a copy of the
                DLL with the same base name followed by
                .local (for example, MyLibrary.dll.local)
                or by creating a file folder with the name .local under the
                application directory and placing a copy of the local DLL in
                the folder (for example, C:\Program Files\My
                App\.LOCAL\MyLibrary.dll). DLLs redirected by the .LOCAL
                mechanism are handled identically to those redirected by SxS.
                (See the next bullet point.) The loader honors .LOCAL
                redirection of DLLs only when the executable does not have an
                associated manifest, either embedded or external.

	Fusion (SxS)
                Redirection. Fusion (also referred to as
                side-by-side, or SxS) is an extension to
                the Windows application model that allows components to
                express more detailed binary dependency information (usually
                versioning information) by embedding binary resources known as
                manifests. The Fusion mechanism was first
                used so that applications could load the correct version of
                the Windows common controls package (comctl32.dll) after that
                binary was split into different versions that could be
                installed alongside one another; other binaries have since
                been versioned in the same fashion. As of Visual Studio 2005,
                applications built with the Microsoft linker will use Fusion
                to locate the appropriate version of the C runtime
                libraries.
The Fusion runtime tool reads embedded dependency
              information from a binary’s resource section using the Windows
              resource loader, and it packages the dependency information into
              lookup structures known as activation
              contexts. The system creates default activation
              contexts at the system and process level at boot and process
              startup time, respectively; in addition, each thread has an
              associated activation context stack, with the activation context
              structure at the top of the stack considered active. The
              per-thread activation context stack is managed both explicitly,
              via the ActivateActCtx and
              DeactivateActCtx APIs, and implicitly by
              the system at certain points, such as when the DLL main routine
              of a binary with embedded dependency information is called. When
              a Fusion DLL name redirection lookup occurs, the system searches
              for redirection information in the activation context at the
              head of the thread’s activation context stack, followed by the
              process and system activation contexts; if redirection
              information is present, the file identity specified by the
              activation context is used for the load operation.

	Known DLL
                Redirection. Known DLLs is a mechanism that maps specific DLL base
                names to files in the system directory, preventing the DLL
                from being replaced with an alternate version in a different
                location.
One edge case in the DLL path search algorithm is the DLL
              versioning check performed on 64-bit and WOW64 applications. If
              a DLL with a matching base name is located but is subsequently
              determined to have been compiled for the wrong machine
              architecture—for example, a 64-bit image in a 32-bit
              application—the loader ignores the error and resumes the path
              search operation, starting with the path element after the one
              used to locate the incorrect file. This behavior is designed to
              allow applications to specify both 64-bit and 32-bit entries in
              the global %PATH% environment variable.



EXPERIMENT: Observing DLL Load Search Order
You can use Sysinternals Process Monitor to watch how the
            loader searches for DLLs. When the loader attempts to resolve a
            DLL dependency, you will see it perform CreateFile calls to probe
            each location in the search sequence until either it finds the
            specified DLL or the load fails.
Here’s the capture of the loader’s search when an executable
            named Myapp.exe has a static dependency on a library named
            Mylibrary.dll. The executable is stored in C:\Myapp, but the
            current working directory was C:\ when the executable was
            launched. For the sake of demonstration, the executable does not
            include a manifest (by default, Visual Studio has one) so that the
            loader will check inside the C:\Myapp\Myapp.exe.local subdirectory
            that was created for the experiment. To reduce noise, the Process Monitor
            filter includes the myapp.exe process and any paths that contain
            the string “mylibrary.dll”.
[image: image with no caption]

Note how the search order matches that described. First, the
            loader checks the .LOCAL subdirectory, then the directory where
            the executable resides, then C:\Windows\System32 directory
            (because this is a 32-bit executable, that redirects to
            C:\Windows\SysWOW64), then the 16-bit Windows directory, then
            C:\Windows, and finally, the current directory at the time the
            executable was launched. The Load Image event confirms that the
            loader successfully resolved the import.



Loaded Module Database



The loader maintains a list of all modules (DLLs as well as the
        primary executable) that have been loaded by a process. This
        information is stored in a per-process structure called the process
        environment block, or PEB (see Chapter 5 for a full
        description of the PEB)—namely, in a substructure identified by
        Ldr and called PEB_LDR_DATA. In the structure,
        the loader maintains three doubly-linked lists, all containing the
        same information but ordered differently (either by load order, memory
        location, or initialization order). These lists contain structures
        called loader data table entries
        (LDR_DATA_TABLE_ENTRY) that store information about each module. Table 3-24 lists the various
        pieces of information the loader maintains in an entry.
Table 3-24. Fields in a Loader Data Table Entry
	Field
	Meaning

	BaseDllName
	Name of the module itself, without
                the full path

	ContextInformation
	Used by
                SwitchBranch (described later) to store
                the current Windows context GUID associated with this
                module

	DllBase
	Holds the base address at which the
                module was loaded

	EntryPoint
	Contains the initial routine of the
                module (such as DllMain)

	EntryPointActivationContext
	Contains the SxS/Fusion activation
                context when calling initializers

	Flags
	Loader state flags for this module
                (See Table 3-25 for a
                description of the flags.)

	ForwarderLinks
	Linked list of modules that were
                loaded as a result of export table forwarders from the
                module

	FullDllName
	Fully qualified path name of the
                module

	HashLinks
	Linked list used during process
                startup and shutdown for quicker lookups

	List Entry
                Links
	Links this entry into each of the
                three ordered lists part of the loader database

	LoadCount
	Reference count for the module (that
                is, how many times it has been loaded)

	LoadTime
	Stores the system time value when
                this module was being loaded

	OriginalBase
	Stores the original base address
                (set by the linker) of this module, enabling faster processing
                of relocated import entries

	PatchInformation
	Information that’s relevant during a
                hotpatch operation on this module

	ServiceTagLinks
	Linked list of services (see Chapter 4 for more information)
                referencing this module

	SizeOfImage
	Size of the module in
                memory

	StaticLinks
	Linked list of modules loaded as a
                result of static references from this one

	TimeDateStamp
	Time stamp written by the linker
                when the module was linked, which the loader obtains from the
                module’s image PE header

	TlsIndex
	Thread local storage slot associated
                with this module




One way to look at a process’ loader database is to use WinDbg
        and its formatted output of the PEB. The next experiment shows you how
        to do this and how to look at the LDR_DATA_TABLE_ENTRY structures on
        your own.
EXPERIMENT: Dumping the Loaded Modules Database
Before starting the experiment, perform the same steps as in
          the previous two experiments to launch Notepad.exe with WinDbg as
          the debugger. When you get to the first prompt (where you’ve been
          instructed to type g until now),
          follow these instructions:
	You can look at the PEB of the current process with the
              !peb command. For now, you’re interested
              only in the Ldr data that will be
              displayed. (See Chapter 5 for details
              about other information stored in the PEB.)
0: kd> !peb
PEB at 000007fffffda000
    InheritedAddressSpace:    No
    ReadImageFileExecOptions: No
    BeingDebugged:            No
    ImageBaseAddress:         00000000ff590000
    Ldr                       0000000076e72640
    Ldr.Initialized:          Yes
    Ldr.InInitializationOrderModuleList: 0000000000212880 . 0000000004731c20
    Ldr.InLoadOrderModuleList:           0000000000212770 . 0000000004731c00
    Ldr.InMemoryOrderModuleList:         0000000000212780 . 0000000004731c10
            Base TimeStamp                     Module
        ff590000 4ce7a144 Nov 20 11:21:56 2010 C:\Windows\Explorer.EXE
        76d40000 4ce7c8f9 Nov 20 14:11:21 2010 C:\Windows\SYSTEM32\ntdll.dll
        76870000 4ce7c78b Nov 20 14:05:15 2010 C:\Windows\system32\kernel32.dll
     7fefd2d0000 4ce7c78c Nov 20 14:05:16 2010 C:\Windows\system32\KERNELBASE.dll
     7fefee20000 4a5bde6b Jul 14 02:24:59 2009 C:\Windows\system32\ADVAPI32.dll

	The address shown on the Ldr line is a pointer to
              the PEB_LDR_DATA structure described earlier. Notice that WinDbg
              shows you the address of the three lists and dumps the
              initialization order list for you, displaying the full path,
              time stamp, and base address of each module.

	You can also analyze each module entry on its own by going
              through the module list and then dumping the data at each
              address, formatted as a LDR_DATA_TABLE_ENTRY structure. Instead
              of doing this for each entry, however, WinDbg can do most of the
              work by using the !list extension and the
              following syntax:
!list –t ntdll!_LIST_ENTRY.Flink –x "dt ntdll!_LDR_DATA_TABLE_ENTRY @$extret\"
0000000076e72640
Note that the last number is variable: it depends on
              whatever is shown on your machine under
              Ldr.InLoadOrderModuleList.

	You should then see the entries for each module:
0:001> !list –t ntdll!_LIST_ENTRY.Flink –x "dt ntdll!_LDR_DATA_TABLE_ENTRY
@$extret\" 001c1cf8
   +0x000 InLoadOrderLinks : _LIST_ENTRY [ 0x1c1d68 - 0x76fd4ccc ]
   +0x008 InMemoryOrderLinks : _LIST_ENTRY [ 0x1c1d70 - 0x76fd4cd4 ]
   +0x010 InInitializationOrderLinks : _LIST_ENTRY [ 0x0 - 0x0 ]
   +0x018 DllBase          : 0x00d80000
   +0x01c EntryPoint       : 0x00d831ed
   +0x020 SizeOfImage      : 0x28000
   +0x024 FullDllName      : _UNICODE_STRING "C:\Windows\notepad.exe"
   +0x02c BaseDllName      : _UNICODE_STRING "notepad.exe"
   +0x034 Flags            : 0x4010



Although this section covers the user-mode loader in
          Ntdll.dll, note that the kernel also employs its own loader for
          drivers and dependent DLLs, with a similar loader entry structure.
          Likewise, the kernel-mode loader has its own database of such
          entries, which is directly accessible through the
          PsActiveModuleList global data variable. To
          dump the kernel’s loaded module database, you can use a similar
          !list command as shown in the preceding
          experiment by replacing the pointer at the end of the command with
          “nt!PsActiveModuleList”.
Looking at the list in this raw format gives you some extra
          insight into the loader’s internals, such as
          the flags field, which contains state
          information that !peb on its own would not show
          you. See Table 3-25 for their
          meaning. Because both the kernel and user-mode loaders use this
          structure, some flags apply only to kernel-mode drivers, while
          others apply only to user-mode applications (such as .NET
          state).
Table 3-25. Loader Data Table Entry Flags
	Flag
	Meaning

	LDRP_STATIC_LINK
                  (0x2)
	This module is referenced by an
                  import table and is required.

	LDRP_IMAGE_DLL
                  (0x4)
	The module is an image DLL (and
                  not a data DLL or executable).

	LDRP_IMAGE_INTEGRITY_FORCED
                  (0x20)
	The module was linked with
                  /FORCEINTEGRITY (contains
                  IMAGE_DLLCHARACTERISTICS_FORCE_INTEGRITY_in its PE
                  header).

	LDRP_LOAD_IN_PROGRESS
                  (0x1000)
	This module is currently being
                  loaded.

	LDRP_UNLOAD_IN_PROGRESS
                  (0x2000)
	This module is currently being
                  unloaded.

	LDRP_ENTRY_PROCESSED
                  (0x4000)
	The loader has finished processing
                  this module.

	LDRP_ENTRY_INSERTED
                  (0x8000)
	The loader has finished inserting
                  this entry into the loaded module database.

	LDRP_FAILED_BUILTIN_LOAD
                  (0x20000)
	Indicates this boot driver failed
                  to load.

	LDRP_DONT_CALL_FOR_THREADS
                  (0x40000)
	Do not send
                  DLL_THREAD_ATTACH/DETACH notifications to this
                  DLL.

	LDRP_PROCESS_ATTACH_CALLED
                  (0x80000)
	This DLL has been sent the
                  DLL_PROCESS_ATTACH notification.

	LDRP_DEBUG_SYMBOLS_LOADED
                  (0x100000)
	The debug symbols for this module
                  have been loaded by the kernel or user
                  debugger.

	LDRP_IMAGE_NOT_AT_BASE
                  (0x200000)
	This image was relocated from its
                  original base address.

	LDRP_COR_IMAGE
                  (0x400000)
	This module is a .NET
                  application.

	LDRP_COR_OWNS_UNMAP
                  (0x800000)
	This module should be unmapped by
                  the .NET runtime.

	LDRP_SYSTEM_MAPPED
                  (0x1000000)
	This module is mapped into kernel
                  address space with System PTEs (versus being in the initial
                  boot loader’s memory).

	LDRP_IMAGE_VERIFYING
                  (0x2000000)
	This module is currently being
                  verified by Driver Verifier.

	LDRP_DRIVER_DEPENDENT_DLL
                  (0x4000000)
	This module is a DLL that is in a
                  driver’s import table.

	LDRP_ENTRY_NATIVE
                  (0x8000000)
	This module was compiled for
                  Windows 2000 or later. It’s used by Driver Verifier as an
                  indication that a driver might be suspect.

	LDRP_REDIRECTED
                  (0x10000000)
	The manifest file specified a
                  redirected file for this DLL.

	LDRP_NON_PAGED_DEBUG_INFO
                  (0x20000000)
	The debug information for this
                  module is in nonpaged memory.

	LDRP_MM_LOADED
                  (0x40000000)
	This module was loaded by the
                  kernel loader through
                  MmLoadSystemImage.

	LDRP_COMPAT_DATABASE_PROCESSED
                  (0x80000000)
	The shim engine has processed this
                  DLL.






Import Parsing



Now that we’ve explained the way the loader keeps track
        of all the modules loaded for a process, you can continue analyzing
        the startup initialization tasks performed by the loader. During this
        step, the loader will do the following:
	Load each DLL referenced in the import table of the process’
            executable image.

	Check whether the DLL has already been loaded by checking
            the module database. If it doesn’t find it in the list, the loader
            opens the DLL and maps it into memory.

	During the mapping operation, the loader first looks at the
            various paths where it should attempt to find this DLL, as well as
            whether this DLL is a “known DLL,” meaning that the system has
            already loaded it at startup and provided a global memory mapped
            file for accessing it. Certain deviations from the standard lookup
            algorithm can also occur, either through the use of a .local file
            (which forces the loader to use DLLs in the local path) or through
            a manifest file, which can specify a redirected DLL to use to
            guarantee a specific version.

	After the DLL has been found on disk and mapped, the loader
            checks whether the kernel has loaded it somewhere else—this is
            called relocation. If the loader detects relocation, it parses the
            relocation information in the DLL and performs the operations
            required. If no relocation information is present, DLL loading
            fails.

	The loader then creates a loader data table entry for this
            DLL and inserts it into the database.

	After a DLL has been mapped, the process is repeated for
            this DLL to parse its import table and all its
            dependencies.

	After each DLL is loaded, the loader parses the IAT to look
            for specific functions that are being imported. Usually this is
            done by name, but it can also be done by ordinal (an index
            number). For each name, the loader parses the export table of the
            imported DLL and tries to locate a match. If no match is found,
            the operation is aborted.

	The import table of an image can also be bound. This means
            that at link time, the developers already assigned static
            addresses pointing to imported functions in external DLLs. This
            removes the need to do the lookup for each name, but it assumes
            that the DLLs the application will use will always be located at
            the same address. Because Windows uses address space randomization
            (see Chapter 10 in Part 2 for more information on Address Space
            Load Randomization, or ASLR), this is usually not the case for
            system applications and libraries.

	The export table of an imported DLL can use a forwarder
            entry, meaning that the actual function is implemented in another
            DLL. This must essentially be treated like an import or
            dependency, so after parsing the export table, each DLL referenced
            by a forwarder is also loaded and the loader goes back to step
            1.



After all imported DLLs (and their own dependencies, or imports)
        have been loaded, all the required imported functions have been looked
        up and found, and all forwarders also have been loaded and processed,
        the step is complete: all dependencies that were defined at compile
        time by the application and its various DLLs have now been
        fulfilled. During execution, delayed dependencies (called
        delay load), as well as run-time operations (such
        as calling LoadLibrary) can call into the loader
        and essentially repeat the same tasks. Note, however, that a failure
        in these steps will result in an error launching the application if
        they are done during process startup. For example, attempting to run
        an application that requires a function that isn’t present in the
        current version of the operating system can result in a message
        similar to the one in Figure 3-32.
[image: Dialog box shown when a required (imported) function is not present in a DLL]

Figure 3-32. Dialog box shown when a required (imported) function is not
          present in a DLL


Post-Import Process Initialization



After the required dependencies have been loaded, several
        initialization tasks must be performed to fully finalize launching the
        application. In this phase, the loader will do the following:
	Check if the application is a .NET application, and redirect
            execution to the .NET runtime entry point instead, assuming the
            image has been validated by the framework.

	Check if the application itself requires relocation, and
            process the relocation entries for the application. If the
            application cannot be relocated, or does not have relocation
            information, the loading will fail.

	Check if the application makes use of TLS, and look in the
            application executable for the TLS entries it needs to allocate
            and configure.

	If this is a Windows application, the Windows subsystem
            thread-initialization thunk code is located after loading
            kernel32.dll, and the Authz/AppLocker enforcement is enabled. (See
            Chapter 6 for more information on
            Software Restriction Policies.) If Kernel32.dll is not found, the
            system is presumably assumed to be running in MinWin and only
            Kernelbase.dll is loaded.

	Any static imports are now loaded.

	At this point, the initial debugger breakpoint will be hit
            when using a debugger such as WinDbg. This is where you had to
            type g to continue execution in
            the earlier experiments.

	Make sure that the application will be able to run properly
            if the system is a multiprocessor system.

	Set up the default data execution prevention (DEP) options,
            including for exception-chain validation, also called “software”
            DEP. (See Chapter 10 in Part 2 for more information on
            DEP.)

	Check whether this application requires any
            application compatibility work, and load the shim engine if
            required.

	Detect if this application is protected by SecuROM,
            SafeDisc, and other kinds of wrapper or protection utilities that
            could have issues with DEP (and reconfigure DEP settings in those
            cases).

	Run the initializers for all the loaded modules.

	Run the post-initialization Shim Engine callback if the
            module is being shimmed for application compatibility.

	Run the associated subsystem DLL post-process initialization
            routine registered in the PEB. For Windows applications, this does
            Terminal Services–specific checks, for example.



Running the initializers is the last main step in the loader’s
        work. This is the step that calls the DllMain
        routine for each DLL (allowing each DLL to perform its own
        initialization work, which might even include loading new DLLs at run
        time) as well as processes the TLS initializers of each DLL. This is
        one of the last steps in which loading an application can fail. If all
        the loaded DLLs do not return a successful return code after finishing
        their DllMain routines, the loader aborts
        starting the application. As a very last step, the loader calls the
        TLS initializer of the actual application.

SwitchBack



As each new version of Windows fixes bugs such as race
        conditions and incorrect parameter validation checks in existing API
        functions, an application-compatibility risk is created for each
        change, no matter how minor. Windows makes use of a technology called
        SwitchBack, implemented in the loader, which enables software
        developers to embed a GUID specific to the Windows version they are
        targeting in their executable’s associated manifest. For example, if a
        developer wants to take advantage of improvements added in Windows 7
        to a given API, she would include the Windows 7 GUID in her manifest,
        while if a developer has a legacy application that depends on Windows
        Vista–specific behavior, she would put the Windows Vista GUID in the
        manifest instead. SwitchBack parses this information and correlates it
        with embedded information in SwitchBack-compatible DLLs (in the
        .sb_data image section) to decide which version of an affected API
        should be called by the module. Because SwitchBack works at the
        loaded-module level, it enables a process to have both legacy and
        current DLLs concurrently calling the same API, yet observing
        different results.
Windows currently defines two GUIDs that represent either
        Windows Vista or Windows 7 compatibility settings:
	{e2011457-1546-43c5-a5fe-008deee3d3f0} for Windows
            Vista

	{35138b9a-5d96-4fbd-8e2d-a2440225f93a} for Windows 7



These GUIDs must be present in the application’s manifest file
        under the SupportedOS ID present in a compatibility attribute entry.
        (If the application manifest does not contain a GUID, Windows
        Vista is chosen as the default compatibility mode.)
        Running under the Windows 7 context affects the following
        components:
	RPC components use the Windows thread pool instead of a
            private implementation.

	DirectDraw Lock cannot be acquired on the primary
            buffer.

	Blitting on the desktop is not allowed without a clipping
            window.

	A race condition in GetOverlappedResult
            is fixed.



Whenever a Windows API is affected by changes that might break
        compatibility, the function’s entry code calls the
        SbSwitchProcedure to invoke the SwitchBack logic.
        It passes along a pointer to the SwitchBack Module Table, which
        contains information about the SwitchBack mechanisms employed in the
        module. The table also contains a pointer to an array of entries for
        each SwitchBack point. This table contains a description of each
        branch-point that identifies it with a symbolic name and a
        comprehensive description, along with an associated mitigation tag.
        Typically, there will be two branch-points in a module, one for
        Windows Vista behavior, and one for Windows 7 behavior. For each
        branch-point, the required SwitchBack context is given—it is this
        context that determines which of the two (or more) branches is taken
        at runtime. Finally, each of these descriptors contains a function
        pointer to the actual code that each branch should execute. If the
        application is running with the Windows 7 GUID, this will be part of
        its SwitchBack context, and the SbSelectProcedure
        API, upon parsing the module table, will perform a match operation. It
        finds the module entry descriptor for the context and proceeds to call
        the function pointer included in the descriptor.
SwitchBack uses ETW to trace the selection of given SwitchBack
        contexts and branch-points and feeds the data into the Windows AIT
        (Application Impact Telemetry) logger. This data can be periodically
        collected by Microsoft to determine the extent to which each
        compatibility entry is being used, identify the applications using it
        (a full stack trace is provided in the log), and notify third-party
        vendors.
As mentioned, the compatibility level of the application is
        stored in its manifest. At load time, the loader parses the manifest
        file, creates a context data structure, and caches it in the
        pContextData member of the process environment
        block. (For more information on the PEB, see Chapter 5.) This context
        data contains the associated compatibility GUIDs that this process is
        executing under and determines which version of the branch-points in
        the called APIs that employ SwitchBack will be executed.

API Sets



While SwitchBack uses API redirection for specific
        application-compatibility scenarios, there is a much more pervasive
        redirection mechanism used in Windows for all applications, called
        API Sets. Its purpose is to enable fine-grained
        categorization of Windows APIs into sub-DLLs instead of having large
        multipurpose DLLs that span nearly thousands of APIs that might not be
        needed on all types of Windows systems today and in the future. This
        technology, developed mainly to support the refactoring of the
        bottom-most layers of the Windows architecture to separate it from
        higher layers, goes hand in hand with the breakdown of Kernel32.dll and
        Advapi32.dll (among others) into multiple, virtual DLL files.
For example, the following graphic shows that Kernel32.dll,
        which is a core Windows library, imports from many other DLLs,
        beginning with API-MS-WIN. Each of these DLLs contain a small subset
        of the APIs that Kernel32 normally provides, but together they make up
        the entire API surface exposed by Kernel32.dll. The CORE-STRING
        library, for instance, provides only the Windows base string
        functions.
In splitting functions across discrete files, two objectives are
        achieved: first, doing this allows future applications to link only
        with the API libraries that provide the functionality that they need,
        and second, if Microsoft were to create a version of Windows that did
        not support, for example, Localization (say a non-user-facing,
        English-only embedded system), it would be possible to simply remove
        the sub-DLL and modify the API Set schema. This would result in a
        smaller Kernel32 binary, and any applications that ran without
        requiring localization would still run.
With this technology, a “base” Windows system called “MinWin” is
        defined (and, at the source level, built), with a minimum set of
        services that includes the kernel, core drivers (including file
        systems, basic system processes such as CSRSS and the Service Control
        Manager, and a handful of Windows services). Windows Embedded, with
        its Platform Builder, provides what might seem to be a similar
        technology, as system builders are able to remove select “Windows
        components,” such as the shell, or the network stack. However,
        removing components from Windows leaves dangling
        dependencies—code paths that, if exercised, would fail
        because they depend on the removed components. MinWin’s dependencies,
        on the other hand, are entirely self-contained.
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When the process manager initializes, it calls the
        PspInitializeApiSetMap function, which is
        responsible for creating a section object (using a standard section
        object) of the API Set redirection table, which is stored in
        %SystemRoot%\System32\ApiSetSchema.dll. The DLL contains no executable
        code, but it has a section called .apiset that
        contains API Set mapping data that maps virtual API Set DLLs to
        logical DLLs that implement the APIs. Whenever a new process starts,
        the process manager maps the section object into the process’ address
        space and sets the ApiSetMap field in the
        process’ PEB to point to the base address where the section object was
        mapped.
In turn, the loader’s
        LdrpApplyFileNameRedirection function, which is
        normally responsible for the .local and SxS/Fusion manifest
        redirection that was mentioned earlier, also checks for API Set
        redirection data whenever a new import library that has a name
        starting with “API-” loads (either dynamically or statically). The API
        Set table is organized by library with each entry describing in which
        logical DLL the function can be found, and that DLL is what gets
        loaded. Although the schema data is a binary format, you can dump its
        strings with the Sysinternals Strings tool to see which DLLs are
        currently defined:
C:\Windows\System32>strings apisetschema.dll
...
MS-Win-Core-Console-L1-1-0
kernel32.dllMS-Win-Core-DateTime-L1-1-0
MS-Win-Core-Debug-L1-1-0
kernelbase.dllMS-Win-Core-DelayLoad-L1-1-0
MS-Win-Core-ErrorHandling-L1-1-0
MS-Win-Core-Fibers-L1-1-0
MS-Win-Core-File-L1-1-0
MS-Win-Core-Handle-L1-1-0
MS-Win-Core-Heap-L1-1-0
MS-Win-Core-Interlocked-L1-1-0
MS-Win-Core-IO-L1-1-0
MS-Win-Core-LibraryLoader-L1-1-0
MS-Win-Core-Localization-L1-1-0
MS-Win-Core-LocalRegistry-L1-1-0
MS-Win-Core-Memory-L1-1-0
MS-Win-Core-Misc-L1-1-0
MS-Win-Core-NamedPipe-L1-1-0
MS-Win-Core-ProcessEnvironment-L1-1-0
MS-Win-Core-ProcessThreads-L1-1-0
MS-Win-Core-Profile-L1-1-0
MS-Win-Core-RtlSupport-L1-1-0
ntdll.dll
MS-Win-Core-String-L1-1-0


Hypervisor (Hyper-V)



One of the key technologies in the software industry—used
      by system administrators, developers, and testers alike—is called
      virtualization, and it refers to the ability to run
      multiple operating systems simultaneously on the same physical machine.
      One operating system, in which the virtualization software is executing,
      is called the host, while the other operating
      systems are running as guests inside the
      virtualization software. The usage scenarios for this model cover
      everything from being able to test an application on different platforms
      to having fully virtual servers all actually running as part of the same
      machine and managed through one central point.
Until recently, all the virtualization was done by the software
      itself, sometimes assisted by hardware-level virtualization technology
      (called host-based virtualization). Thanks to
      hardware virtualization, the CPU can do most of the notifications
      required for trapping instructions and virtualizing access to memory.
      These notifications, as well as the various configuration steps required
      for allowing guest operating systems to run concurrently, must be
      handled by a piece of infrastructure compatible with the CPU’s
      virtualization support. Instead of relying on a piece of separate
      software running inside a host operating system to perform these tasks,
      a thin piece of low-level system software, which uses strictly
      hardware-assisted virtualization support, can be used—a
      hypervisor. Figure 3-33 shows a simple
      architectural overview of these two kinds of systems.
[image: Two architectures for virtualization]

Figure 3-33. Two architectures for virtualization

With Hyper-V, Windows server computers can install support for
      hypervisor-based virtualization as a server role (as long as an edition
      with Hyper-V support is licensed). Because the hypervisor is part of the
      operating system, managing the guests inside it, as well as interacting
      with them, is fully integrated in the operating system through standard
      management mechanisms such as WMI and services. (See Chapter 4 for more information on these
      topics.)
Finally, apart from having a hypervisor that allows running other
      guests managed by a Windows Server host, both client and server editions
      of Windows also ship with enlightenments, which are
      special optimizations in the kernel and possibly device drivers that
      detect that the code is being run as a guest under a hypervisor and
      perform certain tasks differently, or more efficiently, considering this
      environment. We will look at some of these improvements later; for now,
      we’ll take a look at the basic architecture of the Windows
      virtualization stack, shown in Figure 3-34.
[image: Windows Hyper-V architectural stack]

Figure 3-34. Windows Hyper-V architectural stack

Partitions



One of the key architectural components behind the
        Windows hypervisor is the concept of a partition.
        A partition essentially references an instance of an operating system
        installation, which can refer either to what’s traditionally called
        the host or to the guest. Under the Windows hypervisor model, these
        two terms are not used; instead, we talk of either a parent
        partition or a child partition,
        respectively. Consequently, at a minimum, a Hyper-V system will have a
        parent partition, which is recommended to contain a Windows Server
        Core installation, as well as the virtualization stack and its
        associated components. Although this installation type is recommended
        because it allows minimizing patches and reducing the security surface
        area, resulting in increased availability of the server, a full
        installation is also supported. Each operating system running within
        the virtualized environment represents a child partition, which might
        contain certain additional tools that optimize access to the hardware
        or allow management of the operating system.

Parent Partition



One of the main goals behind the design of the Windows
        hypervisor was to have it as small and modular as possible, much like
        a microkernel, instead of providing a full, monolithic module. This
        means that most of the virtualization work is actually done by a
        separate virtualization stack and that there are also no
        hypervisor drivers. In lieu of these, the
        hypervisor uses the existing Windows driver architecture and talks to
        actual Windows device drivers. This architecture results in several
        components that provide and manage this behavior, which are
        collectively called the hypervisor stack.
Logically, it is the parent partition that is
        responsible for providing the hypervisor, as well as the entire
        hypervisor stack. Because these are Microsoft components, only a
        Windows machine can be a root partition, naturally. A parent partition
        should have almost no resource usage for itself because its role is to
        run other operating systems. The main components that the parent
        partition provides are shown in Figure 3-35.
[image: Components of a parent partition]

Figure 3-35. Components of a parent partition

Parent Partition Operating System



The Windows installation (typically the minimal footprint
          server installation, called Windows Server Core, to minimize
          resource usage) is responsible for providing the hypervisor and the
          device drivers for the hardware on the system (which the hypervisor
          will need to access), as well as for running the hypervisor stack.
          It is also the management point for all the child partitions.

Virtual Machine Manager Service and Worker Processes



The virtual machine management service
          (%SystemRoot%\System32\Vmms.exe) is responsible for providing the
          Windows Management Instrumentation (WMI) interface to the
          hypervisor, which allows managing the child partitions through a
          Microsoft Management Console (MMC) plug-in. It is also responsible
          for communicating requests to applications that need to communicate
          to the hypervisor or to child partitions. It controls settings such
          as which devices are visible to child partitions, how the memory and
          processor allocation for each partition is defined, and more.
The virtual machine worker processes (VMWPs), on the other
          hand, perform various virtualization work that a typical monolithic
          hypervisor would perform (similar to the work of a software-based
          virtualization solution). This means managing the state machine for
          a given child partition (to allow support for features such as
          snapshots and state transitions), responding to various
          notifications coming in from the hypervisor, performing the
          emulation of certain devices exposed to child partitions, and
          collaborating with the VM service and configuration
          component.
On a system with child partitions performing lots of
          I/O or privileged operations, you would expect most of the CPU usage
          to be visible in the parent partition: you can identify them by the
          name Vmwp.exe (one for each child partition). The worker process
          also includes components responsible for remote management of the
          virtualization stack, as well as an RDP component that allows using
          the remote desktop client to connect to any child partition and
          remotely view its user interface and interact with it.

Virtualization Service Providers



Virtualization service providers (VSPs) are responsible for
          the high-speed emulation of certain devices visible to child
          partitions (the exact difference between VSP-emulated devices and
          user-mode–process-emulated devices will be explained later), and
          unlike the VM service and processes, VSPs can also run in kernel
          mode as drivers. More detail on VSPs will follow in the section that
          describes device architecture in the virtualization stack.

VM Infrastructure Driver and Hypervisor API Library



Because the hypervisor cannot be directly accessed by
          user-mode applications, such as the VM service that is responsible
          for management, the virtualization stack must actually talk to a
          driver in kernel mode that is responsible for relaying the requests
          to the hypervisor. This is the job of the VM infrastructure driver
          (VID). The VID also provides support for certain low-memory memory
          devices, such as MMIO and ROM emulation.
A library located in kernel mode provides the actual interface
          to the hypervisor (called hypercalls). Messages
          can also come from child partitions (which will perform their own
          hypercalls), because there is only one hypervisor for the whole
          system and it can listen to messages coming from any partition. You
          can find this functionality in the Winhv.sys device driver.

Hypervisor



At the bottom of the architecture is the hypervisor itself,
          which registers itself with the processor at system boot-up time and
          provides its services for the stack to use (through the use of the
          hypercall interface). This early initialization is performed by the
          hvboot.sys driver, which is configured to start early on during a
          system boot. Because Intel and AMD processors have slightly
          differing implementations of hardware-assisted virtualization, there
          are actually two different hypervisors—the correct one is selected
          at boot-up time by querying the processor through CPUID
          instructions. On Intel systems, the Hvix64.exe binary is loaded,
          while on AMD systems, the Hvax64.exe image is used.


Child Partitions



The child partition, as discussed earlier, is an instance of any
        operating system running parallel to the parent partition. (Because
        you can save or pause the state of any child, it might not necessarily
        be running, but there will be a worker process for it.) Unlike the
        parent partition, which has full access to the APIC, I/O ports, and
        physical memory, child partitions are limited for security and
        management reasons to their own view of address space (the Guest
        Virtual Address Space, or GVA, which is managed by the hypervisor) and have no direct access to
        hardware. In terms of hypervisor access, it is also limited mainly to
        notifications and state changes. For example, a child partition
        doesn’t have control over other partitions (and can’t create new
        ones).
Child partitions have many fewer virtualization components than
        a parent partition because they are not responsible for running the
        virtualization stack—only for communicating with it. Also, these
        components can also be considered optional because they enhance
        performance of the environment but are not critical to its use. Figure 3-36 shows the components
        present in a typical Windows child partition.
[image: Components in a child partition]

Figure 3-36. Components in a child partition

EXPERIMENT: Examining Child Partitions from the Parent with
          LiveKd
With Sysinternals LiveKd, you can examine a Windows XP or
          higher virtual machine from the parent partition without having to
          boot the child operating system in debugging mode. First, specify
          the –hvl option to LiveKd, which has it list
          the IDs and names of active child partitions:
[image: image with no caption]

Then run LiveKd with the –hv switch and
          specify the ID or name of the child partition that you want to
          examine. Just as for debugging the local system with Livekd, the
          contents of the virtual machine’s memory can change as you execute
          LiveKd commands, resulting in LiveKd seeing inconsistencies caused by data reflecting
          different points in time. If you want LiveKd to see a consistent
          view, you can specify the –p option to have the
          child partition paused while LiveKd is running. All commands that
          work on a local system also work when you use LiveKd to explore a
          virtual machine. Here’s the partial output of the
          !vm kernel debugger command, which lists
          various memory-related statistics, when executed on a Hyper-V child
          partition:
[image: image with no caption]


Virtualization Service Clients



Virtualization service clients (VSCs) are the child partition
          analogues of VSPs. Like VSPs, VSCs are used for device emulation,
          which is a topic of later discussion.

Enlightenments



Enlightenments are one of the key performance optimizations
          that Windows virtualization takes advantage of. They are direct
          modifications to the standard Windows kernel code that can detect
          that this operating system is running in a child partition and
          perform work differently. Usually, these optimizations are highly
          hardware-specific and result in a hypercall to notify the
          hypervisor. An example is notifying the hypervisor of a long busy-wait spin
          loop. The hypervisor can keep some state stale in this scenario
          instead of keeping track of the state at every single loop
          instruction. Entering and exiting an interrupt state can also be
          coordinated with the hypervisor, as well as access to the APIC,
          which can be enlightened to avoid trapping the real access and then
          virtualizing it.
Another example has to do with memory management, specifically
          TLB flushing and changing address space. (See Chapter 9 for more
          information on these concepts.) Usually, the operating system
          executes a CPU instruction to flush this information, which affects
          the entire processor. However, because a child partition could be
          sharing a CPU with many other child partitions, such an operation
          would also flush this information for those operating systems,
          resulting in noticeable performance degradation. If Windows is
          running under a hypervisor, it instead issues a hypercall to have
          the hypervisor flush only the specific information belonging to the
          child partition.


Hardware Emulation and Support



A virtualization solution must also provide optimized access to
        devices. Unfortunately, most devices aren’t made to accept multiple
        requests coming in from different operating systems. The hypervisor
        steps in by providing the same level of synchronization where possible
        and by emulating certain devices when real access to hardware cannot
        be permitted. In addition to devices, memory and processors must also
        be virtualized. Table 3-26 describes the
        three types of hardware that the hypervisor must manage.
Table 3-26. Virtualized Hardware
	Component
	Managed By
	Usage

	Processor
	Hypervisor built-in scheduler and
                related microkernel components
	Manage usage of hardware’s
                processing power, share multiple processors across multiple
                child partitions, manage and switch processor states (such as
                registers).

	Memory
	Hypervisor built-in memory manager
                and related microkernel components
	Manage hardware’s RAM usage and
                availability. Protect memory from child partitions and parent
                partition. Provide a contiguous view of physical memory
                starting at address 0.

	Devices
	VM worker processes—hypervisor
                responsible only for interception and
                notification
	Provide hardware multiplexing so
                that multiple child partitions can access the same device on
                the physical machine. Optimize access to physical devices to
                be as fast as possible.




Instead of exposing actual hardware to child partitions, the
        hypervisor exposes virtual devices (called
        VDevs). VDevs are packaged as COM components that
        run inside a VM worker process, and they are the central manageable
        object behind the device. (Usually, VDevs expose a WMI interface.) The
        Windows virtualization stack provides support for two kinds of virtual
        devices: emulated devices and synthetic
        devices (also called enlightened I/O).
        The former provide support for various devices that the operating
        systems on the child partition would expect to find, while the latter
        requires specific support from the guest operating system. On the
        other hand, synthetic devices provide a significant performance
        benefit by reducing CPU overhead.
Emulated Devices



Emulated devices work by presenting the child
          partition with a set of I/O ports, memory ranges, and interrupts
          that are being controlled and monitored by the hypervisor. When
          access to these resources is detected, the VM worker process
          eventually gets notified through the virtualization stack (shown
          earlier in Figure 3-34).
          The process then emulates whatever action is expected from the
          device and completes the request, going back through the hypervisor
          and then to the child partition. From this topological view alone,
          one can see that there is a definite loss in performance, without
          even considering that the software emulation of a hardware device is
          usually slow.
The need for emulated devices comes from the fact that the
          hypervisor needs to support nonhypervisor-aware operating systems,
          as well as the early installation steps of even Windows itself.
          During the boot process, the installer can’t simply load all the
          child partition’s required components (such as VSCs) to use
          synthetic devices, so a Windows installation will always use
          emulated devices (which is why installation will seem very slow, but
          once installed the operating system will run quite close to native
          speed). Emulated devices are also used for hardware that doesn’t
          require high-speed emulation and for which software emulation might
          even be faster. This includes items such as COM (serial) ports,
          parallel ports, or the motherboard itself.
Note
Hyper-V emulates an Intel i440BX motherboard, an S3 Trio
            video card, and an Intel 21140 NIC.


Synthetic Devices



Although emulated devices work adequately for 10-Mbit network
          connections, low-resolution VGA displays, and 16-bit sound cards,
          the operating systems and hardware that child partitions usually
          require in today’s usage scenarios require a lot more processing
          power, such as support for 1000-Mbit GbE connections; full-color,
          high-resolution 3D support; and high-speed access to storage
          devices. To support this kind of virtualized hardware access at an
          acceptable CPU usage level and virtualized throughput, the
          virtualization stack uses a variety of components to optimize device
          I/Os to their fullest (similar to kernel enlightenments). Three
          components are part of this support, and they all belong to what’s
          presented to the user as integration components
          or ICs:
	Virtualization service providers (VSPs)

	Virtualization service clients/consumers (VSCs)

	VMBus



Figure 3-37 shows a
          diagram of how an enlightened, or synthetic storage I/O, is handled
          by the virtualization stack.
[image: I/O handling paths in Hyper-V]

Figure 3-37. I/O handling paths in Hyper-V

As shown in Figure 3-37, VSPs run in the
          parent partition, where they are associated with a specific device
          that they are responsible for enlightening.
          (We’ll use that as a term instead of emulating
          when referring to synthetic devices.) VSCs reside in the child
          partition and are also associated with a specific device. Note,
          however, that the term provider can refer to
          multiple components spread across the device stack. For example, a
          VSP can be any of the following:
	A user-mode service

	A user-mode COM component

	A kernel-mode driver



In all three cases, the VSP will be associated with the actual
          virtual device inside the VM worker process. VSCs, on the other
          hand, are almost always designed to be drivers sitting at the lowest
          level of the device stack (see Chapter 8 in Part 2 for more
          information on device stacks) and intercept I/Os to a device and
          redirect them through a more optimized path. The main optimization
          that is performed by this model is to avoid actual hardware access
          and use VMBus instead. Under this model, the hypervisor is unaware
          of the I/O, and the VSP redirects it directly to the parent
          partition’s kernel storage stack, avoiding a trip to user mode as well.
          Other VSPs can perform work directly on the device, by talking to
          the actual hardware and bypassing any driver that might have been
          loaded on the parent partition. Another option is to have a
          user-mode VSP, which can make sense when dealing with
          lower-bandwidth devices.
As described earlier, VMBus is the name of the bus transport
          used to optimize device access by implementing a communications
          protocol using hypervisor services. VMBus is a bus driver present on
          both the parent partition and the child partitions responsible for
          the Plug and Play enumeration of synthetic devices in a child. It
          also contains the optimized cross-partition messaging protocol that
          uses a transport method that is appropriate for the data size. One
          of these methods is to provide a shared ring buffer between each
          partition—essentially an area of memory on which a certain amount of
          data is loaded on one side and unloaded on the other side. No memory
          needs to be allocated or freed because the buffer is continuously
          reused and simply rotated. Eventually, it might become full with
          requests, which would mean that newer I/Os would overwrite older
          I/Os. In this uncommon scenario, VMBus simply delays newer requests
          until older ones complete. The other messaging transport is direct
          child memory mapping to the parent address space for large enough
          transfers.

Virtual Processors



Just as the hypervisor doesn’t allow direct access to hardware
          (or to memory, as you’ll see later), child partitions don’t really
          see the actual processors on the machine but have a virtualized view
          of CPUs as well. On the root machine, the administrator and the
          operating system deal with logical processors,
          which are the actual processors on which threads can run (for
          example, a dual quad-core machine has eight logical processors), and
          assign these processors to various child partitions. For example,
          one child partition could be scheduled on logical processors 1, 2,
          3, and 4, while the second child partition is scheduled on
          processors 5, 6, 7, and 8. These operations are all made possible
          through the use of virtual processors, or
          VPs.
Because processors can be shared across multiple child
          partitions, the hypervisor includes its own scheduler that
          distributes the workload of the various partitions across each
          processor. Additionally, the hypervisor maintains the register state
          for each virtual processor and to an appropriate “processor switch”
          when the same logical processor is being used by another child
          partition. The parent partition has the ability to access all these
          contexts and modify them as required, an essential part of the
          virtualization stack that must respond to certain instructions and
          perform actions.
The hypervisor is also directly responsible for virtualizing
          processor APICs and providing a simpler, less-featured virtual APIC,
          including support for the timer that’s found on most APICs (however,
          at a slower rate). Because not all operating systems support APICs,
          the hypervisor also allows for the injection of interrupts through a
          hypercall, which permits the virtualization stack to emulate a
          standard i8059 PIC.
Finally, because Windows supports dynamic processor addition,
          an administrator can add new processors to a child partition at run
          time to increase the responsiveness of the guest operating systems
          if it’s under heavy load.

Memory Virtualization



The final piece of hardware that must be abstracted
          away from child partitions is memory, not only for the normal
          behavior of the guest operating systems, but also for security and
          stability. Improperly managing the child partitions’ access to
          memory could result in privacy disclosures and data corruption, as
          well as possible malicious attacks by “escaping” the child partition
          and attacking the parent (which would then allow attacks on the
          other child partitions). Apart from this aspect, there is also the
          matter of the guest operating system’s view of physical address
          space. Almost all operating systems expect memory to begin at
          address 0 and be somewhat contiguous, so simply assigning chunks of
          physical memory to each child partition wouldn’t work even if enough
          memory was available on the system.
To solve this problem, the hypervisor implements an address
          space called the guest physical address space
          (GPA space). The GPA starts at address 0, which satisfies the needs
          of operating systems inside child partitions. However, the GPA is
          not a simple mapping to a chunk of physical memory because of the
          second problem (the lack of contiguous memory). As such, GPAs can
          point to any location in the machine’s physical memory (which is
          called the system physical address space, or
          SPA space), and there must be a translation system to go from one
          address type to another. This translation system is maintained by
          the hypervisor and is nearly identical to the way virtual memory is
          mapped to physical memory on x86 and x64 processors. (See Chapter 10
          in Part 2 for more information on the memory manager and address
          translation.)
As for actual virtual addresses in the child partition (which
          are called guest virtual address space—GVA
          space), these continue to be managed by the operating system without
          any change in behavior. What the operating system believes are real
          physical addresses in its own page tables are actually SPAs. Figure 3-38 shows an
          overview of the mapping between each level.
[image: Guest virtual and physical address translation]

Figure 3-38. Guest virtual and physical address translation

This means that when a guest operating system boots up and
          creates the page tables to map virtual to physical memory, the
          hypervisor intercepts SPAs and keeps its own copy of the page
          tables. Conceptually, whenever a piece of code accesses a virtual
          address inside a guest operating system, the hypervisor does the
          initial page table translation to go from the guest virtual address
          to the GPA and then maps that GPA to the respective SPA. In reality,
          this operation is optimized through the use of shadow page
          tables (SPTs), which the hypervisor maintains to have
          direct GVA-to-SPA translations and simply loads when appropriate so
          that the guest accesses the SPA directly.
Second-Level Address Translation and Tagged TLB
Because the translation from GVA to GPA to SPA is
            expensive (because it must be done in software), CPU manufacturers
            have worked to curtail this inefficiency by making the processor
            natively aware of the address translation requirements of a
            virtual machine—in other words, an advanced processor could
            understand that the memory access is occurring from a hosted
            virtual machine and perform the GVA-to-SPA lookup on its own,
            without requiring assistance from the hypervisor. This lookup
            technology is called Second-Level Address Translation (SLAT)
            because it covers both the target-to-host translation (second
            level) and the host VA–to–host PA translation (first level). For
            marketing purposes, however, Intel has called this support VT
            Extended/Nested Page Table (NPT) technology, while AMD calls it
            AMD-V Rapid Virtualization Indexing (RVI).
The latest version of the Hyper-V stack takes full advantage
            of this processor support, reducing the complexity of its code and
            minimizing the number of context switches required to handle page
            faults in hosted partitions. Additionally, SLAT enables Hyper-V to
            throw out its shadow page tables and relevant mappings, which
            allows an additional reduction of memory overhead as well. These
            changes increase the scalability of Hyper-V on such systems,
            notably leading to an increase in the maximum number of virtual
            machines that a single host (Hyper-V server) can serve, or run
            concurrently. According to tests performed by Microsoft, support
            for SLAT increases the maximum number of supported sessions
            between 1.6 and 2.5 times. Furthermore, the processor overhead
            drops from about 10 percent to 2 percent, and each virtual machine
            consumes one less megabyte of physical RAM on the host.
In addition, both Intel and AMD introduced a functionality
            that was typically found only on RISC processors such as ARM,
            MIPS, or PPC, which is the ability of the processor to
            differentiate between the processes associated with each cached
            virtual-to-physical translation entry in the translation
            look-aside buffer (TLB). On CISC processors such as the x86 and
            x64, the TLB was built as a systemwide resource—each time the
            operating system switched the currently executing process, the TLB
            had to be flushed to invalidate any cached entries that might’ve
            belonged to the previous executing process. If the processor,
            instead, could be told that the process has changed, the TLB would
            avoid a flush and the processor would simply not use the cached
            entries that did not correspond to this process. New entries would
            be created, eventually overriding other processes’ older entries.
            This type of smarter TLB is called a tagged
            TLB, because each cache entry is
            tagged with a per-process identifier.
Flushing the TLB is even worse when dealing with Hyper-V
            systems because a different process can actually correspond to a
            completely different VM. In other words, each time the hypervisor
            and operating system scheduled another VM for execution, the
            host’s TLB had to be flushed, flushing away all the cached
            translations the previous VM had performed, slowing down memory
            access, and causing significant latency. When running on a
            processor that implements a tagged TLB, the Hyper-V can simply
            notify the processor that a new process/VM is running and that the
            entries of other VM should not be used. AMD processors with RVI
            support tagged TLBs through an Address Space Identifier, or ASID,
            while recent Intel Nehalem-EX processors implement a tagged TLB by
            using a Virtual Processor Identifier (VPID).

Dynamic Memory
A feature called Dynamic Memory enables systems
            administrators to make a virtual machine’s physical memory
            allocation variable based on the memory demands of the active
            virtual machines, in much the same way that the Windows memory
            manager adjusts the physical memory assigned to each process based
            on their memory demands. The capability means that administrators
            do not have to precisely gauge the size of a virtual machine
            required for optimal performance and that the system’s physical
            memory is more effectively used by the virtual machines that need
            it.
Dynamic Memory’s architecture consists of several
            components, shown in Figure 3-39.
[image: Dynamic Memory architecture]

Figure 3-39. Dynamic Memory architecture

The principle components of the architecture are as
            follows:
	The Dynamic Memory balancer, which is implemented in the
                virtual machine management service. The balancer is
                responsible for assigning physical memory to child
                partitions.

	The Dynamic Memory VSP (DM VSP), which runs in the VMWPs
                of child partitions that have dynamic memory enabled.

	The Dynamic Memory VSC (DM VSC,
                %SystemRoot%\System32\Drivers\Dmvsc.sys), installed as an
                enlightenment driver running in the child partitions.



To configure a VM for dynamic memory, an
            administrator chooses Dynamic in the VM’s memory settings as shown
            in Figure 3-40.
[image: Dynamic memory configuration dialog]

Figure 3-40. Dynamic memory configuration dialog

The associated settings include the amount of memory that
            will be assigned to the VM when it starts (Startup RAM), the
            maximum amount that it can be assigned (Maximum RAM), the
            percentage of the VM’s memory that should be available for
            immediate use by the operating system if its memory demand
            increases, and finally, the weight of the VM with respect to other
            VMs. In addition to serving as weighting for the distribution of
            physical memory among virtual machines that have dynamic memory
            enabled, the hypervisor also uses it as a guide for the startup
            order of virtual machines configured to start when the system
            boots. Finally, the available memory percentage is a reference to
            memory within the VM that the VM’s operating system has not
            assigned to a process, device drivers, or itself, and that can be
            assigned without incurring a page fault. Chapter 10 in Part 2
            describes available memory in more detail.
When the DM VSC starts in a child partition that has dynamic
            memory enabled in its memory configuration, it first checks to see
            if the operating system supports dynamic memory capabilities. It
            performs this check by simply calling the memory manager’s hot-add
            memory function, specifying a block of child physical memory
            already assigned to the virtual machine. If the memory manager
            supports hot add, it returns an error indicating that the address
            range is already in use, and if it doesn’t, it reports that the
            function is not supported. If dynamic memory is supported, the DM VSC establishes a
            connection to the DM VSP via VMBus. Because the system’s memory
            usage fluctuates during the boot process, after all autostart
            Windows services have finished initializing, the VSC begins
            reporting memory statistics once per second that indicate the
            current system commit level in the virtual machine. (See Chapter
            10 in Part 2 for more information on system commit.)
The DM VSP in the parent partition calculates a memory
            pressure value for its corresponding VM using the following
            calculation based on the VM’s memory report:
Memory Pressure = Committed Memory / Physical
            Memory
Physical Memory refers to the amount of
            memory currently assigned to the VM’s partition. It also keeps a
            running exponential average pressure that represents the previous
            20 seconds of pressure reports, adjusting the average pressure
            only when the current pressure deviates from the average by at
            least a standard deviation.
A component called the balancer
            executes in the VMMS service. Once per second, it analyzes the
            memory pressures reported by the DM VSPs, considers VM policy
            configuration, and determines if and how much memory should be
            redistributed. If a global Hyper-V setting called NUMA
            spanning is enabled, the balancer uses two balancing
            engines: one engine is the global balancer, and it is responsible
            for assigning new VMs to NUMA nodes. It does so based on the
            memory usage and VM pressures of the nodes at the time of the
            assignment. Each NUMA node has its own local balancer that manages
            the distribution of the node’s memory across the VMs assigned to
            the node. If the NUMA spanning option is off, the global balancer
            has no role other than to invoke the only local balancer for the
            system.
The benefit of assigning VMs to NUMA nodes is that VMs will
            be guaranteed the fastest memory accesses possible. The tradeoff,
            however, is that it might not be possible to start or add memory
            to a VM in the case where the sum of unassigned memory is
            sufficient but no one node has enough available memory to
            accommodate the amount of memory requested.
A local balancer increases or decreases a global target
            memory pressure to use all available memory under its management
            or to use it until a minimum pressure level is reached that
            indicates all VMs have ample memory. The balancer then loops over
            the VMs, determining how much memory to add or remove from each VM
            to reach the target pressure. During the calculations, the
            balancer reserves a minimum amount of memory for the host. The
            host’s reservation is a base amount of approximately 400 MB plus
            30 MB for each 1 GB of RAM on the system. Factors that can affect
            the amount of memory reserved include whether or not the system is
            using SLAT or software paging, and whether multimedia redirection
            is enabled. Every five minutes, the balancer also removes memory
            from VMs that have so much memory that their pressure is
            essentially zero.
Note that if the child partition’s operating system is
            running a 32-bit version of Windows, the dynamic memory engine
            will not assign the partition more than 4 GB of memory.
Once it has calculated the amounts of memory to add and
            remove from VMs, it asks each WP to perform the desired operation.
            If the operation is to remove memory, the WP signals the child DM VSC over VMBUS of the amount to remove
            and the DM VSC balloons its memory usage by allocating physical
            memory from the system using the
            MmAllocatePagesForMdlEx function. It
            retrieves the allocated GPAs and sends that back to the WP, which
            passes them to the Hyper-V memory manager. The Hyper-V memory
            manager then converts the GPAs to SPAs and adds the memory to its
            free memory pool.
If it’s a memory add operation, the WP asks the Hyper-V
            memory manager first if the VM has any physical memory assigned to
            it but currently allocated by the VSC’s balloon. If it does, the
            WP retrieves the GPAs for an amount that should be
            unballooned and asks the VSC to free those
            pages, making them available again for use by the VM’s operating
            system. If the amount that can be released by unballooning falls
            short of the amount of physical memory the balancer wants to give
            the VM, it asks the Hyper-V memory manager to give the remaining
            amount from its free memory pool to the child partition via
            Windows support for hot-add memory and reports the GPAs it added
            to the WP, which in turn relays them to the child’s DM VSC.

EXPERIMENT: Watching Dynamic Memory
You can watch the behavior of Dynamic Memory by configuring
            Dynamic Memory for a VM running a 64-bit Dynamic Memory-compatible
            operating system, such as Windows 7 or Windows Server 2008 R2.
            Hyper-V exposes several Dynamic Memory–related performance
            counters under Hyper-V Dynamic Memory Balancer and Dynamic Memory
            VM. Counters include the amount of memory assigned to a guest, the
            guest operating system–visible memory (the amount of memory it
            thinks it has), its current and average memory pressure, and the
            amount of memory added and removed over time:
[image: image with no caption]

After freshly booting the virtual machine, add the
            Guest Visible Physical Memory and Physical Memory counters. Set
            the scale to three times the current Guest Visible Physical Memory
            value, which will be at least as large as the Physical Memory
            value. Then run the Sysinternals Testlimit tool in the virtual
            machine with the following commandline: testlimit -m
            1000 -c 1
Assuming you have enough available physical memory on the
            system, this causes Testlimit to allocate about 1 GB of virtual
            memory, raising the memory pressure in the virtual machine. After
            a few seconds, you will see the guest visible and actual physical
            memory assigned to the virtual machine jump to the same value.
            Roughly 30 seconds later, you’ll see another jump when the
            balancer decides that the additional memory is not enough to
            completely relieve the memory pressure in the virtual machine and,
            because there’s more memory available on the host, gives the
            virtual machine some more.
[image: image with no caption]

If you terminate Testlimit, the memory levels remain
            constant for several minutes if there’s no memory demands from the
            host or other virtual machines, but eventually the balancer will
            respond to the lack of memory pressure in the virtual machine by
            trimming memory. Note that the Guest Visible Physical Memory counter remains
            unchanged, but the Physical Memory counter drops back to a level
            near what it was before Testlimit executed:
[image: image with no caption]



Intercepts



We’ve talked about the various ways in which access to
          hardware, processors, and memory is virtualized by the hypervisor
          and sometimes handed off to a VM worker process, but we haven’t yet
          talked about the mechanism that allows this to
          happen—intercepts. Intercepts are configurable
          hooks that a parent partition can install and
          configure in order to respond to. These can include the following
          items:
	I/O intercepts, useful for device emulation

	MSR intercepts, useful for APIC emulation and
              profiling

	Access to GPAs, useful for device emulation, monitoring,
              and profiling (Additionally, the intercept can be fine-tuned to
              a specific access, such as read, write, or execute.)

	Exception intercepts such as page faults, useful for
              maintaining machine state and memory emulation (for example,
              maintaining copy-on-write)



Once the hypervisor detects an event for which an
          intercept has been registered, it sends an intercept message through
          the virtualization stack and puts the VP in a suspended state. The
          virtualization stack (usually the worker process) must then handle
          the event and resume the VP (typically with a modified register
          state that reflects the work performed to handle the
          intercept).

Live Migration



To support scenarios such as planned hardware upgrades and
          resource load balancing across servers, Hyper-V includes support for
          migrating virtual machines between nodes of a Windows Failover
          Cluster with minimal downtime. The key to Live Migration’s
          efficiency is that the bulk of the transfer of the virtual machine’s
          memory from the source to the target occurs while the virtual
          machine continues to run on the source node; only when the memory
          transfer is complete does the virtual machine suspend and resume
          operating on the target node. This small window when final virtual
          machine state migrates is typically less than the default TCP
          timeout value, preserving open connections from clients using
          services of the virtual machine and making the migration transparent
          from their perspective. Figure 3-41 shows the Live Migration
          process.
[image: Live migration transfer steps]

Figure 3-41. Live migration transfer steps

The Live Migration process proceeds in a number of steps,
          shown in Figure 3-41:
	1.
	Migration
                  Setup The VMMS of the hosting (source) node of
                  the virtual machine opens a TCP connection with the
                  destination host. It transfers the virtual machine’s
                  configuration information, which includes virtual hardware
                  specifications such as the number of processors and amount
                  of RAM, to the destination. VMMS on the destination (target)
                  node instantiates a paused virtual machine matching the
                  configuration. The VMMS on the source notifies the virtual
                  machine’s worker process that the live migration is ready to
                  proceed and hands it the TCP connection. Likewise, the
                  target VMMS hands its end of the connection to the target
                  worker process.

	2.
	Memory
                  Transfer The memory transfer phase consists of
                  several subphases:
 	The source VMWP creates a bitmap with one bit
                        representing each page of the virtual machine’s guest
                        physical memory. It sets every bit to indicate that
                        the page is dirty, which means
                        that the page’s current contents have not yet been
                        sent to the target.

	The source VMWP registers a
                        memory-change notification callback with the
                        hypervisor that sets the corresponding bit in the
                        bitmap for each page of the virtual machine that
                        changes.

	The source VMWP proceeds to walk through the
                        dirty-page bitmap in 16-KB blocks, clearing the dirty
                        bits in the dirty-page bitmap for the pages in the
                        block, reading each dirty page’s contents via a
                        hypervisor call, and sending the contents to the
                        target. The target VMWP invokes the hypervisor to
                        inject the memory contents into the target virtual
                        machine’s guest physical memory.

	When it’s finished iterating over the dirty-page
                        bitmap, the source VMWP checks to see if any pages
                        have been dirtied during the iteration. If not, it
                        moves to the next phase of the migration, but if any
                        pages have been dirtied, it repeats the iteration. If
                        it’s iterated five times, the virtual machine is
                        dirtying memory faster than the worker process can
                        send modifications, so it proceeds to the next phase
                        of the migration.




	5.
	State
                  Transfer The source VMWP suspends the virtual
                  machine and makes a final iteration through the dirty-page
                  bitmap to send over any pages that were dirtied since the
                  last pass. Because the virtual machine is suspended during
                  the transfer, no more pages will be dirtied. Then the source
                  worker process sends the virtual machine’s state, including
                  the contents of the virtual processor registers. Finally, it
                  notifies VMMS that the migration is complete, waits for
                  acknowledgement, and then sends a message to the target
                  transferring ownership of the virtual machine. As the last
                  migration step, the target worker process moves the virtual
                  machine to the running state.

	6.
	Another aspect of Live Migration
                  is the transfer of ownership of the virtual machine’s files,
                  including its VHDs. Traditional Windows Clustering is a
                  shared-nothing model, where each LUN of the cluster’s
                  storage system is owned by one node at a time. The LUN’s
                  owning node has sole access to the LUN and any files stored
                  on it. This model can lead to management complexity because
                  each virtual machine must be stored on a separate LUN and
                  therefore a separate volume, causing an explosion of volumes
                  in a cluster hosting many virtual machines. It poses an even
                  more significant challenge for Live Migration because LUN
                  ownership transfer is an expensive operation, consisting of
                  the source node flushing any modified file data to the LUN,
                  the source node unmounting the volumes formatted on the LUN,
                  ownership transfer from the source node to target node, and
                  the target node mounting the volumes. Depending on the
                  number of volumes on the LUN and the amount of dirty data
                  that needs to be written back, the entire sequence can take
                  tens of seconds, which would prevent Live Migration from
                  meeting its goal of perceived nearly-instantaneous
                  migrations.

	7.
	To address the limitations of the
                  traditional clustering model and make Live Migration
                  possible, Live Migration leverages a storage feature called
                  Clustered Shared Volumes (CSV). With CSV, one node owns the
                  namespace of the volumes on a LUN while others can have
                  exclusive ownership of individual files. Exclusive ownership
                  permits the node hosting the virtual machine to directly
                  access the on-disk storage of the VHD file, bypassing the
                  network file system accesses normally required to interact
                  with a LUN owned by another node. Only when a node wants to
                  create or delete files, change the size of files (for
                  example, to extend the size of a dynamic or differencing VHD), or change other
                  file metadata such as timestamps does it need to send a
                  request via the SMB2 protocol to the owning node if it’s not
                  the owner.

	8.
	The hybrid sharing model of CSV
                  enables LUN ownership to remain unchanged during Live
                  Migration and enables only ownership of individual migrating
                  virtual machine’s file to change, avoiding the unmounts and
                  mount operations. Also, only dirty data specific to the
                  virtual machine files must be written before the migration,
                  something that can typically happen concurrently with the
                  memory migration. Figure 3-42
                  depicts the storage ownership changes during a Live
                  Migration. CSV’s implementation is described in the “File
                  System Filter Drivers” section of Chapter 12, “File
                  Systems,” in Part 2.



[image: Clustered Shared Volumes in Live Migration]

Figure 3-42. Clustered Shared Volumes in Live Migration




Kernel Transaction Manager



One of the more tedious aspects of software development is
      handling error conditions. This is especially true if, in the course of
      performing a high-level operation, an application has completed one or
      more subtasks that result in changes to the file system or registry. For
      example, an application’s software updating service might make several
      registry updates, replace one of the application’s executables, and then
      be denied access when it attempts to update a second executable. If the
      service doesn’t want to leave the application in the resulting
      inconsistent state, it must track all the changes it makes and be
      prepared to undo them. Testing the error-recovery code is difficult, and
      consequently often skipped, so errors in the recovery code can negate
      the effort.
Applications can, with very little effort, gain automatic
      error-recovery capabilities by using a kernel mechanism called the
      Kernel Transaction Manager (KTM), which provides
      the facilities required to perform such transactions and enables
      services such as the distributed transaction
      coordinator (DTC) in user mode to take advantage of them. Any developer who
      uses the appropriate APIs can take advantage of these services as
      well.
KTM does more than solve large-scale issues like the one
      presented. Even on single-user home computers, installing a service
      patch or performing a system restore are large operations that involve
      both files and registry keys. Unplug an older Windows computer during
      such an operation, and the chances for a successful boot are slim. Even
      though the NT File System (NTFS) has always had a log file permitting
      the file system to guarantee atomic operations (see Chapter 12 in Part 2
      for more information on NTFS), this only means that whichever file was
      being written to during the process will get fully written or fully
      deleted—it does not guarantee the entire update or restore operation.
      Likewise, the registry has had numerous improvements over the years to
      deal with corruption (see Chapter 4 for
      more information on the registry), but the fixes apply only at the
      key/value level.
As the heart of transaction support, KTM allows transactional
      resource managers such as NTFS and the registry to coordinate their
      updates for a specific set of changes made by an application. NTFS uses
      an extension to support transactions, called TxF. The registry uses a
      similar extension, called TxR. These kernel-mode resource managers work
      with KTM to coordinate the transaction state, just as user-mode resource
      managers use DTC to coordinate transaction state across multiple
      user-mode resource managers. Third parties can also use KTM to implement
      their own resource managers.
TxF and TxR both define a new set of file system and registry APIs
      that are similar to existing ones, except that they include a
      transaction parameter. If an application wants to create a file within a
      transaction, it first uses KTM to create the transaction, and then it
      passes the resulting transaction handle to the new file creation API.
      Although we’ll look at the registry and NTFS implementations of KTM
      later, these are not its only possible uses. In fact, it provides four
      system objects that allow a variety of operations to be supported. These
      are listed in Table 3-27.
Table 3-27. KTM Objects
	Object
	Meaning
	Usage

	Transaction
	Collection of data operations to be
              performed. Provides atomic,
              consistent, isolated,
              and durable operations.
	Can be associated with the registry
              and file I/O to make those operations part of the same larger
              operation.

	Enlistment
	Association between a resource manager
              and a transaction.
	Register with a transaction to receive
              notifications on it. The enlistment can specify which
              notifications should be generated.

	Resource Manager (RM)
	Container for the transactions and the
              data on which they operate.
	Provides an interface for clients to
              read and write the data, typically on a database.

	Transaction Manager
              (TM)
	Container of all transactions that are
              part of the associated resource managers. As an instance of a
              log, it knows about all transaction states but not their
              data.
	Provides an infrastructure through
              which clients and resource managers can communicate, and
              provides and coordinates recovery operations after a crash.
              Clients use the TM for transactions; RMs use the TM for
              enlistments.




EXPERIMENT: Listing Transaction Managers
Windows ships with a built-in tool called Ktmutil.exe
        that allows you to see ongoing transactions as well as registered
        transaction managers on the system (and force the outcome of ongoing
        transactions). In this experiment, you’ll use it to display the
        transaction managers typically seen on a Windows machine.
Start an elevated command prompt and type:
Ktmutil.exe tm list
Here’s an example of output on a typical Windows system:
C:\Windows\system32>ktmutil tm list
TmGuid                                 TmLogPath
-------------------------------------- -----------------------------------------
{fef0dc5f-0392-11de-979f-002219dd8c25} \Device\HarddiskVolume2\$Extend\$RmMetadata\$TxfLog
\$TxfLog::KtmLog
{fef0dc63-0392-11de-979f-002219dd8c25} \Device\HarddiskVolume1\$Extend\$RmMetadata\$TxfLog
\$TxfLog::KtmLog
{5e68e4aa-129e-11e0-8635-806e6f6e6963} \Device\HarddiskVolume2\Windows\ServiceProfiles\
NetworkService\ntuser.dat{5e68e4a8-129e-11e0-8635-806e6f6e6963}.TM
{5e68e4ae-129e-11e0-8635-005056c00008} \Device\HarddiskVolume2\Windows\ServiceProfiles\
LocalService\ntuser.dat{5e68e4ac-129e-11e0-8635-005056c00008}.TM
{51ce23c9-0d6c-11e0-8afb-806e6f6e6963} \SystemRoot\System32\Config\TxR\{51ce23c7-0d6c-
11e0-8afb-806e6f6e6963}.TM
{51ce23ee-0d6c-11e0-8afb-005056c00008} \Device\HarddiskVolume2\Users\markruss\ntuser.
dat{51ce23ec-0d6c-11e0-8afb-005056c00008}.TM
{51ce23f2-0d6c-11e0-8afb-005056c00008} \Device\HarddiskVolume2\Users\markruss\AppData\
Local\Microsoft\Windows\UsrClass.dat{51ce23f0-0d6c-11e0-8afb-005056c00008}.TM


Hotpatch Support



Rebooting a machine to apply the latest patches can mean
      significant downtime for a server, which is why Windows supports a
      run-time method of patching, called a hot patch (or
      simply hotpatch), in contrast to a cold
      patch, which requires a reboot. Hotpatching doesn’t simply
      allow files to be overwritten during execution; instead, it includes a
      complex series of operations that can be requested (and combined). These
      operations are listed in Table 3-28.
Table 3-28. Hotpatch Operations
	Operation
	Meaning
	Usage

	Rename Image
	Replacing a DLL that is on the disk
              and currently used by other applications, or replacing a driver
              that is on the disk and is currently loaded by the
              kernel
	When an entire library in user mode
              needs to be replaced, the kernel can detect which processes and
              services are referencing it, unload them, and then update the
              DLL and restart the programs and services (which is done through
              the restart manager). When a driver needs
              to be replaced, the kernel can unload the driver (the driver
              requires an unload routine), update it, and then reload
              it.

	Object Swap
	Atomically renaming an object in the
              object directory namespace
	When a file (typically a
              known DLL) needs to be renamed atomically
              but not affect any process that might be using it (so that the
              process can start using the new file immediately, using the old
              handle, without requiring an application
              restart).

	Patch Function Code
	Replacing the code of one or more
              functions inside an image file with another
              version
	If a DLL or driver can’t be replaced
              or renamed during run time, functions in the image can be
              directly patched. A hotpatch DLL that contains the newer code is
              jumped to whenever an older function is called.

	Refresh System DLL
	Reload the memory mapped section
              object for Ntdll.dll
	The system native library, Ntdll.dll,
              is loaded only once during boot-up and then simply duplicated
              into the address space of every new process. If it has been
              hotpatched, the system must refresh this section to load the
              newer version.




Although hotpatches use internal kernel mechanisms, their actual
      implementation is no different from cold patches. The patch is delivered
      through Windows Update, typically as an executable file containing a
      program called Update.exe that performs the extraction of the patch and
      the update process. For hotpatches, however, an additional hotpatch
      file, containing the .hp extension, will be
      present. This file contains a special PE header called
      .HOT1. This header contains a data structure
      describing the various patch descriptors present
      inside the file. Each of these descriptors identifies the offset in the
      original file that needs to be patched, a validation mechanism (which
      can include a simple comparison of the old data, a checksum, or a hash),
      and the new data to be patched. The kernel parses the descriptors and
      applies the appropriate modifications. In the case of a
      protected process (see Chapter 5 for more
      information on processes) and other digitally signed images, the
      hotpatch must also be digitally signed in order to prevent fake patches
      from being applied to sensitive files or processes.
Note
Because the hotpatch file also includes the original data, the
        hotpatching mechanism can also be used to uninstall a patch at run
        time.

Compile-time hotpatching support works by adding 7 additional
      bytes to the beginning of each function—4 are considered part of the end
      of the previous function, and 2 are part of the function
      prolog—that is, the function’s beginning. Here’s an example
      of a function that was built with hotpatching information:
lkd> u nt!NtCreateFile - 5
nt!FsRtlTeardownPerFileContexts+0x169:
82227ea5 90              nop
82227ea6 90              nop
82227ea7 90              nop
82227ea8 90              nop
82227ea9 90              nop
nt!NtCreateFile:
82227eaa 8bff            mov     edi,edi
Notice that the five nop instructions
      don’t actually do anything, while the mov edi, edi
      at the beginning of the NtCreateFile function are
      also essentially meaningless—no actual state-changing operation takes
      place. Because 7 bytes are available, the
      NtCreateFile prologue can be transformed into a
      short jump to the buffer of five instructions
      available, which are then converted to a near jump
      instruction to the patched routine. Here’s
      NtCreateFile after having been hotpatched:
lkd> u nt!NtCreateFile - 5
nt!FsRtlTeardownPerFileContexts+0x169:
82227ea5 e93d020010      jmp     nt_patch!NtCreateFile (922280e7)
nt!NtCreateFile:
82227eaa ebfc            jmp     nt!FsRtlTeardownPerFileContexts+0x169 (82227ea5)
This method allows only the addition of 2 bytes to each function
      by jumping into the previous function’s alignment padding that it would
      most likely have at its end anyway.
There are some limitations to the hotpatching
      functionality:
	Patches that third-party applications such as security
          software might block or that might be incompatible with the
          operation of third-party applications

	Patches that modify a file’s export table or import
          table

	Patches that change data structures, fix infinite loops, or
          contain inline assembly code




Kernel Patch Protection



Some 32-bit device drivers modify the behavior of Windows in
      unsupported ways. For example, they patch the system call table to
      intercept system calls or patch the kernel image in memory to add
      functionality to specific internal functions. Shortly after the release
      of 64-bit Windows for x64 and before a rich third-party ecosystem had
      developed, Microsoft saw an opportunity to preserve the stability of
      64-bit Windows. To prevent these kinds of changes, x64 Windows
      implements Kernel Patch Protection (KPP), also referred to as
      PatchGuard. KPP’s job on the system is similar to what its name
      implies—it attempts to deter common techniques for patching the system,
      or hooking it. Table 3-29 lists
      which components or structures are protected and for what
      purpose.
Table 3-29. Components Protected by KPP
	Component
	Legitimate Usage
	Potential Malicious
              Usage

	Ntoskrnl.exe, Hal.dll, Ci.dll,
              Kdcom.dll, Pshed.dll, Clfs.sys, Ndis.sys,
              Tcpip.sys
	Kernel, HAL, and their dependencies.
              Lower layer of network stack.
	Patching code in the kernel and/or HAL
              to subvert normal operation and behavior. Patching Ndis.sys to
              silently add back doors on open ports.

	Global Descriptor Table
              (GDT)
	CPU hardware protection for the
              implementation of ring privilege levels (Ring 0 vs. Ring
              3).
	Ability to set up a
              callgate, a CPU mechanism through which
              user (Ring 3) code could perform operations with kernel
              privileges (Ring 0).

	Interrupt Descriptor Table
              (IDT)
	Table read by the CPU to deliver
              interrupt vectors to the correct handling
              routine.
	Malicious drivers could intercept file
              I/Os directly at the interrupt level, or hook page faults to
              hide contents of memory. Rootkits could hook the INT2E handler
              to hook all system calls from a single point.

	System Service Descriptor Table
              (SSDT)
	Table containing the array of pointers
              for each system call handler.
	Rootkits could modify the output or
              input of calls from user mode and hide processes, files, or
              registry keys.

	Processor Machine State Registers
              (MSRs)
	LSTAR MSR is used to set the handler
              of the SYSENTER and/or SYSCALL instructions used for system
              calls.
	LSTAR could be overwritten by a
              malicious driver to provide a single hook for all system calls
              performed on the system.

	KdpStub, KiDebugRoutine, KdpTrap
              function pointers
	Used for run-time configuration of
              where exceptions should be delivered, based on whether a kernel
              debugger is remotely connected to the machine.
	Value of the pointers could be
              overwritten by a malicious rootkit to take control of the system
              at predetermined times and perform invisible background
              tasks.

	PsInvertedFunctionTable
	Cache of exception directories used on
              x64, allowing quick mapping between code where an exception
              happened and its handler.
	Could be used to take control of the
              system during the exception handling of unrelated system code,
              including KPP’s own exception code responsible for detecting
              modifications in the first place.

	Kernel stacks
	Store function arguments, the call
              stack (where a function should return), and
              variables.
	A driver could allocate memory on the
              side, set it as a kernel stack for a thread, and then manipulate
              its contents to redirect calls and parameters.

	Object types
	Definitions for the various objects
              (such as processes and files) that the system supports through
              the object manager.
	Could be used as part of a technique
              called DKOM (Direct Kernel Object Modification) to modify system
              behavior—for example, by hooking the object callbacks that each
              object type has registered.

	Other
	Code related to bug-checking the
              system during a KPP violation, executing the DPCs and timers
              associated with KPP, and more.
	By modifying certain parts of the
              system used by KPP, malicious drivers could attempt to silence,
              ignore, or otherwise cripple KPP.




Note
Because certain 64-bit Intel processors implement a slightly
        different feature set of the x64 architecture, the kernel needs to
        perform run-time code patching to work around the lack of a
        prefetch instruction. KPP can deter kernel
        patching even on these processors, by exempting those specific patches
        from detection. Additionally, because of hypervisor (Hyper-V)
        enlightenments (more information on the hypervisor is provided earlier
        in this chapter), certain functions in the kernel are patched at boot
        time, such as the swap context routine. These
        patches are also allowed by very explicit checks to make sure they are
        known patches to the hypervisor-enlightened versions.

When KPP detects a change in any of the structures
      mentioned (as well as some other internal consistency checks), it
      crashes the system with code 0x109—CRITICAL_STRUCTURE_CORRUPTION.
For third-party developers who used techniques that KPP deters,
      the following supported techniques can be used:
	File system minifilters (see Chapter 8 in Part 2 for more
          information on these) to hook all file operations, including loading
          image files and DLLs, that can be intercepted to purge malicious
          code on-the-fly or block reading of known bad executables.

	Registry filter notifications (see Chapter 4 for more information on these
          notifications) to hook all registry operations. Security software
          can block modification of critical parts of the registry, as well as
          heuristically determine malicious software by registry access
          patterns or known bad registry keys.

	Process notifications (see Chapter 5 for more
          information on these notifications). Security software can monitor
          the execution and termination of all processes and threads on the
          system, as well as DLLs being loaded or unloaded. With the enhanced
          notifications added for antivirus and other security vendors, they
          also have the ability to block process launch.

	Object manager filtering (explained in the object manager
          section earlier). Security software can remove certain access rights
          being granted to processes and/or threads to defend their own
          utilities against certain operations.



There is no way to disable KPP once it’s enabled. Because device
      driver developers might need to make changes to a running system as part
      of debugging, KPP does not enable if the system boots in debugging mode
      with an active kernel-debugging connection.

Code Integrity



Code integrity is a Windows mechanism that authenticates the
      integrity and source of executable images (such as applications, DLLs,
      or drivers) by validating a digital certificate contained within the
      image’s resources. This mechanism works in conjunction with system
      policies, defining how signing should be enforced. One of these policies
      is the Kernel Mode Code Signing (KMCS) policy,
      which requires that kernel-mode code be signed with a valid Authenticode
      certificate rooted by one of several recognized code signing
      authorities, such as Verisign or Thawte.
To address backward-compatibility concerns, the KMCS policy is
      only fully enforced on 64-bit machines, because those drivers have to be
      recompiled recently in order to run on that Windows architecture. This,
      in turn, implies that a company or individual is still responsible for
      maintaining the driver and is able to sign it. On 32-bit machines,
      however, many older devices ship with outdated drivers, possibly from
      out-of-business companies, so signing those drivers would sometimes be
      unfeasible. Figure 3-43 shows the warning
      displayed on 64-bit Windows machines that attempt to load an unsigned
      driver.
Note
Windows also has a second driver-signing policy, which is part
        of the Plug and Play manager. This policy is applied solely to Plug
        and Play drivers, and unlike the kernel-mode code-signing policy, it
        can be configured to allow unsigned Plug and Play drivers (but not on
        64-bit systems, where the KMCS policy takes precedence). See Chapter 8
        in Part 2 for more information on the Plug and Play manager.

[image: Warning when attempting to install an unsigned 64-bit driver]

Figure 3-43. Warning when attempting to install an unsigned 64-bit
        driver

Even on 32-bit Windows, code integrity writes an event to the Code
      Integrity event log when it loads an unsigned driver.
Note
Protected Media Path applications can also query the kernel for
        its integrity state, which includes information
        on whether or not unsigned 32-bit drivers are loaded on the system. In
        such scenarios, they are allowed to disable protected, high-definition
        media playback as a method to ensure the security and reliability of
        the encrypted stream.

The code-integrity mechanism doesn’t stop at driver load time,
      however. Stronger measures also exist to authenticate per-page image
      contents for executable pages. This requires using a special flag while
      signing the driver binary and will generate a catalog with the
      cryptographic hash of every executable page on which the driver will
      reside. (Pages are a unit of protection on the CPU; for more
      information, see Chapter 10 in Part 2.) This method allows for detection
      of modification of an existing driver, which might happen either at run
      time by another driver or through a page file or hibernation file attack
      (in which the contents of memory are edited on the disk and then
      reloaded into memory). Generating such per-page hashes is also a
      requirement for the new filtering model, as well as Protected Media Path
      components.

Conclusion



In this chapter, we examined the key base system mechanisms on
      which the Windows executive is built. In the next chapter, we’ll look at
      three important mechanisms involved with the management infrastructure
      of Windows: the registry, services, and Windows Management
      Instrumentation (WMI).

Chapter 4. Management Mechanisms



This chapter describes four fundamental mechanisms in the
    Microsoft Windows operating system that are critical to its management and
    configuration:
	The registry

	Services

	Unified Background Process Manager

	Windows Management Instrumentation

	Windows Diagnostics Infrastructure




The Registry



The registry plays a key role in the configuration and control of
      Windows systems. It is the repository for both systemwide and per-user
      settings. Although most people think of the registry as static data
      stored on the hard disk, as you’ll see in this section, the registry is
      also a window into various in-memory structures maintained by the
      Windows executive and kernel.
We’ll start by providing you with an overview of the registry
      structure, a discussion of the data types it supports, and a brief tour
      of the key information Windows maintains in the registry. Then we’ll
      look inside the internals of the configuration manager, the executive
      component responsible for implementing the registry database. Among the
      topics we’ll cover are the internal on-disk structure of the registry,
      how Windows retrieves configuration information when an application
      requests it, and what measures are employed to protect this critical
      system database.
Viewing and Changing the Registry



In general, you should never have to edit the registry directly:
        application and system settings stored in the registry that might
        require manual changes should have a corresponding user interface to
        control their modification. However, as you’ve already seen a number
        of times in this book, some advanced and debug settings have no
        editing user interface. Therefore, both graphical user interface (GUI)
        and command-line tools are included with Windows to enable you to view
        and modify the registry.
Windows comes with one main GUI tool for editing the
        registry—Regedit.exe—and a number of command-line registry tools.
        Reg.exe, for instance, has the ability to import, export, back up, and
        restore keys, as well as to compare, modify, and delete keys and
        values. It can also set or query flags used in UAC virtualization.
        Regini.exe, on the other hand, allows you to import registry data
        based on text files that contain ASCII or Unicode configuration
        data.
The Windows Driver Kit (WDK) also supplies a redistributable
        component, Offreg.dll, which hosts the Offline Registry Library. This
        library allows loading registry hive files in their binary format and
        applying operations on the files themselves, bypassing the usual
        logical loading and mapping that Windows requires for registry
        operations. Its use is primarily to assist in offline registry access,
        such as for purposes of integrity checking and validation. It can also
        provide performance benefits if the underlying data is not meant to be
        visible by the system, because the access is done through local file
        I/O instead of registry system calls.

Registry Usage



There are four principal times at which configuration data is
        read:
	During the initial boot process, the boot loader reads
            configuration data and the list of boot device drivers to load
            into memory before initializing the kernel. Because the Boot
            Configuration Database (BCD) is really stored in a registry hive,
            one could argue that registry access happens even earlier, when
            the Boot Manager displays the list of operating systems.

	During the kernel boot process, the kernel reads settings
            that specify which device drivers to load and how various system
            elements—such as the memory manager and process manager—configure
            themselves and tune system behavior.

	During logon, Explorer and other Windows components read
            per-user preferences from the registry, including network
            drive-letter mappings, desktop wallpaper, screen saver, menu
            behavior, icon placement, and perhaps most importantly, which
            startup programs to launch and which files were most recently
            accessed.

	During their startup, applications read systemwide settings,
            such as a list of optionally installed components and licensing
            data, as well as per-user settings that might include menu and
            toolbar placement and a list of most-recently accessed
            documents.



However, the registry can be read at other times as well, such
        as in response to a modification of a registry value or key. Although
        the registry provides asynchronous callbacks that are the preferred
        way to receive change notifications, some applications constantly
        monitor their configuration settings in the registry through polling
        and automatically take updated settings into account. In general,
        however, on an idle system there should be no registry activity and
        such applications violate best practices. (Process Monitor, from
        Sysinternals, is a great tool for tracking down such activity and the
        application or applications at fault.)
The registry is commonly modified in the following
        cases:
	Although not a modification, the registry’s initial
            structure and many default settings are defined by a prototype
            version of the registry that ships on the Windows setup media that
            is copied onto a new installation.

	Application setup utilities create default application
            settings and settings that reflect installation configuration
            choices.

	During the installation of a device driver, the Plug and
            Play system creates settings in the registry that tell the I/O
            manager how to start the driver and creates other settings that
            configure the driver’s operation. (See Chapter 8, “I/O System,” in
            Part 2 for more information on how device drivers are
            installed.)

	When you change application or system settings through user
            interfaces, the changes are often stored in the registry.




Registry Data Types



The registry is a database whose structure is similar to that of
        a disk volume. The registry contains keys, which are similar to a
        disk’s directories, and values, which are comparable to files on a
        disk. A key is a container that can consist of other keys (subkeys) or
        values. Values, on the other hand, store data. Top-level keys are root
        keys. Throughout this section, we’ll use the words subkey and key
        interchangeably.
Both keys and values borrow their naming convention from the
        file system. Thus, you can uniquely identify a value with the name
        mark, which is stored in a key called trade, with the name trade\mark.
        One exception to this naming scheme is each key’s unnamed value.
        Regedit displays the unnamed value as (Default).
Values store different kinds of data and can be one of the 12
        types listed in Table 4-1. The majority
        of registry values are REG_DWORD, REG_BINARY, or REG_SZ. Values of
        type REG_DWORD can store numbers or Booleans (on/off values);
        REG_BINARY values can store numbers larger than 32 bits or raw data
        such as encrypted passwords; REG_SZ values store strings (Unicode, of
        course) that can represent elements such as names, file names, paths,
        and types.
Table 4-1. Registry Value Types
	Value Type
	Description

	REG_NONE
	No value type

	REG_SZ
	Fixed-length Unicode
                string

	REG_EXPAND_SZ
	Variable-length Unicode string that
                can have embedded environment variables

	REG_BINARY
	Arbitrary-length binary
                data

	REG_DWORD
	32-bit number

	REG_DWORD_BIG_ENDIAN
	32-bit number, with high byte
                first

	REG_LINK
	Unicode symbolic link

	REG_MULTI_SZ
	Array of Unicode NULL-terminated
                strings

	REG_RESOURCE_LIST
	Hardware resource
                description

	REG_FULL_RESOURCE_DESCRIPTOR
	Hardware resource
                description

	REG_RESOURCE_REQUIREMENTS_LIST
	Resource requirements

	REG_QWORD
	64-bit number




The REG_LINK type is particularly interesting because it lets a
        key transparently point to another key. When you traverse the registry
        through a link, the path searching continues at the target of the
        link. For example, if \Root1\Link has a REG_LINK value of
        \Root2\RegKey and RegKey contains the value RegValue, two paths
        identify RegValue: \Root1\Link\RegValue and \Root2\RegKey\RegValue. As
        explained in the next section, Windows prominently uses registry
        links: three of the six registry root keys are links to subkeys within
        the three nonlink root keys.

Registry Logical Structure



You can chart the organization of the registry via the data
        stored within it. There are six root keys (and you can’t add new root
        keys or delete existing ones) that store information, as shown in
        Table 4-2.
Table 4-2. The Six Root Keys
	Root Key
	Description

	HKEY_CURRENT_USER
	Stores data associated with the
                currently logged-on user

	HKEY_USERS
	Stores information about all the
                accounts on the machine

	HKEY_CLASSES_ROOT
	Stores file association and
                Component Object Model (COM) object registration
                information

	HKEY_LOCAL_MACHINE
	Stores system-related
                information

	HKEY_PERFORMANCE_DATA
	Stores performance
                information

	HKEY_CURRENT_CONFIG
	Stores some information about the
                current hardware profile




Why do root-key names begin with an H? Because the root-key
        names represent Windows handles (H) to keys (KEY). As mentioned in
        Chapter 1, HKLM is an abbreviation used
        for HKEY_LOCAL_MACHINE. Table 4-3 lists
        all the root keys and their abbreviations. The following sections
        explain in detail the contents and purpose of each of these six root
        keys.
Table 4-3. Registry Root Keys
	Root Key
	Abbreviation
	Description
	Link

	HKEY_CURRENT_USER
	HKCU
	Points to the user profile of the
                currently logged-on user
	Subkey under HKEY_USERS
                corresponding to currently logged-on user

	HKEY_USERS
	HKU
	Contains subkeys for all loaded user
                profiles
	Not a link

	HKEY_CLASSES_ROOT
	HKCR
	Contains file association and COM
                registration information
	Not a direct link; rather, a merged
                view of HKLM\SOFTWARE\Classes and
                HKEY_USERS\<SID>\SOFTWARE\Classes

	HKEY_LOCAL_MACHINE
	HKLM
	Global settings for the
                machine.
	Not a link

	HKEY_CURRENT_CONFIG
	HKCC
	Current hardware
                profile
	HKLM\SYSTEM\CurrentControlSet\Hardware
                Profiles\Current

	HKEY_PERFORMANCE_DATA
	HKPD
	Performance counters
	Not a link




HKEY_CURRENT_USER



The HKCU root key contains data regarding the preferences and
          software configuration of the locally logged-on user. It points to
          the currently logged-on user’s user profile, located on the hard
          disk at \Users\<username>\Ntuser.dat. (See the section Registry Internals later in this chapter to find out
          how root keys are mapped to files on the hard disk.) Whenever a user
          profile is loaded (such as at logon time or when a service process
          runs under the context of a specific user name), HKCU is created to
          map to the user’s key under HKEY_USERS. Table 4-4 lists some of
          the subkeys under HKCU.
Table 4-4. HKEY_CURRENT_USER Subkeys
	Subkey
	Description

	AppEvents
	Sound/event
                  associations

	Console
	Command window settings (for
                  example, width, height, and colors)

	Control Panel
	Screen saver, desktop scheme,
                  keyboard, and mouse settings, as well as accessibility and
                  regional settings

	Environment
	Environment variable
                  definitions

	EUDC
	Information on end-user defined
                  characters

	Identities
	Windows Mail account
                  information

	Keyboard Layout
	Keyboard layout setting (for
                  example, U.S. or U.K.)

	Network
	Network drive mappings and
                  settings

	Printers
	Printer connection
                  settings

	Software
	User-specific software
                  preferences

	Volatile
                  Environment
	Volatile environment variable
                  definitions





HKEY_USERS



HKU contains a subkey for each loaded user profile and
          user class registration database on the system. It also contains a
          subkey named HKU\.DEFAULT that is linked to the profile for the
          system (which is used by processes running under the local system
          account and is described in more detail in the section Services later in this chapter). This is the profile
          used by Winlogon, for example, so that changes to the desktop
          background settings in that profile will be implemented on the logon
          screen. When a user logs on to a system for the first time and her
          account does not depend on a roaming domain profile (that is, the
          user’s profile is obtained from a central network location at the
          direction of a domain controller), the system creates a profile for
          her account that’s based on the profile stored in
          %SystemDrive%\Users\Default.
The location under which the system stores profiles is defined
          by the registry value HKLM\Software\Microsoft\Windows
          NT\CurrentVersion\ProfileList\ProfilesDirectory, which is by default
          set to %SystemDrive%\Users. The ProfileList key also stores the list
          of profiles present on a system. Information for each profile
          resides under a subkey that has a name reflecting the security
          identifier (SID) of the account to which the profile corresponds.
          (See Chapter 6, for more information on
          SIDs.) Windows shows the list of profiles stored on a system in the
          User Profiles management dialog box, shown in Figure 4-1, which you access
          by clicking Settings in the User Profiles section of the Advanced
          tab in the Advanced System Settings of the System Control Panel
          applet.
[image: The User Profiles management dialog box]

Figure 4-1. The User Profiles management dialog box

EXPERIMENT: Watching Profile Loading and Unloading
You can see a profile load into the registry and
            then unload by using the Runas command to launch a process in an
            account that’s not currently logged on to the machine. While the
            new process is running, run Regedit and note the loaded profile
            key under HKEY_USERS. After terminating the process, perform a
            refresh in Regedit by pressing the F5 key and the profile should
            no longer be present.


HKEY_CLASSES_ROOT



HKCR consists of three types of information: file extension
          associations, COM class registrations, and the virtualized registry
          root for User Account Control (UAC). (See Chapter 6 for more information on UAC.) A key
          exists for every registered file name extension. Most keys contain a
          REG_SZ value that points to another key in HKCR containing the
          association information for the class of files that extension
          represents.
For example, HKCR\.xls would point to information on Microsoft
          Office Excel files in a key such as HKCU\.xls\Excel.Sheet.8. Other
          keys contain configuration details for COM objects registered on the
          system. The UAC virtualized registry is located in the VirtualStore
          key, which is not related to the other kinds of data stored in
          HKCR.
The data under HKEY_CLASSES_ROOT comes from two
          sources:
	The per-user class registration data in
              HKCU\SOFTWARE\Classes (mapped to the file on hard disk
              \Users\<username>\AppData\Local\Microsoft\Windows\Usrclass.dat)

	Systemwide class registration data in
              HKLM\SOFTWARE\Classes



The reason that there is a separation of per-user registration
          data from systemwide registration data is so that roaming profiles
          can contain these customizations. It also closes a security hole: a
          nonprivileged user cannot change or delete keys in the systemwide
          version HKEY_CLASSES_ROOT, and thus cannot affect the operation of
          applications on the system. Nonprivileged users and applications can
          read systemwide data and can add new keys and values to systemwide
          data (which are mirrored in their per-user data), but they can
          modify existing keys and values in their private data only.

HKEY_LOCAL_MACHINE



HKLM is the root key that contains all the systemwide
          configuration subkeys: BCD00000000, COMPONENTS (loaded dynamically
          as needed), HARDWARE, SAM, SECURITY, SOFTWARE, and SYSTEM.
The HKLM\BCD00000000 subkey contains the Boot Configuration
          Database (BCD) information loaded as a registry hive. This database
          replaces the Boot.ini file that was used before Windows Vista and
          adds greater flexibility and isolation of per-installation boot
          configuration data. (For more information on the BCD, see Chapter
          13, “Startup and Shutdown,” in Part 2.)
Each entry in the BCD, such as a Windows installation
          or the command-line settings for the installation, is stored in the
          Objects subkey, either as an object referenced by a GUID (in the
          case of a boot entry) or as a numeric subkey called an element. Most
          of these raw elements are documented in the BCD reference in the
          MSDN Library and define various command-line settings or boot
          parameters. The value associated with each element subkey
          corresponds to the value for its respective command-line flag or
          boot parameter.
The BCDEdit command-line utility allows you to modify the BCD
          using symbolic names for the elements and objects. It also provides
          extensive help for all the boot options available; unfortunately, it
          works only locally. Because the registry can be opened remotely as
          well as imported from a hive file, you can modify or read the BCD of
          a remote computer by using the Registry Editor. The following
          experiment shows you how to enable kernel debugging by using the
          Registry Editor.
EXPERIMENT: Offline or Remote BCD Editing
In this experiment, you enable debugging through editing the
            BCD inside the registry. For the purposes of this example, you
            edit the local copy of the BCD, but the point of this technique is
            that it can be used on any machine’s BCD hive. Follow these steps
            to add the /DEBUG command-line flag:
	Open the Registry Editor, and then navigate to the
                HKLM\BCD00000000 key. Expand every subkey so that the
                numerical identifiers of each Elements key are fully
                visible.
[image: image with no caption]


	Identify the boot entry for your Windows
                installation by locating the Description with a Type value of
                0x10200003, and then check ID 0x12000004 in the Elements tree.
                In the Element value of that subkey, you should find the name
                of your version of Windows, such as Windows 7. If you have
                more than one Windows installation on your machine, you may
                need to check the 0x22000002 Element, which contains the path,
                such as \Windows.

	Now that you’ve found the correct GUID for your Windows
                installation, create a new subkey under the Elements subkey
                for that GUID and name it 0x260000a0. If this subkey already
                exists, simply navigate to it.

	If you had to create the subkey, now create a binary
                value called Element inside it.

	Edit the value and set it to 01. This will enable
                kernel-mode debugging. Here’s what these changes should look
                like:
[image: image with no caption]

Note
The 0x12000004 ID corresponds to
                  BcdLibraryString_ApplicationPath, while the 0x22000002 ID
                  corresponds to BcdOSLoaderString_SystemRoot. Finally, the ID
                  you added, 0x260000a0, corresponds to
                  BcdOSLoaderBoolean_KernelDebuggerEnabled. These values are
                  documented in the BCD reference in the MSDN Library.





The HKLM\COMPONENTS subkey contains information pertinent to
          the Component Based Servicing (CBS) stack. This stack contains
          various files and resources that are part of a Windows installation
          image (used by the Automated Installation Kit or the OEM
          Preinstallation Kit) or an active installation. The CBS APIs that
          exist for servicing purposes use the information located in this key
          to identify installed components and their configuration
          information. This information is used whenever components are
          installed, updated, or removed either individually (called units) or
          in groups (called packages). To optimize system resources, because
          this key can get quite large, it is only dynamically loaded and
          unloaded as needed if the CBS stack is servicing a request.
The HKLM\HARDWARE subkey maintains descriptions of the
          system’s legacy hardware and some hardware device-to-driver
          mappings. On a modern system, only a few peripherals—such as
          keyboard, mouse, and ACPI BIOS data—are likely to be found here. The
          Device Manager tool (which is available by running System from
          Control Panel and then clicking Device Manager) lets you view
          registry hardware information that it obtains by simply reading
          values out of the HARDWARE key (although it primarily uses the
          HKLM\SYSTEM\CurrentControlSet\Enum tree).
HKLM\SAM holds local account and group information, such as
          user passwords, group definitions, and domain associations. Windows
          Server systems that are operating as domain controllers store domain
          accounts and groups in Active Directory, a database that stores
          domainwide settings and information. (Active Directory isn’t
          described in this book.) By default, the security descriptor on the
          SAM key is configured so that even the administrator account doesn’t
          have access.
HKLM\SECURITY stores systemwide security policies and
          user-rights assignments. HKLM\SAM is linked into the SECURITY subkey
          under HKLM\SECURITY\SAM. By default, you can’t view the contents of
          HKLM\SECURITY or HKLM\SAM\SAM because the security settings of those
          keys allow access only by the System account. (System accounts are
          discussed in greater detail later in this chapter.) You can change
          the security descriptor to allow read access to administrators, or
          you can use PsExec to run Regedit in the local system account if you
          want to peer inside. However, that glimpse won’t be very revealing
          because the data is undocumented and the passwords are encrypted
          with one-way mapping—that is, you can’t determine a password from
          its encrypted form.
HKLM\SOFTWARE is where Windows stores systemwide configuration
          information not needed to boot the system. Also, third-party
          applications store their systemwide settings here, such as paths to
          application files and directories and licensing and expiration date
          information.
HKLM\SYSTEM contains the systemwide configuration information
          needed to boot the system, such as which device drivers to load and
          which services to start. Because this information is critical to
          starting the system, Windows also maintains a copy of part of this
          information, called the last known good control set, under this key.
          The maintenance of a copy allows an administrator to select a
          previously working control set in the case that configuration
          changes made to the current control set prevent the system from
          booting. For details on when Windows declares the current control
          set “good,” see the section Accepting the Boot and Last Known Good later in this
          chapter.

HKEY_CURRENT_CONFIG



HKEY_CURRENT_CONFIG is just a link to the current hardware
          profile, stored under HKLM\SYSTEM\CurrentControlSet\Hardware
          Profiles\Current. Hardware profiles are no longer supported in
          Windows, but the key still exists to support legacy applications
          that might be depending on its presence.

HKEY_PERFORMANCE_DATA



The registry is the mechanism used to access
          performance counter values on Windows, whether those are from
          operating system components or server applications. One of the side
          benefits of providing access to the performance counters via the
          registry is that remote performance monitoring works “for free”
          because the registry is easily accessible remotely through the
          normal registry APIs.
You can access the registry performance counter information
          directly by opening a special key named HKEY_PERFORMANCE_DATA and
          querying values beneath it. You won’t find this key by looking in
          the Registry Editor; this key is available only programmatically
          through the Windows registry functions, such as
          RegQueryValueEx. Performance information isn’t
          actually stored in the registry; the registry functions use this key
          to locate the information from performance data providers.
You can also access performance counter information by using
          the Performance Data Helper (PDH) functions available through the
          Performance Data Helper API (Pdh.dll). Figure 4-2 shows the
          components involved in accessing performance counter
          information.
[image: Registry performance counter architecture]

Figure 4-2. Registry performance counter architecture



Transactional Registry (TxR)



Thanks to the Kernel Transaction Manager (KTM; for more
        information see the section about the KTM in Chapter 3), developers have access to a
        straightforward API that allows them to implement robust
        error-recovery capabilities when performing registry operations, which
        can be linked with nonregistry operations, such as file or database
        operations.
Three APIs support transactional modification of the registry:
        RegCreateKeyTransacted,
        RegOpenKeyTransacted, and
        RegDeleteKeyTransacted. These new routines take
        the same parameters as their nontransacted analogs, except that a new
        transaction handle parameter is added. A developer supplies this
        handle after calling the KTM function
        CreateTransaction.
After a transacted create or open operation, all subsequent
        registry operations—such as creating, deleting, or modifying values
        inside the key—will also be transacted. However, operations on the
        subkeys of a transacted key will not be automatically transacted,
        which is why the third API,
        RegDeleteKeyTransacted exists. It allows the
        transacted deletion of subkeys, which
        RegDeleteKeyEx would not normally do.
Data for these transacted operations is written to log files
        using the common logging file system (CLFS) services, similar to other
        KTM operations. Until the transaction itself is committed or rolled
        back (both of which might happen programmatically or as a result of a
        power failure or system crash, depending on the state of the
        transaction), the keys, values, and other registry modifications
        performed with the transaction handle will not be visible to external
        applications through the nontransacted APIs. Also, transactions are
        isolated from each other; modifications made inside one transaction
        will not be visible from inside other transactions or outside the
        transaction until the transaction is committed.
Note
A nontransactional writer will abort a transaction in case of
          conflict—for example, if a value was created inside a transaction
          and later, while the transaction is still active, a nontransactional
          writer tries to create a value under the same key. The
          nontransactional operation will succeed, and all operations in the
          conflicting transaction will be aborted.

The isolation level (the “I” in ACID) implemented by TxR
        resource managers is read-commit, which means that changes become
        available to other readers (transacted or not) immediately after being
        committed. This mechanism is important for people who are familiar
        with transactions in databases, where the isolation level is
        predictable-reads (or cursor-stability, as it is called in database
        literature). With a predictable-reads isolation level, after you read
        a value inside a transaction, subsequent reads will give you back the
        same data. Read-commit does not make this guarantee. One of the
        consequences is that registry transactions can’t be used for “atomic”
        increment/decrement operations on a registry value.
To make permanent changes to the registry, the application that
        has been using the transaction handle must call the KTM function
        CommitTransaction. (If the application decides to
        undo the changes, such as during a failure path, it can call the
        RollbackTransaction API.) The changes will then
        be visible through the regular registry APIs as well.
Note
If a transaction handle created with
          CreateTransaction is closed before the
          transaction is committed (and there are no other handles open to
          that transaction), the system will roll back that
          transaction.

Apart from using the CLFS support provided by the KTM,
        TxR also stores its own internal log files in the
        %SystemRoot%\System32\Config\Txr folder on the system volume; these
        files have a .regtrans-ms extension and are hidden by default. Even if
        there are no third-party applications installed, your system likely
        will contain files in this directory because Windows Update and
        Component Based Servicing make use of TxR to atomically write data to
        the registry to avoid system failure or inconsistent component data in
        the case of an incomplete update. In fact, if you take a look at some
        of the transaction files, you should be able to see the key names on
        which the transaction was being performed.
There is a global registry resource manager (RM) that services
        all the hives that are mounted at boot time. For every hive that is
        mounted explicitly, an RM is created. For applications that use
        registry transactions, the creation of an RM is transparent because
        KTM ensures that all RMs taking part in the same transaction are
        coordinated in the two-phase commit/abort protocol. For the global
        registry RM, the CLFS log files are stored, as mentioned earlier,
        inside System32\Config\Txr. For other hives, they are stored alongside
        the hive (in the same directory). They are hidden and follow the same
        naming convention, ending in .regtrans-ms. The log file names are
        prefixed with the name of the hive to which they correspond.

Monitoring Registry Activity



Because the system and applications depend so heavily on
        configuration settings to guide their behavior, system and application
        failures can result from changing registry data or security. When the
        system or an application fails to read settings that it assumes it
        will always be able to access, it might not function properly, display
        error messages that hide the root cause, or even crash. It’s virtually
        impossible to know what registry keys or values are misconfigured
        without understanding how the system or the application that’s failing
        is accessing the registry. In such situations, the Process Monitor
        utility from Windows Sysinternals (http://technet.microsoft.com/sysinternals)
        might provide the answer.
Process Monitor lets you monitor registry activity as it occurs.
        For each registry access, Process Monitor shows you the process that
        performed the access; the time, type, and result of the access; and
        the stack of the thread at the moment of the access. This information
        is useful for seeing how applications and the system rely on the
        registry, discovering where applications and the system store
        configuration settings, and troubleshooting problems related to
        applications having missing registry keys or values. Process Monitor
        includes advanced filtering and highlighting so that you can zoom in
        on activity related to specific keys or values or to the activity of
        particular processes.

Process Monitor Internals



Process Monitor relies on a device driver that it extracts from
        its executable image at run time and then starts. Its first execution
        requires that the account running it have the Load Driver privilege as
        well as the Debug privilege; subsequent executions in the same boot
        session require only the Debug privilege because, once loaded, the
        driver remains resident.
EXPERIMENT: Viewing Registry Activity on an Idle
          System
Because the registry implements the
          RegNotifyChangeKey function that applications
          can use to request notification of registry changes without polling
          for them, when you launch Process Monitor on a system that’s idle
          you should not see repetitive accesses to the same registry keys or
          values. Any such activity identifies a poorly written application
          that unnecessarily negatively affects a system’s overall
          performance.
Run Process Monitor, and after several seconds examine the
          output log to see whether you can spot polling behavior. Right-click
          on an output line associated with polling, and then choose Process
          Properties from the context menu to view details about the process
          performing the activity.

EXPERIMENT: Using Process Monitor to Locate Application
          Registry Settings
In some troubleshooting scenarios, you might need to determine
          where in the registry the system or an application stores particular
          settings. This experiment has you use Process Monitor to discover
          the location of Notepad’s settings. Notepad, like most Windows
          applications, saves user preferences—such as word-wrap mode, font
          and font size, and window position—across executions. By having
          Process Monitor watching when Notepad reads or writes its settings,
          you can identify the registry key in which the settings are stored.
          Here are the steps for doing this:
	Have Notepad save a setting you can easily search for in a
              Process Monitor trace. You can do this by running Notepad,
              setting the font to Times New Roman, and then exiting
              Notepad.

	Run Process Monitor. Open the filter dialog box and the
              Process Name filter, and type notepad.exe as the string to
              match. This step specifies that Process Monitor will log only
              activity by the notepad.exe process.

	Run Notepad again, and after it has launched stop Process
              Monitor’s event capture by toggling Capture Events on the
              Process Monitor File menu.

	Scroll to the top line of the resultant log and select
              it.

	Press Ctrl+F to open a Find dialog box, and search for
              times new. Process Monitor should highlight a line like the one
              shown in the following screen that represents Notepad reading
              the font value from the registry. Other operations in the
              immediate vicinity should relate to other Notepad
              settings.
[image: image with no caption]


	Finally, right-click the highlighted line and
              click Jump To. Process Monitor will execute Regedit (if it’s not
              already running) and cause it to navigate to and select the
              Notepad-referenced registry value.




Process Monitor Troubleshooting Techniques



Two basic Process Monitor troubleshooting techniques are
          effective for discovering the cause of registry-related application
          or system problems:
	Look at the last thing in the Process Monitor trace that
              the application did before it failed. This action might point to
              the problem.

	Compare a Process Monitor trace of the failing application
              with a trace from a working system.



To follow the first approach, run Process Monitor and then run
          the application. At the point the failure occurs, go back to Process
          Monitor and stop the logging (by pressing Ctrl+E). Then go to the
          end of the log and find the last operations performed by the
          application before it failed (or crashed, hung, or whatever).
          Starting with the last line, work your way backward, examining the
          files, registry keys, or both that were referenced—often this will
          help pinpoint the problem.
Use the second approach when the application fails on one
          system but works on another. Capture a Process Monitor trace of the
          application on the working and failing systems, and save the output
          to a log file. Then open the good and bad log files with Microsoft
          Excel (accepting the defaults in the Import wizard), and delete the
          first three columns. (If you don’t delete the first three columns,
          the comparison will show every line as different because the first
          three columns contain information that is different from run to run,
          such as the time and the process ID.) Finally, compare the resulting
          log files. (You can do this by using WinDiff, which is included in
          the Windows SDK).
Entries in a Process Monitor trace that have values of NAME
          NOT FOUND or ACCESS DENIED in the Result column are ones you should
          investigate. NAME NOT FOUND is reported when an application attempts
          to read from a registry key or value that doesn’t exist. In many
          cases, a missing key or value is innocuous because a process that fails to
          read a setting from the registry simply falls back on default
          values. In some cases, however, applications expect to find values
          for which there is no default and will fail if they are
          missing.
Access-denied errors are a common source of registry-related
          application failures and occur when an application doesn’t have
          permission to access a key the way that it wants. Applications that
          do not validate registry operation results or perform proper error
          recovery will fail.
A common result string that might appear suspicious is BUFFER
          OVERFLOW. It does not indicate a buffer-overflow exploit in the
          application that receives it. Instead, it’s used by the
          configuration manager to inform an application that the buffer it
          specified to store a registry value is too small to hold the value.
          Application developers often take advantage of this behavior to
          determine how large a buffer to allocate to store a value. They
          first perform a registry query with a zero-length buffer that
          returns a buffer-overflow error and the length of the data it
          attempted to read. The application then allocates a buffer of the
          indicated size and rereads the value. You should therefore see
          operations that return BUFFER OVERFLOW repeat with a successful
          result.
In one example of Process Monitor being used to troubleshoot a
          real problem, it saved a user from doing a complete reinstall of his
          Windows system. The symptom was that Internet Explorer would hang on
          startup if the user did not first manually dial the Internet
          connection. This Internet connection was set as the default
          connection for the system, so starting Internet Explorer should have
          caused an automatic dial-up to the Internet (because Internet
          Explorer was set to display a default home page upon
          startup).
An examination of a Process Monitor log of Internet Explorer
          startup activity, going backward from the point in the log where
          Internet Explorer hung, showed a query to a key under
          HKCU\Software\Microsoft\RAS Phonebook. The user reported that he had
          previously uninstalled the dialer program associated with the key
          and manually created the dial-up connection. Because the dial-up
          connection name did not match that of the uninstalled dialer
          program, it appeared that the key had not been deleted by the
          dialer’s uninstall program and that it was causing Internet Explorer
          to hang. After the key was deleted, Internet Explorer functioned as
          expected.

Logging Activity in Unprivileged Accounts or During
          Logon/Logoff



A common application-failure scenario is that an application
          works when run in an account that has Administrative group
          membership but not when run in the account of an unprivileged user.
          As described earlier, executing Process Monitor requires security
          privileges that are not normally assigned to standard user accounts,
          but you can capture a trace of applications executing in the logon
          session of an unprivileged user by using the Runas command to
          execute Process Monitor in an administrative account.
If a registry problem relates to account logon or logoff,
          you’ll also have to take special steps to be able to use Process
          Monitor to capture a trace of those phases of a logon session.
          Applications that are run in the local system account are not
          terminated when a user logs off, and you can take advantage of that
          fact to have Process Monitor run through a logoff and subsequent
          logon. You can launch Process Monitor in the local system account
          either by using the At command that’s built into Windows and
          specifying the /interactive flag, or by using the Sysinternals
          PsExec utility, like this:
	psexec –i 0 –s –d
              c:\procmon.exe



The –i 0 switch directs PsExec to have
          Process Monitor’s window appear on the session 0 interactive window
          station’s default desktop, the –s switch has
          PsExec run Process Monitor in the local system account, and the
          –d switch has PsExec launch Process Monitor and
          exit without waiting for Process Monitor to terminate. When you
          execute this command, the instance of Process Monitor that executes
          will survive logoff and reappear on the desktop when you log back
          on, having captured the registry activity of both actions.
Another way to monitor registry activity during the logon,
          logoff, boot, or shutdown process is to use the Process Monitor log
          boot feature, which you can enable by selecting Log Boot on the
          Options menu. The next time you boot the system, the Process Monitor
          device driver logs registry activity from early in the boot to
          %SystemRoot%\Procmon.pml. It will continue logging to that file
          until disk space runs out, the system shuts down, or you run Process
          Monitor. A log file storing a registry trace of startup, logon,
          logoff, and shutdown on a Windows system will typically be between
          50 and 150 MB in size.


Registry Internals



In this section, you’ll find out how the configuration
        manager—the executive subsystem that implements the registry—organizes
        the registry’s on-disk files. We’ll examine how the configuration
        manager manages the registry as applications and other operating
        system components read and change registry keys and values. We’ll also
        discuss the mechanisms by which the configuration manager tries to
        ensure that the registry is always in a recoverable state, even if the
        system crashes while the registry is being modified.
Hives



On disk, the registry isn’t simply one large file but rather a
          set of discrete files called hives. Each hive contains a registry
          tree, which has a key that serves as the root or starting point of
          the tree. Subkeys and their values reside beneath the root. You
          might think that the root keys displayed by the Registry Editor
          correlate to the root keys in the hives, but such is not the case.
          Table 4-5 lists
          registry hives and their on-disk file names. The path names of all
          hives except for user profiles are coded into the configuration
          manager. As the configuration manager loads hives, including system
          profiles, it notes each hive’s path in the values under the
          HKLM\SYSTEM\CurrentControlSet\Control\Hivelist subkey, removing the
          path if the hive is unloaded. It creates the root keys, linking
          these hives together to build the registry structure you’re familiar
          with and that the Registry Editor displays.
You’ll notice that some of the hives listed in Table 4-5 are volatile
          and don’t have associated files. The system creates and manages
          these hives entirely in memory; the hives are therefore temporary.
          The system creates volatile hives every time it boots. An example of
          a volatile hive is the HKLM\HARDWARE hive, which stores information
          about physical devices and the devices’ assigned resources. Resource assignment and hardware detection
          occur every time the system boots, so not storing this data on disk
          is logical.
Table 4-5. On-Disk Files Corresponding to Paths in the
            Registry
	Hive Registry Path
	Hive File Path

	HKEY_LOCAL_MACHINE\BCD00000000
	\Boot\BCD

	HKEY_LOCAL_MACHINE\COMPONENTS
	%SystemRoot%\System32\Config\Components

	HKEY_LOCAL_MACHINE\SYSTEM
	%SystemRoot%\System32\Config\System

	HKEY_LOCAL_MACHINE\SAM
	%SystemRoot%\System32\Config\Sam

	HKEY_LOCAL_MACHINE\SECURITY
	%SystemRoot%\System32\Config\Security

	HKEY_LOCAL_MACHINE\SOFTWARE
	%SystemRoot%\System32\Config\Software

	HKEY_LOCAL_MACHINE\HARDWARE
	Volatile hive

	HKEY_USERS\<SID of local
                  service account>
	%SystemRoot%\ServiceProfiles\LocalService\Ntuser.dat

	HKEY_USERS\<SID of network
                  service account>
	%SystemRoot%\ServiceProfiles\NetworkService\NtUser.dat

	HKEY_USERS\<SID of
                  username>
	\Users\<username>\Ntuser.dat

	HKEY_USERS\<SID of
                  username>_Classes
	\Users\<username>\AppData\Local\Microsoft\Windows\Usrclass.dat

	HKEY_USERS\.DEFAULT
	%SystemRoot%\System32\Config\Default




EXPERIMENT: Manually Loading and Unloading Hives
Regedit has the ability to load hives that you can access
            through its File menu. This capability can be useful in
            troubleshooting scenarios where you want to view or edit a hive
            from an unbootable system or a backup medium. In this experiment,
            you’ll use Regedit to load a version of the HKLM\SYSTEM hive that
            Windows Setup creates during the install process.
	Hives can be loaded only underneath HKLM or HKU, so open
                Regedit, select HKLM, and choose Load Hive from the Regedit
                File menu.

	Navigate to the %SystemRoot%\System32\Config\RegBack
                directory in the Load Hive dialog box, select System and open
                it. When prompted, type Test as the name of the key under
                which it will load.

	Open the newly created HKLM\Test key, and explore the
                contents of the hive.

	Open HKLM\SYSTEM\CurrentControlSet\Control\Hivelist, and
                locate the entry \Registry\Machine\Test, which demonstrates
                how the configuration manager lists loaded hives in the
                Hivelist key.

	Select HKLM\Test, and then choose Unload Hive from the
                Regedit File menu to unload the hive.





Hive Size Limits



In some cases, hive sizes are limited. For example,
          Windows places a limit on the size of the HKLM\SYSTEM hive. It does
          so because Winload reads the entire HKLM\SYSTEM hive into physical
          memory near the start of the boot process when virtual memory paging
          is not enabled. Winload also loads Ntoskrnl and boot device drivers
          into physical memory, so it must constrain the amount of physical
          memory assigned to HKLM\SYSTEM. (See Chapter 13 in Part 2 for more
          information on the role Winload plays during the startup process.)
          On 32-bit systems, Winload allows the hive to be as large as 400 MB
          or one-half the amount of physical memory on the system, whichever
          is lower. On x64 systems, the lower bound is 1.5 GB. On Itanium
          systems, it is 32 MB.

Registry Symbolic Links



A special type of key known as a registry symbolic link makes
          it possible for the configuration manager to link keys to organize
          the registry. A symbolic link is a key that redirects the
          configuration manager to another key. Thus, the key HKLM\SAM is a
          symbolic link to the key at the root of the SAM hive. Symbolic links
          are created by specifying the REG_CREATE_LINK parameter to
          RegCreateKey or RegCreateKeyEx. Internally, the
          configuration manager will create a REG_LINK value called
          SymbolicLinkValue, which will contain the path to the target key.
          Because this value is a REG_LINK instead of a REG_SZ, it will not be
          visible with Regedit—it is, however, part of the on-disk registry
          hive.
EXPERIMENT: Looking at Hive Handles
The configuration manager opens hives by using the kernel
            handle table (described in Chapter 3)
            so that it can access hives from any process context. Using the
            kernel handle table is an efficient alternative to approaches that
            involve using drivers or executive components to access from the
            System process only handles that must be protected from user
            processes. You can use Process Explorer to see the hive handles,
            which will be displayed as being opened in the System process.
            Select the System process, and then select Handles from the Lower
            Pane View menu entry on the View menu. Sort by handle type, and
            scroll until you see the hive files, as shown in the following
            screen.
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Hive Structure



The configuration manager logically divides a hive
          into allocation units called blocks in much the same way that a file
          system divides a disk into clusters. By definition, the registry
          block size is 4096 bytes (4 KB). When new data expands a hive, the
          hive always expands in block-granular increments. The first block of
          a hive is the base block.
The base block includes global information about the hive,
          including a signature—regf—that identifies the file as a hive,
          updated sequence numbers, a time stamp that shows the last time a
          write operation was initiated on the hive, information on registry
          repair or recovery performed by Winload, the hive format version
          number, a checksum, and the hive file’s internal file name (for
          example, \Device\HarddiskVolume1\WINDOWS\SYSTEM32\CONFIG\SAM). We’ll
          clarify the significance of the updated sequence numbers and time
          stamp when we describe how data is written to a hive file.
The hive format version number specifies the data format
          within the hive. The configuration manager uses hive format version
          1.3 (which improved searching by caching the first four characters
          of the name inside the cell index structure for quick lookups) for
          all hives except for System and Software for roaming profile
          compatibility with Windows 2000. For System and Software hives, it
          uses version 1.5 because of the later format’s optimizations for
          large values (values larger than 1 MB are supported) and searching
          (instead of caching the first four characters of a name, a hash of
          the entire name is used to reduce collisions).
Windows organizes the registry data that a hive stores in
          containers called cells. A cell can hold a key, a value, a security
          descriptor, a list of subkeys, or a list of key values. A 4-byte
          character tag at the beginning of a cell’s data describes the data’s
          type as a signature. Table 4-6 describes
          each cell data type in detail. A cell’s header is a field that
          specifies the cell’s size as the 1’s complement (not present in the
          CM_ structures). When a cell joins a hive and the hive must expand
          to contain the cell, the system creates an allocation unit called a
          bin.
A bin is the size of the new cell rounded up to the next block
          or page boundary, whichever is higher. The system considers any
          space between the end of the cell and the end of the bin to be free
          space that it can allocate to other cells. Bins also have headers
          that contain a signature, hbin, and a field that records the offset
          into the hive file of the bin and the bin’s size.
Table 4-6. Cell Data Types
	Data Type
	Structure Type
	Description

	Key cell
	CM_KEY_NODE
	A cell that contains a registry
                  key, also called a key node. A key cell contains a signature
                  (kn for a key, kl for a link node), the time stamp of the
                  most recent update to the key, the cell index of the key’s
                  parent key cell, the cell index of the subkey-list cell that
                  identifies the key’s subkeys, a cell index for the key’s
                  security descriptor cell, a cell index for a string key that
                  specifies the class name of the key, and the name of the key
                  (for example, CurrentControlSet). It also saves cached
                  information such as the number of subkeys under the key, as
                  well as the size of the largest key, value name, value data,
                  and class name of the subkeys under this key.

	Value cell
	CM_KEY_VALUE
	A cell that contains information
                  about a key’s value. This cell includes a signature (kv),
                  the value’s type (for example, REG_ DWORD or REG_BINARY),
                  and the value’s name (for example, Boot-Execute). A value
                  cell also contains the cell index of the cell that contains
                  the value’s data.

	Subkey-list cell
	CM_KEY_INDEX
	A cell composed of a list of cell
                  indexes for key cells that are all subkeys of a common
                  parent key.

	Value-list cell
	CM_KEY_INDEX
	A cell composed of a list of cell
                  indexes for value cells that are all values of a common
                  parent key.

	Security-descriptor
                  cell
	CM_KEY_SECURITY
	A cell that contains a security
                  descriptor. Security-descriptor cells include a signature
                  (ks) at the head of the cell and a reference count that
                  records the number of key nodes that share the security
                  descriptor. Multiple key cells can share security-descriptor
                  cells.




By using bins, instead of cells, to track active parts of the
          registry, Windows minimizes some management chores. For example, the
          system usually allocates and deallocates bins less frequently than
          it does cells, which lets the configuration manager manage memory
          more efficiently. When the configuration manager reads a registry
          hive into memory, it reads the whole hive, including empty bins, but
          it can choose to discard them later. When the system adds and
          deletes cells in a hive, the hive can contain empty bins
          interspersed with active bins. This situation is similar to disk
          fragmentation, which occurs when the system creates and deletes
          files on the disk. When a bin becomes empty, the configuration
          manager joins to the empty bin any adjacent empty bins to form as
          large a contiguous empty bin as possible. The configuration manager
          also joins adjacent deleted cells to form larger free cells. (The
          configuration manager shrinks a hive only when bins at the end of
          the hive become free. You can compact the registry by backing it up
          and restoring it using the Windows RegSaveKey
          and RegReplaceKey functions, which are used by
          the Windows Backup utility.)
The links that create the structure of a hive are called cell
          indexes. A cell index is the offset of a cell into the hive file
          minus the size of the base block. Thus, a cell index is like a
          pointer from one cell to another cell that the configuration manager
          interprets relative to the start of a hive. For example, as you saw
          in Table 4-6, a cell that describes a key
          contains a field specifying the cell index of its parent key; a cell
          index for a subkey specifies the cell that describes the subkeys
          that are subordinate to the specified subkey. A subkey-list cell
          contains a list of cell indexes that refer to the subkey’s key
          cells. Therefore, if you want to locate, for example, the key cell
          of subkey A, whose parent is key B, you must first locate the cell
          containing key B’s subkey list using the subkey-list cell index in
          key B’s cell. Then you locate each of key B’s subkey cells by using
          the list of cell indexes in the subkey-list cell. For each subkey
          cell, you check to see whether the subkey’s name, which a key cell
          stores, matches the one you want to locate, in this case, subkey
          A.
The distinction between cells, bins, and blocks can be
          confusing, so let’s look at an example of a simple registry hive
          layout to help clarify the differences. The sample registry hive
          file in Figure 4-3
          contains a base block and two bins. The first bin is empty, and the
          second bin contains several cells. Logically, the hive has only two
          keys: the root key Root, and a subkey of Root, Sub Key. Root has two
          values, Val 1 and Val 2. A subkey-list cell locates
          the root key’s subkey, and a value-list cell locates the root key’s
          values. The free spaces in the second bin are empty cells. Figure 4-3 doesn’t show the
          security cells for the two keys, which would be present in a
          hive.
[image: Internal structure of a registry hive]

Figure 4-3. Internal structure of a registry hive

To optimize searches for both values and subkeys, the
          configuration manager sorts subkey-list cells alphabetically. The
          configuration manager can then perform a binary search when it looks
          for a subkey within a list of subkeys. The configuration manager
          examines the subkey in the middle of the list, and if the name of
          the subkey the configuration manager is looking for is
          alphabetically before the name of the middle subkey, the
          configuration manager knows that the subkey is in the first half of
          the subkey list; otherwise, the subkey is in the second half of the
          subkey list. This splitting process continues until the
          configuration manager locates the subkey or finds no match.
          Value-list cells aren’t sorted, however, so new values are always
          added to the end of the list.

Cell Maps



If hives never grew, the configuration manager could perform
          all its registry management on the in-memory version of a hive as if
          the hive were a file. Given a cell index, the configuration manager
          could calculate the location in memory of a cell simply by adding
          the cell index, which is a hive file offset, to the base of the
          in-memory hive image. Early in the system boot, this process is
          exactly what Winload does with the SYSTEM hive: Winload reads the
          entire SYSTEM hive into memory as a read-only hive and adds the cell
          indexes to the base of the in-memory hive image to locate cells.
          Unfortunately, hives grow as they take on new keys and values, which
          means the system must allocate paged pool memory to store the new
          bins that contain added keys and values. Thus, the paged pool that
          keeps the registry data in memory isn’t necessarily
          contiguous.
EXPERIMENT: Viewing Hive Paged Pool Usage
There are no administrative-level tools that show you the
            amount of paged pool that registry hives, including user profiles,
            are consuming on Windows. However, the !reg dumppool kernel
            debugger command shows you not only how many pages of the paged
            pool each loaded hive consumes but also how many of the pages
            store volatile and nonvolatile data. The command prints the total
            hive memory usage at the end of the output. (The command shows
            only the last 32 characters of a hive’s name.)
kd> !reg dumppool

dumping hive at e20d66a8 (a\Microsoft\Windows\UsrClass.dat)
  Stable Length = 1000
  1/1 pages present
  Volatile Length = 0

dumping hive at e215ee88 (ettings\Administrator\ntuser.dat)
  Stable Length = f2000
  242/242 pages present
  Volatile Length = 2000
  2/2 pages present

dumping hive at e13fa188 (\SystemRoot\System32\Config\SAM)
  Stable Length = 5000
  5/5 pages present
  Volatile Length = 0

...

To deal with noncontiguous memory addresses referencing hive
          data in memory, the configuration manager adopts a strategy similar
          to what the Windows memory manager uses to map virtual memory
          addresses to physical memory addresses. The configuration manager
          employs a two-level scheme, which Figure 4-4 illustrates, that takes as
          input a cell index (that is, a hive file offset) and returns as
          output both the address in memory of the block the cell index
          resides in and the address in memory of the block the cell resides
          in. Remember that a bin can contain one or more blocks and that
          hives grow in bins, so Windows always represents a bin with a
          contiguous region of memory. Therefore, all blocks within a bin
          occur within the same cache manager view.
[image: Structure of a cell index]

Figure 4-4. Structure of a cell index

To implement the mapping, the configuration manager
          divides a cell index logically into fields, in the same way that the
          memory manager divides a virtual address into fields. Windows
          interprets a cell index’s first field as an index into a hive’s cell
          map directory. The cell map directory contains 1024 entries, each of
          which refers to a cell map table that contains 512 map entries. An
          entry in this cell map table is specified by the second field in the
          cell index. That entry locates the bin and block memory addresses of
          the cell. Not all bins are necessarily mapped into memory, and if a
          cell lookup yields an address of 0, the configuration manager maps
          the bin into memory, unmapping another on the mapping LRU list it
          maintains, if necessary.
In the final step of the translation process, the
          configuration manager interprets the last field of the cell index as
          an offset into the identified block to precisely locate a cell in
          memory. When a hive initializes, the configuration manager
          dynamically creates the mapping tables, designating a map entry for
          each block in the hive, and it adds and deletes tables from the cell
          directory as the changing size of the hive requires.

The Registry Namespace and Operation



The configuration manager defines a key object type to
          integrate the registry’s namespace with the kernel’s general
          namespace. The configuration manager inserts a key object named
          Registry into the root of the Windows namespace, which serves as the
          entry point to the registry. Regedit shows key names in the form
          HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet, but the Windows
          subsystem translates such names into their object namespace form
          (for example, \Registry\Machine\System\CurrentControlSet). When the
          Windows object manager parses this name, it encounters the key
          object by the name of Registry first and hands the rest of the name
          to the configuration manager. The configuration manager takes over
          the name parsing, looking through its internal hive tree to find the
          desired key or value. Before we describe the flow of control for a
          typical registry operation, we need to discuss key objects and key
          control blocks. Whenever an application opens or creates a registry
          key, the object manager gives a handle with which to reference the
          key to the application. The handle corresponds to a key object that
          the configuration manager allocates with the help of the object
          manager. By using the object manager’s object support, the
          configuration manager takes advantage of the security and
          reference-counting functionality that the object manager
          provides.
For each open registry key, the configuration manager also
          allocates a key control block. A key control block stores the name
          of the key, includes the cell index of the key node that the control
          block refers to, and contains a flag that notes whether the
          configuration manager needs to delete the key cell that the key
          control block refers to when the last handle for the key closes.
          Windows places all key control blocks into a hash table to enable
          quick searches for existing key control blocks by name. A key object
          points to its corresponding key control block, so if two
          applications open the same registry key, each will receive a key
          object, and both key objects will point to a common key control
          block.
When an application opens an existing registry key, the flow
          of control starts with the application specifying the name of the
          key in a registry API that invokes the object manager’s name-parsing
          routine. The object manager, upon encountering the configuration
          manager’s registry key object in the namespace, hands the path name
          to the configuration manager. The configuration manager performs a
          lookup on the key control block hash table. If the related key
          control block is found there, there’s no need for any further work; otherwise, the lookup
          provides the configuration manager with the closest key control
          block to the searched key, and the lookup continues by using the
          in-memory hive data structures to search through keys and subkeys to
          find the specified key. If the configuration manager finds the key
          cell, the configuration manager searches the key control block tree
          to determine whether the key is open (by the same application or
          another one). The search routine is optimized to always start from
          the closest ancestor with a key control block already opened. For
          example, if an application opens \Registry\Machine\Key1\Subkey2, and
          \Registry\Machine is already opened, the parse routine uses the key
          control block of \Registry\Machine as a starting point. If the key
          is open, the configuration manager increments the existing key
          control block’s reference count. If the key isn’t open, the
          configuration manager allocates a new key control block and inserts
          it into the tree. Then the configuration manager allocates a key
          object, points the key object at the key control block, and returns
          control to the object manager, which returns a handle to the
          application.
When an application creates a new registry key, the
          configuration manager first finds the key cell for the new key’s
          parent. The configuration manager then searches the list of free
          cells for the hive in which the new key will reside to determine
          whether cells exist that are large enough to hold the new key cell.
          If there aren’t any free cells large enough, the configuration
          manager allocates a new bin and uses it for the cell, placing any
          space at the end of the bin on the free cell list. The new key cell
          fills with pertinent information—including the key’s name—and the
          configuration manager adds the key cell to the subkey list of the
          parent key’s subkey-list cell. Finally, the system stores the cell
          index of the parent cell in the new subkey’s key cell.
The configuration manager uses a key control block’s reference
          count to determine when to delete the key control block. When all
          the handles that refer to a key in a key control block close, the
          reference count becomes 0, which denotes that the key control block
          is no longer necessary. If an application that calls an API to
          delete the key sets the delete flag, the configuration manager can
          delete the associated key from the key’s hive because it knows that
          no application is keeping the key open.
EXPERIMENT: Viewing Key Control Blocks
You can use the kernel debugger to list all the key control
            blocks allocated on a system with the command !reg openkeys
            command. Alternatively, if you want to view the key control block
            for a particular open key, use !reg findkcb:
kd> !reg findkcb \registry\machine\software\microsoft

Found KCB = e1034d40 :: \REGISTRY\MACHINE\SOFTWARE\MICROSOFT
You can then examine a reported key control block with the
            !reg kcb command:
kd> !reg kcb e1034d40

Key              : \REGISTRY\MACHINE\SOFTWARE\MICROSOFT
RefCount         : 1f
Flags            : CompressedName, Stable
ExtFlags         :
Parent           : 0xe1997368
KeyHive          : 0xe1c8a768
KeyCell          : 0x64e598 [cell index]
TotalLevels      : 4
DelayedCloseIndex: 2048
MaxNameLen       : 0x3c
MaxValueNameLen  : 0x0
MaxValueDataLen  : 0x0
LastWriteTime    : 0x 1c42501:0x7eb6d470
KeyBodyListHead  : 0xe1034d70 0xe1034d70
SubKeyCount      : 137
ValueCache.Count : 0
KCBLock          : 0xe1034d40
KeyLock          : 0xe1034d40
The Flags field indicates that the name
            is stored in compressed form, and the
            SubKeyCount field shows that the key has 137
            subkeys.


Stable Storage



To make sure that a nonvolatile registry hive (one
          with an on-disk file) is always in a recoverable state, the
          configuration manager uses log hives. Each nonvolatile hive has an
          associated log hive, which is a hidden file with the same base name
          as the hive and a logN extension. To ensure forward progress, the
          configuration manger uses a dual-logging scheme. There are
          potentially two log files: .log1 and .log2. If, for any reason,
          .log1 was written but a failure occurred while writing dirty data to
          the primary log file, the next time a flush happens, a switch to
          .log2 will occur with the cumulative dirty data. If that fails as
          well, the cumulative dirty data (the data in .log1 and the data that
          was dirtied in between) is saved in .log2. As a consequence, .log1
          will be used again next time around, until a successful write
          operation is done to the primary log file. If no failure occurs,
          only .log1 is used.
For example, if you look in your %SystemRoot%\System32\Config
          directory (and you have the Show Hidden Files And Folders folder
          option selected), you’ll see System.log1, Sam.log1, and other .log1
          and .log2 files. When a hive initializes, the configuration manager
          allocates a bit array in which each bit represents a 512-byte
          portion, or sector, of the hive. This array is called the dirty
          sector array because an on bit in the array means that the system
          has modified the corresponding sector in the hive in memory and must
          write the sector back to the hive file. (An off bit means that the
          corresponding sector is up to date with the in-memory hive’s
          contents.)
When the creation of a new key or value or the modification of
          an existing key or value takes place, the configuration manager
          notes the sectors of the hive that change in the hive’s dirty sector
          array. Then the configuration manager schedules a lazy write
          operation, or a hive sync. The hive lazy writer system thread wakes
          up five seconds after the request to synchronize the hive and writes
          dirty hive sectors for all hives from memory to the hive files on
          disk. Thus, the system flushes, at the same time, all the registry
          modifications that take place between the time a hive sync is
          requested and the time the hive sync occurs. When a hive sync takes
          place, the next hive sync will occur no sooner than five seconds
          later.
Note
The RegFlushKey API’s name
            implies that the function flushes only modified data for a
            specified key to disk, but it actually triggers a full registry
            flush, which has a major performance impact on the system. For
            that reason and the fact that the registry automatically makes
            sure that modified data is in stable storage within seconds,
            application programmers should avoid using it.

If the lazy writer simply wrote all a hive’s dirty sectors to
          the hive file and the system crashed in mid-operation, the hive file
          would be in an inconsistent (corrupted) and unrecoverable state. To
          prevent such an occurrence, the lazy writer first dumps the hive’s
          dirty sector array and all the dirty sectors to the hive’s log file,
          increasing the log file’s size if necessary. The lazy writer then
          updates a sequence number in the hive’s base block and writes the
          dirty sectors to the hive. When the lazy writer is finished, it
          updates a second sequence number in the base block. Thus, if the
          system crashes during the write operations to the hive, at the next
          reboot the configuration manager will notice that the two sequence
          numbers in the hive’s base block don’t match. The configuration
          manager can update the hive with the dirty sectors in the hive’s log
          file to roll the hive forward. The hive is then up to date and
          consistent.
The Windows Boot Loader also contains some code related to
          registry reliability. For example, it can parse the System.log file
          before the kernel is loaded and do repairs to fix consistency.
          Additionally, in certain cases of hive corruption (such as if a base
          block, bin, or cell contains data that fails consistency checks),
          the configuration manager can reinitialize corrupted data
          structures, possibly deleting subkeys in the process, and continue
          normal operation. If it has to resort to a self-healing operation,
          it pops up a system error dialog box notifying the user.

Registry Filtering



The configuration manager in the Windows kernel implements a
          powerful model of registry filtering, which allows for monitoring of
          registry activity by tools such as Process Monitor. When a driver
          uses the callback mechanism, it registers a callback function with
          the configuration manager. The configuration manager executes the
          driver’s callback function before and after the execution of
          registry system services so that the driver has full visibility and
          control over registry accesses. Antivirus products that scan
          registry data for viruses or prevent unauthorized processes from
          modifying the registry are other users of the callback
          mechanism.
Registry callbacks are also associated with the concept of
          altitudes. Altitudes are a way for different vendors to register a
          “height” on the registry filtering stack so that the order in which
          the system calls each callback routine can be deterministic and
          correct. This avoids a scenario in which an antivirus product would
          be scanning encrypted keys before an encryption product would run
          its own callback to decrypt them. With the Windows registry callback
          model, both types of tools are assigned a base altitude
          corresponding to the type of filtering they are doing—in this case,
          encryption versus scanning. Secondly, companies that create these
          types of tools must register with Microsoft so that within their own
          group, they will not collide with similar or competing
          products.
The filtering model also includes the ability to
          either completely take over the processing of the registry operation
          (bypassing the configuration manager and preventing it from handling
          the request) or redirect the operation to a different operation
          (such as Wow64’s registry redirection). Additionally, it is also
          possible to modify the output parameters as well as the return value
          of a registry operation.
Finally, drivers can assign and tag per-key or per-operation
          driver-defined information for their own purposes. A driver can
          create and assign this context data during a create or open
          operation, which the configuration manager will remember and return
          during each subsequent operation on the key.

Registry Optimizations



The configuration manager makes a few noteworthy performance
          optimizations. First, virtually every registry key has a security
          descriptor that protects access to the key. Storing a unique
          security-descriptor copy for every key in a hive would be highly
          inefficient, however, because the same security settings often apply
          to entire subtrees of the registry. When the system applies security
          to a key, the configuration manager checks a pool of the unique
          security descriptors used within the same hive as the key to which
          new security is being applied, and it shares any existing descriptor
          for the key, ensuring that there is at most one copy of every unique
          security descriptor in a hive.
The configuration manager also optimizes the way it stores key
          and value names in a hive. Although the registry is fully
          Unicode-capable and specifies all names using the Unicode
          convention, if a name contains only ASCII characters, the
          configuration manager stores the name in ASCII form in the hive.
          When the configuration manager reads the name (such as when
          performing name lookups), it converts the name into Unicode form in
          memory. Storing the name in ASCII form can significantly reduce the
          size of a hive.
To minimize memory usage, key control blocks don’t store full
          key registry path names. Instead, they reference only a key’s name.
          For example, a key control block that refers to
          \Registry\System\Control would refer to the name Control rather than
          to the full path. A further memory optimization is that the
          configuration manager uses key name control blocks to store key
          names, and all key control blocks for keys with the same name share
          the same key name control block. To optimize performance, the
          configuration manager stores the key control block names in a hash
          table for quick lookups.
To provide fast access to key control blocks, the
          configuration manager stores frequently accessed key control blocks
          in the cache table, which is configured as a hash table. When the
          configuration manager needs to look up a key control block, it first
          checks the cache table. Finally, the configuration manager has
          another cache, the delayed close table, that stores key control
          blocks that applications close so that an application can quickly
          reopen a key it has recently closed. To optimize lookups, these
          cache tables are stored for each hive. The configuration manager
          removes the oldest key control blocks from the delayed close table
          as it adds the most recently closed blocks to the table.



Services



Almost every operating system has a mechanism to start
      processes at system startup time that provide services not tied to an
      interactive user. In Windows, such processes are called services or
      Windows services, because they rely on the Windows API to interact with
      the system. Services are similar to UNIX daemon processes and often
      implement the server side of client/server applications. An example of a
      Windows service might be a web server, because it must be running
      regardless of whether anyone is logged on to the computer and it must
      start running when the system starts so that an administrator doesn’t
      have to remember, or even be present, to start it.
Windows services consist of three components: a service
      application, a service control program (SCP), and the service control
      manager (SCM). First, we’ll describe service applications, service
      accounts, and the operations of the SCM. Then we’ll explain how
      auto-start services are started during the system boot. We’ll also cover
      the steps the SCM takes when a service fails during its startup and the
      way the SCM shuts down services.
Service Applications



Service applications, such as web servers, consist of at least
        one executable that runs as a Windows service. A user wanting to
        start, stop, or configure a service uses an SCP. Although Windows
        supplies built-in SCPs that provide general start, stop, pause, and
        continue functionality, some service applications include their own
        SCP that allows administrators to specify configuration settings
        particular to the service they manage.
Service applications are simply Windows executables (GUI or
        console) with additional code to receive commands from the SCM as well
        as to communicate the application’s status back to the SCM. Because
        most services don’t have a user interface, they are built as console
        programs.
When you install an application that includes a service, the
        application’s setup program must register the service with the system.
        To register the service, the setup program calls the Windows
        CreateService function, a services-related
        function implemented in Advapi32.dll
        (%SystemRoot%\System32\Advapi32.dll). Advapi32, the “Advanced API”
        DLL, implements all the client-side SCM APIs.
When a setup program registers a service by calling
        CreateService, a message is sent to the SCM on
        the machine where the service will reside. The SCM then creates a
        registry key for the service under
        HKLM\SYSTEM\CurrentControlSet\Services. The Services key is the
        nonvolatile representation of the SCM’s database. The individual keys
        for each service define the path of the executable image that contains
        the service as well as parameters and configuration options.
After creating a service, an installation or management
        application can start the service via the
        StartService function. Because some service-based
        applications also must initialize during the boot process to function,
        it’s not unusual for a setup program to register a service as an
        auto-start service, ask the user to reboot the system to complete an
        installation, and let the SCM start the service as the system
        boots.
When a program calls CreateService,
        it must specify a number of parameters describing the service’s
        characteristics. The characteristics include the service’s type
        (whether it’s a service that runs in its own process rather than a
        service that shares a process with other services), the location of
        the service’s executable image file, an optional display name, an
        optional account name and password used to start the service in a
        particular account’s security context, a start type that indicates
        whether the service starts automatically when the system boots or
        manually under the direction of an SCP, an error code that indicates
        how the system should react if the service detects an error when
        starting, and, if the service starts automatically, optional
        information that specifies when the service starts relative to other
        services.
The SCM stores each characteristic as a value in the service’s
        registry key. Figure 4-5
        shows an example of a service registry key.
[image: Example of a service registry key]

Figure 4-5. Example of a service registry key

Table 4-7 lists
        all the service characteristics, many of which also apply to device
        drivers. (Not every characteristic applies to every type of service or
        device driver.) If a service needs to store configuration information
        that is private to the service, the convention is to create a subkey
        named Parameters under its service key and then store the
        configuration information in values under that subkey. The service
        then can retrieve the values by using standard registry
        functions.
Note
The SCM does not access a service’s Parameters subkey until
          the service is deleted, at which time the SCM deletes the service’s
          entire key, including subkeys like Parameters.

Table 4-7. Service and Driver Registry Parameters
	Value Setting
	Value Name
	Value Setting
                Description

	Start
	SERVICE_BOOT_START
                (0)
	Winload preloads the driver so that
                it is in memory during the boot. These drivers are initialized
                just prior to SERVICE_ SYSTEM_START drivers.

	SERVICE_SYSTEM_START
                (1)
	The driver loads and initializes
                during kernel initialization after SERVICE_ BOOT_START drivers
                have initialized.

	SERVICE_AUTO_START
                (2)
	The SCM starts the driver or service
                after the SCM process, Services.exe, starts.

	SERVICE_DEMAND_START
                (3)
	The SCM starts the driver or service
                on demand.

	SERVICE_DISABLED (4)
	The driver or service doesn’t load
                or initialize.

	ErrorControl
	SERVICE_ERROR_IGNORE
                (0)
	Any error the driver or service
                returns is ignored, and no warning is logged or
                displayed.

	SERVICE_ERROR_NORMAL
                (1)
	If the driver or service reports an
                error, an event log message is written.

	SERVICE_ERROR_SEVERE
                (2)
	If the driver or service returns an
                error and last known good isn’t being used, reboot into last
                known good; otherwise, continue the boot.

	SERVICE_ERROR_CRITICAL
                (3)
	If the driver or service returns an
                error and last known good isn’t being used, reboot into last
                known good; otherwise, stop the boot with a blue screen
                crash.

	Type
	SERVICE_KERNEL_DRIVER
                (1)
	Device driver.

	SERVICE_FILE_SYSTEM_DRIVER
                (2)
	Kernel-mode file system
                driver.

	SERVICE_ADAPTER (4)
	Obsolete.

	SERVICE_RECOGNIZER_DRIVER
                (8)
	File system recognizer
                driver.

	SERVICE_WIN32_OWN_PROCESS
                (16)
	The service runs in a process that
                hosts only one service.

	SERVICE_WIN32_SHARE_PROCESS
                (32)
	The service runs in a process that
                hosts multiple services.

	 	SERVICE_INTERACTIVE_PROCESS
                (256)
	The service is allowed to display
                windows on the console and receive user input, but only on the
                console session (0) to prevent interacting with user/console
                applications on other sessions.

	Group
	Group name
	The driver or service initializes
                when its group is initialized.

	Tag
	Tag number
	The specified location in a group
                initialization order. This parameter doesn’t apply to
                services.

	ImagePath
	Path to the service or driver
                executable file
	If ImagePath isn’t specified, the
                I/O manager looks for drivers in
                %SystemRoot%\System32\Drivers. Required for Windows
                services.

	DependOnGroup
	Group name
	The driver or service won’t load
                unless a driver or service from the specified group
                loads.

	DependOnService
	Service name
	The service won’t load until after
                the specified service loads. This parameter doesn’t apply to
                device drivers other than those with a start type of
                SERVICE_AUTO_START or SERVICE_DEMAND_START.

	ObjectName
	Usually LocalSystem, but it can be
                an account name, such as .\Administrator
	Specifies the account in which the
                service will run. If ObjectName isn’t specified, LocalSystem
                is the account used. This parameter doesn’t apply to device
                drivers.

	DisplayName
	Name of the service
	The service application shows
                services by this name. If no name is specified, the name of
                the service’s registry key becomes its name.

	Description
	Description of
                service
	Up to 32767-byte description of the
                service.

	FailureActions
	Description of actions the SCM
                should take when the service process exits
                unexpectedly
	Failure actions include restarting
                the service process, rebooting the system, and running a
                specified program. This value doesn’t apply to
                drivers.

	FailureCommand
	Program command line
	The SCM reads this value only if
                FailureActions specifies that a program should execute upon
                service failure. This value doesn’t apply to
                drivers.

	DelayedAutoStart
	0 or 1 (TRUE or
                FALSE)
	Tells the SCM to start this service
                after a certain delay has passed since the SCM was started.
                This reduces the number of services starting simultaneously
                during startup.

	PreshutdownTimeout
	Timeout in
                milliseconds
	This value allows services to
                override the default preshutdown notification timeout of 180
                seconds. After this timeout, the SCM will perform shutdown
                actions on the service if it has not yet
                responded.

	ServiceSidType
	SERVICE_SID_TYPE_NONE
                (0)
	Backward-compatibility
                setting.

	SERVICE_SID_TYPE_UNRESTRICTED
                (1)
	The SCM will add the service SID as
                a group owner to the service process’ token when it is
                created.

	SERVICE_SID_TYPE_RESTRICTED
                (3)
	Same as above, but the SCM will also
                add the service SID to the restricted SID list of the service
                process, along with the world, logon, and write-restricted
                SIDs.

	RequiredPrivileges
	List of privileges
	This value contains the list of
                privileges that the service requires to function. The SCM will
                compute their union when creating the token for the shared
                process related to this service, if any.

	Security
	Security descriptor
	This value contains the optional
                security descriptor that defines who has what access to the
                service object created internally by the SCM. If this value is
                omitted, the SCM applies a default security
                descriptor.




Notice that Type values include three that apply to
        device drivers: device driver, file system driver, and file system
        recognizer. These are used by Windows device drivers, which also store
        their parameters as registry data in the Services registry key. The
        SCM is responsible for starting drivers with a Start value of
        SERVICE_AUTO_START or SERVICE_DEMAND_START, so it’s natural for the
        SCM database to include drivers. Services use the other types,
        SERVICE_WIN32_OWN_PROCESS and SERVICE_WIN32_SHARE_PROCESS, which are
        mutually exclusive. An executable that hosts more than one service
        specifies the SERVICE_WIN32_SHARE_PROCESS type.
An advantage to having a process run more than one service is
        that the system resources that would otherwise be required to run them
        in distinct processes are saved. A potential disadvantage is that if
        one of the services of a collection running in the same process causes
        an error that terminates the process, all the services of that process
        terminate. Also, another limitation is that all the services must run
        under the same account (however, if a service takes advantage of
        service security hardening mechanisms, it can limit some of its
        exposure to malicious attacks).
When the SCM starts a service process, the process must
        immediately invoke the StartServiceCtrlDispatcher
        function. StartServiceCtrlDispatcher accepts a
        list of entry points into services, one entry point for each service
        in the process. Each entry point is identified by the name of the
        service the entry point corresponds to. After making a named-pipe
        communications connection to the SCM,
        StartServiceCtrlDispatcher waits for commands to
        come through the pipe from the SCM. The SCM sends a service-start
        command each time it starts a service the process owns. For each start
        command it receives, the
        StartServiceCtrlDispatcher function creates a
        thread, called a service thread, to invoke the starting service’s
        entry point and implement the command loop for the service.
        StartServiceCtrlDispatcher waits indefinitely for
        commands from the SCM and returns control to the process’ main
        function only when all the process’ services have stopped, allowing
        the service process to clean up resources before exiting.
A service entry point’s first action is to call the
        RegisterServiceCtrlHandler function. This
        function receives and stores a pointer to a function, called the
        control handler, which the service implements to handle various
        commands it receives from the SCM.
        RegisterServiceCtrlHandler doesn’t communicate
        with the SCM, but it stores the function in local process memory for
        the StartServiceCtrlDispatcher function. The
        service entry point continues initializing the service, which can
        include allocating memory, creating communications end points, and
        reading private configuration data from the registry. As explained
        earlier, a convention most services follow is to store their
        parameters under a subkey of their service registry key, named
        Parameters.
While the entry point is initializing the service, it must
        periodically send status messages, using the
        SetServiceStatus function, to the SCM indicating
        how the service’s startup is progressing. After the entry point
        finishes initialization, a service thread usually sits in a loop
        waiting for requests from client applications. For example, a Web
        server would initialize a TCP listen socket and wait for inbound HTTP
        connection requests.
A service process’ main thread, which executes in the
        StartServiceCtrlDispatcher function, receives SCM
        commands directed at services in the process and invokes the target
        service’s control handler function (stored by
        RegisterServiceCtrlHandler). SCM commands include
        stop, pause, resume, interrogate, and shutdown or application-defined
        commands. Figure 4-6 shows the
        internal organization of a service process. Pictured are the two
        threads that make up a process hosting one service: the main thread
        and the service thread.
[image: Inside a service process]

Figure 4-6. Inside a service process

Service Accounts



The security context of a service is an important
          consideration for service developers as well as for system
          administrators because it dictates what resources the process can
          access. Unless a service installation program or administrator
          specifies otherwise, most services run in the security context of
          the local system account (displayed sometimes as SYSTEM and other
          times as LocalSystem). Two other built-in accounts are the network
          service and local service accounts. These accounts have fewer
          capabilities than the local system account from a security
          standpoint, and any built-in Windows service that does not require
          the power of the local system account runs in the appropriate
          alternate service account. The following subsections describe the
          special characteristics of these accounts.

The Local System Account



The local system account is the same account in which core
          Windows user-mode operating system components run, including the
          Session Manager (%SystemRoot%\System32\Smss.exe), the Windows
          subsystem process (Csrss.exe), the Local Security Authority process
          (%SystemRoot%\System32\Lsass.exe), and the Logon process
          (%SystemRoot%\System32\Winlogon.exe). For more information on these
          latter two processes, see Chapter 6.
From a security perspective, the local system account
          is extremely powerful—more powerful than any local or domain account
          when it comes to security ability on a local system. This account
          has the following characteristics:
	It is a member of the local administrators group. Table 4-8 shows the groups
              to which the local system account belongs. (See Chapter 6 for information on how group
              membership is used in object access checks.)

	It has the right to enable virtually every privilege (even
              privileges not normally granted to the local administrator
              account, such as creating security tokens). See Table 4-9 for the list of
              privileges assigned to the local system account. (Chapter 6 describes the use of each
              privilege.)

	Most files and registry keys grant full access to the
              local system account. (Even if they don’t grant full access, a
              process running under the local system account can exercise the
              take-ownership privilege to gain access.)

	Processes running under the local system account run with
              the default user profile (HKU\.DEFAULT). Therefore, they can’t
              access configuration information stored in the user profiles of
              other accounts.

	When a system is a member of a Windows domain, the local
              system account includes the machine security identifier (SID)
              for the computer on which a service process is running.
              Therefore, a service running in the local system account will be
              automatically authenticated on other machines in the same forest
              by using its computer account. (A forest is a grouping of
              domains.)

	Unless the machine account is specifically granted access
              to resources (such as network shares, named pipes, and so on), a
              process can access network resources that allow null
              sessions—that is, connections that require no credentials. You
              can specify the shares and pipes on a particular computer that
              permit null sessions in the NullSessionPipes and
              NullSessionShares registry values under
              HKLM\SYSTEM\CurrentControlSet\Services\lanmanserver\parameters.



Table 4-8. Service Account Group Membership
	Local System
	Network Service
	Local Service

	Everyone

                  Authenticated Users

                  Administrators
	Everyone

                  Authenticated Users
 Users

                  Local
 Network Service

                  Service
	Everyone

                  Authenticated Users
 Users

                  Local
 Local Service

                  Service




Table 4-9. Service Account Privileges
	Local System
	Network Service
	Local Service

	SeAssignPrimaryTokenPrivilege

                  SeAuditPrivilege
 SeBackupPrivilege

                  SeChangeNotifyPrivilege

                  SeCreateGlobalPrivilege

                  SeCreatePagefilePrivilege

                  SeCreatePermanentPrivilege

                  SeCreateTokenPrivilege

                  SeDebugPrivilege

                  SeImpersonatePrivilege

                  SeIncreaseBasePriorityPrivilege

                  SeIncreaseQuotaPrivilege

                  SeLoadDriverPrivilege

                  SeLockMemoryPrivilege

                  SeManageVolumePrivilege

                  SeProfileSingleProcessPrivilege

                  SeRestorePrivilege

                  SeSecurityPrivilege

                  SeShutdownPrivilege

                  SeSystemEnvironmentPrivilege

                  SeSystemTimePrivilege

                  SeTakeOwnershipPrivilege

                  SeTcbPrivilege
 SeUndockPrivilege (client
                  only)
	SeAssignPrimaryTokenPrivilege

                  SeAuditPrivilege

                  SeChangeNotifyPrivilege

                  SeCreateGlobalPrivilege

                  SeImpersonatePrivilege

                  SeIncreaseQuotaPrivilege

                  SeShutdownPrivilege
 SeUndockPrivilege
                  (client only)
 Privileges assigned to the
                  Everyone, Authenticated Users, and Users
                  groups
	SeAssignPrimaryTokenPrivilege

                  SeAuditPrivilege

                  SeChangeNotifyPrivilege

                  SeCreateGlobalPrivilege

                  SeImpersonatePrivilege

                  SeIncreaseQuotaPrivilege

                  SeShutdownPrivilege
 SeUndockPrivilege
                  (client only)
 Privileges assigned to the
                  Everyone, Authenticated Users, and Users
                  groups





The Network Service Account



The network service account is intended for use by services
          that want to authenticate to other machines on the network using the
          computer account, as does the local system account, but do not have
          the need for membership in the Administrators group or the use of
          many of the privileges assigned to the local system account. Because
          the network service account does not belong to the Administrators
          group, services running in the network service account by default
          have access to far fewer registry keys and file system folders and
          files than the services running in the local system account.
          Further, the assignment of few privileges limits the scope of a
          compromised network service process. For example, a process running
          in the network service account cannot load a device driver or open
          arbitrary processes.
Another difference between the network service and local
          system accounts is that processes running in the network service
          account use the network service account’s profile. The registry
          component of the network service profile loads under HKU\S-1-5-20,
          and the files and directories that make up the component reside in
          %SystemRoot%\ServiceProfiles\NetworkService.
A service that runs in the network service account is the DNS
          client, which is responsible for resolving DNS names and for
          locating domain controllers.

The Local Service Account



The local service account is virtually identical to the
          network service account with the important difference that it can
          access only network resources that allow anonymous access. Table 4-9 shows that the network
          service account has the same privileges as the local service
          account, and Table 4-8
          shows that it belongs to the same groups with the
          exception that it belongs to the Network Service group instead of
          the Local Service group. The profile used by processes running in
          the local service loads into HKU\S-1-5-19 and is stored in
          %SystemRoot%\ServiceProfiles\LocalService.
Examples of services that run in the local service account
          include the Remote Registry Service, which allows remote access to
          the local system’s registry, and the LmHosts service, which performs
          NetBIOS name resolution.

Running Services in Alternate Accounts



Because of the restrictions just outlined, some services need
          to run with the security credentials of a user account. You can
          configure a service to run in an alternate account when the service
          is created or by specifying an account and password that the service
          should run under with the Windows Services MMC snap-in. In the
          Services snap-in, right-click on a service and select Properties,
          click on the Log On tab, and select the This Account option, as
          shown in Figure 4-7.

Running with Least Privilege



Services typically are subject to an all-or-nothing model,
          meaning that all privileges available to the account the service
          process is running under are available to a service running in the
          process that might require only a subset of those privileges. To
          better conform to the principle of least privilege, in which Windows
          assigns services only the privileges they require, developers can
          specify the privileges their service requires, and the SCM creates a
          security token that contains only those privileges.
[image: Service account settings]

Figure 4-7. Service account settings

Note
The privileges a service specifies must be a subset
            of those that are available to the service account in which it
            runs.

Service developers use the
          ChangeServiceConfig2 API to indicate the list
          of privileges they desire. The API saves that information in the
          registry under the Parameters key for the service. When the service
          starts, the SCM reads the key and adds those privileges to the token
          of the process in which the service is running.
If there is a RequiredPrivileges value and the service is a
          stand-alone service (running as a dedicated process), the SCM
          creates a token containing only the privileges that the service
          needs. For services running as part of a multiservice service
          process (as are most services that are part of Windows) and
          specifying required privileges, the SCM computes the union of those
          privileges and combines them for the service-hosting process’ token.
          In other words, only the privileges not specified by any of the
          services that are part of that service group will be removed. In the
          case in which the registry value does not exist, the SCM has no
          choice but to assume that the service is either incompatible with
          least privileges or requires all privileges in order to function. In
          this case, the full token is created, containing all privileges, and
          no additional security is offered by this model. To strip almost all
          privileges, services can specify only the Change Notify
          privilege.
EXPERIMENT: Viewing Privileges Required by Services
You can look at the privileges a service requires with the
            Service Control utility, Sc.exe, and the qprivs option.
            Additionally, Process Explorer can show you information about the
            security token of any service process on the system, so you can
            compare the information returned by Sc.exe with the privileges
            part of the token. The following steps show you how to do this for
            some of the best locked-down services on the system.
	Use Sc.exe to take a look at the required privileges
                specified by Dhcp by typing the following into a command
                prompt:
	sc qprivs dhcp



You should see two privileges being requested: the
                SeCreateGlobalPrivilege and the
                SeChangeNotifyPrivilege.

	Run Process Explorer, and take a look at the process
                list.
You should see a couple of Svchost.exe processes that
                are hosting the services on your machine. Process Explorer
                highlights these in pink.

	Now locate the service hosting process in which the Dhcp
                service is running. It should be running alongside other
                services that are part of the LocalServiceNetworkRestricted
                service group, such as the Audiosrv service and Eventlog
                service. You can do this by hovering the mouse over each
                Svchost process and reading the tooltip, which contains the
                names of the services running inside the service host.

	Once you’ve found the process, double-click to
                open the Properties dialog box and select the Security
                tab.
[image: image with no caption]




Note that although the service is running as part of the
            local service account, the list of privileges Windows assigned to
            it is much shorter than the list available to the local service
            account shown in Table 4-9.
Because for a service-hosting process the privileges part of
            the token is the union of the privileges requested by all the
            services running inside it, this must mean that services such as
            Audiosrv and Eventlog have not requested privileges other than the
            ones shown by Process Explorer. You can verify this by running the
            Sc.exe tool on those other services as well.


Service Isolation



Although restricting the privileges that a service has access
          to helps lessen the ability of a compromised service process to
          compromise other processes, it does nothing to isolate the service
          from resources that the account in which it is running has access to
          under normal conditions. As mentioned earlier, the local system
          account has complete access to critical system files, registry keys,
          and other securable objects on the system because the
          access control lists (ACLs) grant permissions to that
          account.
At times, access to some of these resources is indeed critical
          to a service’s operation, while other objects should be secured from
          the service. Previously, to avoid running in the local system
          account to obtain access to required resources, a service would be
          run under a standard user account and ACLs would be added on the
          system objects, which greatly increased the risk of malicious code
          attacking the system. Another solution was to create dedicated
          service accounts and set specific ACLs for each account (associated
          to a service), but this approach easily became an administrative
          hassle.
Windows now combines these two approaches into a much more
          manageable solution: it allows services to run in a nonprivileged
          account but still have access to specific privileged resources
          without lowering the security of those objects. In a manner similar
          to the second pre–Windows Vista solution, the ACLs on an object can
          now set permissions directly for a service, but not by requiring a
          dedicated account. Instead, the SCM generates a service SID to
          represent a service, and this SID can be used to set permissions on
          resources such as registry keys and files. Service SIDs are
          implemented in the group SIDs part of the token for any process
          hosting a service. They are generated by the SCM during system
          startup for each service that has requested one via the
          ChangeServiceConfig2 API. In the case of
          service-hosting processes (a process that contains more than one
          service), the process’ token will contain the service SIDs of all
          services that are part of the service group associated with the
          process, including services that are not started because there is no
          way to add new SIDs after a token has been created.
The usefulness of having a SID for each service extends beyond
          the mere ability to add ACL entries and permissions for various
          objects on the system as a way to have fine-grained control over
          their access. Our discussion initially covered the case in which
          certain objects on the system, accessible by a given account, must
          be protected from a service running within that same account. As
          we’ve described to this point, service SIDs prevent that problem
          only by requiring that Deny entries associated with the service SID
          be placed on every object that needs to be secured, a clearly
          unmanageable approach.
To avoid requiring Deny access control entries (ACEs) as a way
          to prevent services from having access to resources that the user
          account in which they run does have access, there are two types of
          service SIDs: the restricted service SID
          (SERVICE_SID_TYPE_RESTRICTED) and the unrestricted service SID
          (SERVICE_SID_TYPE_UNRESTRICTED), the latter being the default and
          the case we’ve looked at until now.
Unrestricted service SIDs are created as enabled-by-default,
          group owner SIDs, and the process token is also given a new ACE
          providing full permission to the service logon SID, which allows the
          service to continue communicating with the SCM. (A primary use of
          this would be to enable or disable service SIDs inside the process
          during service startup or shutdown.)
A restricted service SID, on the other hand, turns the
          service-hosting process’ token into a write-restricted token (see
          Chapter 6 for more information on tokens),
          which means that only objects granting explicit write access to the
          service SID will be writable by the service, regardless of the
          account it’s running as. Because of this, all services running
          inside that process (part of the same service group) must have the restricted SID type;
          otherwise, services with the restricted SID type will fail to start.
          Once the token becomes write-restricted, three more SIDs are added
          for compatibility reasons:
	The world SID is added to allow write access to objects
              that are normally accessible by anyone anyway, most importantly
              certain DLLs in the load path.

	The service logon SID is added to allow the service to
              communicate with the SCM.

	The write-restricted SID is added to allow objects to
              explicitly allow any write-restricted service write access to
              them. For example, Event Tracing for Windows (ETW) uses this SID
              on its objects to allow any write-restricted service to generate
              events.



Figure 4-8 shows
          an example of a service-hosting process containing services that
          have been marked as having restricted service SIDs. For example, the
          Base Filtering Engine (BFE), which is responsible for applying
          Windows Firewall filtering rules, is part of this service because
          these rules are stored in registry keys that must be protected from
          malicious write access should a service be compromised. (This could
          allow a service exploit to disable the outgoing traffic firewall
          rules, enabling bidirectional communication with an attacker, for
          example.)
[image: Service with restricted service SIDs]

Figure 4-8. Service with restricted service SIDs

By blocking write access to objects that would
          otherwise be writable by the service (through inheriting the
          permissions of the account it is running as), restricted service
          SIDs solve the other side of the problem we initially presented
          because users do not need to do anything to prevent a service
          running in a privileged account from having write access to critical
          system files, registry keys, or other objects, limiting the attack
          exposure of any such service that might have been
          compromised.
Windows also allows for firewall rules that reference service
          SIDs linked to one of the three behaviors described in Table 4-10.
Table 4-10. Network Restriction Rules
	Scenario
	Example
	Restrictions

	Network access
                  blocked
	The shell hardware detection
                  service (ShellHWDetection).
	All network communications are
                  blocked (both incoming and outgoing).

	Network access statically
                  port-restricted
	The RPC service (Rpcss) operates
                  on port 135 (TCP and UDP).
	Network communications are
                  restricted to specific TCP or UDP ports.

	Network access dynamically
                  port-restricted
	The DNS service (Dns) listens on
                  variable ports (UDP).
	Network communications are
                  restricted to configurable TCP or UDP ports.





Interactive Services and Session 0 Isolation



One restriction for services running under the local system,
          local service, and network service accounts that has always been
          present in Windows is that these services could not display (without
          using a special flag on the MessageBox
          function, discussed in a moment) dialog boxes or windows on the
          interactive user’s desktop. This limitation wasn’t the direct result
          of running under these accounts but rather a consequence of the way
          the Windows subsystem assigns service processes to window stations.
          This restriction is further enhanced by the use of sessions, in a
          model called Session Zero Isolation, a result of which is that
          services cannot directly interact with a user’s desktop.
The Windows subsystem associates every Windows process with a
          window station. A window station contains desktops, and desktops
          contain windows. Only one window station can be visible on a console
          and receive user mouse and keyboard input. In a Terminal Services
          environment, one window station per session is visible, but services
          all run as part of the console session. Windows names the visible
          window station WinSta0, and all interactive processes access
          WinSta0.
Unless otherwise directed, the Windows subsystem associates
          services running in the local system account with a nonvisible
          window station named Service-0x0-3e7$ that all noninteractive
          services share. The number in the name, 3e7, represents the logon
          session identifier that the Local Security Authority process (LSASS)
          assigns to the logon session the SCM uses for noninteractive
          services running in the local system account.
Services configured to run under a user account (that is, not
          the local system account) are run in a different nonvisible window
          station named with the LSASS logon identifier assigned for the
          service’s logon session. Figure 4-9
          shows a sample display from the Sysinternals WinObj tool, viewing
          the object manager directory in which Windows places window station
          objects. Visible are the interactive window station (WinSta0) and
          the noninteractive system service window station
          (Service-0x0-3e7$).
[image: List of window stations]

Figure 4-9. List of window stations

Regardless of whether services are running in a user
          account, the local system account, or the local or network service
          accounts, services that aren’t running on the visible window station
          can’t receive input from a user or display windows on the console.
          In fact, if a service were to pop up a normal dialog box on the
          window station, the service would appear hung because no user would
          be able to see the dialog box, which of course would prevent the
          user from providing keyboard or mouse input to dismiss it and allow
          the service to continue executing.
Note
In the past, it was possible to use the special
            MB_SERVICE_NOTIFICATION or MB_DEFAULT_DESKTOP_ONLY flags with the
            MessageBox API to display messages on the
            interactive window station even if the service was marked as
            noninteractive. Because of session isolation, any service using
            this flag will receive an immediate IDOK return value, and the
            message box will never be displayed.

In rare cases, a service can have a valid reason to interact
          with the user via dialog boxes or windows. To configure a service
          with the right to interact with the user, the
          SERVICE_INTERACTIVE_PROCESS modifier must be present in the
          service’s registry key’s Type parameter. (Note that services
          configured to run under a user account can’t be marked as
          interactive.) When the SCM starts a service marked as interactive,
          it launches the service’s process in the local system account’s
          security context but connects the service with WinSta0 instead of
          the noninteractive service window station.
Were user processes to run in the same session as services,
          this connection to WinSta0 would allow the service to display dialog
          boxes and windows on the console and enable those windows to respond
          to user input because they would share the window station with the
          interactive services. However, only processes owned by the system
          and Windows services run in session 0; all other logon sessions,
          including those of console users, run in different sessions. Any
          window displayed by processes in session 0 is therefore not visible
          to the user.
This additional boundary helps prevent shatter
          attacks, whereby a less privileged application sends window messages
          to a window visible on the same window station to exploit a bug in a
          more privileged process that owns the window, which permits it to
          execute code in the more privileged process.
To remain compatible with services that depend on user input,
          Windows includes a service that notifies users when a service has
          displayed a window. The Interactive Services Detection (UI0Detect)
          service looks for visible windows on the main desktop of the WinSta0
          window station of session 0 and displays a notification dialog box
          on the console user’s desktop, allowing the user to switch to
          session 0 and view the service’s UI. (This is akin to connecting to
          a local Terminal Services session or switching users.)
Note
The Interactive Services Detection mechanism is purely for
            application compatibility, and developers are strongly recommended
            to move away from interactive services and use a secondary,
            nonprivileged helper application to communicate visually with the
            user. Local RPC or COM can be used between this helper application
            and the service for configuration purposes after UI input has been
            received.

The dialog box, an example of which is shown in Figure 4-10, includes the
          process name, the time when the UI message was displayed, and the
          title of the window being displayed. Once the user connects to
          session 0, a similar dialog box provides a portal back to the user’s
          session. In the figure, the service displaying a window is Microsoft
          Paint, which was explicitly started by the Sysinternals PsExec
          utility with options that caused PsExec to run Paint in session 0.
          You can try this yourself with the following command:
	psexec –s –i 0 –d mspaint.exe



This tells PsExec to run Microsoft Paint as a system process
          (–s) running on session 0 (–i 0), and to return immediately instead
          of waiting for the process to finish (–d).
[image: The Interactive Services Detection service at work]

Figure 4-10. The Interactive Services Detection service at work

If you click View The Message, you can switch to the
          console for session 0 (and switch back again with a similar window
          on the console).


The Service Control Manager



The SCM’s executable file is %SystemRoot%\System32\Services.exe,
        and like most service processes, it runs as a Windows console program.
        The Wininit process starts the SCM early during the system boot.
        (Refer to Chapter 13 in Part 2 for details on the boot process.) The
        SCM’s startup function, SvcCtrlMain, orchestrates
        the launching of services that are configured for automatic
        startup.
SvcCtrlMain first creates a synchronization
        event named SvcctrlStartEvent_A3752DX that it initializes as
        nonsignaled. Only after the SCM completes steps necessary to prepare
        it to receive commands from SCPs does the SCM set the event to a
        signaled state. The function that an SCP uses to establish a dialog
        with the SCM is OpenSCManager.
        OpenSCManager prevents an SCP from trying to
        contact the SCM before the SCM has initialized by waiting for
        SvcctrlStartEvent_A3752DX to become signaled.
Next, SvcCtrlMain gets down to business and
        calls ScGenerateServiceDB, the function that
        builds the SCM’s internal service database.
        ScGenerateServiceDB reads and stores the contents
        of HKLM\SYSTEM\CurrentControlSet\Control\ServiceGroupOrder\List, a
        REG_MULTI_SZ value that lists the names and order of the defined
        service groups. A service’s registry key contains an optional Group
        value if that service or device driver needs to control its startup
        ordering with respect to services from other groups. For example, the
        Windows networking stack is built from the bottom up, so networking
        services must specify Group values that place them later in the
        startup sequence than networking device drivers. The SCM internally
        creates a group list that preserves the ordering of the groups it
        reads from the registry. Groups include (but are not limited to) NDIS,
        TDI, Primary Disk, Keyboard Port, and Keyboard Class. Add-on and
        third-party applications can even define their own groups and add them
        to the list. Microsoft Transaction Server, for example, adds a group
        named MS Transactions.
ScGenerateServiceDB then scans the contents
        of HKLM\SYSTEM\CurrentControlSet\Services, creating an entry in the
        service database for each key it encounters. A database entry includes
        all the service-related parameters defined for a service as well as
        fields that track the service’s status. The SCM adds entries for
        device drivers as well as for services because the SCM starts services
        and drivers marked as auto-start and detects startup failures for
        drivers marked boot-start and system-start. It also provides a means
        for applications to query the status of drivers. The I/O manager loads
        drivers marked boot-start and system-start before any user-mode
        processes execute, and therefore any drivers having these start types
        load before the SCM starts.
ScGenerateServiceDB reads a service’s Group
        value to determine its membership in a group and associates this value
        with the group’s entry in the group list created earlier. The function
        also reads and records in the database the service’s group and service
        dependencies by querying its DependOnGroup and DependOnService
        registry values. Figure 4-11
        shows how the SCM organizes the service entry and group order lists.
        Notice that the service list is alphabetically sorted. The reason this
        list is sorted alphabetically is that the SCM creates the list from
        the Services registry key, and Windows stores registry keys
        alphabetically.
[image: Organization of a service database]

Figure 4-11. Organization of a service database

During service startup, the SCM calls on LSASS (for
        example, to log on a service in a non-local system account), so the
        SCM waits for LSASS to signal the LSA_RPC_SERVER_ACTIVE
        synchronization event, which it does when it finishes initializing.
        Wininit also starts the LSASS process, so the initialization of LSASS
        is concurrent with that of the SCM, and the order in which LSASS and
        the SCM complete initialization can vary. Then
        SvcCtrlMain calls
        ScGetBootAndSystemDriverState to scan the service
        database looking for boot-start and system-start device driver
        entries.
ScGetBootAndSystemDriverState determines
        whether or not a driver successfully started by looking up its name in
        the object manager namespace directory named \Driver. When a device
        driver successfully loads, the I/O manager inserts the driver’s object
        in the namespace under this directory, so if its name isn’t present,
        it hasn’t loaded. Figure 4-12 shows
        WinObj displaying the contents of the Driver directory.
        SvcCtrlMain notes the names of drivers that
        haven’t started and that are part of the current profile in a list
        named ScFailedDrivers.
Before starting the auto-start services, the SCM performs a few
        more steps. It creates its remote procedure call (RPC) named pipe,
        which is named \Pipe\Ntsvcs, and then RPC launches a thread to listen
        on the pipe for incoming messages from SCPs. The SCM then signals its
        initialization-complete event, SvcctrlStartEvent_A3752DX. Registering
        a console application shutdown event handler and registering with the
        Windows subsystem process via
        RegisterServiceProcess prepares the SCM for
        system shutdown.
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Figure 4-12. List of driver objects

Network Drive Letters
In addition to its role as an interface to services,
          the SCM has another totally unrelated responsibility: it notifies
          GUI applications in a system whenever the system creates or deletes
          a network drive-letter connection. The SCM waits for the Multiple
          Provider Router (MPR) to signal a named event,
          \BaseNamedObjects\ScNetDrvMsg, which MPR signals whenever an
          application assigns a drive letter to a remote network share or
          deletes a remote-share drive-letter assignment. (See Chapter 7, for more information on MPR.) When MPR
          signals the event, the SCM calls the GetDriveType Windows function
          to query the list of connected network drive letters. If the list
          changes across the event signal, the SCM sends a Windows broadcast
          message of type WM_DEVICECHANGE. The SCM uses either
          DBT_DEVICEREMOVECOMPLETE or DBT_DEVICEARRIVAL as the message’s
          subtype. This message is primarily intended for Windows Explorer so
          that it can update any open Computer windows to show the presence or
          absence of a network drive letter.


Service Startup



SvcCtrlMain invokes the SCM function
        ScAutoStartServices to start all services that
        have a Start value designating auto-start (except delayed auto-start
        services). ScAutoStartServices also starts
        auto-start device drivers. To avoid confusion, you should assume that
        the term services means services and drivers unless indicated
        otherwise. The algorithm in ScAutoStartServices
        for starting services in the correct order proceeds in phases, whereby
        a phase corresponds to a group and phases proceed in the sequence
        defined by the group ordering stored in the
        HKLM\SYSTEM\CurrentControlSet\Control\ServiceGroupOrder\List registry
        value. The List value, shown in Figure 4-13, includes the names of
        groups in the order that the SCM should start them.
        Thus, assigning a service to a group has no effect other than to
        fine-tune its startup with respect to other services belonging to
        different groups.
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Figure 4-13. ServiceGroupOrder registry key

When a phase starts, ScAutoStartServices
        marks all the service entries belonging to the phase’s group for
        startup. Then ScAutoStartServices loops through
        the marked services seeing whether it can start each one. Part of this
        check includes seeing whether the service is marked as delayed
        auto-start, which causes the SCM to start it at a later stage.
        (Delayed auto-start services must also be ungrouped.) Another part of
        the check it makes consists of determining whether the service has a
        dependency on another group, as specified by the existence of the
        DependOnGroup value in the service’s registry key. If a dependency
        exists, the group on which the service is dependent must have already
        initialized, and at least one service of that group must have
        successfully started. If the service depends on a group that starts
        later than the service’s group in the group startup sequence, the SCM
        notes a “circular dependency” error for the service. If
        ScAutoStartServices is considering a Windows
        service or an auto-start device driver, it next checks to see whether
        the service depends on one or more other services, and if so, if those
        services have already started. Service dependencies are indicated with
        the DependOnService registry value in a service’s registry key. If a
        service depends on other services that belong to groups that come
        later in the ServiceGroupOrder\List, the SCM also generates a
        “circular dependency” error and doesn’t start the service. If the
        service depends on any services from the same group that haven’t yet
        started, the service is skipped.
When the dependencies of a service have been satisfied,
        ScAutoStartServices makes a final check to see
        whether the service is part of the current boot configuration before
        starting the service. When the system is booted in safe mode, the SCM
        ensures that the service is either identified by name or by group in
        the appropriate safe boot registry key. There are two safe boot keys,
        Minimal and Network, under
        HKLM\SYSTEM\CurrentControlSet\Control\SafeBoot, and the one that the
        SCM checks depends on what safe mode the user booted. If the user
        chose Safe Mode or Safe Mode With Command Prompt at the special boot
        menu (which you can access by pressing F8 early in the boot process),
        the SCM references the Minimal key; if the user chose Safe Mode With
        Networking, the SCM refers to Network. The existence of a string value
        named Option under the SafeBoot key indicates not only that the system
        booted in safe mode but also the type of safe mode the user selected.
        For more information about safe boots, see the section “Safe Mode” in
        Chapter 13 in Part 2.
Once the SCM decides to start a service, it calls
        ScStartService, which takes different steps for
        services than for device drivers. When
        ScStartService starts a Windows service, it first
        determines the name of the file that runs the service’s process by
        reading the ImagePath value from the service’s registry key. It then
        examines the service’s Type value, and if that value is
        SERVICE_WINDOWS_SHARE_PROCESS (0x20), the SCM ensures that the process
        the service runs in, if already started, is logged on using the same
        account as specified for the service being started. (This is to ensure
        that the service is not configured with the wrong account, such as a
        LocalService account, but with an image path pointing to a running
        Svchost, such as netsvcs, which runs as LocalSystem.) A service’s
        ObjectName registry value stores the user account in which the service
        should run. A service with no ObjectName or an ObjectName of
        LocalSystem runs in the local system account.
The SCM verifies that the service’s process hasn’t already been
        started in a different account by checking to see whether the
        service’s ImagePath value has an entry in an internal SCM database
        called the image database. If the image database doesn’t have an entry
        for the ImagePath value, the SCM creates one. When the SCM creates a
        new entry, it stores the logon account name used for the service and
        the data from the service’s ImagePath value. The SCM requires services
        to have an ImagePath value. If a service doesn’t have an ImagePath
        value, the SCM reports an error stating that it couldn’t find the
        service’s path and isn’t able to start the service. If the SCM locates
        an existing image database entry with matching ImagePath data, the SCM
        ensures that the user account information for the service it’s
        starting is the same as the information stored in the database entry—a
        process can be logged on as only one account, so the SCM reports an
        error when a service specifies a different account name than another
        service that has already started in the same process.
The SCM calls ScLogonAndStartImage to log
        on a service if the service’s configuration specifies and to start the
        service’s process. The SCM logs on services that don’t run in the
        System account by calling the LSASS function
        LogonUserEx. LogonUserEx
        normally requires a password, but the SCM indicates to LSASS that the
        password is stored as a service’s LSASS “secret” under the key
        HKLM\SECURITY\Policy\Secrets in the registry. (Keep in mind that the
        contents of SECURITY aren’t typically visible because its default
        security settings permit access only from the System account.) When
        the SCM calls LogonUserEx, it specifies a service
        logon as the logon type, so LSASS looks up the password in the Secrets
        subkey that has a name in the form _SC_<service name>.
The SCM directs LSASS to store a logon password as a secret
        using the LsaStorePrivateData function when an
        SCP configures a service’s logon information. When a logon is
        successful, LogonUserEx returns a handle to an
        access token to the caller. Windows uses access tokens to represent a
        user’s security context, and the SCM later associates the access token
        with the process that implements the service.
After a successful logon, the SCM loads the account’s profile
        information, if it’s not already loaded, by calling the UserEnv DLL’s
        (%SystemRoot%\System32\Userenv.dll)
        LoadUserProfile function. The value
        HKLM\SOFTWARE\Microsoft\Windows NT\CurrentVersion\ProfileList\<user
        profile key>\ProfileImagePath contains the location on disk of a
        registry hive that LoadUserProfile loads into the
        registry, making the information in the hive the HKEY_CURRENT_USER key
        for the service.
An interactive service must open the WinSta0 window
        station, but before ScLogonAndStartImage allows
        an interactive service to access WinSta0 it checks to see whether the
        value
        HKLM\SYSTEM\CurrentControlSet\Control\Windows\NoInteractiveServices is
        set. Administrators set this value to prevent services marked as
        interactive from displaying windows on the console. This option is
        desirable in unattended server environments in which no user is
        present to respond to the Session 0 UI Discovery notification from
        interactive services.
As its next step, ScLogonAndStartImage
        proceeds to launch the service’s process, if the process hasn’t
        already been started (for another service, for example). The SCM
        starts the process in a suspended state with the
        CreateProcessAsUser Windows function. The SCM
        next creates a named pipe through which it communicates with the
        service process, and it assigns the pipe the name
        \Pipe\Net\NtControlPipeX, where X is a number that increments each
        time the SCM creates a pipe. The SCM resumes the service process via
        the ResumeThread function and waits for the service to connect to its
        SCM pipe. If it exists, the registry value
        HKLM\SYSTEM\CurrentControlSet\Control\ServicesPipeTimeout determines
        the length of time that the SCM waits for a service to call
        StartServiceCtrlDispatcher and connect before it
        gives up, terminates the process, and concludes that the service
        failed to start. If ServicesPipeTimeout doesn’t exist, the SCM uses a
        default timeout of 30 seconds. The SCM uses the same timeout value for
        all its service communications.
When a service connects to the SCM through the pipe, the SCM
        sends the service a start command. If the service fails to respond
        positively to the start command within the timeout period, the SCM
        gives up and moves on to start the next service. When a service
        doesn’t respond to a start request, the SCM doesn’t terminate the
        process, as it does when a service doesn’t call
        StartServiceCtrlDispatcher within the timeout;
        instead, it notes an error in the system Event Log that indicates the
        service failed to start in a timely manner.
If the service the SCM starts with a call to
        ScStartService has a Type registry value of
        SERVICE_KERNEL_DRIVER or SERVICE_FILE_SYSTEM_DRIVER, the service is
        really a device driver, so ScStartService calls
        ScLoadDeviceDriver to load the driver.
        ScLoadDeviceDriver enables the load driver
        security privilege for the SCM process and then invokes the kernel
        service NtLoadDriver, passing in the data in the
        ImagePath value of the driver’s registry key. Unlike services, drivers
        don’t need to specify an ImagePath value, and if the value is absent,
        the SCM builds an image path by appending the driver’s name to the
        string %SystemRoot%\System32\Drivers\.
ScAutoStartServices continues looping
        through the services belonging to a group until all the services have
        either started or generated dependency errors. This looping is the
        SCM’s way of automatically ordering services within a group according
        to their DependOnService dependencies. The SCM will start the services
        that other services depend on in earlier loops, skipping the dependent
        services until subsequent loops. Note that the SCM ignores Tag values
        for Windows services, which you might come across in subkeys under the
        HKLM\SYSTEM\CurrentControlSet\Services key; the I/O manager honors Tag
        values to order device driver startup within a group for boot-start
        and system-start drivers. Once the SCM completes phases for all the
        groups listed in the ServiceGroupOrder\List value, it performs a phase
        for services belonging to groups not listed in the value and then
        executes a final phase for services without a group.
After handling auto-start services, the SCM calls
        ScInitDelayStart, which queues a delayed work
        item associated with a worker thread responsible for processing all
        the services that ScAutoStartServices skipped
        because they were marked delayed auto-start. This worker thread will
        execute after the delay. The default delay is 120 seconds, but it can
        be overridden by the creating an AutoStartDelay value in
        HKLM\SYSTEM\CurrentControlSet\Control. The SCM performs the same
        actions as those used during startup of nondelayed auto-start
        services.
Delayed Auto-Start Services
Delayed auto-start services enable Windows to cope with the
          growing number of services that are being started when a user logs
          on, bogging down the boot-up process and increasing the time before
          a user is able to get responsiveness from the desktop. The design of
          auto-start services was primarily intended for services required
          early in the boot process because other services depend on them, a
          good example being the RPC service, on which all other services
          depend. The other use was to allow unattended startup of a service,
          such as the Windows Update service. Because many auto-start services
          fall in this second category, marking them as delayed auto-start
          allows critical services to start faster and for the user’s desktop
          to be ready sooner when a user logs on immediately after booting.
          Additionally, these services run in background mode, which lowers
          their thread, I/O, and memory priority. Configuring a service for
          delayed auto-start requires calling the ChangeServiceConfig2 API.
          You can check the state of the flag for a service by using the qc
          bits option of sc.exe instead.

Note
If a nondelayed auto-start service has a delayed auto-start
          service as one of its dependencies, the delayed auto-start flag will
          be ignored and the service will be started immediately in order to
          satisfy the dependency.

When it’s finished starting all auto-start services and drivers,
        as well as setting up the delayed auto-start work item, the SCM
        signals the event \BaseNamedObjects\SC_AutoStartComplete. This event
        is used by the Windows Setup program to gauge startup progress during
        installation.

Startup Errors



If a driver or a service reports an error in response to the
        SCM’s startup command, the ErrorControl value of the service’s
        registry key determines how the SCM reacts. If the ErrorControl value
        is SERVICE_ERROR_IGNORE (0) or the ErrorControl value isn’t specified,
        the SCM simply ignores the error and continues processing service
        startups. If the ErrorControl value is SERVICE_ERROR_NORMAL (1), the
        SCM writes an event to the system Event Log that says, “The
        <service name> service failed to start due to the following
        error:”. The SCM includes the textual representation of the Windows
        error code that the service returned to the SCM as the reason for the
        startup failure in the Event Log record. Figure 4-14 shows the Event
        Log entry that reports a service startup error.
[image: Service startup failure Event Log entry]

Figure 4-14. Service startup failure Event Log entry

If a service with an ErrorControl value of
        SERVICE_ERROR_SEVERE (2) or SERVICE_ERROR_CRITICAL (3) reports a
        startup error, the SCM logs a record to the Event Log and then calls
        the internal function ScRevertToLastKnownGood. This function switches
        the system’s registry configuration to a version, named last known
        good, with which the system last booted successfully. Then it restarts
        the system using the NtShutdownSystem system service, which is
        implemented in the executive. If the system is already booting with
        the last known good configuration, the system just reboots.

Accepting the Boot and Last Known Good



Besides starting services, the system charges the SCM with
        determining when the system’s registry configuration,
        HKLM\SYSTEM\CurrentControlSet, should be saved as the last known good
        control set. The CurrentControlSet key contains the Services key as a
        subkey, so CurrentControlSet includes the registry representation of
        the SCM database. It also contains the Control key, which stores many
        kernel-mode and user-mode subsystem configuration settings. By
        default, a successful boot consists of a successful startup of
        auto-start services and a successful user logon. A boot fails if the
        system halts because a device driver crashes the system during the
        boot or if an auto-start service with an ErrorControl value of
        SERVICE_ERROR_SEVERE or SERVICE_ERROR_CRITICAL reports a startup
        error.
The SCM obviously knows when it has completed a successful
        startup of the auto-start services, but Winlogon
        (%SystemRoot%\System32\Winlogon.exe) must notify it when there is a
        successful logon. Winlogon invokes the NotifyBootConfigStatus function
        when a user logs on, and NotifyBootConfigStatus
        sends a message to the SCM. Following the successful
        start of the auto-start services or the receipt of the message from
        NotifyBootConfigStatus (whichever comes last),
        the SCM calls the system function
        NtInitializeRegistry to save the current registry
        startup configuration.
Third-party software developers can supersede Winlogon’s
        definition of a successful logon with their own definition. For
        example, a system running Microsoft SQL Server might not consider a
        boot successful until after SQL Server is able to accept and process
        transactions. Developers impose their definition of a successful boot
        by writing a boot-verification program and installing the program by
        pointing to its location on disk with the value stored in the registry
        key HKLM\SYSTEM\CurrentControlSet\Control\BootVerificationProgram. In
        addition, a boot-verification program’s installation must disable
        Winlogon’s call to NotifyBootConfigStatus by
        setting HKLM\SOFTWARE\Microsoft\Windows
        NT\CurrentVersion\Winlogon\ReportBootOk to 0. When a boot-verification
        program is installed, the SCM launches it after finishing auto-start
        services and waits for the program’s call to
        NotifyBootConfigStatus before saving the last
        known good control set.
Windows maintains several copies of CurrentControlSet, and
        CurrentControlSet is really a symbolic registry link that points to
        one of the copies. The control sets have names in the form
        HKLM\SYSTEM\ControlSetnnn, where nnn is a number such as 001 or 002.
        The HKLM\SYSTEM\Select key contains values that identify the role of
        each control set. For example, if CurrentControlSet points to
        ControlSet001, the Current value under Select has a value of 1. The
        LastKnownGood value under Select contains the number of the last known
        good control set, which is the control set last used to boot
        successfully. Another value that might be on your system under the
        Select key is Failed, which points to the last control set for which
        the boot was deemed unsuccessful and aborted in favor of an attempt at
        booting with the last known good control set. Figure 4-15 displays a system’s control
        sets and Select values.
NtInitializeRegistry takes the contents of
        the last known good control set and synchronizes it with that of the
        CurrentControlSet key’s tree. If this was the system’s first
        successful boot, the last known good won’t exist and the system will
        create a new control set for it. If the last known good tree exists,
        the system simply updates it with differences between it and
        CurrentControlSet.
Last known good is helpful in situations in which a change to
        CurrentControlSet, such as the modification of a system
        performance-tuning value under HKLM\SYSTEM\Control or the addition of
        a service or device driver, causes the subsequent boot to fail. Users
        can press F8 early in the boot process to bring up a menu that lets
        them direct the boot to use the last known good control set, rolling
        the system’s registry configuration back to the way it was the last
        time the system booted successfully. Chapter 13 in Part 2 describes in
        more detail the use of last known good and other recovery mechanisms
        for troubleshooting system startup problems.
[image: Control set selection key]

Figure 4-15. Control set selection key


Service Failures



A service can have optional
        FailureActions and
        FailureCommand values in its registry key that
        the SCM records during the service’s startup. The SCM registers with
        the system so that the system signals the SCM when a service process
        exits. When a service process terminates unexpectedly, the SCM
        determines which services ran in the process and takes the recovery
        steps specified by their failure-related registry values.
        Additionally, services are not only limited to requesting failure
        actions during crashes or unexpected service termination, since other
        problems, such as a memory leak, could also result in service
        failure.
If a service enters the SERVICE_STOPPED state and the error code
        returned to the SCM is not ERROR_SUCCESS, the SCM will check whether
        the service has the
        FailureActionsOnNonCrashFailures flag set and
        perform the same recovery as if the service had crashed. To use this
        functionality, the service must be configured via the
        ChangeServiceConfig2 API or the system
        administrator can use the Sc.exe utility with the
        Failureflag parameter to set
        FailureActionsOnNonCrashFailures to
        1. The default value being 0, the SCM will
        continue to honor the same behavior as on earlier versions of Windows
        for all other services.
Actions that a service can configure for the SCM include
        restarting the service, running a program, and rebooting the computer.
        Furthermore, a service can specify the failure actions that take place
        the first time the service process fails, the second time, and
        subsequent times, and it can indicate a delay period that the SCM
        waits before restarting the service if the service asks to be
        restarted. The service failure action of the IIS Admin Service results
        in the SCM running the IISReset application, which performs cleanup
        work and then restarts the service. You can easily manage the recovery
        actions for a service using the Recovery tab of the service’s
        Properties dialog box in the Services MMC snap-in, as shown in Figure 4-16.
[image: Service recovery options]

Figure 4-16. Service recovery options


Service Shutdown



When Winlogon calls the Windows
        ExitWindowsEx function,
        ExitWindowsEx sends a message to Csrss, the
        Windows subsystem process, to invoke Csrss’s shutdown routine. Csrss
        loops through the active processes and notifies them that the system
        is shutting down. For every system process except the SCM, Csrss waits
        up to the number of seconds specified by HKU\.DEFAULT\Control
        Panel\Desktop\WaitToKillAppTimeout (which defaults to 20 seconds) for
        the process to exit before moving on to the next process. When Csrss
        encounters the SCM process, it also notifies it that the system is
        shutting down but employs a timeout specific to the SCM. Csrss
        recognizes the SCM using the process ID Csrss saved when the SCM
        registered with Csrss using the
        RegisterServicesProcess function during system
        initialization. The SCM’s timeout differs from that of other processes
        because Csrss knows that the SCM communicates with services that need
        to perform cleanup when they shut down, so an administrator might need
        to tune only the SCM’s timeout. The SCM’s timeout value resides in the
        HKLM\SYSTEM\CurrentControlSet\Control\WaitToKillServiceTimeout
        registry value, and it defaults to 12 seconds.
The SCM’s shutdown handler is responsible for sending shutdown
        notifications to all the services that requested shutdown notification
        when they initialized with the SCM. The SCM function
        ScShutdownAllServices loops through the SCM
        services database searching for services desiring shutdown
        notification and sends each one a shutdown command. For each service
        to which it sends a shutdown command, the SCM records the value of the
        service’s wait hint, a value that a service also specifies when it
        registers with the SCM. The SCM keeps track of the largest wait hint
        it receives. After sending the shutdown messages, the SCM waits either
        until one of the services it notified of shutdown exits or until the
        time specified by the largest wait hint passes.
If the wait hint expires without a service exiting, the
        SCM determines whether one or more of the services it was waiting on
        to exit have sent a message to the SCM telling the SCM that the
        service is progressing in its shutdown process. If at least one
        service made progress, the SCM waits again for the duration of the
        wait hint. The SCM continues executing this wait loop until either all
        the services have exited or none of the services upon which it’s
        waiting has notified it of progress within the wait hint timeout
        period.
While the SCM is busy telling services to shut down and waiting
        for them to exit, Csrss waits for the SCM to exit. If Csrss’s wait
        ends without the SCM having exited (the WaitToKillServiceTimeout time
        expired), Csrss kills the SCM and continues the shutdown process.
        Thus, services that fail to shut down in a timely manner are killed.
        This logic lets the system shut down in the face of services that
        never complete a shutdown as a result of flawed design, but it also
        means that services that require more than 20 seconds will not
        complete their shutdown operations.
Additionally, because the shutdown order is not deterministic,
        services that might depend on other services to shut down first
        (called shutdown dependencies) have no way to report this to the SCM
        and might never have the chance to clean up either.
To address these needs, Windows implements preshutdown
        notifications and shutdown ordering to combat the problems caused by
        these two scenarios. Preshutdown notifications are sent, using the
        same mechanism as shutdown notifications, to services that have
        requested preshutdown notification via the
        SetServiceStatus API, and the SCM will wait for
        them to be acknowledged.
The idea behind these notifications is to flag services that
        might take a long time to clean up (such as database server services)
        and give them more time to complete their work. The SCM will send a
        progress query request and wait three minutes for a service to respond
        to this notification. If the service does not respond within this
        time, it will be killed during the shutdown procedure; otherwise, it
        can keep running as long as it needs, as long as it continues to
        respond to the SCM.
Services that participate in the preshutdown can also specify a
        shutdown order with respect to other preshutdown services. Services
        that depend on other services to shut down first (for example, the
        Group Policy service needs to wait for Windows Update to finish) can
        specify their shutdown dependencies in the
        HKLM\SYSTEM\CurrentControlSet\Control\PreshutdownOrder registry
        value.

Shared Service Processes



Running every service in its own process instead of having
        services share a process whenever possible wastes system resources.
        However, sharing processes means that if any of the services in the
        process has a bug that causes the process to exit, all the services in
        that process terminate.
Of the Windows built-in services, some run in their own process
        and some share a process with other services. For example, the LSASS
        process contains security-related services—such as the Security
        Accounts Manager (SamSs) service, the Net Logon (Netlogon) service,
        and the Crypto Next Generation (CNG) Key Isolation (KeyIso)
        service.
There is also a generic process named Service Host
        (SvcHost–%SystemRoot%\System32\Svchost.exe) to contain multiple
        services. Multiple instances of SvcHost can be running in different
        processes. Services that run in SvcHost processes include Telephony
        (TapiSrv), Remote Procedure Call (RpcSs), and Remote Access Connection
        Manager (RasMan). Windows implements services that run in SvcHost as
        DLLs and includes an ImagePath definition of the form
        “%SystemRoot%\System32\svchost.exe –k netsvcs” in the service’s
        registry key. The service’s registry key must also have a registry
        value named ServiceDll under a Parameters subkey that points to the
        service’s DLL file.
All services that share a common SvcHost process specify the
        same parameter (“–k netsvcs” in the example in the preceding
        paragraph) so that they have a single entry in the SCM’s image
        database. When the SCM encounters the first service that has a SvcHost
        ImagePath with a particular parameter during service startup, it
        creates a new image database entry and launches a SvcHost process with
        the parameter. The new SvcHost process takes the parameter and looks
        for a value having the same name as the parameter under
        HKLM\SOFTWARE\Microsoft\Windows NT\CurrentVersion\Svchost. SvcHost
        reads the contents of the value, interpreting it as a list of service
        names, and notifies the SCM that it’s hosting those services when
        SvcHost registers with the SCM.
When the SCM encounters a SvcHost service (by checking the
        service type value) during service startup with an ImagePath matching
        an entry it already has in the image database, it doesn’t launch a
        second process but instead just sends a start command for the service
        to the SvcHost it already started for that ImagePath value. The
        existing SvcHost process reads the ServiceDll parameter in the
        service’s registry key and loads the DLL into its process to start the
        service.
Table 4-11 lists all the default
        service groupings on Windows and some of the services that are
        registered for each of them.
Table 4-11. Major Service Groupings
	Service Group
	Services
	Notes

	LocalService
	Network Store Interface, Windows
                Diagnostic Host, Windows Time, COM+ Event System, HTTP
                Auto-Proxy Service, Software Protection Platform UI
                Notification, Thread Order Service, LLDT Discovery, SSL, FDP
                Host, WebClient
	Services that run in the local
                service account and make use of the network on various ports
                or have no network usage at all (and hence no
                restrictions).

	LocalServiceAndNoImpersonation
	UPnP and SSDP, Smart Card, TPM, Font
                Cache, Function Discovery, AppID, qWAVE, Windows Connect Now,
                Media Center Extender, Adaptive Brightness
	Services that run in the local
                service account and make use of the network on a fixed set of
                ports. Services run with a write-restricted
                token.

	LocalServiceNetworkRestricted
	DHCP, Event Logger, Windows Audio,
                NetBIOS, Security Center, Parental Controls, HomeGroup
                Provider
	Services that run in the local
                service account and make use of the network on a fixed set of
                ports.

	LocalServiceNoNetwork
	Diagnostic Policy Engine, Base
                Filtering Engine, Performance Logging and Alerts, Windows
                Firewall, WWAN AutoConfig
	Services that run in the local
                service account but make no use of the network at all.
                Services run with a write-restricted token.

	LocalSystemNetworkRestricted
	DWM, WDI System Host, Network
                Connections, Distributed Link Tracking, Windows Audio
                Endpoint, Wired/WLAN AutoConfig, Pnp-X, HID Access, User-Mode
                Driver Framework Service, Superfetch, Portable Device
                Enumerator, HomeGroup Listener, Tablet Input, Program
                Compatibility, Offline Files
	Services that run in the local
                system account and make use of the network on a fixed set of
                ports.

	NetworkService
	Cryptographic Services, DHCP Client,
                Terminal Services, WorkStation, Network Access Protection,
                NLA, DNS Client, Telephony, Windows Event Collector,
                WinRM
	Services that run in the network
                service account and make use of the network on various ports
                (or have no enforced network restrictions).

	NetworkServiceAndNoImpersonation
	KTM for DTC
	Services that run in the network
                service account and make use of the network on a fixed set of
                ports. Services run with a write-restricted
                token.

	NetworkServiceNetworkRestricted
	IPSec Policy Agent
	Services that run in the network
                service account and make use of the network on a fixed set of
                ports.




EXPERIMENT: Viewing Services Running Inside Processes
The Process Explorer utility shows detailed information about
          the services running within processes. Run Process Explorer, and
          view the Services tab in the Process Properties dialog box for the
          following processes: Services.exe, Lsass.exe, and Svchost.exe.
          Several instances of SvcHost will be running on your system, and you
          can see the account in which each is running by adding the Username
          column to the Process Explorer display or by looking at the Username
          field on the Image tab of a process’ Process Properties dialog box.
          The following screen shows the list of services running within a
          SvcHost executing in the local service account:
[image: image with no caption]

The information displayed includes the service’s name,
          display name, and description, if it has one, which Process Explorer
          shows beneath the service list when you select a service.
          Additionally, the path of the DLL containing the service is shown.
          This information is useful for mapping thread start addresses (shown
          on the Threads tab) to their respective services, which can help in
          cases of service-related problems such as troubleshooting high CPU
          usage.
You can also use the tlist.exe tool from the Debugging Tools
          for Windows or Tasklist, which ships with Windows, to view the list
          of services running within processes from a command prompt. The
          syntax to see services with Tlist is:
tlist /s
The syntax for tasklist is:
tasklist /svc
Note that these utilities do not show service display names or
          descriptions, only service names.


Service Tags



One of the disadvantages of using service-hosting processes is
        that accounting for CPU time and usage, as well as for the usage of
        resources, by a specific service is much harder because each service
        is sharing the memory address space, handle table, and per-process CPU
        accounting numbers with the other services that are part of the same
        service group. Although there is always a thread inside the
        service-hosting process that belongs to a certain service, this
        association might not always be easy to make. For example, the service
        might be using worker threads to perform its operation, or perhaps the
        start address and stack of the thread do not reveal the service’s DLL
        name, making it hard to figure out what kind of work a thread might
        exactly be doing and to which service it might belong.
Windows implements a service attribute called the service tag,
        which the SCM generates by calling
        ScGenerateServiceTag when a service is created or
        when the service database is generated during system boot. The
        attribute is simply an index identifying the service. The service tag
        is stored in the SubProcessTag field of the thread environment block
        (TEB) of each thread (see Chapter 5, for more
        information on the TEB) and is propagated across all threads that a
        main service thread creates (except threads created indirectly by
        thread-pool APIs).
Although the service tag is kept internal to the SCM, several
        Windows utilities, like Netstat.exe (a utility you can use for
        displaying which programs have opened which ports on the network), use
        undocumented APIs to query service tags and map them to service names.
        Because the TCP/IP stack saves the service tag of the threads that
        create TCP/IP end points, when you run Netstat with the –b parameter,
        Netstat can report the service name for end points created by
        services. Another tool you can use to look at service tags is
        ScTagQuery from Winsider Seminars & Solutions Inc.
        (www.winsiderss.com/tools/sctagquery/sctagquery.htm).
        It can query the SCM for the mappings of every service tag and display
        them either systemwide or per-process. It can also show you to which
        services all the threads inside a service-hosting process belong.
        (This is conditional on those threads having a proper service tag associated with them.) This
        way, if you have a runaway service consuming lots of CPU time, you can
        identify the culprit service in case the thread start address or stack
        does not have an obvious service DLL associated with it.


Unified Background Process Manager



Various Windows components have traditionally been in charge of
      managing hosted or background tasks as the operating system has
      increased in complexity in features, from the Service Control Manager
      described earlier to the Task Scheduler, the DCOM Server Launcher, and
      the WMI Provider—all of which are also responsible for the execution of
      out-of-process, hosted code. Today, Windows implements a Unified
      Background Process Manager (UBPM), which handles (at least, for now) two
      of these mechanisms—the SCM and Task Scheduler—providing the ability for
      these components to access UBPM functionality.
UBPM is implemented in Services.exe, in the same location as the
      SCM, but as a separate library providing its own interface over RPC
      (similarly to how the Plug and Play Manager also runs in Services.exe
      but is a separate component). It provides access to that interface
      through a public export DLL, Ubpm.dll, which is exposed to third-party
      service developers through new Trigger APIs that have been added to the
      SCM. The SCM then loads a custom SCM Extension DLL (Scext.dll), which
      calls into Ubpm.dll. This layer of indirection is needed for MinWin
      support, where Scext.dll is not loaded and the SCM provides only minimal
      functionality. Figure 4-17 describes
      this architecture.
[image: Overall UBPM architecture]

Figure 4-17. Overall UBPM architecture

Initialization



UBPM is initialized by the SCM when its UbpmInitialize
        export is called by ScExtInitializeTerminateUbpm
        in the SCM Extension DLL. As such, it is implemented as a DLL running
        within the context of the SCM, not as its own separate process.
UBPM first begins initialization by setting up its internal
        utility library. By leveraging many of the improvements in newer
        versions of Windows, UBPM uses a thread pool to process the many
        incoming events we will later see, which allows it to scale from
        having a single worker thread to having up to 1000 (based on a maximum
        processing of 10,000 consumers).
Next, UBPM initializes its internal tracing support, which can
        be configured in the HKLM\Software\Microsoft\Windows
        NT\CurrentVersion\Tracing\UBPM\Regular key using the Flags value. This
        is useful for debugging and monitoring the behavior of the UBPM using
        the WPP tracing mechanism described in the Windows Driver Kit.
Following that, the event manager is set up, which will be used
        by later components of UBPM to report internal event states. The event
        manager registers a TASKSCHED GUID on which ETW events can be
        consumed, and it logs its state to a TaskScheduler.log file.
The next step, critical to UBPM, is to initialize its own
        real-time ETW consumer, which is the central mechanism used by UBPM to
        perform its job, as almost all the data it receives comes over as ETW
        events. UBPM starts an ETW real-time session in secure mode, meaning
        that it will be the only process capable of receiving its events, and
        it names its session UBPM. It also enables the first built-in provider
        (owned by the kernel) in order to receive notifications related to
        time changes.
It then associates an event callback—UbpmpEventCallback—with
        incoming events and creates a consumer thread, UbpmpConsumeEvents,
        that waits for the SCM’s event used to signify that auto-start events
        have completed (which was named previously). Once this happens, the
        consumer thread calls ProcessTrace, which calls into ETW and blocks
        the thread until the ETW trace is completed (normally, only once UBPM
        exists). The event callback, on the other hand, consumes each ETW
        event as it arrives and processes it according to the algorithm we’ll
        see in the next section.
ETW automatically replays any events that were missed before
        ProcessTrace was called, which means that kernel events during the
        boot will all be incoming at once and processed appropriately. UBPM
        also waits on the SCM’s auto-start event, which makes sure that when
        these events do come in, there will at least have been a couple of
        services that registered for them; otherwise, starting the trace too
        early will result in events with no registered consumers, which will
        cause them to be lost.
Finally, UBPM sets up a local RPC interface to TaskHost—the
        second component of UBPM, which we’ll describe later—and it also sets
        up its own local RPC interface, which exposes the APIs that allows
        services to use UBPM functionality (such as registering trigger
        providers, generating triggers and notifications, and so forth). These
        APIs are implemented in the Ubpm.dll library and use RPC to
        communicate to the RPC interface in the UBPM code of
        Services.exe.
When UBPM exits, the opposite actions in the reverse order are
        performed to reset the system to its previous state.

UBPM API



UBPM enables the following mechanisms to be used by
        having services use the UBPM API:
	Registering and unregistering a trigger provider, as well as
            opening and closing a handle to one

	Generating a notification or a trigger

	Setting and querying the configuration of a trigger
            provider

	Sending a control command to a trigger provider




Provider Registration



Providers are registered through the SCM Extension DLL, which
        uses the ScExtpRegisterProvider function that is
        used by ScExtGenerateNotification. This opens a
        handle to UBPM and calls the
        UbpmRegisterTriggerProvider API. When a service
        registers a provider, it must define a unique name and GUID for the
        provider, as well as the necessary flags to define the provider (for
        example, by using the ETW provider flag). Additionally, providers can
        also have a friendly name as well as a description. Once registration
        is completed, the provider is inserted into UBPM’s provider list, the
        total count of providers is incremented, and, if this is an ETW
        provider that’s not being started with the disabled flag, the
        provider’s GUID is enabled in the real-time ETW trace that UBPM
        activated upon initialization. A provider block is created containing
        all the provider’s information that was captured from the
        registration.
Now that a provider is registered, the open and close API can be
        used to increment the reference count to the provider and return its
        provider block. Furthermore, if the provider was not registered in a
        disabled state, and this is the first reference to it, its GUID is
        enabled in the real-time ETW trace.
Similarly, unregistering a provider will disable its GUID and
        unlink it from the provider list, and as soon as all references are
        closed, the provider block will be deleted.
EXPERIMENT: Viewing UBPM Trigger Providers
You can use the Performance Monitor to see UBPM actively
          monitoring all the ETW providers that have registered with it.
          Follow these instructions to do so:
	Open the Performance Monitor by clicking on the Start
              button, and then choosing Run.

	Type perfmon, and click OK.

	When Performance Monitor launches, expand Data Collector
              Sets on the left sidebar by clicking the arrow.

	Choose Event Trace Sessions from the list, and then double
              click on the UBPM entry.



The following screen shot displays the UBPM trigger
          providers on the author’s machine. You should see a similar
          display.
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As you can see from the large list, dozens of providers are
          registered, each of them capable of generating individual events.
          For example, the BfeTriggerProvider handles Firewall events. In a
          later experiment, you will see a consumer of such an event.


Consumer Registration



Service consumer registration is initially exposed by the
        ScExtRegisterTriggerConsumer callback that the
        SCM Extension DLL provides. Its job is to receive all the
        SCM-formatted trigger information (which service developers provide
        according to the MSDN API documentation, “Service Trigger Events”
        available on MSDN) and convert that information into the raw data
        structures that UBPM internally uses. Once all the processing is
        finished, the SCM Extension DLL packages the trigger and associates it
        with two actions: UBPM Start Service and UBPM Stop Service.
The Scheduled Tasks service, which also leverages UBPM, provides
        similar functionality through an internal UBPM Singleton Class, which
        calls into Ubpm.dll. It allows its internal RegisterTask API to also
        register for trigger consumption, and it does similar processing of
        its input data, with the difference being that it uses the UBPM Start
        EXE action. Next, to actually perform the registration, both open a
        handle to UBPM, check if the consumer is already registered (changes
        to existing consumers are not allowed), and finally register the
        provider through the UbpmRegisterTriggerConsumer
        API.
Trigger consumer registration is done by
        UbpmTriggerProviderRegister, which validates the
        request, adds the provider’s GUID into the list of providers, and
        toggles it to enable the ETW trace to now receive events about this
        provider as well.
EXPERIMENT: Viewing Which Services React to Which
          Triggers
Certain Windows services are already preconfigured to consume
          the appropriate triggers to prevent them from staying resident even
          when they’re not needed, such as the Windows Time Service, the
          Tablet Input Service, and the Computer Browser service. The sc
          command lets you query information about a service’s triggers with
          the qtriggerinfo option.
	Open a command prompt.

	Type the following to see the triggers for the Windows
              Time Service:
sc qtriggerinfo w32time

[SC] QueryServiceConfig2 SUCCESS
SERVICE_NAME: w32time

        START SERVICE
          DOMAIN JOINED STATUS         : 1ce20aba-9851-4421-9430-1ddeb766e809
[DOMAIN JOINED]
        STOP SERVICE
          DOMAIN JOINED STATUS         : ddaf516e-58c2-4866-9574-c3b615d42ea1
[NOT DOMAIN JOINED]

	Now look at the Tablet Input Service:
sc qtriggerinfo tabletinputservice
[SC] QueryServiceConfig2 SUCCESS
SERVICE_NAME: tabletinputservice

        START SERVICE
          DEVICE INTERFACE ARRIVAL     : 4d1e55b2-f16f-11cf-88cb-001111000030
[INTERFACE CLASS GUID]
            DATA                       : HID_DEVICE_UP:000D_U:0001
            DATA                       : HID_DEVICE_UP:000D_U:0002
            DATA                       : HID_DEVICE_UP:000D_U:0003
            DATA                       : HID_DEVICE_UP:000D_U:0004

	Finally, here is the Computer Browser Service:
sc qtriggerinfo browser
[SC] QueryServiceConfig2 SUCCESS

SERVICE_NAME: browser

        START SERVICE
          FIREWALL PORT EVENT          : b7569e07-8421-4ee0-ad10-86915afdad09
[PORT OPEN]
            DATA                       : 139;TCP;System;
            DATA                       : 137;UDP;System;
            DATA                       : 138;UDP;System;
        STOP SERVICE
          FIREWALL PORT EVENT          : a144ed38-8e12-4de4-9d96-e64740b1a524
[PORT CLOSE]
            DATA                       : 139;TCP;System;
            DATA                       : 137;UDP;System;
            DATA                       : 138;UDP;System;



In these three cases, note how the Windows Time
          Service is waiting for domain join/exit in order to decide whether
          or not it should run, while the Tablet Input Service is waiting for
          a device with the HID Class ID matching Tablet Device. Finally, the
          Computer Browser Service will run only if the firewall policy allows
          access on ports 137, 138, and 139, which are SMB network ports that
          the browser needs.


Task Host



TaskHost receives commands from UBPM living in the SCM. At
        initialization time, it opens the local RPC interface that was created
        by UBPM during its initialization and loops forever, waiting for
        commands to come through the channel. Four commands are currently
        supported, which are sent over the
        TaskHostSendResponseReceiveCommand RPC
        API:
	Stopping the host

	Starting a task

	Stopping a task

	Terminating a task



Additionally, hosted tasks are supplied with a
        TaskHostReportTaskStatus RPC API, which enables
        them to notify UBPM of their current execution state whenever they
        call UbpmReportTaskStatus.
All task-based commands are actually internally implemented by a
        generic COM Task library, and they essentially result in the creation
        and destruction of COM components.

Service Control Programs



Service control programs are standard Windows applications that
        use SCM service management functions, including
        CreateService, OpenService,
        StartService,
        ControlService,
        QueryServiceStatus, and
        DeleteService. To use the SCM functions, an SCP
        must first open a communications channel to the SCM by calling the
        OpenSCManager function. At the time of the open
        call, the SCP must specify what types of actions it wants to perform.
        For example, if an SCP simply wants to enumerate and display the
        services present in the SCM’s database, it requests enumerate-service
        access in its call to OpenSCManager. During its
        initialization, the SCM creates an internal object that represents the
        SCM database and uses the Windows security functions to
        protect the object with a security descriptor that specifies what
        accounts can open the object with what access permissions. For
        example, the security descriptor indicates that the Authenticated
        Users group can open the SCM object with enumerate-service access.
        However, only administrators can open the object with the access
        required to create or delete a service.
As it does for the SCM database, the SCM implements security for
        services themselves. When an SCP creates a service by using the
        CreateService function, it specifies a security
        descriptor that the SCM associates internally with the service’s entry
        in the service database. The SCM stores the security descriptor in the
        service’s registry key as the Security value, and it reads that value
        when it scans the registry’s Services key during initialization so
        that the security settings persist across reboots. In the same way
        that an SCP must specify what types of access it wants to the SCM
        database in its call to OpenSCManager, an SCP
        must tell the SCM what access it wants to a service in a call to
        OpenService. Accesses that an SCP can request
        include the ability to query a service’s status and to configure,
        stop, and start a service.
The SCP you’re probably most familiar with is the Services MMC
        snap-in that’s included in Windows, which resides in
        %SystemRoot%\System32\Filemgmt.dll. Windows also includes Sc.exe
        (Service Controller tool), a command-line service control program that
        we’ve mentioned multiple times.
SCPs sometimes layer service policy on top of what the SCM
        implements. A good example is the timeout that the Services MMC
        snap-in implements when a service is started manually. The snap-in
        presents a progress bar that represents the progress of a service’s
        startup. Services indirectly interact with SCPs by setting their
        configuration status to reflect their progress as they respond to SCM
        commands such as the start command. SCPs query the status with the
        QueryServiceStatus function. They can tell when a
        service actively updates the status versus when a service appears to
        be hung, and the SCM can take appropriate actions in notifying a user
        about what the service is doing.


Windows Management Instrumentation



Windows Management Instrumentation (WMI) is an implementation of
      Web-Based Enterprise Management (WBEM), a standard that the Distributed
      Management Task Force (DMTF—an industry consortium) defines. The WBEM
      standard encompasses the design of an extensible enterprise
      data-collection and data-management facility that has the flexibility
      and extensibility required to manage local and remote systems that
      comprise arbitrary components.
WMI Architecture



WMI consists of four main components, as shown in Figure 4-18: management applications, WMI
        infrastructure, providers, and managed objects. Management
        applications are Windows applications that access and display or
        process data about managed objects. A simple example of a management
        application is a performance tool replacement that relies on WMI
        rather than the Performance API to obtain performance information. A
        more complex example is an enterprise-management tool that lets administrators perform automated inventories of the
        software and hardware configuration of every computer in their
        enterprise.
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Figure 4-18. WMI architecture

Developers typically must target management applications to
        collect data from and manage specific objects. An object might
        represent one component, such as a network adapter device, or a
        collection of components, such as a computer. (The computer object
        might contain the network adapter object.) Providers need to define
        and export the representation of the objects that management
        applications are interested in. For example, the vendor of a network
        adapter might want to add adapter-specific properties to the network
        adapter WMI support that Windows includes, querying and setting the
        adapter’s state and behavior as the management applications direct. In
        some cases (for example, for device drivers), Microsoft supplies a
        provider that has its own API to help developers leverage the
        provider’s implementation for their own managed objects with minimal
        coding effort.
The WMI infrastructure, the heart of which is the Common
        Information Model (CIM) Object Manager (CIMOM), is the glue that binds
        management applications and providers. (CIM is described later in this
        chapter.) The infrastructure also serves as the object-class store
        and, in many cases, as the storage manager for persistent object
        properties. WMI implements the store, or repository, as an on-disk
        database named the CIMOM Object Repository. As part of its
        infrastructure, WMI supports several APIs through which management
        applications access object data and providers supply data and class
        definitions.
Windows programs and scripts (such as Windows
        PowerShell) use the WMI COM API, the primary management API, to
        directly interact with WMI. Other APIs layer on top of the COM API and
        include an Open Database Connectivity (ODBC) adapter for the Microsoft
        Access database application. A database developer uses the WMI ODBC
        adapter to embed references to object data in the developer’s
        database. Then the developer can easily generate reports with database
        queries that contain WMI-based data. WMI ActiveX controls support
        another layered API. Web developers use the ActiveX controls to
        construct web-based interfaces to WMI data. Another management API is
        the WMI scripting API, for use in script-based applications and
        Microsoft Visual Basic programs. WMI scripting support exists for all
        Microsoft programming language technologies.
As they are for management applications, WMI COM interfaces
        constitute the primary API for providers. However, unlike management
        applications, which are COM clients, providers are COM or Distributed
        COM (DCOM) servers (that is, the providers implement COM objects that
        WMI interacts with). Possible embodiments of a WMI provider include
        DLLs that load into WMI’s manager process or stand-alone Windows
        applications or Windows services. Microsoft includes a number of
        built-in providers that present data from well-known sources, such as
        the Performance API, the registry, the Event Manager, Active
        Directory, SNMP, and modern device drivers. The WMI SDK lets
        developers develop third-party WMI providers.

Providers



At the core of WBEM is the DMTF-designed CIM specification. The
        CIM specifies how management systems represent, from a systems
        management perspective, anything from a computer to an application or
        device on a computer. Provider developers use the CIM to represent the
        components that make up the parts of an application for which the
        developers want to enable management. Developers use the Managed
        Object Format (MOF) language to implement a CIM representation.
In addition to defining classes that represent objects, a
        provider must interface WMI to the objects. WMI classifies providers
        according to the interface features the providers supply. Table 4-12 lists WMI provider
        classifications. Note that a provider can implement one or more
        features; therefore, a provider can be, for example, both a class and
        an event provider. To clarify the feature definitions in Table 4-12, let’s look at a provider that
        implements several of those features. The Event Log provider supports
        several objects, including an Event Log Computer, an Event Log Record,
        and an Event Log File. The Event Log is an Instance provider because
        it can define multiple instances for several of its classes. One class
        for which the Event Log provider defines multiple instances is the
        Event Log File class (Win32_NTEventlogFile); the Event Log provider
        defines an instance of this class for each of the system’s event logs
        (that is, System Event Log, Application Event Log, and Security Event
        Log).
Table 4-12. Provider Classifications
	Classification
	Description

	Class
	Can supply, modify, delete, and
                enumerate a provider-specific class. It can also support query
                processing. Active Directory is a rare example of a service
                that is a class provider.

	Instance
	Can supply, modify, delete, and
                enumerate instances of system and provider-specific classes.
                An instance represents a managed object. It can also support
                query processing.

	Property
	Can supply and modify individual
                object property values.

	Method
	Supplies methods for a
                provider-specific class.

	Event
	Generates event
                notifications.

	Event consumer
	Maps a physical consumer to a
                logical consumer to support event notification.




The Event Log provider defines the instance data and lets
        management applications enumerate the records. To let management
        applications use WMI to back up and restore the Event Log files, the
        Event Log provider implements backup and restore methods for Event Log
        File objects. Doing so makes the Event Log provider a Method provider.
        Finally, a management application can register to receive notification
        whenever a new record writes to one of the Event Logs. Thus, the Event
        Log provider serves as an Event provider when it uses WMI event
        notification to tell WMI that Event Log records have arrived.

The Common Information Model and the Managed Object Format
        Language



The CIM follows in the steps of object-oriented languages such
        as C++ and C#, in which a modeler designs representations as classes.
        Working with classes lets developers use the powerful modeling
        techniques of inheritance and composition. Subclasses can inherit the
        attributes of a parent class, and they can add their own
        characteristics and override the characteristics they inherit from the
        parent class. A class that inherits properties from another class
        derives from that class. Classes also compose: a developer can build a
        class that includes other classes.
The DMTF provides multiple classes as part of the WBEM standard.
        These classes are CIM’s basic language and represent objects that
        apply to all areas of management. The classes are part of the CIM core
        model. An example of a core class is CIM_ManagedSystemElement. This
        class contains a few basic properties that identify physical
        components such as hardware devices and logical components such as
        processes and files. The properties include a caption, description,
        installation date, and status. Thus, the CIM_LogicalElement and
        CIM_PhysicalElement classes inherit the attributes of the
        CIM_ManagedSystemElement class. These two classes are also part of the
        CIM core model. The WBEM standard calls these classes abstract classes
        because they exist solely as classes that other classes inherit (that
        is, no object instances of an abstract class exist). You can therefore
        think of abstract classes as templates that define properties for use
        in other classes.
A second category of classes represents objects that are
        specific to management areas but independent of a particular
        implementation. These classes constitute the common model and are
        considered an extension of the core model. An example of a
        common-model class is the CIM_FileSystem class, which inherits the
        attributes of CIM_LogicalElement. Because virtually every operating
        system—including Windows, Linux, and other varieties of UNIX—rely on
        file-system-based structured storage, the CIM_FileSystem class is an
        appropriate constituent of the common model.
The final class category, the extended model, comprises
        technology-specific additions to the common model. Windows defines a
        large set of these classes to represent objects specific to the
        Windows environment. Because all operating systems store
        data in files, the CIM common model includes the CIM_LogicalFile
        class. The CIM_DataFile class inherits the CIM_LogicalFile class, and
        Windows adds the Win32_PageFile and Win32_ShortcutFile file classes
        for those Windows file types.
The Event Log provider makes extensive use of inheritance. Figure 4-19 shows a view of the WMI CIM Studio, a
        class browser that ships with the WMI Administrative Tools that you
        can obtain from the Microsoft download center at the Microsoft
        website. You can see where the Event Log provider relies on
        inheritance in the provider’s Win32_NTEventlogFile class, which
        derives from CIM_DataFile. Event Log files are data files that have
        additional Event Log–specific attributes such as a log file name
        (LogfileName) and a count of the number of records that the file
        contains (NumberOfRecords). The tree that the class browser shows
        reveals that Win32_NTEventlogFile is based on several levels of
        inheritance, in which CIM_DataFile derives from CIM_LogicalFile, which
        derives from CIM_LogicalElement, and CIM_LogicalElement derives from
        CIM_ManagedSystemElement.
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Figure 4-19. WMI CIM Studio

As stated earlier, WMI provider developers write their
        classes in the MOF language. The following output shows the definition
        of the Event Log provider’s Win32_NTEventlogFile, which is selected in
        Figure 4-19. Notice the correlation between the
        properties that the right panel in Figure 4-19
        lists and those properties’ definitions in the MOF file that follows.
        CIM Studio uses yellow arrows to tag the properties that a class
        inherits. Thus, you don’t see those properties specified in
        Win32_NTEventlogFile’s definition.
dynamic: ToInstance, provider("MS_NT_EVENTLOG_PROVIDER"), Locale(1033), UUID("{8502C57B-5FBB-11D2-AAC1-006008C78BC7}")]
class Win32_NTEventlogFile : CIM_DataFile
{
[read] string LogfileName;
[read, write] uint32 MaxFileSize;
[read] uint32 NumberOfRecords;
[read, volatile, ValueMap{"0", "1..365", "4294967295"}] string OverWritePolicy;
[read, write, Units("Days"), Range("0-365 | 4294967295")] uint32 OverwriteOutDated;
[read] string Sources[];
[implemented, Privileges{"SeSecurityPrivilege", "SeBackupPrivilege"}] uint32 ClearEventlog([in]
string ArchiveFileName);
[implemented, Privileges{"SeSecurityPrivilege", "SeBackupPrivilege"}] uint32 BackupEventlog([in]
string ArchiveFileName);
};
One term worth reviewing is dynamic, which is a descriptive
        designator for the Win32_NTEventlogFile class that the MOF file in the
        preceding output shows. “Dynamic” means that the WMI infrastructure
        asks the WMI provider for the values of properties associated with an
        object of that class whenever a management application queries the
        object’s properties. A static class is one in the WMI repository; the
        WMI infrastructure refers to the repository to obtain the values
        instead of asking a provider for the values. Because updating the
        repository is a relatively expensive operation, dynamic providers are
        more efficient for objects that have properties that change
        frequently.
EXPERIMENT: Viewing the MOF Definitions of WMI
          Classes
You can view the MOF definition for any WMI class by using the
          WbemTest tool that comes with Windows. In this experiment, we’ll
          look at the MOF definition for the Win32_NTEventLogFile
          class:
	Run Wbemtest from the Start menu’s Run dialog box.

	Click the Connect button, change the Namespace to
              root\cimv2, and connect.

	Click the Enum Classes button, select the Recursive option
              button, and then click OK.

	Find Win32_NTEventLogFile in the list of classes, and then
              double-click it to see its class properties.

	Click the Show MOF button to open a window that displays
              the MOF text.




After constructing classes in MOF, WMI developers can
        supply the class definitions to WMI in several ways. WDM driver
        developers compile a MOF file into a binary MOF (BMF) file—a more
        compact binary representation than a MOF file—and can choose to
        dynamically give the BMF files to the WDM infrastructure or to
        statically include it in their binary. Another way is for the provider
        to compile the MOF and use WMI COM APIs to give the definitions to the
        WMI infrastructure. Finally, a provider can use the MOF Compiler
        (Mofcomp.exe) tool to give the WMI infrastructure a classes-compiled
        representation directly.
The WMI Namespace



Classes define the properties of objects, and objects are
          class instances on a system. WMI uses a namespace that contains
          several subnamespaces that WMI arranges hierarchically to organize
          objects. A management application must connect to a namespace before
          the application can access objects within the namespace.
WMI names the namespace root directory root. All WMI
          installations have four predefined namespaces that reside beneath
          root: CIMV2, Default, Security, and WMI. Some of these namespaces
          have other namespaces within them. For example, CIMV2 includes the
          Applications and ms_409 namespaces as subnamespaces. Providers
          sometimes define their own namespaces; you can see the WMI namespace
          (which the Windows device driver WMI provider defines) beneath root
          in Windows.
EXPERIMENT: Viewing WMI Namespaces
You can see what namespaces are defined on a system with WMI
            CIM Studio. WMI CIM Studio presents a connection dialog box when
            you run it that includes a namespace browsing button to the right
            of the namespace edit box. Opening the browser and selecting a
            namespace has WMI CIM Studio connect to that namespace. Windows
            defines over a dozen namespaces beneath root, some of which are
            visible here:
[image: image with no caption]


Unlike a file system namespace, which comprises a
          hierarchy of directories and files, a WMI namespace is only one
          level deep. Instead of using names as a file system does, WMI uses
          object properties that it defines as keys to identify the objects.
          Management applications specify class names with key names to locate
          specific objects within a namespace. Thus, each instance of a class
          must be uniquely identifiable by its key values. For example, the
          Event Log provider uses the Win32_NTLogEvent class to represent
          records in an Event Log. This class has two keys: Logfile, a string;
          and RecordNumber, an unsigned integer. A management application that
          queries WMI for instances of Event Log records obtains them from the
          provider key pairs that identify records. The application refers to
          a record using the syntax that you see in this sample object path
          name:
\\DARYL\root\CIMV2:Win32_NTLogEvent.Logfile="Application",
                                         RecordNumber="1"
The first component in the name (\\DARYL) identifies the
          computer on which the object is located, and the second component
          (\root\CIMV2) is the namespace in which the object resides. The
          class name follows the colon, and key names and their associated
          values follow the period. A comma separates the key values.
WMI provides interfaces that let applications enumerate all
          the objects in a particular class or to make queries that return
          instances of a class that match a query criterion.


Class Association



Many object types are related to one another in some way. For
        example, a computer object has a processor, software, an operating
        system, active processes, and so on. WMI lets providers construct an
        association class to represent a logical connection between two
        different classes. Association classes associate one class with
        another, so the classes have only two properties: a class name and the
        Ref modifier. The following output shows an association in which the
        Event Log provider’s MOF file associates the Win32_NTLogEvent class
        with the Win32_ComputerSystem class. Given an object, a management
        application can query associated objects. In this way, a provider
        defines a hierarchy of objects.
[dynamic: ToInstance, provider("MS_NT_EVENTLOG_PROVIDER"): ToInstance, EnumPrivileges{"Se
SecurityPrivilege"}:
ToSubClass, Locale(1033): ToInstance, UUID("{8502C57F-5FBB-11D2-AAC1-006008C78BC7}"):
ToInstance, Association: DisableOverride ToInstance ToSubClass]
class Win32_NTLogEventComputer
{
    [key, read: ToSubClass] Win32_ComputerSystem ref Computer;
    [key, read: ToSubClass] Win32_NTLogEvent ref Record;
};
Figure 4-20 shows the WMI
        Object Browser (another tool that the WMI Administrative Tools
        includes) displaying the contents of the CIMV2 namespace. Windows
        system components typically place their objects within the CIMV2
        namespace. The Object Browser first locates the Win32_ComputerSystem
        object instance ALEX-LAPTOP, which is the object that represents the
        computer. Then the Object Browser obtains the objects associated with
        Win32_ComputerSystem and displays them beneath ALEX-LAPTOP. The Object
        Browser user interface displays association objects with a
        double-arrow folder icon. The associated class type’s objects display
        beneath the folder.
You can see in the Object Browser that the Event Log provider’s
        association class Win32_NTLogEventComputer is beneath ALEX-LAPTOP and
        that numerous instances of the Win32_NTLogEvent class exist. Refer to
        the preceding output to verify that the MOF file defines the
        Win32_NTLogEventComputer class to associate the Win32_ComputerSystem
        class with the Win32_NTLogEvent class. Selecting an instance of
        Win32_NTLogEvent in the Object Browser reveals that class’ properties
        under the Properties tab in the right pane. Microsoft intended the
        Object Browser to help WMI developers examine their objects, but a
        management application would perform the same operations and display
        properties or collected information more intelligibly.
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Figure 4-20. WMI Object Browser

EXPERIMENT: Using WMI Scripts to Manage Systems
A powerful aspect of WMI is its support for scripting
          languages. Microsoft has generated hundreds of scripts that perform
          common administrative tasks for managing user accounts, files, the
          registry, processes, and hardware devices. The Microsoft TechNet
          Scripting Center website serves as the central location for
          Microsoft scripts. Using a script from the scripting center is as
          easy as copying its text from your Internet browser, storing it in a
          file with a .vbs extension, and running it with the command cscript
          script.vbs, where script is the name you gave the script. Cscript is
          the command-line interface to Windows Script Host (WSH).
Here’s a sample TechNet script that registers to receive
          events when Win32_Process object instances are created, which occurs
          whenever a process starts, and prints a line with the name of the
          process that the object represents:
strComputer = "."
Set objWMIService = GetObject("winmgmts:" _
    & "{impersonationLevel=impersonate}!\\" & strComputer & "\root\cimv2")
Set colMonitoredProcesses = objWMIService. _
    ExecNotificationQuery("select * from __instancecreationevent " _
        & " within 1 where TargetInstance isa 'Win32_Process'")
i = 0
Do While i = 0
    Set objLatestProcess = colMonitoredProcesses.NextEvent
    Wscript.Echo objLatestProcess.TargetInstance.Name
Loop
The line that invokes
          ExecNotificationQuery does so with a parameter
          that includes a “select” statement, which highlights WMI’s support
          for a read-only subset of the ANSI standard Structured Query
          Language (SQL), known as WQL, to provide a flexible way for WMI
          consumers to specify the information they want to extract from WMI
          providers. Running the sample script with Cscript and then starting
          Notepad results in the following output:
C:\>cscript monproc.vbs
Microsoft (R) Windows Script Host Version 5.7
Copyright (C) Microsoft Corporation. All rights reserved.

NOTEPAD.EXE


WMI Implementation



The WMI service runs in a shared Svchost process that executes
        in the local system account. It loads providers into the Wmiprvse.exe
        provider-hosting process, which launches as a child of the RPC service
        process. WMI executes Wmiprvse in the local system, local service, or
        network service account, depending on the value of the HostingModel
        property of the WMI Win32Provider object instance that represents the
        provider implementation. A Wmiprvse process exits after the provider
        is removed from the cache, one minute following the last provider
        request it receives.
EXPERIMENT: Viewing Wmiprvse Creation
You can see Wmiprvse being created by running Process
          Explorer and executing Wmic. A Wmiprvse process will appear beneath
          the Svchost process that hosts the RPC service. If Process Explorer
          job highlighting is enabled, it will appear with the job highlight
          color because, to prevent a runaway provider from consuming all
          virtual memory resources on a system, Wmiprvse executes in a job
          object that limits the number of child processes it can create and
          the amount of virtual memory each process and all the processes of
          the job can allocate. (See Chapter 5 for more
          information on job objects.)
[image: image with no caption]


Most WMI components reside by default in %SystemRoot%\System32
        and %SystemRoot%\System32\Wbem, including Windows MOF files, built-in
        provider DLLs, and management application WMI DLLs. Look in the
        %SystemRoot%\System32\Wbem directory, and you’ll find Ntevt.mof, the
        Event Log provider MOF file. You’ll also find Ntevt.dll, the Event Log
        provider’s DLL, which the WMI service uses.
Directories beneath %SystemRoot%\System32\Wbem store the
        repository, log files, and third-party MOF files. WMI implements the
        repository—named the CIMOM object repository—using a proprietary
        version of the Microsoft JET database engine. The database file, by
        default, resides in %SystemRoot%\System32\Wbem\Repository\.
WMI honors numerous registry settings that the service’s
        HKLM\SOFTWARE\Microsoft\WBEM\CIMOM registry key stores, such as
        thresholds and maximum values for certain parameters.
Device drivers use special interfaces to provide data to and
        accept commands—called the WMI System Control commands—from WMI. These
        interfaces are part of the WDM, which is explained in Chapter 8, “I/O
        System,” in Part 2. Because the interfaces are cross-platform, they
        fall under the \root \WMI namespace.
WMIC
Windows also includes Wmic.exe, a utility that allows
          you to interact with WMI from a WMI-aware command-line shell. All
          WMI objects and their properties, including their methods, are
          accessible through the shell, which makes WMIC an advanced systems
          management console.


WMI Security



WMI implements security at the namespace level. If a management
        application successfully connects to a namespace, the application can
        view and access the properties of all the objects in that namespace.
        An administrator can use the WMI Control application to control which
        users can access a namespace. Internally, this security model is
        implemented by using ACLs and Security Descriptors, part of the
        standard Windows security model that implements Access Checks. (See
        Chapter 6 for more information on access
        checks.)
To start the WMI Control application, from the Start menu,
        select Control Panel. From there, select System And Maintenance,
        Administrative Tools, Computer Management. Next, open the Services And
        Applications branch. Right-click WMI Control, and select Properties to
        launch the WMI Control Properties dialog box, which Figure 4-21 shows. To configure security for
        namespaces, click on the Security tab, select the namespace, and click
        Security. The other tabs in the WMI Control Properties dialog box let
        you modify the performance and backup settings that the registry
        stores.
[image: WMI security properties]

Figure 4-21. WMI security properties



Windows Diagnostic Infrastructure



The Windows Diagnostic Infrastructure (WDI) helps to
      detect, diagnose, and resolve common problem scenarios with minimal user
      intervention. Windows components implement triggers that cause WDI to
      launch scenario-specific troubleshooting modules to detect the
      occurrence of a problem scenario. A trigger can indicate that the system
      is approaching or has reached a problematic state. Once a
      troubleshooting module has identified a root cause, it can invoke a
      problem resolver to address it. A resolution might be as simple as
      changing a registry setting or interacting with the user to perform
      recovery steps or configuration changes. Ultimately, WDI’s main role is
      to provide a unified framework for Windows components to perform the
      tasks involved in automated problem detection, diagnosis, and
      resolution.
WDI Instrumentation



Windows or application components must add instrumentation to
        notify WDI when a problem scenario is occurring. Components can wait
        for the results of diagnosis synchronously or can continue operating
        and let diagnosis proceed asynchronously. WDI implements two different
        types of instrumentation APIs to support these models:
	Event-based diagnosis, which can be used for minimally
            invasive diagnostics instrumentation, can be added to a component
            without requiring any changes to its implementation. WDI supports
            two kinds of event-based diagnosis: simple scenarios and
            start-stop scenarios. In a simple scenario, a single point in code
            is responsible for the failure and an event is raised to trigger
            diagnostics. In a start-stop scenario, an entire code path is
            deemed risky and is instrumented for diagnosis. One event is
            raised at the beginning of the scenario to a real-time Event
            Tracing for Windows (ETW) session named the DiagLog. At the same
            time, a kernel facility called the Scenario Event Mapper (SEM)
            enables a collection of additional ETW traces to the WDI context
            loggers. A second event is raised to signal the end of the
            diagnostic scenario, at which time the SEM disables the verbose
            tracing. This “just-in-time tracing” mechanism keeps the
            performance overhead of detailed tracing low while maintaining
            enough contextual information for WDI to find the root cause
            without a reproduction of the problem, if a failure should
            occur.

	On-demand diagnosis, which allows applications to request
            diagnoses on their own, interact with the diagnostic, receive
            notifications when the diagnostic has completed, and modify its
            behavior based on the results of the diagnosis. On-demand
            instrumentation is particularly useful when diagnosis needs to be
            performed in a privileged security context. WDI facilitates the
            transfer of context across trust and process boundaries and also
            supports impersonation of the caller when necessary.




Diagnostic Policy Service



The Diagnostic Policy Service (DPS,
        %SystemRoot%\System32\Dps.dll) implements most of the WDI scenario
        back end. DPS is a multithreaded service (running in a Svchost) that
        accepts on-demand scenario requests and also monitors and watches for
        diagnostic events delivered via DiagLog. (See Figure 4-22, which shows the
        relationship of DPS to the other key WDI components.) In response to
        these requests, DPS launches the appropriate troubleshooting module,
        which encodes domain-specific knowledge, such as how to find the root
        cause of a network problem. In addition, DPS makes all the contextual
        information related to the scenario available to the modules in the
        form of captured traces. Troubleshooting modules perform an automated
        analysis of the data and can request DPS to launch a secondary module
        called a resolver, which is responsible for fixing the problem,
        silently if possible.
[image: Windows Diagnostic Infrastructure architecture]

Figure 4-22. Windows Diagnostic Infrastructure architecture

DPS controls and enforces Group Policy settings for diagnostic
        scenarios. You can use the Group Policy Editor
        (%SystemRoot%\System32\Gpedit.msc) to configure the settings for the
        diagnostics and automatic recovery options. You can access these
        settings from Computer Configuration, Administrative Templates,
        System, Troubleshooting And Diagnostics, shown in Figure 4-23.
[image: Configuring Diagnostic Policy Service settings]

Figure 4-23. Configuring Diagnostic Policy Service settings


Diagnostic Functionality



Windows implements several built-in diagnostic scenarios
        and utilities. Some examples include:
	Disk diagnostics, which include the presence of
            Self-Monitoring Analysis and Reporting Technology (SMART) code
            inside the storage class driver
            (%SystemRoot%\System32\Driver\Classspnp.sys) to monitor disk
            health. WDI notifies and guides the user through data backup after
            an impending disk failure is detected. In addition, Windows
            monitors application crashes caused by disk corruptions in
            critical system files. The diagnostic uses the Windows File
            Protection mechanism to automatically restore such damaged system
            files from a backup cache when possible. For more information on
            Windows storage management, see Chapter 9, “Storage Management,”
            in Part 2.

	Network diagnostics and troubleshooting extends WDI to
            handle different classes of networking-related problems, such as
            file sharing, Internet access, wireless networks, third-party
            firewalls, and general network connectivity. For more information
            on networking, see Chapter 7.

	Resource exhaustion prevention, which includes Windows
            memory leak diagnosis and Windows resource exhaustion detection
            and resolution. These diagnostics can detect when the commit limit
            is approaching its maximum and alert the user of the situation,
            including the top memory and resource consumers. The user can then
            choose to terminate these applications to attempt to free some
            resources. For more information on the commit limit and virtual
            memory, see Chapter 10, “Memory Management,” in Part 2.

	Windows memory diagnostic tool, which can be manually
            executed by the user from the Boot Manager on startup or
            automatically recommended by Windows Error Reporting (WER) after a
            system crash that was analyzed as potentially the result of faulty
            RAM. For more information on the boot process, see Chapter 13 in
            Part 2.

	Windows startup repair tool, which attempts to automatically
            fix certain classes of errors commonly responsible for users being
            unable to boot the system, such as incorrect BCD settings, damaged
            disk structures such as the MBR or boot sector, and faulty
            drivers. When system boot is unsuccessful, the Boot Manager
            automatically launches the startup repair tool, if it is
            installed, which also includes manual recovery options and access
            to a command prompt. For more information on the startup repair
            tool, see Chapter 13 in Part 2.

	Windows performance diagnostics, which include Windows boot
            performance diagnostics, Windows shutdown performance diagnostics,
            Windows standby/resume performance diagnostics, and Windows system
            responsiveness performance diagnostics. Based on certain timing
            thresholds and the internal behavioral expectations of these
            mechanisms, Windows can detect problems caused by slow performance
            and log them to the Event Log, which in turn is used by WDI to
            provide resolutions and walkthroughs for the user to attempt to
            fix the problem.

	Program Compatibility Assistant (PCA), which enables
            legacy applications to execute on newer Windows versions despite
            compatibility problems. PCA detects application installation
            failures caused by a mismatch during version checks and run-time
            failures caused by deprecated binaries and User Account Control
            (UAC) settings. PCA attempts to recover from these failures by
            applying the appropriate compatibility setting for the
            application, which takes effect during the next run. In addition,
            PCA maintains a database of programs with known compatibility
            issues and informs the users about potential problems at program
            startup.





Conclusion



So far, we’ve examined the overall structure of Windows, the core
      system mechanisms on which the structure is built, and core management
      mechanisms. With this foundation laid, we’re ready to explore the
      individual executive components in more detail, starting with processes
      and threads.

Chapter 5. Processes, Threads, and Jobs



In this chapter, we’ll explain the data structures and
    algorithms that deal with processes, threads, and jobs in the Microsoft
    Windows operating system. The first section focuses on the internal
    structures that make up a process. The second section outlines the steps
    involved in creating a process (and its initial thread). The internals of
    threads and thread scheduling are then described. The chapter concludes
    with a description of jobs.
Because processes and threads touch so many components in Windows, a
    number of terms and data structures (such as working sets, objects and
    handles, system memory heaps, and so on) are referred to in this chapter
    but are explained in detail elsewhere in the book. To fully understand
    this chapter, you need to be familiar with the terms and concepts
    explained in Chapter 1, and Chapter 2, such as the difference between a process
    and a thread, the Windows virtual address space layout, and the difference
    between user mode and kernel mode.

Process Internals



This section describes the key Windows process data structures
      maintained by various parts of the system and describes different ways
      and tools to examine this data.
Data Structures



Each Windows process is represented by an executive process
        (EPROCESS) structure. Besides containing many attributes relating to a
        process, an EPROCESS contains and points to a number of other related
        data structures. For example, each process has one or more threads,
        each represented by an executive thread (ETHREAD) structure. (Thread
        data structures are explained in the section Thread Internals later in this chapter.)
The EPROCESS and most of its related data structures exist in
        system address space. One exception is the process environment block
        (PEB), which exists in the process address space (because it contains
        information accessed by user-mode code). Additionally, some of the
        process data structures used in memory management, such as the working
        set list, are valid only within the context of the current process,
        because they are stored in process-specific system space. (See Chapter
        10, “Memory Management,” in Part 2 for more information on process
        address space.)
For each process that is executing a Win32 program, the Win32
        subsystem process (Csrss) maintains a parallel
        structure called the CSR_PROCESS. Finally, the kernel-mode part of the
        Win32 subsystem (Win32k.sys) maintains a per-process data
        structure, W32PROCESS. The W32PROCESS structure is created the first
        time a thread calls a Windows USER or GDI function that is implemented
        in kernel mode.
With the exception of the idle process, every EPROCESS structure
        is encapsulated as a process object by the executive object manager
        (described in Chapter 3). Because processes
        are not named objects, they are not visible in the WinObj tool. You
        can, however, see the Type object called “Process” in the \ObjectTypes
        directory. A handle to a process provides, through use of the
        process-related APIs, access to some of the data in the EPROCESS
        structure and also in some of its associated structures.
Figure 5-1 is a
        simplified diagram of the process and thread data structures. Each
        data structure shown in the figure is described in detail in this
        chapter.
[image: Data structures associated with processes and threads]

Figure 5-1. Data structures associated with processes and threads

Many other drivers and system components, by registering process
        creation notifications, can choose to create their own data structures
        to track information they store on a per-process basis. When one
        discusses the overhead of a process, the size of such data structures
        must often be taken into consideration, although it is nearly
        impossible to obtain an accurate number.
First let’s focus on the process object. (The thread object is
        covered in the section Thread Internals later in
        the chapter.) Figure 5-2 shows the key
        fields in an EPROCESS structure.
[image: Important fields of the executive process structure and its embedded kernel process structure]

Figure 5-2. Important fields of the executive process structure and its
          embedded kernel process structure

Similar to the way that the kernel’s APIs and components
        are divided into isolated and layered modules with their own naming
        conventions, the data structures for a process follow a similar
        design. As shown in Figure 5-2, the first
        member of the executive process structure is called
        Pcb, for process control
        block. It is a structure of type KPROCESS, for
        kernel process. Although routines in the
        executive store information in the EPROCESS, the dispatcher,
        scheduler, and interrupt/time accounting code—being part of the
        operating system kernel—use the KPROCESS instead. This allows a layer
        of abstraction to exist between the executive’s high-level
        functionality and its underlying low-level implementation of certain
        functions, and it helps prevent unwanted dependencies between the
        layers.
EXPERIMENT: Displaying the Format of an EPROCESS Structure
          and Its Fields
For a list of the fields that make up an EPROCESS structure
          and their offsets in hexadecimal, type dt
          nt!_eprocess in the kernel debugger. (See Chapter 1 for more information on the kernel
          debugger and how to perform kernel debugging on the local system.)
          The output (truncated for the sake of space) on a 32-bit system
          looks like this:
lkd> dt nt!_eprocess
   +0x000 Pcb              : _KPROCESS
   +0x080 ProcessLock      : _EX_PUSH_LOCK
   +0x088 CreateTime       : _LARGE_INTEGER
   +0x090 ExitTime         : _LARGE_INTEGER
   +0x098 RundownProtect   : _EX_RUNDOWN_REF
   +0x09c UniqueProcessId  : Ptr32 Void
...
   +0x0dc ObjectTable      : Ptr32 _HANDLE_TABLE
   +0x0e0 Token            : _EX_FAST_REF
...
   +0x108 Win32Process     : Ptr32 Void
   +0x10c Job              : Ptr32 _EJOB
...
   +0x2a8 TimerResolutionLink : _LIST_ENTRY
   +0x2b0 RequestedTimerResolution : Uint4B
   +0x2b4 ActiveThreadsHighWatermark : Uint4B
   +0x2b8 SmallestTimerResolution : Uint4B
   +0x2bc TimerResolutionStackRecord : Ptr32 _PO_DIAG_STACK_RECORD
The first member of this structure (Pcb)
          is an imbedded structure of type KPROCESS. This is where scheduling
          and time-accounting data is stored. You can display the format of
          the kernel process structure in the same way as the EPROCESS:
lkd> dt _kprocess
nt!_KPROCESS
   +0x000 Header           : _DISPATCHER_HEADER
   +0x010 ProfileListHead  : _LIST_ENTRY
   +0x018 DirectoryTableBase : Uint4B
   ...
   +0x074 StackCount       : _KSTACK_COUNT
   +0x078 ProcessListEntry : _LIST_ENTRY
   +0x080 CycleTime        : Uint8B
   +0x088 KernelTime       : Uint4B
   +0x08c UserTime         : Uint4B
   +0x090 VdmTrapcHandler  : Ptr32 Void
The dt command also enables you
          to view the specific contents of one field or multiple fields by
          typing their names following the structure name—such as dt nt!_eprocess UniqueProcessId, which
          displays the process ID field. In the case of a field that
          represents a structure—such as the Pcb field of
          EPROCESS, which contains the KPROCESS substructure—adding a period
          after the field name will cause the debugger to display the
          substructure.
For example, an alternative way to see the KPROCESS is to type
          dt nt!_eprocess Pcb. You can
          continue to recurse this way by adding more field names (within
          KPROCESS) and so on. Finally, to recurse through all the
          substructures, the –r switch of the
          dt command allows you to do just that. Adding a
          number after the switch controls the depth of recursion the command
          will follow.
The dt command used as shown earlier
          shows the format of the selected structure, not the contents of any
          particular instance of that structure type. To show an instance of
          an actual process, you can specify the address of an EPROCESS
          structure as an argument to the dt command. You
          can get the addresses of almost all of the EPROCESS structures in
          the system by using the !process 0 0 command
          (the exception being the system idle process). Because the KPROCESS
          is the first thing in the EPROCESS, the address of an EPROCESS will
          also work as the address of a KPROCESS with dt
          _kprocess.

Processes and threads are such integral parts of Windows that
        it’s impossible to talk about them without referring to many other
        parts of the system. To keep the length of this chapter manageable,
        however, those related subjects (such as memory management, security,
        objects, and handles) are covered elsewhere.
EXPERIMENT: Using the Kernel Debugger
          !process Command
The kernel debugger !process command
          displays a subset of the information in a process object and its
          associated structures. This output is arranged in two parts for each
          process. First you see the information about the process, as shown
          here. (When you don’t specify a process address or ID,
          !process lists information for the process
          owning the thread currently running on CPU 0, which will be WinDbg
          itself on a single-processor system.)
lkd> !process
PROCESS 85857160  SessionId: 1  Cid: 0bcc    Peb: 7ffd9000  ParentCid: 090c
    DirBase: b45b0820  ObjectTable: b94ffda0  HandleCount:  99.
    Image: windbg.exe
    VadRoot 85a1c8e8 Vads 97 Clone 0 Private 5919. Modified 153. Locked 1.
    DeviceMap 9d32ee50
    Token                             ebaa1938
    ...
 '    PageFaultCount                   37066
    MemoryPriority                    BACKGROUND
    BasePriority                      8
    CommitCharge                      6242
After the basic process output comes a list of the
          threads in the process. That output is explained in the EXPERIMENT: Using the Kernel Debugger
          !thread Command section later
          in the chapter.
Other commands that display process information include
          !handle, which dumps the process handle table
          (which is described in more detail in the section Object Handles and the Process Handle Table in Chapter 3). Process and thread security
          structures are described in Chapter 6.
Note that the output gives you the address of the PEB, which
          you can use with the !peb command shown in the
          next experiment to see the PEB of an arbitrary process. However,
          because the PEB is in the user-mode address space, it is valid only
          within the context of its own process. To look at the PEB of another
          process, you must first switch WinDbg to that process. You can do
          this with the .process command, followed by the EPROCESS
          pointer.

The PEB lives in the user-mode address space of the process it
        describes. It contains information needed by the image loader, the
        heap manager, and other Windows components that need to access it from
        user mode. The EPROCESS and KPROCESS structures are accessible only
        from kernel mode. The important fields of the PEB are illustrated in
        Figure 5-3 and are
        explained in more detail later in this chapter.
[image: Fields of the process environment block]

Figure 5-3. Fields of the process environment block

EXPERIMENT: Examining the PEB
You can dump the PEB structure with the
          !peb command in the kernel debugger, which
          displays the PEB of the process that owns the currently running
          thread on CPU 0. By using the information in the previous
          experiment, you can also use the PEB pointer as an argument to the
          command.
lkd> !peb 7ffd9000
PEB at 7ffd9000
    InheritedAddressSpace:    No
    ReadImageFileExecOptions: No
    BeingDebugged:            No
    ImageBaseAddress:         002a0000
    Ldr                       77895d00
...
    WindowTitle:  'C:\Users\Alex Ionescu\Desktop\WinDbg.lnk'
    ImageFile:    'C:\Program Files\Debugging Tools for Windows\windbg.exe'
    CommandLine:  '"C:\Program Files\Debugging Tools for Windows\windbg.exe" '
    DllPath:      'C:\Program Files\Debugging Tools for Windows;C:\Windows\
        system32;C:\Windows\system;C:\Windows
    Environment:  001850a8
        ALLUSERSPROFILE=C:\ProgramData
        APPDATA=C:\Users\Alex Ionescu\AppData\Roaming
    ...

The CSR_PROCESS structure contains information about processes
        that is specific to the Windows subsystem
        (Csrss). As such, only Windows applications have
        a CSR_PROCESS structure associated with them (for example,
        Smss does not). Additionally, because each
        session has its own instance of the Windows subsystem, the CSR_PROCESS
        structures are maintained by the Csrss process
        within each individual session. The basic structure of the CSR_PROCESS
        is illustrated in Figure 5-4 and is explained in
        more detail later in this chapter.
[image: Fields of the CSR process structure]

Figure 5-4. Fields of the CSR process structure

EXPERIMENT: Examining the CSR_PROCESS
You can dump the CSR_PROCESS structure with the
          !dp command in the user-mode debugger while
          attached to the Csrss process of the session
          you want to inspect. Use the File, Attach To A Process option to get
          a list of processes, and select the Csrss
          process for the correct session. (You can see the session of the
          process by expanding the tree item for it.) Make sure to select the
          Noninvasive check box to avoid freezing your system.
The !dp command takes as input the PID of
          the process whose CSR_PROCESS structure should be dumped.
          Alternatively, the structure pointer can be given directly as an
          argument. Because !dp already performs a
          dt command internally, there is no need to use
          dt on your own.
0:000> !dp v 0x1c0aa8-8
PCSR_PROCESS @ 001c0aa0:
   +0x000 ClientId         : _CLIENT_ID
   +0x008 ListLink         : _LIST_ENTRY [ 0x1d8618 - 0x1b1b10 ]
   +0x010 ThreadList       : _LIST_ENTRY [ 0x1c0b80 - 0x1c7638 ]
   +0x018 NtSession        : 0x001c0bb8 _CSR_NT_SESSION
...
   +0x054 Luid             : _LUID
   +0x05c ServerDllPerProcessData : [1] (null)
Threads:
Thread 001c0b78, Process 001c0aa0, ClientId 198.19c, Flags 0, Ref Count 1
Thread 001c0e78, Process 001c0aa0, ClientId 198.1cc, Flags 0, Ref Count 1
...

The W32PROCESS structure is the final system data
        structure associated with processes that we’ll look at. It contains
        all the information that the Windows graphics and window management
        code in the kernel (Win32k) needs to maintain state information about
        GUI processes (which were defined earlier as processes that have done
        at least one USER/GDI system call). The basic structure of the
        W32PROCESS is illustrated in Figure 5-5 and is explained
        in more detail later in this chapter.
[image: Fields of the Win32k Process structure]

Figure 5-5. Fields of the Win32k Process structure

EXPERIMENT: Examining the W32PROCESS
There is no command provided by the debugger extensions to
          dump the W32PROCESS structure, but it is present in the symbols of
          the Win32k driver. As such, by using the dt
          command with the appropriate symbol name
          win32k!_W32PROCESS, it is possible to dump the
          fields as long as the pointer is known. Because the
          !process command does not actually output this
          pointer (even though it is stored in the EPROCESS object), the field
          must be inspected manually with dt nt!_EPROCESS
          Win32Process followed by an EPROCESS pointer.
In the following example, the W32PROCESS structure for the
          shell, Explorer.exe, is shown:
lkd> dt win32k!_W32PROCESS 0xff991490
   +0x000 Process          : 0x84a2b030 _EPROCESS
   +0x004 RefCount         : 1
...
   +0x020 W32Pid           : 0x590
   +0x024 GDIHandleCount   : 383
   +0x028 GDIHandleCountPeak : 0x239
   +0x02c UserHandleCount  : 228
   +0x030 UserHandleCountPeak : 0x16c
...
   +0x088 hSecureGdiSharedHandleTable : 0x84a24159
   +0x08c DxProcess        : 0xa2c93980
The DxProcess field is a pointer to yet
          another per-process data structure—in this case, maintained by the
          DirectX Video Card Port Driver—but its description is beyond the
          scope of this book.



Protected Processes



In the Windows security model, any process running with a
      token containing the debug privilege (such as an administrator’s
      account) can request any access right that it desires to any other
      process running on the machine—for example, it can read and write
      arbitrary process memory, inject code, suspend and resume threads, and
      query information on other processes. Tools such as Process Explorer and
      Task Manager need and request these access rights to provide their
      functionality to users.
This logical behavior (which helps ensure that administrators will
      always have full control of the running code on the system) clashes with
      the system behavior for digital rights management requirements imposed
      by the media industry on computer operating systems that need to support
      playback of advanced, high-quality digital content such as Blu-ray and
      HD-DVD media. To support reliable and protected playback of such
      content, Windows uses protected processes. These processes exist
      alongside normal Windows processes, but they add significant constraints
      to the access rights that other processes on the system (even when
      running with administrative privileges) can request.
Protected processes can be created by any application; however,
      the operating system will allow a process to be protected only if the
      image file has been digitally signed with a special Windows Media
      Certificate. The Protected Media Path (PMP) in Windows makes use of
      protected processes to provide protection for high-value media, and
      developers of applications such as DVD players can make use of protected
      processes by using the Media Foundation API.
The Audio Device Graph process (Audiodg.exe) is a protected
      process because protected music content can be decoded through it.
      Similarly, the Windows Error Reporting (or WER, discussed in Chapter 3) client process (Werfault.exe) can also
      run protected because it needs to have access to protected processes in
      case one of them crashes. Finally, the System process itself is
      protected because some of the decryption information is generated by the
      Ksecdd.sys driver and stored in its user-mode memory. The System process
      is also protected to protect the integrity of all kernel handles
      (because the System process’ handle table contains all the kernel
      handles on the system).
At the kernel level, support for protected processes is twofold:
      first, the bulk of process creation occurs in kernel mode to avoid
      injection attacks. (The flow for both protected and standard process
      creation is described in detail in the next section.) Second, protected
      processes have a special bit set in their EPROCESS structure that
      modifies the behavior of security-related routines in the process
      manager to deny certain access rights that would normally be granted to
      administrators. In fact, the only access rights that are granted for
      protected processes are PROCESS_QUERY/SET_LIMITED_INFORMATION,
      PROCESS_TERMINATE, and PROCESS_SUSPEND_RESUME. Certain access rights are
      also disabled for threads running inside protected processes; we will
      look at those access rights later in this chapter in the section Thread Internals.
Because Process Explorer uses standard user-mode Windows
      APIs to query information on process internals, it is unable to perform
      certain operations on such processes. On the other hand, a tool like
      WinDbg in kernel-debugging mode, which uses kernel-mode infrastructure
      to obtain this information, will be able to display complete
      information. See the experiment in the Thread Internals section on how Process Explorer behaves
      when confronted with a protected process such as Audiodg.exe.
Note
As mentioned in Chapter 1, to
        perform local kernel debugging, you must boot in debugging mode
        (enabled by using bcdedit /debug on or by using
        the Msconfig advanced boot options). This protects against
        debugger-based attacks on protected processes and the Protected Media
        Path (PMP). When booted in debugging mode, high-definition content
        playback will not work.

Limiting these access rights reliably allows the kernel to sandbox
      a protected process from user-mode access. On the other hand, because a
      protected process is indicated by a flag in the EPROCESS structure, an
      administrator can still load a kernel-mode driver that disables this
      bit. However, this would be a violation of the PMP model and considered
      malicious, and such a driver would likely eventually be blocked from
      loading on a 64-bit system because the kernel-mode, code-signing policy
      prohibits the digital signing of malicious code. Even on 32-bit systems,
      the driver has to be recognized by PMP policy or else the playback will
      be halted. This policy is implemented by Microsoft and not by any kernel
      detection. This block would require manual action from Microsoft to
      identify the signature as malicious and update the kernel.

Flow of CreateProcess



So far, this chapter has shown the various data structures
      involved in process state manipulation and management, and how various
      tools and debugger commands can inspect this information. In this
      section, we’ll see how and when those data structures are created and
      filled out, as well as the overall creation and termination behaviors
      behind processes.
A Windows subsystem process is created when an application calls
      (or eventually ends up in) one of the process-creation functions, such
      as CreateProcess,
      CreateProcessAsUser,
      CreateProcessWithTokenW, or
      CreateProcessWithLogonW. Creating a Windows process
      consists of several stages carried out in three parts of the operating
      system: the Windows client-side library Kernel32.dll (in the case of the
      CreateProcessAsUser,
      CreateProcessWithTokenW, and
      CreateProcessWithLogonW routines, part of the work
      is first done in Advapi32.dll), the Windows executive, and the Windows
      subsystem process (Csrss).
Because of the multiple-environment subsystem architecture
      of Windows, creating an executive process object (which other subsystems
      can use) is separated from the work involved in creating a Windows
      subsystem process. So, although the following description of the flow of
      the Windows CreateProcess function is complicated,
      keep in mind that part of the work is specific to the semantics added by
      the Windows subsystem as opposed to the core work needed to create an
      executive process object.
The following list summarizes the main stages of creating a
      process with the Windows CreateProcess function.
      The operations performed in each stage are described in detail in the
      subsequent sections. Some of these operations might be performed by
      CreateProcess itself (or other helper routines in
      user mode), while others will be performed by
      NtCreateUserProcess or one of its helper routines
      in kernel mode. In our detailed analysis to follow, we will
      differentiate between the two at each step required.
Note
Many steps of CreateProcess are related to
        the setup of the process virtual address space and therefore refer to
        many memory management terms and structures that are defined in
        Chapter 10 in Part 2.

	Validate parameters; convert Windows subsystem flags and
          options to their native counterparts; parse, validate, and convert
          the attribute list to its native counterpart.

	Open the image file (.exe) to be executed inside the
          process.

	Create the Windows executive process object.

	Create the initial thread (stack, context, and Windows
          executive thread object).

	Perform post-creation, Windows-subsystem-specific process
          initialization.

	Start execution of the initial thread (unless the CREATE_
          SUSPENDED flag was specified).

	In the context of the new process and thread, complete the
          initialization of the address space (such as load required DLLs) and
          begin execution of the program.



Figure 5-6 shows an
      overview of the stages Windows follows to create a process.
[image: The main stages of process creation]

Figure 5-6. The main stages of process creation

Stage 1: Converting and Validating Parameters and Flags



Before opening the executable image to run,
        CreateProcess performs the following
        steps.
In CreateProcess, the priority class for
        the new process is specified as independent bits in the
        CreationFlags parameter. Thus, you can specify
        more than one priority class for a single
        CreateProcess call. Windows resolves the question
        of which priority class to assign to the process by choosing the
        lowest-priority class set.
If no priority class is specified for the new process, the
        priority class defaults to Normal unless the priority class of the
        process that created it is Idle or Below Normal, in which case the
        priority class of the new process will have the same priority as the
        creating class.
If a Real-time priority class is specified for the new
        process and the process’ caller doesn’t have the Increase Scheduling
        Priority privilege, the High priority class is used instead. In other
        words, CreateProcess doesn’t fail just because
        the caller has insufficient privileges to create the process in the
        Real-time priority class; the new process just won’t have as high a
        priority as Real-time.
All windows are associated with desktops, the graphical
        representation of a workspace. If no desktop is specified in
        CreateProcess, the process is associated with the
        caller’s current desktop.
If the process is part of a job object, but the creation flags
        requested a separate virtual DOS machine (VDM), the flag is
        ignored.
If the caller is sending a handle to a monitor as an output
        handle instead of a console handle, standard handle flags are
        ignored.
If the creation flags specify that the process will be debugged,
        Kernel32 initiates a connection to the native debugging code in
        Ntdll.dll by calling DbgUiConnectToDbg and gets a
        handle to the debug object from the current thread’s environment block
        (TEB).
Kernel32.dll sets the default hard error mode if the creation
        flags specified one.
The user-specified attribute list is converted from Windows
        subsystem format to native format and internal attributes are added to
        it. The possible attributes that can be added to the attribute list
        are listed in Table 5-1, including their
        documented Windows API counterparts, if any.
Note
The attribute list passed on a
          CreateProcess call permits passing back to the
          caller information beyond a simple status code, such as the TEB
          address of the initial thread or information on the image section.
          This is necessary for protected processes because the parent cannot
          query this information after the child is created.

Table 5-1. Process Attributes
	Native Attribute
	Equivalent Windows
                Attribute
	Type
	Description

	PS_CP_PARENT_PROCESS
	PROC_THREAD_ATTRIBUTE_PARENT_PROCESS. Also
                used when elevating
	Input
	Handle to the parent
                process.

	PS_CP_DEBUG_OBJECT
	N/A – used when using DEBUG_PROCESS
                as a flag
	Input
	Debug object if process is being
                started debugged.

	PS_CP_PRIMARY_TOKEN
	N/A – used when using
                CreateProcessAsUser/WithToken
	Input
	Process token if
                CreateProcessAsUser was
                used.

	PS_CP_CLIENT_ID
	N/A – returned by Win32 API as a
                parameter
	Output
	Returns the TID and PID of the
                initial thread and the process.

	PS_CP_TEB_ADDRESS
	N/A – internally used and not
                exposed
	Output
	Returns the address of the TEB for
                the initial thread.

	PS_CP_FILENAME
	N/A – used as a parameter in
                CreateProcess API.
	Input
	Name of the process that should be
                created.

	PS_CP_IMAGE_INFO
	N/A – internally used and not
                exposed
	Output
	Returns SECTION_IMAGE_INFORMATION,
                which contains information on the version, flags, and
                subsystem of the executable, as well as the stack size and
                entry point.

	PS_CP_MEM_RESERVE
	N/A – internally used by SMSS and
                CSRSS.
	Input
	Array of virtual memory reservations
                that should be made during initial process address space
                creation, allowing guaranteed availability because no other
                allocations have taken place yet.

	PS_CP_PRIORITY_CLASS
	N/A – passed in as a parameter to
                the CreateProcess API.
	Input
	Priority class that the process
                should be given.

	PS_CP_ERROR_MODE
	N/A – passed in through
                CREATE_DEFAULT_ERROR_MODE flag
	Input
	Hard error-processing mode for the
                process.

	PS_CP_STD_HANDLE_INFO
	 	Input
	Specifies if standard handles should
                be duplicated, or if new handles should be
                created.

	PS_CP_HANDLE_LIST
	PROC_THREAD_ATTRIBUTE_HANDLE_LIST
	Input
	List of handles belonging to the
                parent process that should be inherited by the new
                process.

	PS_CP_GROUP_AFFINITY
	PROC_THREAD_ATTRIBUTE_GROUP_AFFINITY
	Input
	Processor group(s) the thread should
                be allowed to run on.

	PS_CP_PREFERRED_NODE
	PROC_THREAD_ATTRIBUTES_PRFERRED_NODE
	Input
	Preferred (ideal) node that should
                be associated with the process. It affects the node on which
                the initial process heap and thread stack will be
                created.

	PS_CP_IDEAL_PROCESSOR
	PROC_THREAD_ATTTRIBUTE_IDEAL_PROCESSOR
	Input
	Preferred (ideal) processor that the
                thread should be scheduled on.

	PS_CP_UMS_THREAD
	PROC_THREAD_ATTRIBUTE_UMS_THREAD
	Input
	Contains the UMS attributes,
                completion list, and context.

	PS_CP_EXECUTE_OPTIONS
	PROC_THREAD_MITIGATION_POLICY
	Input
	Contains information on which
                mitigations (SEHOP, ATL Emulation, NX) should be
                enabled/disabled for the process.




Once these steps are completed,
        CreateProcess performs the initial call to
        NtCreateUserProcess to attempt creation of the
        process. Because Kernel32.dll has no idea at this point whether the
        application image name is a real Windows application or a POSIX,
        16-bit, or DOS application, the call might fail—at which point,
        CreateProcess looks at the error reason and
        attempts to correct the situation.

Stage 2: Opening the Image to Be Executed



As illustrated in Figure 5-7, the first stage in
        NtCreateUserProcess is to find the appropriate
        Windows image that will run the executable file specified by the
        caller and to create a section object to later map it into the address
        space of the new process. If the call failed for any reason, it
        returns to CreateProcess with a failure state
        (see Table 5-2) that
        causes CreateProcess to attempt execution
        again.
If the executable file specified is a Windows .exe,
        NtCreateUserProcess tries to open the file and
        create a section object for it. The object isn’t mapped into memory
        yet, but it is opened. Just because a section object has been successfully created doesn’t
        mean that the file is a valid Windows image, however; it could be a
        DLL or a POSIX executable. If the file is a POSIX executable, the
        image to be run changes to Posix.exe, and
        CreateProcess restarts from the beginning of
        Stage 1. If the file is a DLL, CreateProcess
        fails.
Now that NtCreateUserProcess has found a
        valid Windows executable image, as part of the process creation code
        described in Stage 3 it looks in the registry under
        HKLM\SOFTWARE\Microsoft \Windows NT\CurrentVersion\Image File
        Execution Options to see whether a subkey with the file name and
        extension of the executable image (but without the directory and path
        information—for example, Image.exe) exists there. If it does,
        PspAllocateProcess looks for a value named
        Debugger for that key. If this value is present, the image to be run
        becomes the string in that value and
        CreateProcess restarts at Stage 1.
Tip
You can take advantage of this process creation behavior and
          debug the startup code of Windows services processes before they
          start rather than attach the debugger after starting a service,
          which doesn’t allow you to debug the startup code.

On the other hand, if the image is not a Windows .exe (for
        example, if it’s an MS-DOS, a Win16, or a POSIX application),
        CreateProcess goes through a series of steps to
        find a Windows support image to run it. This process is necessary
        because non-Windows applications aren’t run directly—Windows instead
        uses one of a few special support images that, in turn, are
        responsible for actually running the non-Windows program. For example,
        if you attempt to run a POSIX application,
        CreateProcess identifies it as such and changes
        the image to be run to the Windows executable file Posix.exe. If you
        attempt to run an MS-DOS or a Win16 executable, the image to be run
        becomes the Windows executable Ntvdm.exe. In short, you can’t directly
        create a process that is not a Windows process. If Windows can’t find
        a way to resolve the activated image as a Windows process (as shown in
        Table 5-2),
        CreateProcess fails.
[image: Choosing a Windows image to activate]

Figure 5-7. Choosing a Windows image to activate

Table 5-2. Decision Tree for Stage 1 of
          CreateProcess
	If the Image . . .
	Create State Code
	This Image Will Run . .
                .
	. . . and This Will
                Happen

	Is a POSIX executable
                file
	PsCreateSuccess
	Posix.exe
	CreateProcess
                restarts Stage 1.

	Is an MS-DOS application with an
                .exe, .com, or .pif extension
	PsCreateFailOnSectionCreate
	Ntvdm.exe
	CreateProcess
                restarts Stage 1.

	Is a Win16
                application
	PsCreateFailOnSectionCreate
	Ntvdm.exe
	CreateProcess
                restarts Stage 1.

	Is a Win64 application on a 32-bit
                system (or a PPC, MIPS, or Alpha Binary)
	PsCreateFailMachineMismatch
	N/A
	CreateProcess
                will fail.

	Has a Debugger key with another
                image name
	PsCreateFailExeName
	Name specified in the Debugger
                key
	CreateProcess
                restarts Stage 1.

	Is an invalid or damaged Windows
                EXE
	PsCreateFailExeFormat
	N/A
	CreateProcess
                will fail.

	Cannot be opened
	PsCreateFailOnFileOpen
	N/A
	CreateProcess
                will fail.

	Is a command procedure (application
                with a .bat or .cmd extension)
	PsCreateFailOnSectionCreate
	Cmd.exe
	CreateProcess
                restarts Stage 1.




Specifically, the decision tree that
        CreateProcess goes through to run an image is as
        follows:
	If the image is an MS-DOS application with an .exe, .com, or
            .pif extension, a message is sent to the Windows subsystem to
            check whether an MS-DOS support process (Ntvdm.exe, specified in
            the registry value
            HKLM\SYSTEM\CurrentControlSet\Control\WOW\cmdline) has already
            been created for this session. If a support process has been
            created, it is used to run the MS-DOS application. (The Windows
            subsystem sends the message to the VDM [Virtual DOS Machine]
            process to run the new image.) Then
            CreateProcess returns. If a support process
            hasn’t been created, the image to be run changes to Ntvdm.exe and
            CreateProcess restarts at Stage 1.

	If the file to run has a .bat or .cmd extension, the image
            to be run becomes Cmd.exe, the Windows command prompt, and
            CreateProcess restarts at Stage 1. (The name
            of the batch file is passed as the first parameter to
            Cmd.exe.)

	If the image is a Win16 (Windows 3.1) executable,
            CreateProcess must decide whether a new VDM
            process must be created to run it or whether it should use the
            default sessionwide shared VDM process (which might not yet have
            been created). The CreateProcess flags
            CREATE_SEPARATE_WOW_VDM and CREATE_SHARED_WOW_VDM control this
            decision. If these flags aren’t specified, the registry value
            HKLM\SYSTEM\CurrentControlSet\Control\WOW\DefaultSeparateVDM
            dictates the default behavior. If the application is to be run in
            a separate VDM, the image to be run changes to ntvdm.exe followed
            by some configuration parameters and the 16-bit process’ name and
            CreateProcess restarts at Stage 1. Otherwise,
            the Windows subsystem sends a message to see whether the shared
            VDM process exists and can be used. (If the VDM process is running
            on a different desktop or isn’t running under the same security as the caller, it can’t be used and a new
            VDM process must be created.) If a shared VDM process can be used,
            the Windows subsystem sends a message to it to run the new image
            and CreateProcess returns. If the VDM process
            hasn’t yet been created (or if it exists but can’t be used), the
            image to be run changes to the VDM support image and
            CreateProcess restarts at Stage 1.




Stage 3: Creating the Windows Executive Process Object
        (PspAllocateProcess)



At this point, NtCreateUserProcess has
        opened a valid Windows executable file and created a section object to
        map it into the new process address space. Next it creates a Windows
        executive process object to run the image by calling the internal
        system function PspAllocateProcess. Creating the
        executive process object (which is done by the creating thread)
        involves the following substages:
	Setting up the EPROCESS object

	Creating the initial process address space

	Initializing the kernel process structure(KPROCESS)

	Setting up the PEB

	Concluding the setup of the process address space (which
            includes initializing the working set list and virtual address
            space descriptors and mapping the image into address space)



Note
The only time there won’t be a parent process is during system
          initialization. After that point, a parent process is always
          required to provide a security context for the new process.

Stage 3A: Setting Up the EPROCESS Object



This substage involves the following steps:
	Inherit the affinity of the parent process, unless it was
              explicitly set during process creation (through the attribute
              list).

	Choose the ideal node that was specified in the attribute
              list, if any.

	Inherit the I/O and page priority from the parent process.
              If there is no parent process, the default page priority (5) and
              I/O priority (Normal) are used.

	Set the new process’ exit status to STATUS_PENDING.

	Choose the hard error processing mode selected by the
              attribute list; otherwise, inherit the parent’s processing mode
              if none was given. If no parent exists, use the default
              processing mode which is to display all errors.

	Store the parent process’ process ID in the
              InheritedFromUniqueProcessId field in the
              new process object.

	Query the Image File Execution Options key to check if the
              process should be mapped with large pages. Also, query the key
              to check if NTDLL has been listed as a DLL that should be mapped
              with large pages within this process.

	Query the Image File Execution Options key for a specific
              NUMA node assignment associated with the process. The assignment
              can be either based on inheritance (in which the NUMA node will
              be propagated from the parent) or an explicit NUMA assignment,
              as long as this assignment does not override the initial NUMA
              node specified in the attribute list.

	Disable stack randomization if ASLR was disabled on the
              executable containing the process.

	Attempt to acquire all the privileges required for
              creating the process. Choosing the Real-time process priority
              class, assigning a token to the new process, mapping the process
              with large pages, and creating the process within a new session
              are all operations that require the appropriate
              privilege.

	Create the process’ primary access token (a duplicate of
              its parent’s primary token). New processes inherit the security
              profile of their parents. If the
              CreateProcessAsUser function is being used
              to specify a different access token for the new process, the
              token is then changed appropriately. This change might happen
              only if the parent token’s integrity level dominates the
              integrity level of the access token, and if the access token is
              a true child or sibling of the parent token. Note that if the
              parent has the SeAssignPrimaryToken
              privilege, this will bypass these checks.

	The session ID of the new process token is now checked to
              determine if this is a cross-session create—in which case, the
              parent process temporarily attaches to the target session to
              correctly process quotas and address space creation.

	Set the new process’ quota block to the address of its
              parent process’ quota block, and increment the reference count
              for the parent’s quota block. If the process was created through
              CreateProcessAsUser, this step won’t occur.
              Instead, the default quota is created, or a quota matching the
              user’s profile is selected.

	The process minimum and maximum working set sizes are set
              to the values of PspMinimumWorkingSet and
              PspMaximumWorkingSet, respectively. These
              values can be overridden if performance options were specified
              in the PerfOptions key part of Image File
              Execution Options—in which case, the maximum working set is
              taken from there. Note that the default working set limits are
              soft limits and are essentially hints, while the
              PerfOptions working set maximum is a hard
              limit (that is, the working set will not be allowed to grow past
              that number).

	Initialize the address space of the process. (See Stage
              3B.) Then detach from the target session if it was
              different.

	The group affinity for the process is now chosen
              if group-affinity inheritance was not used. The default group
              affinity either will inherit from the parent, if NUMA node
              propagation was set earlier (the group owning the NUMA node will
              be used) or be assigned round-robin based on the
              PspProcessGroupAssignment seed. If the
              system is in forced group-awareness mode and group 0 was chosen
              by the selection algorithm, group 1 is chosen instead, as long
              as it exists.

	Initialize the KPROCESS part of the process object. (See
              Stage 3C.)

	The token for the process is now set.

	The process’ priority class is set to normal, unless the
              parent was using idle or the Below Normal process priority
              class—in which case, the parent’s priority is inherited. If a
              process priority class was set manually through the attribute
              lists, it is now set.

	The process handle table is initialized. If the inherit
              handles flag is set for the parent process, any inheritable
              handles are copied from the parent’s object handle table into
              the new process. (For more information about object handle
              tables, see Chapter 3.) A process
              attribute can also be used to specify only a subset of handles,
              which is useful when you are using
              CreateProcessAsUser to restrict which
              objects should be inherited by the child process.

	If performance options were specified through the
              PerfOptions key, these are now applied. The
              PerfOptions key includes overrides for the
              working set limit, I/O priority, page priority, and CPU priority
              class of the process.

	The final process priority class and the default quantum
              for its threads are computed and set.

	The second stage of address space setup is completed,
              including the initialization of the PEB (Stage 3D/3E).

	Mitigation options for No-Execute support are now
              set.

	The process PID and creation time is set, although the PID
              is not yet inserted in the PID handle table, nor is the process
              inserted in the process lists (that is the job of the insertion
              stage).




Stage 3B: Creating the Initial Process Address Space



The initial process address space consists of the following
          pages:
	Page directory (and it’s possible there’ll be more than
              one for systems with page tables more than two levels, such as
              x86 systems in PAE mode or 64-bit systems)

	Hyperspace page

	VAD bitmap page

	Working set list



To create these three pages, the following steps are
          taken:
	Page table entries are created in the appropriate page
              tables to map the initial pages.

	The number of pages is deducted from the kernel variable
              MmTotalCommittedPages and added to
              MmProcessCommit.

	The systemwide default process minimum working set size
              (PsMinimumWorkingSet) is deducted from
              MmResidentAvailablePages.

	The page table pages for the global system space (that is,
              other than the process-specific pages we just described, and
              except session-specific memory).




Stage 3C: Creating the Kernel Process Structure



The next stage of PspAllocateProcess is
          the initialization of the KPROCESS structure (the
          Pcb member of the EPROCESS). This work is
          performed by KeInitializeProcess, which
          initializes the following:
	The doubly-linked list which connects all threads part of
              the process (initially empty).

	The initial value (or reset value) of the process default
              quantum (which is described in more detail in the Thread Scheduling section later in the chapter),
              which is hard-coded to 6 until it is initialized later (by
              PspComputeQuantumAndPriority).
Note
The default initial quantum differs between Windows
                client and server systems. For more information on thread
                quantums, turn to their discussion in the section Thread Scheduling.


	The process’ base priority is set based on what was
              computed in Stage 3A.

	The default processor affinity for the threads in the
              process is set, as is the group affinity. The group affinity was
              calculated earlier in Stage 3A or inherited from the
              parent.

	The process swapping state is set to resident.

	The thread seed is based on the ideal processor that the
              kernel has chosen for this process (which is based on the
              previously created process’ ideal processor, effectively
              randomizing this in a round-robin manner). Creating a new
              process will update the seed in KeNodeBlock
              (the initial NUMA node block) so that the next new process will
              get a different ideal processor seed.




Stage 3D: Concluding the Setup of the Process Address
          Space



Setting up the address space for a new process is somewhat
          complicated, so let’s look at what’s involved one step at a time. To
          get the most out of this section, you should have some familiarity
          with the internals of the Windows memory manager, which are
          described in Chapter 10 in Part 2.
	The virtual memory manager sets the value of the
              process’ last trim time to the current time. The working set
              manager (which runs in the context of the balance set manager
              system thread) uses this value to determine when to initiate
              working set trimming.

	The memory manager initializes the process’ working set
              list—page faults can now be taken.

	The section (created when the image file was opened) is
              now mapped into the new process’ address space, and the process
              section base address is set to the base address of the
              image.

	Ntdll.dll is mapped into the process; if this is a Wow64
              process, the 32-bit Ntdll.dll is also mapped.

	A new session, if requested, is now created for the
              process. This special step is mostly implemented for the benefit
              of the Session Manager (SMSS) when initializing a new
              session.

	The standard handles are duplicated, and the new values
              are written in the process parameters structure.

	Any memory reservations listed in the attribute list are
              now processed. Additionally, two flags allow the bulk
              reservation of the first 1 or 16 MB of the address space. These
              flags are used internally for mapping real-mode vectors and ROM
              code, for example (which must be in the low ranges of virtual
              address space, where normally the heap or other process
              structures could be located).

	The user process parameters are written into the process,
              copied, and fixed up (meaning converted from absolute form to a
              relative form so that a single memory block is needed).

	The affinity information is written into the PEB.

	The MinWin API redirection set is
              mapped into the process.



Note
POSIX processes clone the address space of their parents, so
            they don’t have to go through these steps to create a new address
            space. In the case of POSIX applications, the new process’ section
            base address is set to that of its parent process and the parent’s
            PEB is cloned for the new process.


Stage 3E: Setting Up the PEB



NtCreateUserProcess calls
          MmCreatePeb, which first maps the systemwide
          national language support (NLS) tables into the process’ address
          space. It next calls MiCreatePebOrTeb to
          allocate a page for the PEB and then initializes a number of fields,
          most of them based on internal variables that were configured
          through the registry, such as MmHeap* values,
          MmCriticalSectionTimeout, and
          MmMinimumStackCommitInBytes. Some of these
          fields can be overridden by settings in the linked executable image,
          such as the Windows version in the PE header or the affinity mask in
          the load configuration directory of the PE header.
If the image header characteristics
          IMAGE_FILE_UP_SYSTEM_ONLY flag is set (indicating that the image can
          run only on a uniprocessor system), a single CPU
          (MmRotatingUniprocessorNumber) is chosen for
          all the threads in this new process to run on. The selection process
          is performed by simply cycling through the available processors—each
          time this type of image is run, the next processor is used. In this
          way, these types of images are spread evenly across the
          processors.

Stage 3F: Completing the Setup of the Executive Process
          Object (PspInsertProcess)



Before the handle to the new process can be returned, a few
          final setup steps must be completed, which are performed by
          PspInsertProcess and its helper
          functions:
	If systemwide auditing of processes is enabled (either as
              a result of local policy settings or group policy settings from
              a domain controller), the process’ creation is written to the
              Security event log.

	If the parent process was contained in a job, the job is
              recovered from the job level set of the parent and then bound to
              the session of the newly created process. Finally, the new
              process is added to the job.

	PspInsertProcess inserts the new
              process object at the end of the Windows list of active
              processes (PsActiveProcessHead).

	The process debug port of the parent process is copied to
              the new child process, unless the
              NoDebugInherit flag is set (which can be
              requested when creating the process). If a debug port was
              specified, it is attached to the new process at this
              time.

	Because job objects can now specify restrictions on which
              group or groups the threads within the processes part of a job
              can run on, PspInsertProcess must make sure
              that the group affinity associated with the process would not
              violate the group affinity associated with the job. An
              interesting secondary issue to consider is if the job’s
              permissions grant access to modify the process’ affinity
              permissions, because a lesser-privileged job object might
              interfere with the affinity requirements of a more privileged
              process.

	Finally, PspInsertProcess creates a
              handle for the new process by calling
              ObOpenObjectByPointer, and then returns
              this handle to the caller. Note that no process creation
              callback is sent until the first thread within the process is
              created, and the code always sends process callbacks before
              sending object-managed based callbacks.





Stage 4: Creating the Initial Thread and Its Stack and
        Context



At this point, the Windows executive process object is
        completely set up. It still has no thread, however, so it can’t do
        anything yet. It’s now time to start that work. Normally, the
        PspCreateThread routine is responsible for all
        aspects of thread creation and is called by
        NtCreateThread when a new thread is being
        created. However, because the initial thread is created internally by
        the kernel without user-mode input, the two helper routines that
        PspCreateThread relies on are used instead:
        PspAllocateThread and
        PspInsertThread.
PspAllocateThread handles the
        actual creation and initialization of the executive thread object
        itself, while PspInsertThread handles the
        creation of the thread handle and security attributes and the call to
        KeStartThread to turn the executive object into a
        schedulable thread on the system. However, the thread won’t do
        anything yet—it is created in a suspended state and isn’t resumed
        until the process is completely initialized (as described in Stage
        5).
Note
The thread parameter (which can’t be specified in
          CreateProcess but can be specified in
          CreateThread) is the address of the PEB. This
          parameter will be used by the initialization code that runs in the
          context of this new thread (as described in Stage 6).

PspAllocateThread performs the following
        steps:
	It prevents user-mode scheduling (UMS) threads from being
            created in Wow64 processes, as well as preventing user-mode
            callers from creating threads in the system process.

	An executive thread object is created and
            initialized.

	If CPU rate limiting is enabled, the CPU quota block is
            initialized.

	The various lists used by LPC, I/O Management, and the
            Executive are initialized.

	The thread’s create time is set, and its thread ID (TID) is
            created.

	Before the thread can execute, it needs a stack and a
            context in which to run, so these are set up. The stack size for
            the initial thread is taken from the image—there’s no way to
            specify another size. If this is a Wow64 process, the Wow64 thread
            context will also be initialized.

	The thread environment block (TEB) is allocated for the new
            thread.

	The user-mode thread start address is stored in the ETHREAD.
            This is the system-supplied thread startup function in Ntdll.dll
            (RtlUserThreadStart). The user’s specified
            Windows start address is stored in the ETHREAD in a different
            location so that debugging tools such as Process Explorer can
            query the information.

	KeInitThread is called to set up the
            KTHREAD structure. The thread’s initial and current base
            priorities are set to the process’ base priority, and its affinity
            and quantum are set to that of the process. This function also
            sets the initial thread ideal processor. (See the section Ideal and Last Processor for a description of how
            this is chosen.) KeInitThread next allocates
            a kernel stack for the thread and initializes the
            machine-dependent hardware context for the thread, including the
            context, trap, and exception frames. The thread’s context is set
            up so that the thread will start in kernel mode in
            KiThreadStartup. Finally,
            KeInitThread sets the thread’s state to
            Initialized and returns to
            PspAllocateThread.

	If this is a UMS thread,
            PspUmsInitThread is called to initialize the
            UMS state.



Once that work is finished,
        NtCreateUserProcess calls
        PspInsertThread to perform the following
        steps:
	A check is made to ensure that the thread’s group affinity
            does not violate job limitations (which we already described
            earlier). In the process create path, this check is skipped
            because it was already done at the earlier stage.

	Checks are made to ensure that the process hasn’t already
            been terminated, that the thread hasn’t already been terminated,
            or that the thread hasn’t even been able to start running. If any
            of these cases are true, thread creation will fail.

	The KTHREAD part of the thread object is initialized by
            calling KeStartThread. This involves
            inheriting scheduler settings from the owner process, setting the
            ideal node and processor, updating the group affinity, and
            inserting the thread in the process list maintained by KPROCESS (a
            separate list from the one in EPROCESS). Additionally, on x64
            systems, another systemwide list of processes,
            KiProcessListHead, is used by PatchGuard to
            maintain the integrity of the executive’s
            PsActiveProcessHead. Finally, the stack count
            of the process is incremented.

	The thread count in the process object is incremented, and
            the owner process’ I/O priority and page priority are inherited.
            If this is the highest number of threads the process has ever had,
            the thread count high watermark is updated as well. If this was
            the second thread in the process, the primary token is frozen
            (that is, it can no longer be changed, unless the process is a
            POSIX subsystem process).

	If the thread is a UMS thread, the count of UMS threads is
            incremented.

	The thread is inserted in the process’ thread list, and the
            thread is suspended if the creating process requested it.

	If CPU rate limiting is enabled, the rate control APC is
            initialized and the CpuThrottled bit is set
            in the KTHREAD.

	The object is inserted, and any registered thread callbacks
            are called. If this was the first thread in the process (and
            therefore, the operation happened as part of the
            CreateProcess path), the registered kernel
            process callbacks are also called.

	The handle is created with
            ObOpenObjectByPointer.

	The thread is readied for execution by calling
            KeReadyThread. It enters the deferred ready
            queue, the process is paged out, and a page in is
            requested.




Stage 5: Performing Windows Subsystem–Specific
        Post-Initialization



Once NtCreateUserProcess returns with a
        success code, all the necessary executive process and thread objects
        have been created. Kernel32.dll then performs various operations
        related to Windows subsystem–specific operations to finish
        initializing the process.
First of all, various checks are made for whether
        Windows should allow the executable to run. These checks include
        validating the image version in the header and checking whether
        Windows application certification has blocked the process (through a
        group policy). On specialized editions of Windows Server 2008 R2, such
        as Windows Web Server 2008 R2 and Windows HPC Server 2008 R2,
        additional checks are made to see whether the application imports any
        disallowed APIs.
If software restriction policies dictate, a restricted token is
        created for the new process. Afterward, the application-compatibility
        database is queried to see whether an entry exists in either the
        registry or system application database for the process. Compatibility
        shims will not be applied at this point—the information will be stored
        in the PEB once the initial thread starts executing (Stage 6).
At this point, Kernel32.dll sends a message to the Windows
        subsystem so that it can set up SxS information (see the end of this
        section for more information on side-by-side assemblies) such as
        manifest files, DLL redirection paths, and out-of-process execution
        for the new process. It also initializes the Windows subsystem
        structures for the process and initial thread. The message includes
        the following information:
	Process and thread handles

	Entries in the creation flags

	ID of the process’ creator

	Flag indicating whether the process belongs to a Windows
            application (so that Csrss can determine
            whether or not to show the startup cursor)

	UI language information

	DLL redirection and .local flags

	Manifest file information



The Windows subsystem performs the following steps when it
        receives this message:
	CsrCreateProcess duplicates a handle
            for the process and thread. In this step, the usage count of the
            process and the thread is incremented from 1 (which was set at
            creation time) to 2.

	If a process priority class isn’t specified,
            CsrCreateProcess sets it according to the
            algorithm described earlier in this section.

	The Csrss process structure
            (CSR_PROCESS) is allocated.

	The new process’ exception port is set to be the general
            function port for the Windows subsystem so that the Windows
            subsystem will receive a message when a second-chance exception
            occurs in the process. (For further information on exception
            handling, see Chapter 3.)

	The Csrss thread structure (CSR_THREAD)
            is allocated and initialized.

	CsrCreateThread inserts the thread in
            the list of threads for the process.

	The count of processes in this session is
            incremented.

	The process shutdown level is set to 0x280 (the default
            process shutdown level—see
            SetProcessShutdownParameters in the MSDN
            Library documentation for more information).

	The new Csrss process structure is
            inserted into the list of Windows subsystem-wide processes.

	The per-process data structure used by the kernel-mode part
            of the Windows subsystem (W32PROCESS) is allocated and
            initialized.

	The application start cursor is displayed. This cursor is
            the familiar rolling doughnut shape—the way that Windows says to
            the user, “I’m starting something, but you can use the cursor in
            the meantime.” If the process doesn’t make a GUI call after two
            seconds, the cursor reverts to the standard pointer. If the
            process does make a GUI call in the allotted time,
            CsrCreateProcess waits five seconds for the
            application to show a window. After that time,
            CsrCreateProcess resets the cursor
            again.



After Csrss has performed these steps,
        CreateProcess checks whether the process was run
        elevated (which means it was executed through
        ShellExecute and elevated by the AppInfo service
        after the consent dialog box was shown to the user). This includes
        checking whether the process was a setup program. If it was, the
        process’ token is opened, and the virtualization flag is turned on so
        that the application is virtualized. (See the information on UAC and
        virtualization in Chapter 6.) If the
        application contained elevation shims or had a requested elevation
        level in its manifest, the process is destroyed and an elevation
        request is sent to the AppInfo service. (See Chapter 6 for more information on
        elevation.)
Note that most of these checks are not performed for protected
        processes; because these processes must have been designed for Windows
        Vista or later, there’s no reason why they should require elevation,
        virtualization, or application-compatibility checks and processing.
        Additionally, allowing mechanisms such as the shim engine to use its
        usual hooking and memory-patching techniques on a protected process
        would result in a security hole if someone could figure how to insert
        arbitrary shims that modify the behavior of the protected process.
        Additionally, because the Shim Engine is installed by the parent
        process, which might not have access to its child protected process,
        even legitimate shimming cannot work.

Stage 6: Starting Execution of the Initial Thread



At this point, the process environment has been determined,
        resources for its threads to use have been allocated, the process has
        a thread, and the Windows subsystem knows about the new process.
        Unless the caller specified the CREATE_ SUSPENDED flag, the initial
        thread is now resumed so that it can start running and perform the
        remainder of the process initialization work that occurs in the
        context of the new process (Stage 7).

Stage 7: Performing Process Initialization in the Context of
        the New Process



The new thread begins life running the kernel-mode
        thread startup routine KiThreadStartup.
        KiThreadStartup lowers the thread’s IRQL level
        from deferred procedure call (DPC)/dispatch level to APC level and
        then calls the system initial thread routine,
        PspUserThreadStartup. The user-specified thread
        start address is passed as a parameter to this routine.
First, this function disables the ability to swap the primary
        process token at runtime, which is reserved for POSIX support only (to
        emulate setuid behavior). It then sets the Locale
        ID and the ideal processor in the TEB, based on the information
        present in kernel-mode data structures, and then it checks whether
        thread creation actually failed. Next it calls
        DbgkCreateThread, which checks whether image
        notifications were sent for the new process. If they weren’t, and
        notifications are enabled, an image notification is sent first for the
        process and then for the image load of Ntdll.dll. Note that this is
        done in this stage rather than when the images were first mapped
        because the process ID (which is required for the kernel callouts) is
        not yet allocated at that time.
Once those checks are completed, another check is performed to
        see whether the process is a debuggee. If it is,
        PspUserThreadStartup checks whether the debugger
        notifications have already been sent for this process. If not, a
        create process message is sent through the debug object (if one is
        present) so that the process startup debug event
        (CREATE_PROCESS_DEBUG_INFO) can be sent to the appropriate debugger
        process. This is followed by a similar thread startup debug event and
        by another debug event for the image load of Ntdll.dll.
        DbgkCreateThread then waits for a reply from the
        debugger (via the ContinueDebugEvent
        function).
Now that the debugger has been notified,
        PspUserThreadStartup looks at the result of the
        initial check on the thread’s life. If it was killed on startup, the
        thread is terminated. This check is done after the debugger and image
        notifications to be sure that the kernel-mode and user-mode debuggers
        don’t miss information on the thread, even if the thread never got a
        chance to run.
Otherwise, the routine checks whether application prefetching is
        enabled on the system and, if so, calls the prefetcher (and
        Superfetch) to process the prefetch instruction file (if it exists)
        and prefetch pages referenced during the first 10 seconds the last
        time the process ran. (For details on the prefetcher and Superfetch,
        see Chapter 10 in Part 2.)
PspUserThreadStartup then checks whether
        the systemwide cookie in the SharedUserData
        structure has been set up yet. If it hasn’t, it generates it based on
        a hash of system information such as the number of interrupts
        processed, DPC deliveries, and page faults. This systemwide cookie is
        used in the internal decoding and encoding of pointers, such as in the
        heap manager to protect against certain classes of exploitation. (For
        more information on heap manager security, see Chapter 10 in Part
        2.)
Finally, PspUserThreadStartup sets up the
        initial thunk context to run the image-loader initialization routine
        (LdrInitializeThunk in Ntdll.dll), as well as the
        systemwide thread startup stub (RtlUserThreadStart in Ntdll.dll).
        These steps are done by editing the context of the thread in place and
        then issuing an exit from system service operation, which loads the
        specially crafted user context. The
        LdrInitializeThunk routine initializes the
        loader, the heap manager, NLS tables, thread-local storage (TLS) and
        fiber-local storage (FLS) arrays, and critical section structures. It
        then loads any required DLLs and calls the DLL entry points with the
        DLL_PROCESS_ ATTACH function code.
Once the function returns, NtContinue
        restores the new user context and returns to user mode—thread
        execution now truly starts.
RtlUserThreadStart uses the address of the
        actual image entry point and the start parameter and calls the
        application’s entrypoint. These two parameters have also already been
        pushed onto the stack by the kernel. This complicated series of events
        has two purposes. First, it allows the image loader inside Ntdll.dll
        to set up the process internally and behind the scenes so that other
        user-mode code can run properly. (Otherwise, it would have no heap, no
        thread-local storage, and so on.)
Second, having all threads begin in a common routine allows them
        to be wrapped in exception handling so that when they crash, Ntdll.dll
        is aware of that and can call the unhandled exception filter inside
        Kernel32.dll. It is also able to coordinate thread exit on return from
        the thread’s start routine and to perform various cleanup work.
        Application developers can also call
        SetUnhandledExceptionFilter to add their own
        unhandled exception-handling code.
EXPERIMENT: Tracing Process Startup
Now that we’ve looked in detail at how a process starts up and
          the different operations required to begin executing an application,
          we’re going to use Process Monitor to look at some of the file I/O
          and registry keys that are accessed during this process.
Although this experiment will not provide a complete picture
          of all the internal steps we’ve described, you’ll be able to see
          several parts of the system in action, notably prefetch and
          Superfetch, image-file execution options and other compatibility
          checks, and the image loader’s DLL mapping.
We’ll look at a very simple executable—Notepad.exe—and launch
          it from a Command Prompt window (Cmd.exe). It’s important that we
          look both at the operations inside Cmd.exe and those inside
          Notepad.exe. Recall that a lot of the user-mode work is performed by
          CreateProcess, which is called by the parent
          process before the kernel has created a new process object.
To set things up correctly, add two filters to Process
          Monitor: one for Cmd.exe, and one for Notepad.exe—these are the only
          two processes you should include. Be sure that you don’t have any
          currently running instances of these two processes so that you know
          you’re looking at the right events. The filter window should look
          like this:
[image: image with no caption]

Next, make sure that event logging is currently disabled
          (clear File, Capture Events), and then start up the command prompt.
          Enable event logging (using the File menu again, or simply press
          CTRL+E or click the magnifying glass icon on the toolbar), and then
          type Notepad.exe and press Enter.
          On a typical Windows system, you should see anywhere between 500 and
          1500 events appear. Hide the Sequence and Time Of Day columns so
          that you can focus your attention on the columns of interest. Your
          window should look similar to the one shown next.
[image: image with no caption]

Just as described in Stage 1 of the
          CreateProcess flow, one of the first things to
          notice is that just before the process is started and the first
          thread is created, Cmd.exe does a registry read at
          HKLM\SOFTWARE\Microsoft\Windows NT\CurrentVersion\Image File
          Execution Options. Because there were no image-execution options
          associated with Notepad.exe, the process was created as is.
As with this and any other event in Process Monitor’s log, you
          have the ability to see whether each part of the process creation
          flow was performed in user mode or kernel mode, and by which
          routines, by looking at the stack of the event. To do this,
          double-click on the RegOpenKey event and switch
          to the Stack tab. The following screen shows the standard stack on a
          32-bit Windows machine.
[image: image with no caption]

This stack shows that you already reached the part of process
          creation performed in kernel mode (through
          NtCreateUserProcess) and that the helper
          routine PspAllocateProcess is responsible for
          this check.
Going down the list of events after the thread and process
          have been created, you will notice three groups of events. The first
          is a simple check for application-compatibility flags, which will
          let the user-mode process creation code know if checks inside the
          application-compatibility database are required through the shim
          engine.
This check is followed by multiple reads to Side-By-Side,
          Manifest, and MUI/Language keys, which are part of the assembly
          framework mentioned earlier. Finally, you might see file I/O to one
          or more .sdb files, which are the application-compatibility
          databases on the system. This I/O is where additional checks are
          done to see if the shim engine needs to be invoked for this
          application. Because Notepad is a well-behaved Microsoft program, it
          doesn’t require any shims.
The following screen shows the next series of events, which
          happen inside the Notepad process itself. These are actions
          initiated by the user-mode thread startup wrapper in kernel mode,
          which performs the actions described earlier. The first two are the
          Notepad.exe and Ntdll.dll image load debug notification messages,
          which can be generated only now that code is running inside
          Notepad’s process context and not the context for the command
          prompt.
[image: image with no caption]

Next, the prefetcher kicks in, looking for a prefetch database
          file that has already been generated for Notepad. (For more
          information on the prefetcher, see Chapter 10 in Part 2.) On a
          system where Notepad has already been run at least once, this
          database will exist, and the prefetcher will begin executing the
          commands specified inside it. If this is the case, scrolling down
          you will see multiple DLLs being read and queried. Unlike typical
          DLL loading, which is done by the user-mode image loader by looking
          at the import tables or when an application manually loads a DLL,
          these events are being generated by the prefetcher, which is already
          aware of the libraries that Notepad will require. Typical image
          loading of the DLLs required happens next, and you will see events
          similar to the ones shown here:
[image: image with no caption]

These events are now being generated from code running inside
          user mode, which was called once the kernel-mode wrapper function
          finished its work. Therefore, these are the first events coming from
          LdrpInitializeProcess, which we mentioned is
          the internal system wrapper function for any new process, before the
          start address wrapper is called. You can confirm this on your own by looking at the stack of these
          events—for example, the kernel32.dll image load event, which is
          shown in the next screen:
[image: image with no caption]

Further events are generated by this routine and its
          associated helper functions until you finally reach events generated
          by the WinMain function inside Notepad, which
          is where code under the developer’s control is now being executed.
          Describing in detail all the events and user-mode components that
          come into play during process execution would fill up this entire
          chapter, so exploration of any further events is left as an exercise
          for the reader.



Thread Internals



Now that we’ve dissected processes, let’s turn our attention to
      the structure of a thread. Unless explicitly stated otherwise, you can
      assume that anything in this section applies to both user-mode threads
      and kernel-mode system threads (which are described in Chapter 2).
Data Structures



At the operating-system level, a Windows thread is represented
        by an executive thread object. The executive thread object
        encapsulates an ETHREAD structure, which in turn contains a KTHREAD
        structure as its first member. These are illustrated in Figure 5-8. The ETHREAD
        structure and the other structures it points to exist in the system
        address space, with the exception of the thread environment block
        (TEB), which exists in the process address space (again, because
        user-mode components need to access it).
The Windows subsystem process
        (Csrss) maintains a parallel structure for each
        thread created in a Windows subsystem application, called the
        CSR_THREAD. For threads that have called a Windows subsystem USER or
        GDI function, the kernel-mode portion of the Windows subsystem
        (Win32k.sys) maintains a per-thread data structure (called the
        W32THREAD) that the KTHREAD structure points to.
Note
The fact that the executive, high-level, graphics-related,
          Win32k thread structure is pointed to by the KTHREAD, instead of the
          ETHREAD, appears to be a layer violation or oversight in the
          standard kernel’s abstraction architecture—the scheduler and other
          low-level components do not use this field.

[image: Important fields of the executive thread structure and its embedded kernel thread structure]

Figure 5-8. Important fields of the executive thread structure and its
          embedded kernel thread structure

Most of the fields illustrated in Figure 5-8 are
        self-explanatory. The first member of the ETHREAD is called the Tcb,
        for “Thread control block”; this is a structure of type KTHREAD.
        Following that are the thread identification information, the process
        identification information (including a pointer to the owning process
        so that its environment information can be accessed), security
        information in the form of a pointer to the access token and
        impersonation information, and finally, fields relating to
        Asynchronous Local Procedure Call (ALPC) messages and pending I/O
        requests. Some of these key fields are covered in more detail
        elsewhere in this book. For more details on the internal structure of
        an ETHREAD structure, you can use the kernel debugger
        dt command to display its format.
Let’s take a closer look at two of the key thread data
        structures referred to in the preceding text: the KTHREAD and the TEB.
        The KTHREAD structure (which is the Tcb member of
        the ETHREAD) contains information that the Windows kernel needs to
        perform thread scheduling, synchronization, and timekeeping
        functions.
EXPERIMENT: Displaying ETHREAD and KTHREAD Structures
The ETHREAD and KTHREAD structures can be displayed with the
          dt command in the kernel debugger. The
          following output shows the format of an ETHREAD on a 32-bit
          system:
lkd> dt nt!_ethread
nt!_ETHREAD
   +0x000 Tcb              : _KTHREAD
   +0x1e0 CreateTime       : _LARGE_INTEGER
   +0x1e8 ExitTime         : _LARGE_INTEGER
   +0x1e8 KeyedWaitChain   : _LIST_ENTRY
   +0x1f0 ExitStatus       : Int4B
...
   +0x270 AlpcMessageId    : Uint4B
   +0x274 AlpcMessage      : Ptr32 Void
   +0x274 AlpcReceiveAttributeSet : Uint4B
   +0x278 AlpcWaitListEntry : _LIST_ENTRY
   +0x280 CacheManagerCount : Uint4B
The KTHREAD can be displayed with a similar command or by
          typing dt nt!_ETHREAD Tcb, as was
          shown in the EPROCESS/KPROCESS experiment earlier:
lkd> dt nt!_kthread
nt!_KTHREAD
   +0x000 Header           : _DISPATCHER_HEADER
   +0x010 CycleTime        : Uint8B
   +0x018 HighCycleTime    : Uint4B
   +0x020 QuantumTarget    : Uint8B
...
   +0x05e WaitIrql         : UChar
   +0x05f WaitMode         : Char
   +0x060 WaitStatus       : Int4B

EXPERIMENT: Using the Kernel Debugger
          !thread Command
The kernel debugger !thread
          command dumps a subset of the information in the thread data
          structures. Some key elements of the information the kernel debugger
          displays can’t be displayed by any utility, including the following
          information: internal structure addresses; priority details; stack
          information; the pending I/O request list; and, for threads in a
          wait state, the list of objects the thread is waiting for.
To display thread information, use either the
          !process command (which displays all the
          threads of a process after displaying the process information) or
          the !thread command with the address of a
          thread object to display a specific thread.

EXPERIMENT: Viewing Thread Information
The following output is the detailed display of a process
          produced by using the Tlist utility in the Debugging Tools for
          Windows. Notice that the thread list shows Win32StartAddr. This is
          the address passed to the CreateThread function
          by the application. All the other utilities, except Process
          Explorer, that show the thread start address show the actual start
          address (a function in Ntdll.dll), not the application-specified
          start address.
C:\Program Files\Windows Kits\8.0\Debuggers\x86>tlist winword
3232 WINWORD.EXE       648739_Chap05.docx - Microsoft Word
   CWD:     C:\Users\Alex Ionescu\Documents\
   CmdLine: "C:\Program Files\Microsoft Office\Office14\WINWORD.EXE" /n "C:\Users\Alex
Ionescu\Documents\Chapter5.docx
   VirtualSize:   531024 KB   PeakVirtualSize:   585248 KB
   WorkingSetSize:122484 KB   PeakWorkingSetSize:181532 KB
   NumberOfThreads: 12
   2104 Win32StartAddr:0x2fde10ec LastErr:0x00000000 State:Waiting
   2992 Win32StartAddr:0x7778fd0d LastErr:0x00000000 State:Waiting
   3556 Win32StartAddr:0x3877e970 LastErr:0x00000000 State:Waiting
   2436 Win32StartAddr:0x3877e875 LastErr:0x00000000 State:Waiting
   3136 Win32StartAddr:0x3877e875 LastErr:0x00000000 State:Waiting
   3412 Win32StartAddr:0x3877e875 LastErr:0x00000000 State:Waiting
   1096 Win32StartAddr:0x3877e875 LastErr:0x00000000 State:Waiting
    912 Win32StartAddr:0x74497832 LastErr:0x00000000 State:Waiting
   1044 Win32StartAddr:0x389b0926 LastErr:0x00000583 State:Waiting
   1972 Win32StartAddr:0x694532fb LastErr:0x00000000 State:Waiting
   4056 Win32StartAddr:0x75f9c83e LastErr:0x00000000 State:Waiting
   1124 Win32StartAddr:0x777903e9 LastErr:0x00000000 State:Waiting
 14.0.5123.5000 shp  0x2FDE0000  C:\Program Files\Microsoft Office\Office14\WINWORD.EXE
 6.1.7601.17725 shp  0x77760000  C:\Windows\SYSTEM32\ntdll.dll
 6.1.7601.17651 shp  0x75CE0000  C:\Windows\system32\kernel32.dll

The TEB, illustrated in Figure 5-9, is one of the
        data structures explained in this section that exists in the process
        address space (as opposed to the system space). Internally, it is made
        up of a header called the TIB (Thread Information
        Block), which mainly existed for compatibility with OS/2 and Win9x
        applications. It also allows exception and stack information to be
        kept into a smaller structure when creating new threads by using an
        Initial TIB.
The TEB stores context information for the image loader
        and various Windows DLLs. Because these components run in user mode,
        they need a data structure writable from user mode. That’s why this
        structure exists in the process address space instead of in the system
        space, where it would be writable only from kernel mode. You can find
        the address of the TEB with the kernel debugger
        !thread command.
[image: Fields of the thread environment block]

Figure 5-9. Fields of the thread environment block

EXPERIMENT: Examining the TEB
You can dump the TEB structure with the
          !teb command in the kernel debugger. The output
          looks like this:
kd> !teb
TEB at 7ffde000
    ExceptionList:        019e8e44
    StackBase:            019f0000
    StackLimit:           019db000
    SubSystemTib:         00000000
    FiberData:            00001e00
...
    PEB Address:          7ffd9000
    LastErrorValue:       0
    LastStatusValue:      c0000139
    Count Owned Locks:    0
    HardErrorMode:        0

The CSR_THREAD, illustrated in Figure 5-10 is analogous to the data
        structure of CSR_PROCESS, but it’s applied to threads. As you might
        recall, this is maintained by each Csrss process
        within a session and identifies the Windows subsystem threads running
        within it. The CSR_THREAD stores a handle that
        Csrss keeps for the thread, various flags, and a
        pointer to the CSR_PROCESS for the thread. It also stores another copy
        of the thread’s creation time.
[image: Fields of the CSR thread]

Figure 5-10. Fields of the CSR thread

EXPERIMENT: Examining the CSR_THREAD
You can dump the CSR_THREAD structure with the
          !dt command in the user-mode debugger while
          attached to a Csrss process. Follow the
          instructions in the CSR_PROCESS experiment from earlier to safely
          perform this operation. The output looks like this:
0:000> !dt v 001c7630
PCSR_THREAD @ 001c7630:
   +0x000 CreateTime       : _LARGE_INTEGER 0x1cb9fb6'00f90498
   +0x008 Link             : _LIST_ENTRY [ 0x1c0ab0 - 0x1c0f00 ]
   +0x010 HashLinks        : _LIST_ENTRY [ 0x75f19b38 - 0x75f19b38 ]
   +0x018 ClientId         : _CLIENT_ID
   +0x020 Process          : 0x001c0aa0 _CSR_PROCESS
   +0x024 ThreadHandle     : 0x000005c4
   +0x028 Flags            : 0
   +0x02c ReferenceCount   : 1
   +0x030 ImpersonateCount : 0

Finally, the W32THREAD structure, illustrated in Figure 5-11, is analogous to the data
        structure of WIN32PROCESS, but it’s applied to threads This structure
        mainly contains information useful for the GDI subsystem (brushes and
        DC attributes) as well as for the User Mode Print Driver framework
        (UMPD) that vendors use to write user-mode printer drivers. Finally,
        it contains a rendering state useful for desktop compositing and
        anti-aliasing.
[image: Fields of the Win32k thread]

Figure 5-11. Fields of the Win32k thread

EXPERIMENT: Examining the W32THREAD
You can dump the W32THREAD structure by looking at the
          output of the !thread command, which gives a
          pointer to it in the Win32Thread output field. Alternatively, if you
          use the dt command, the KTHREAD block has a
          field called Win32Thread that contains the pointer to this
          structure. Recall that only a GUI thread will have a W32THREAD
          structure, so it’s possible that certain threads, such as background
          or worker threads, will not have an associated W32THREAD. Because
          there is no extension to view a W32THREAD, you need to use the
          dt command, as shown here:
dt win32k!_w32thread ffb79dd8
   +0x000 pEThread         : 0x83ad4b60 _ETHREAD
   +0x004 RefCount         : 1
   +0x008 ptlW32           : (null)
   +0x00c pgdiDcattr       : 0x00130740
   +0x010 pgdiBrushAttr    : (null)
   +0x014 pUMPDObjs        : (null)
   +0x018 pUMPDHeap        : (null)
   +0x01c pUMPDObj         : (null)
...
   +0x0a8 bEnableEngUpdateDeviceSurface : 0 ''
   +0x0a9 bIncludeSprites  : 0 ''
   +0x0ac ulWindowSystemRendering : 0


Birth of a Thread



A thread’s life cycle starts when a program creates a
        new thread. The request filters down to the Windows executive, where
        the process manager allocates space for a thread object and calls the
        kernel to initialize the thread control block (KTHREAD). The steps in
        the following list are taken inside the Windows
        CreateThread function in Kernel32.dll to create a
        Windows thread:
	CreateThread converts the Windows API
            parameters to native flags and builds a native structure
            describing object parameters (OBJECT_ATTRIBUTES). See Chapter 3 for more information.

	CreateThread builds an attribute list
            with two entries: client ID and TEB address. This allows
            CreateThread to receive those values once the
            thread has been created. (For more information on attribute lists,
            see the section Flow of CreateProcess earlier
            in this chapter.)

	NtCreateThreadEx is called to create
            the user-mode context and probe and capture the attribute list. It
            then calls PspCreateThread to create a
            suspended executive thread object. For a description of the steps
            performed by this function, see the descriptions of Stage 3 and
            Stage 5 in the section Flow of CreateProcess.

	CreateThread allocates an activation
            context for the thread used by side-by-side assembly support. It
            then queries the activation stack to see if it requires
            activation, and it does so if needed. The activation stack pointer
            is saved in the new thread’s TEB.

	CreateThread notifies the Windows
            subsystem about the new thread, and the subsystem does some setup
            work for the new thread.

	The thread handle and the thread ID (generated during step
            3) are returned to the caller.

	Unless the caller created the thread with the
            CREATE_SUSPENDED flag set, the thread is now resumed so that it
            can be scheduled for execution. When the thread starts running, it
            executes the steps described in the earlier section Stage 7: Performing Process Initialization in the Context of
        the New Process before
            calling the actual user’s specified start address.





Examining Thread Activity



Examining thread activity is especially important if you are
      trying to determine why a process that is hosting multiple services is
      running (such as Svchost.exe, Dllhost.exe, or Lsass.exe) or why a
      process is hung.
There are several tools that expose various elements of
      the state of Windows threads: WinDbg (in user-process attach and
      kernel-debugging mode), Performance Monitor, and Process Explorer. (The
      tools that show thread-scheduling information are listed in the section
      Thread Scheduling.)
To view the threads in a process with Process Explorer, select a
      process and open the process properties (by double-clicking on the
      process or clicking on the Process, Properties menu item). Then click on
      the Threads tab. This tab shows a list of the threads in the process and
      four columns of information. For each thread, it shows its ID, the
      percentage of CPU consumed (based on the refresh interval configured),
      the number of cycles charged to the thread, and the thread start
      address. You can sort by any of these four columns.
New threads that are created are highlighted in green, and threads
      that exit are highlighted in red. (The highlight duration can be
      configured with the Options, Difference Highlight Duration menu item.)
      This might be helpful to discover unnecessary thread creation occurring
      in a process. (In general, threads should be created at process startup,
      not every time a request is processed inside a process.)
As you select each thread in the list, Process Explorer displays
      the thread ID, start time, state, CPU time counters, number of cycles
      charged, number of context switches, the ideal processor and its group,
      and the base and current priority. There is a Kill button, which will
      terminate an individual thread, but this should be used with extreme
      care. Another option is the Suspend button, which will prevent the
      thread from forward execution and thus prevent a runaway thread from
      consuming CPU time. However, this can also lead to deadlocks and should
      be used with the same care as the Kill button. Finally, the Permissions
      button allows you to view the security descriptor. (See Chapter 6, for more information on security
      descriptors) of the thread.
Unlike Task Manager and all other process/processor monitoring
      tools, Process Explorer uses the clock cycle counter designed for thread
      run-time accounting (as described later in this chapter), instead of the
      clock interval timer, so you will see a significantly different view of
      CPU consumption using Process Explorer. This is because many threads run
      for such a short amount of time that they are seldom (if ever) the
      currently running thread when the clock interval timer interrupt occurs,
      so they are not charged for much of their CPU time, leading clock-based
      tools to perceive a CPU usage of 0%. On the other hand, the total number
      of clock cycles represents the actual number of processor cycles that
      each thread in the process accrued. It is independent of the clock
      interval timer’s resolution because the count is maintained internally
      by the processor at each cycle and updated by Windows at each interrupt
      entry. (A final accumulation is done before a context switch.)
The thread start address is displayed in the form
      “module!function”, where module is the name of the .exe or .dll. The
      function name relies on access to symbol files for the module. (See
      EXPERIMENT: Viewing Process Details with Process
          Explorer in Chapter 1.) If you are unsure what the module is,
      click the Module button. This opens an Explorer file properties window
      for the module containing the thread’s start address (for example, the
      .exe or .dll).
Note
For threads created by the Windows
        CreateThread function, Process Explorer displays
        the function passed to CreateThread, not the
        actual thread start function. That is because all Windows threads
        start at a common thread startup wrapper function
        (RtlUserThreadStart in Ntdll.dll). If Process
        Explorer showed the actual start address, most threads in processes
        would appear to have started at the same address, which would not be
        helpful in trying to understand what code the thread was executing.
        However, if Process Explorer can’t query the user-defined startup
        address (such as in the case of a protected process), it will show the
        wrapper function, so you will see all threads starting at
        RtlUserThreadStart.

However, the thread start address displayed might not be enough
      information to pinpoint what the thread is doing and which component
      within the process is responsible for the CPU consumed by the thread.
      This is especially true if the thread start address is a generic startup
      function (for example, if the function name does not indicate what the
      thread is actually doing). In this case, examining the thread stack
      might answer the question. To view the stack for a thread, double-click
      on the thread of interest (or select it and click the Stack button).
      Process Explorer displays the thread’s stack (both user and kernel, if
      the thread was in kernel mode).
Note
While the user mode debuggers (WinDbg, Ntsd, and Cdb) permit you
        to attach to a process and display the user stack for a thread,
        Process Explorer shows both the user and kernel stack in one easy
        click of a button. You can also examine user and kernel thread stacks
        using WinDbg in local kernel debugging mode.

Viewing the thread stack can also help you determine why a process
      is hung. As an example, on one system, Microsoft Office PowerPoint was
      hanging for one minute on startup. To determine why it was hung, after
      PowerPoint was started, Process Explorer was used to examine the thread
      stack of the one thread in the process. The result is shown in Figure 5-12.
[image: Hung thread stack in PowerPoint]

Figure 5-12. Hung thread stack in PowerPoint

This thread stack shows that PowerPoint (line 10) called a
      function in Mso.dll (the central Microsoft Office DLL), which called the
      OpenPrinterW function in Winspool.drv (a DLL used
      to connect to printers). Winspool.drv then dispatched to a function
      OpenPrinterRPC, which then called a function in the
      RPC runtime DLL, indicating it was sending the request to a remote
      printer. So, without having to understand the internals of PowerPoint, the module and
      function names displayed on the thread stack indicate that the thread
      was waiting to connect to a network printer. On this particular system,
      there was a network printer that was not responding, which explained the
      delay starting PowerPoint. (Microsoft Office applications connect to all
      configured printers at process startup.) The connection to that printer
      was deleted from the user’s system, and the problem went away.
Finally, when looking at 32-bit applications running on 64-bit
      systems as a Wow64 process (see Chapter 3 for
      more information on Wow64), Process Explorer shows both the 32-bit and
      64-bit stack for threads. Because at the time of the system call proper,
      the thread has been switched to a 64-bit stack and context, simply
      looking at the thread’s 64-bit stack would reveal only half the
      story—the 64-bit part of the thread, with Wow64’s thunking code. So,
      when examining Wow64 processes, be sure to take into account both the
      32-bit and 64-bit stacks. An example of a Wow64 thread inside Microsoft
      Office Word 2007 is shown in Figure 5-13. The
      highlighted stack frame and all stack frames below it are the 32-bit
      stack frames from the 32-bit stack. The stack frames above the
      highlighted frame are on the 64-bit stack.
[image: Example Wow64 stack]

Figure 5-13. Example Wow64 stack

Limitations on Protected Process Threads



As we discussed in the process internals section, protected
        processes have several limitations in terms of which access rights
        will be granted, even to the users with the highest privileges on the
        system. These limitations also apply to threads inside such a process.
        This ensures that the actual code running inside the protected process
        cannot be hijacked or otherwise affected through standard Windows
        functions, which require access rights that are not granted for
        protected process threads. In fact, the only permissions granted are
        THREAD_SUSPEND_RESUME and THREAD_SET/QUERY_LIMITED_INFORMATION.
EXPERIMENT: Viewing Protected Process Thread
          Information
In the previous section, we took a look at how Process
          Explorer can be helpful in examining thread activity to determine
          the cause of potential system or application issues. This time,
          we’ll use Process Explorer to look at a protected process and see
          how the different access rights being denied affect its ability and
          usefulness on such a process.
Find the Audiodg.exe service inside the process list. This is
          a process responsible for much of the core work behind the user-mode
          audio stack in Windows, and it requires protection to ensure that
          high-definition decrypted audio content does not leak out to
          untrusted sources. Bring up the process properties view, and take a
          look at the Performance tab. Notice how the numbers for WS Private,
          WS Shareable, and WS Shared are 0, although the total Working Set is
          still displayed. This is an example of the THREAD_QUERY_INFORMATION
          versus THREAD_QUERY_LIMITED_INFORMATION rights.
More importantly, take a look at the Threads tab. As you can
          see here, Process Explorer is unable to show the Win32 thread start
          address and instead displays the standard thread start wrapper
          inside Ntdll.dll. If you try clicking the Stack button, you’ll get
          an error, because Process Explorer needs to read the virtual memory
          inside the protected process, which it can’t do.
[image: image with no caption]

Finally, note that although the Base and Dynamic priorities
          are shown, the I/O and Memory priorities are not, which is another
          example of the limited versus full query information access right.
          As you try to kill a thread inside Audiodg.exe, notice yet another
          access denied error: recall the lack of THREAD_TERMINATE
          access.



Worker Factories (Thread Pools)



Worker factories refer to the internal mechanism used to
      implement user-mode thread pools. The legacy thread pool routines were
      completely implemented in user mode inside the Ntdll.dll library, and
      the Windows API provided various routines to call into the relevant
      routines, which provided waitable timers, wait callbacks, and automatic
      thread creation and deletion, depending on the amount of work being
      done.
Because the kernel can have direct control over thread scheduling,
      creation, and termination without the typical costs associated with
      doing these operations from user mode, most of the functionality
      required to support the user-mode thread pool implementation in Windows
      is now located in the kernel instead, which also simplifies the code
      that developers need to write. For example, creating a worker pool in a
      remote process can be done with a single API call, instead of the
      complex series of virtual memory calls this normally requires. Under
      this model, Ntdll.dll merely provides the interfaces and high-level APIs
      required for interfacing with the worker factory code.
This kernel-managed thread pool functionality in Windows is
      managed by an object manager type called
      TpWorkerFactory, as well as four native system
      calls for managing the factory and its workers
      (NtCreateWorkerFactory,
      NtWorkerFactoryWorkerReady,
      NtReleaseWorkerFactoryWorker,
      NtShutdownWorkerFactory), two query/set native
      calls (NtQueryInformationWorkerFactory and
      NtSetInformationWorkerFactory), and a wait call
      (NtWaitForWorkViaWorkerFactory).
Just like other native system calls, these calls provide user mode
      with a handle to the TpWorkerFactory object, which
      contains information such as the name and object attributes, the desired
      access mask, and a security descriptor. Unlike other system calls
      wrapped by the Windows API, however, thread-pool management is handled
      by Ntdll.dll’s native code, which means that developers work with an
      opaque descriptor (a TP_WORK pointer) owned by Ntdll.dll, in which the
      actual handle is stored.
As its name suggests, the worker factory implementation is
      responsible for allocating worker threads (and calling the given
      user-mode worker thread entry point), maintaining a minimum and maximum
      thread count (allowing for either permanent worker pools or totally
      dynamic pools), as well as other accounting information. This enables
      operations such as shutting down the thread pool to be performed with a
      single call to the kernel, because the kernel has been the only
      component responsible for thread creation and termination.
Because the kernel dynamically creates new threads as needed,
      based on minimum and maximum numbers provided, this also increases the
      scalability of applications using the new thread-pool implementation. A
      worker factory will create a new thread whenever all of the following
      conditions are met:
	The number of available workers is lower than the maximum
          number of workers configured for the factory (default of
          500).

	The worker factory has bound objects (a bound object can be,
          for example, an ALPC port that this worker thread is waiting on) or
          a thread has been activated into the pool.

	There are pending I/O request packets (IRPs; see
          Chapter 8, “I/O System,” in Part 2, for more information) associated
          with a worker thread.

	Dynamic thread creation is enabled.



And it will terminate threads whenever they’ve become idle for
      more than 10 seconds (by default).
Furthermore, while developers have always been able to take
      advantage of as many threads as possible (based on the number of
      processors on the system) through the old implementation, but through
      support for dynamic processors in Windows Server (see the section on
      this topic later in this chapter), it’s now possible for applications
      using thread pools to automatically take advantage of new processors
      added at run time.
Note that the worker factory support is merely a wrapper to manage
      mundane tasks that would otherwise have to be performed in user mode (at
      a loss of performance), and much of the logic of the new thread-pool
      code remains in the Ntdll.dll side of this architecture. (Theoretically,
      by using undocumented functions, a different thread-pool implementation
      can be built around worker factories.) Also, it is not the worker
      factory code that provides the scalability, wait internals, and
      efficiency of work processing. Instead, it is a much older component of
      Windows that we already discussed—I/O completion ports, or more
      correctly, kernel queues (KQUEUE; see Chapter 8 in Part 2 for more
      information).
In fact, when creating a worker factory, an I/O completion port
      must have already been created by user mode, and the handle needs to be
      passed on. It is through this I/O completion port that the user-mode
      implementation will queue work and also wait for work—but by calling the
      worker factory system calls instead of the I/O completion port APIs.
      Internally, however, the “release” worker factory call (which queues
      work) is a wrapper around IoSetIoCompletionEx,
      which increases pending work, while the “wait” call is a wrapper around
      IoRemoveIoCompletion. Both these routines call into
      the kernel queue implementation.
Therefore, the job of the worker factory code is to manage either
      a persistent, static, or dynamic thread pool; wrap the I/O completion
      port model into interfaces that try to prevent stalled worker queues by
      automatically creating dynamic threads; and to simplify global cleanup
      and termination operations during a factory shutdown request (as well as
      to easily block new requests against the factory in such a
      scenario).
Unfortunately, the data structures used by the worker factory
      implementation are not in the public symbols, but it is still possible
      to look at some worker pools, as we’ll show in the next experiment.
      Additionally, the NtQueryInformationWorkerFactory
      API dumps almost every field in the worker factory structure.
EXPERIMENT: Looking at Thread Pools
Because of the advantages of using the thread-pool
        mechanism, many core system components and applications make use of
        it, especially when dealing with resources such as ALPC ports (to
        dynamically process incoming requests at an appropriate and scalable
        level). One of the ways to identify which processes are using a worker
        factory is to look at the handle list in Process Explorer. Follow
        these steps to look at some details behind them:
	Run Process Explorer, and select Show Unnamed Handles And
            Mappings from the View menu. Unfortunately, worker factories
            aren’t named by Ntdll.dll, so you need to take this step in order
            to see the handles.

	Select Lsm.exe from the list of processes, and look at the
            handle table. Make sure that the lower pane is shown (View, Show
            Lower Pane) and is displaying handle table mode (View, Lower Pane
            View, Handles).

	Right-click on the lower pane columns, and then click on
            Select Columns. Make sure that the Type column is selected to be
            shown, and click it to sort by type.

	Now scroll down the handles, looking at the Type column,
            until you find a handle of type
            TpWorkerFactory. You should see something
            like this:
[image: image with no caption]

Notice how the TpWorkerFactory handle
            is immediately preceded by an IoCompletion
            handle (numerically; sort by “Handle” to see this). As was
            described previously, this occurs because before creating a worker
            factory, a handle to an I/O completion port on which work will be
            sent must be created.

	Now double-click Lsm.exe in the list of processes,
            and click on the Threads tab. You should see something similar to
            the image here:
[image: image with no caption]

On this system (with two processors), the worker factory has
            created six worker threads at the request of Lsm.exe (processes
            can define a minimum and maximum number of threads) and based on
            its usage and the count of processors on the machine. These
            threads are identified as TppWorkerThread,
            which is Ntdll.dll’s worker entry point when calling the worker
            factory system calls.

	Ntdll.dll is responsible for its own internal accounting
            inside the worker thread wrapper
            (TppWorkerThread) before calling the worker
            callback that the application has registered. By looking at the
            Wait reason in the State information for each thread, you can get
            a rough idea of what each worker thread might be doing.
            Double-click on one of the threads inside an LPC wait to look at
            its stack. Here’s an example:
[image: image with no caption]

This specific worker thread is being used by Lsm.exe for LPC
            communication. Because the local session manager needs to
            communicate with other components such as
            Smss and Csrss through
            LPC, it makes sense that it would want a number of its threads to
            be busy replying and waiting for LPC messages. (The more threads
            doing this, the less stalling there is on the LPC
            pipeline.)



If you look at other worker threads, you’ll see some are waiting
        for objects such as events. A process can have multiple thread pools,
        and each thread pool can have a variety of threads doing completely
        unrelated tasks. It’s up to the developer to assign work and to call
        the thread pool APIs to register this work through Ntdll.dll.


Thread Scheduling



This section describes the Windows scheduling policies and
      algorithms. The first subsection provides a condensed description of how
      scheduling works on Windows and a definition of key terms. Then Windows
      priority levels are described from both the Windows API and the Windows
      kernel points of view. After a review of the relevant Windows utilities
      and tools that relate to scheduling, the detailed data structures and
      algorithms that make up the Windows scheduling system are presented,
      including a description of common scheduling scenarios and how thread
      selection, as well as processor selection, occurs.
Overview of Windows Scheduling



Windows implements a priority-driven, preemptive scheduling
        system—at least one of the highest-priority runnable (ready) threads
        always runs, with the caveat that certain high-priority threads ready
        to run might be limited by the processors on which they might be
        allowed or preferred to run on, a phenomenon called
        processor affinity. Processor affinity is defined
        based on a given processor group, which collects up to 64 processors.
        By default, threads can run only on any available processors within
        the processor group associated with the process (to maintain
        compatibility with older versions of Windows which supported only 64
        processors), but developers can alter processor affinity by using the
        appropriate APIs or by setting an affinity mask in the image header,
        while users can use tools to change affinity at runtime or at process
        creation. However, although multiple threads in a process can be
        associated with different groups, a thread on its own can run only on
        the processors available within its assigned group. Additionally,
        developers can choose to create group-aware applications, which use
        extended scheduling APIs to associate logical processors on different
        groups with the affinity of their threads. Doing so converts the
        process into a multigroup process that can theoretically run its
        threads on any available processor within the machine.
EXPERIMENT: Viewing Ready Threads
You can view the list of ready threads with the kernel
          debugger !ready command. This command displays
          the thread or list of threads that are ready to run at each priority
          level. In the following example, generated on a 32-bit machine with
          a dual-core processor, two threads are ready to run at priority 8 on
          the first logical processor, and one thread at priority 10, two
          threads at priority 9, and three threads at priority 8 are ready to
          run on the second logical processor. Determining which of these
          threads get to run on their respective processor is a simple matter
          of picking the first thread on top of the highest priority queue
          (thread 857d9030 for logical processor 0, and thread 857c0030 for
          logical processor 1), but why the queues contain the threads they do
          is a complex result at the end of several algorithms that the
          scheduler uses. We will cover this topic later in this
          section.
kd> !ready
Processor 0: Ready Threads at priority 8
    THREAD 857d9030  Cid 0ec8.0e30  Teb: 7ffdd000 Win32Thread: 00000000 READY
    THREAD 855c8300  Cid 0ec8.0eb0  Teb: 7ff9c000 Win32Thread: 00000000 READY
Processor 1: Ready Threads at priority 10
    THREAD 857c0030  Cid 04c8.0378  Teb: 7ffdf000 Win32Thread: fef7f8c0 READY
Processor 1: Ready Threads at priority 9
    THREAD 87fc86f0  Cid 0ec8.04c0  Teb: 7ffd3000 Win32Thread: 00000000 READY
    THREAD 88696700  Cid 0ec8.0ce8  Teb: 7ffa0000 Win32Thread: 00000000 READY
Processor 1: Ready Threads at priority 8
    THREAD 856e5520  Cid 0ec8.0228  Teb: 7ff98000 Win32Thread: 00000000 READY
    THREAD 85609d78  Cid 0ec8.09b0  Teb: 7ffd9000 Win32Thread: 00000000 READY
    THREAD 85fdeb78  Cid 0ec8.0218  Teb: 7ff72000 Win32Thread: 00000000 READY

After a thread is selected to run, it runs for an amount
        of time called a quantum. A quantum is the length of time a thread is
        allowed to run before another thread at the same priority level is
        given a turn to run. Quantum values can vary from system to system and
        process to process for any of three reasons:
	System configuration settings (long or short quantums,
            variable or fixed quantums, and priority separation)

	Foreground or background status of the process

	Use of the job object to alter the quantum



These details are explained in more details in the Quantum section later in the chapter, as well as in the
        Job Objects section).
A thread might not get to complete its quantum, however, because
        Windows implements a preemptive scheduler: if another thread with a
        higher priority becomes ready to run, the currently running thread
        might be preempted before finishing its time slice. In fact, a thread
        can be selected to run next and be preempted before even beginning its
        quantum!
The Windows scheduling code is implemented in the kernel.
        There’s no single “scheduler” module or routine, however—the code is
        spread throughout the kernel in which scheduling-related events occur.
        The routines that perform these duties are collectively called the
        kernel’s dispatcher. The following events might require thread
        dispatching:
	A thread becomes ready to execute—for example, a thread has
            been newly created or has just been released from the wait
            state.

	A thread leaves the running state because its time quantum
            ends, it terminates, it yields execution, or it enters a wait
            state.

	A thread’s priority changes, either because of a system
            service call or because Windows itself changes the priority
            value.

	A thread’s processor affinity changes so that it will no
            longer run on the processor on which it was running.



At each of these junctions, Windows must determine which
        thread should run next on the logical processor that was running the
        thread, if applicable, or on which logical processor the thread should
        now run on. After a logical processor has selected a new thread to
        run, it eventually performs a context switch to it. A context switch
        is the procedure of saving the volatile processor state associated
        with a running thread, loading another thread’s volatile state, and
        starting the new thread’s execution.
As already noted, Windows schedules at the thread granularity.
        This approach makes sense when you consider that processes don’t run
        but only provide resources and a context in which their threads run.
        Because scheduling decisions are made strictly on a thread basis, no
        consideration is given to what process the thread belongs to. For
        example, if process A has 10 runnable threads, process B has 2
        runnable threads, and all 12 threads are at the same priority, each
        thread would theoretically receive one-twelfth of the CPU time—Windows
        wouldn’t give 50 percent of the CPU to process A and 50 percent to
        process B.

Priority Levels



To understand the thread-scheduling algorithms, one must first
        understand the priority levels that Windows uses. As illustrated in
        Figure 5-14, internally Windows uses 32
        priority levels, ranging from 0 through 31. These values divide up as
        follows:
	Sixteen real-time levels (16 through 31)

	Sixteen variable levels (0 through 15), out of which level 0
            is reserved for the zero page thread



[image: Thread priority levels]

Figure 5-14. Thread priority levels

Thread priority levels are assigned from two different
        perspectives: those of the Windows API and those of the Windows
        kernel. The Windows API first organizes processes by the priority
        class to which they are assigned at creation (the numbers represent
        the internal PROCESS_PRIORITY_CLASS_ index recognized by the kernel):
        Real-time (4), High (3), Above Normal (7), Normal (2), Below Normal
        (5), and Idle (1).
It then assigns a relative priority of the individual
        threads within those processes. Here, the numbers represent a priority
        delta that is applied to the process base priority: Time-critical
        (15), Highest (2), Above-normal (1), Normal (0), Below-normal (–1),
        Lowest (–2), and Idle (–15).
Therefore, in the Windows API, each thread has a base priority
        that is a function of its process priority class and its relative
        thread priority. In the kernel, the process priority class is
        converted to a base priority by using the
        PspPriorityTable and the PROCESS_PRIORITY_CLASS
        indices shown earlier, which sets priorities of 4, 8, 13, 24, 6, and
        10, respectively. (This is a fixed mapping that cannot be changed.)
        The relative thread priority is then applied as a differential to this
        base priority. For example, a “Highest” thread will receive a thread
        base priority of two levels higher than the base priority of its
        process.
This mapping from Windows priority to internal Windows numeric
        priority is shown in Table 5-3.
Table 5-3. Mapping of Windows Kernel Priorities to the Windows
          API
	Priority Class Relative
                Priority
	Realtime
	High
	Above Normal
	Normal
	Below Normal
	Idle

	Time Critical (+
                SATURATION)
	31
	15
	15
	15
	15
	15

	Highest (+2)
	26
	15
	12
	10
	8
	6

	Above Normal (+1)
	25
	14
	11
	9
	7
	5

	Normal (0)
	24
	13
	10
	8
	6
	4

	Below Normal (-1)
	23
	12
	9
	7
	5
	3

	Lowest (-2)
	22
	11
	8
	6
	4
	2

	Idle (- SATURATION)
	16
	1
	1
	1
	1
	1




You’ll note that the Time-Critical and Idle relative thread
        priorities maintain their respective values regardless of the process
        priority class (unless it is Realtime). This is because the Windows
        API requests saturation of the priority from the kernel, by actually
        passing in 16 or -16 as the requested relative priority (instead of 15
        or -15). This is then recognized by the kernel as a request for
        saturation, and the Saturation field in KTHREAD is set. This causes,
        for positive saturation, the thread to receive the highest possible
        priority within its priority class (dynamic or real-time), or for
        negative saturation, the lowest possible one. Additionally, future
        requests to change the base priority of the process will no longer
        affect the base priority of these threads, because saturated threads
        are skipped in the processing code.
Whereas a process has only a single base priority value, each
        thread has two priority values: current and base. Scheduling decisions
        are made based on the current priority. As explained in the following
        section on priority boosting, the system under certain circumstances
        increases the priority of threads in the dynamic range (0 through 15)
        for brief periods. Windows never adjusts the priority of threads in
        the real-time range (16 through 31), so they always have the same base
        and current priority.
A thread’s initial base priority is inherited from the
        process base priority. A process, by default, inherits its base
        priority from the process that created it. This behavior can be
        overridden on the CreateProcess function or by
        using the command-line start command. A process priority can also be
        changed after being created by using the
        SetPriorityClass function or various tools that
        expose that function, such as Task Manager and Process Explorer (by
        right-clicking on the process and choosing a new priority class). For
        example, you can lower the priority of a CPU-intensive process so that
        it does not interfere with normal system activities. Changing the
        priority of a process changes the thread priorities up or down, but
        their relative settings remain the same.
Normally, user applications and services start with a normal
        base priority, so their initial thread typically executes at priority
        level 8. However, some Windows system processes (such as the session
        manager, service control manager, and local security authentication
        process) have a base process priority slightly higher than the default
        for the Normal class (8). This higher default value ensures that the
        threads in these processes will all start at a higher priority than
        the default value of 8.
Real-Time Priorities



You can raise or lower thread priorities within the dynamic
          range in any application; however, you must have the increase
          scheduling priority privilege to enter the real-time range. Be aware
          that many important Windows kernel-mode system threads run in the
          real-time priority range, so if threads spend excessive time running
          in this range, they might block critical system functions (such as
          in the memory manager, cache manager, or other device
          drivers).
Using the standard Windows APIs, once a process has entered
          the real-time range, all of its threads (even Idle ones) must run at
          one of the real-time priority levels. It is thus impossible to mix
          real-time and dynamic threads within the same process through
          standard interfaces. This is because the
          SetThreadPriority API calls the native
          NtSetInformationThread API with the
          ThreadBasePriority information class, which
          allows priorities to remain only in the same range. Furthermore,
          this information class allows priority changes only in the
          recognized Windows API deltas of –2 to 2 (or real-time/idle), unless
          the request comes from CSRSS or a real-time process. In other words,
          this means that a real-time process does have the ability to pick
          thread priorities anywhere between 16 and 31, even though the
          standard Windows API relative thread priorities would seem to limit
          its choices based on the table that was shown earlier.
However, by calling this API with the
          ThreadActualBasePriority information class, the
          kernel base priority for the thread can be directly set, including
          in the dynamic range for a real-time process.
Note
As illustrated in Figure 5-15, which shows
            the interrupt request levels (IRQLs), although Windows has a set
            of priorities called real-time, they are not real-time in the
            common definition of the term. This is because Windows doesn’t
            provide true, real-time operating system facilities, such as
            guaranteed interrupt latency or a way for threads to obtain a
            guaranteed execution time.


Interrupt Levels vs. Priority Levels



As illustrated in Figure 5-15 of the
          interrupt request levels (IRQLs) for a 32-bit system, threads
          normally run at IRQL 0 (called passive level,
          because no interrupts are in process and none are blocked) or IRQL 1
          (APC level). (For a description of how Windows uses interrupt
          levels, see Chapter 3.) User-mode code
          always runs at passive level. Because of this, no user-mode thread,
          regardless of its priority, can ever block hardware interrupts
          (although high-priority, real-time threads can block the execution
          of important system threads).
Threads running in kernel mode, although initially scheduled
          at passive level or APC level, can raise IRQL to higher levels—for
          example, while executing a system call that involves thread
          dispatching, memory management, or input/output. If a thread does
          raise IRQL to dispatch level or above, no further thread-scheduling
          behavior will occur on its processor until it lowers IRQL below
          dispatch level. A thread executing at dispatch level or above blocks
          the activity of the thread scheduler and prevents thread context
          switches on its processor.
A thread running in kernel mode can be running at APC level if
          it is running a special kernel APC; or it can temporarily raise IRQL
          to APC level to block the delivery of special kernel APCs. (For more
          information on APCs, see Chapter 3.)
          However, executing at APC level does not alter the scheduling
          behavior of the thread vs. other threads; it affects only the
          delivery of kernel APCs to that thread. In fact, a thread executing
          in kernel mode at APC level can be preempted in favor of a higher
          priority thread running in user mode at passive level.
[image: Thread priorities vs. IRQLs on an x86 system]

Figure 5-15. Thread priorities vs. IRQLs on an x86 system


Using Tools to Interact with Priority



You can change (and view) the base-process priority
          with Task Manager and Process Explorer. You can kill individual
          threads in a process with Process Explorer (which should be done, of
          course, with extreme care).
You can view individual thread priorities with the Performance
          Monitor, Process Explorer, or WinDbg. Although it might be useful to
          increase or lower the priority of a process, it typically does not
          make sense to adjust individual thread priorities within a process,
          because only a person who thoroughly understands the program (in
          other words, typically only the developer himself) would understand
          the relative importance of the threads within the process.
The only way to specify a starting priority class for a
          process is with the start command in the Windows command prompt. If
          you want to have a program start every time with a specific
          priority, you can define a shortcut to use the start command by
          beginning the command with cmd
          /c. This runs the command prompt, executes the command on
          the command line, and terminates the command prompt. For example, to
          run Notepad in the low-process priority, the shortcut is cmd /c start /low Notepad.exe.
EXPERIMENT: Examining and Specifying Process and Thread
            Priorities
Try the following experiment:
	From an elevated command prompt, type start /realtime notepad. Notepad
                should open.

	Run Process Explorer, and select Notepad.exe from the
                list of processes. Double-click on Notepad.exe to show the
                process properties window, and then click on the Threads tab,
                as shown here. Notice that the dynamic priority of the thread
                in Notepad is 24. This matches the
                real-time value shown in the following image.
[image: image with no caption]


	Task Manager can show you similar information. Press
                Ctrl+Shift+Esc to start Task Manager, and click on the
                Processes tab. Right-click on the Notepad.exe process, and
                select the Set Priority option. You can see that Notepad’s
                process priority class is Realtime, as shown in the following
                dialog box:
[image: image with no caption]





Windows System Resource Manager
Windows Server 2008 R2 Standard Edition and higher
            SKUs include an optionally installable component called Windows
            System Resource Manager (WSRM). It permits the administrator to
            configure policies that specify CPU utilization, affinity
            settings, and memory limits (both physical and virtual) for
            processes. In addition, WSRM can generate resource utilization
            reports that can be used for accounting and verification of
            service-level agreements with users.
Policies can be applied for specific applications (by
            matching the name of the image with or without specific
            command-line arguments), users, or groups. The policies can be
            scheduled to take effect at certain periods or can be enabled all
            the time.
After you set a resource-allocation policy to manage
            specific processes, the WSRM service monitors CPU consumption of
            managed processes and adjusts process base priorities when those
            processes do not meet their target CPU allocations.
The physical memory limitation uses the function
            SetProcessWorkingSetSizeEx to set a
            hard-working set maximum. The virtual memory limit is implemented
            by the service checking the private virtual memory consumed by the
            processes. (See Chapter 10 in Part 2 for an explanation of these
            memory limits.) If this limit is exceeded, WSRM can be configured
            to either kill the processes or write an entry to the Event Log.
            This behavior can be used to detect a process with a memory leak
            before it consumes all the available committed memory on the
            system. Note that WSRM memory limits do not apply to Address
            Windowing Extensions (AWE) memory, large page memory, or kernel
            memory (nonpaged or paged pool).



Thread States



Before you can comprehend the thread-scheduling algorithms, you
        need to understand the various execution states that a thread can be
        in. The thread states are as follows:
	Ready. A thread in the ready state is waiting to execute (or
              ready to be in-swapped after completing a wait). When looking
              for a thread to execute, the dispatcher considers only the pool
              of threads in the ready state.

	Deferred ready. This state is used for threads that have been selected to
              run on a specific processor but have not actually started
              running there. This state exists so that the kernel can minimize
              the amount of time the per-processor lock on the scheduling
              database is held.

	Standby. A thread in the standby state has been selected to run
              next on a particular processor. When the correct conditions
              exist, the dispatcher performs a context switch to this thread.
              Only one thread can be in the standby state for each processor
              on the system. Note that a thread can be preempted out of the
              standby state before it ever executes (if, for example, a higher
              priority thread becomes runnable before the standby thread
              begins execution).

	Running. Once the dispatcher performs a context switch to a
              thread, the thread enters the running state and executes. The
              thread’s execution continues until its quantum ends (and another
              thread at the same priority is ready to run), it is preempted by
              a higher priority thread, it terminates, it yields execution, or
              it voluntarily enters the waiting state.

	Waiting. A thread can enter the waiting state in several ways: a
              thread can voluntarily wait for an object to synchronize its
              execution, the operating system can wait on the thread’s behalf
              (such as to resolve a paging I/O), or an environment subsystem
              can direct the thread to suspend itself. When the thread’s wait
              ends, depending on the priority, the thread either begins
              running immediately or is moved back to the ready state.

	Transition. A thread enters the transition state if it is ready for
              execution but its kernel stack is paged out of memory. Once its
              kernel stack is brought back into memory, the thread enters the
              ready state.

	Terminated. When a thread finishes executing, it enters the terminated
              state. Once the thread is terminated, the executive thread
              object (the data structure in a nonpaged pool that describes the
              thread) might or might not be deallocated. (The object manager
              sets the policy regarding when to delete the object.)

	Initialized. This state is used internally while a thread is being
              created.



Table 5-4 describes the
        state transitions for threads, and Figure 5-16 illustrates a
        simplified version. (The numeric values shown represent the value of
        the thread-state performance counter.) In the simplified version, the
        Ready, Standby, and Deferred Ready states are represented as one. This
        reflects the fact that the Standby and Deferred Ready states act as
        temporary placeholders for the scheduling routines. These states are
        almost always very short-lived; threads in these states always
        transition quickly to Ready, Running, or Waiting. More details on what
        happens at each transition are included later in this section.
Table 5-4. Thread States and Transitions
	 	Init
	Ready
	Running
	Standby
	Terminated
	Waiting
	Transition
	Deferred Ready
	 
	Init
	 	 	 	 	 	 	 	 	A thread becomes Initialized during
                the first few moments of its creation
                (KeStartThread).

	Ready
	 	 	 	 	 	 	 	A thread is added in the
                dispatcherready database of its ideal
                processor.
	 
	Running
	 	Selected by
                KiSearchForNewThread
	 	Picked up for execution by local
                CPU
	 	Preemption after wait
                satisfaction
	 	 	 
	Standby
	 	Selected by
                KiSelectNextThread
	 	 	 	 	 	Selected by
                KiDeferredReadyThread for remote CPU
	 
	Terminated
	Killed before
                PspInsertThread finished
	 	Killed
	 	 	 	 	 	A thread can kill only itself. It
                must be in the Running state before entering
                KeTerminateThread.

	Waiting
	 	 	Thread enters a wait
	 	 	 	 	 	Only running threads can
                wait.

	Transition
	 	 	 	 	 	Kernel stack no longer
                resident
	 	 	Only waiting threads can
                transition.

	Deferred Ready
	Last step in
                PspInsertThread
	Affinity change
	Thread becomes preempted (if old
                processor is no longer available)
	Affinity change
	 	Wait satisfaction (but no
                preemption)
	Kernel stack swap-in
                completed
	 	 



[image: Simplified version of thread states and transitions]

Figure 5-16. Simplified version of thread states and transitions

EXPERIMENT: Thread-Scheduling State Changes
You can watch thread-scheduling state changes with the
          Performance tool in Windows. This utility can be useful when you’re
          debugging a multithreaded application and you’re unsure about the
          state of the threads running in the process. To watch
          thread-scheduling state changes by using the Performance tool,
          follow these steps:
	Run Notepad (Notepad.exe).

	Start the Performance tool by selecting All Programs from
              the Start menu and then selecting Performance Monitor from the
              Administrative Tools menu. Click on the Performance Monitor
              entry under Monitoring Tools.

	Select the chart view if you’re in some other view.

	Right-click on the graph, and choose Properties.

	Click on the Graph tab, and change the chart vertical
              scale maximum to 7. (As you’ll see from the explanation text for
              the performance counter, thread states are numbered from 0
              through 7.) Click OK.

	Click the Add button on the toolbar to bring up the Add
              Counters dialog box.

	Select the Thread performance object, and then select the
              Thread State counter. Select the Show Description check box to
              see the definition of the values:
[image: image with no caption]


	In the Instances box, select <All instances> and
              type Notepad before clicking Search. Scroll down until you see
              the Notepad process (notepad/0); select it,
              and click the Add button.

	Scroll back up in the Instances box to the
              Mmc process (the Microsoft Management
              Console process running the System Monitor), select all the
              threads (mmc/0, mmc/1,
              and so on), and add them to the chart by clicking the Add
              button. Before you click Add, you should see something like the
              dialog box that follows.
[image: image with no caption]


	Now close the Add Counters dialog box by clicking
              OK.

	You should see the state of the Notepad thread (the very
              top line in the following figure) as a 5. As shown in the
              explanation text you saw under step 7, this number represents
              the waiting state (because the thread is waiting for GUI
              input):
[image: image with no caption]


	Notice that one thread in the
              Mmc process (running the Performance tool
              snap-in) is in the running state (number 2). This is the thread
              that’s querying the thread states, so it’s always displayed in
              the running state.

	You’ll never see Notepad in the running state (unless
              you’re on a multiprocessor system) because
              Mmc is always in the running state when it
              gathers the state of the threads you’re monitoring.





Dispatcher Database



To make thread-scheduling decisions, the kernel maintains a set
        of data structures known collectively as the dispatcher database,
        illustrated in Figure 5-17. The dispatcher
        database keeps track of which threads are waiting to execute and which
        processors are executing which threads.
To improve scalability, including thread-dispatching
        concurrency, Windows multiprocessor systems have per-processor
        dispatcher ready queues, as illustrated in Figure 5-17. In this way,
        each CPU can check its own ready queues for the next thread to run
        without having to lock the systemwide ready queues.
The per-processor ready queues, as well as the per-processor
        ready summary, are part of the processor control block (PRCB)
        structure. (To see the fields in the PRCB, type dt nt!_kprcb in the kernel debugger.) The
        names of each component that we will talk about (in italics) are field
        members of the PRCB structure.
The dispatcher ready queues
        (DispatcherReadyListHead) contain the threads
        that are in the ready state, waiting to be scheduled for execution.
        There is one queue for each of the 32 priority levels. To speed up the
        selection of which thread to run or preempt, Windows maintains a
        32-bit bit mask called the ready summary
        (ReadySummary). Each bit set indicates one or
        more threads in the ready queue for that priority level. (Bit 0
        represents priority 0, and so on.)
Instead of scanning each ready list to see whether it is empty
        or not (which would make scheduling decisions dependent on the number
        of different priority threads), a single bit scan is performed as a
        native processor command to find the highest bit set. Regardless of
        the number of threads in the ready queue, this operation takes a
        constant amount of time, which is why you might sometimes see the
        Windows scheduling algorithm referred to as an O(1), or constant time,
        algorithm.
[image: Windows multiprocessor dispatcher database]

Figure 5-17. Windows multiprocessor dispatcher database

The dispatcher database is synchronized by raising IRQL
        to DISPATCH_LEVEL. (For an explanation of interrupt priority levels,
        see the Trap Dispatching section in Chapter 3.) Raising IRQL in this way prevents
        other threads from interrupting thread dispatching on the processor
        because threads normally run at IRQL 0 or 1. However, more is required
        than just raising IRQL, because other processors can simultaneously
        raise to the same IRQL and attempt to operate on their dispatcher
        database. How Windows synchronizes access to the dispatcher database
        is explained in the Multiprocessor Systems section
        later in the chapter.

Quantum



As mentioned earlier in the chapter, a quantum is the amount of
        time a thread gets to run before Windows checks to see whether another
        thread at the same priority is waiting to run. If a thread completes
        its quantum and there are no other threads at its priority, Windows
        permits the thread to run for another quantum.
On client versions of Windows, threads run by default for 2
        clock intervals; on server systems, by default, a thread runs for 12
        clock intervals. (We’ll explain how you can change these values
        later.) The rationale for the longer default value on server systems
        is to minimize context switching. By having a longer quantum, server
        applications that wake up as the result of a client request have a
        better chance of completing the request and going back into a wait
        state before their quantum ends.
The length of the clock interval varies according to the
        hardware platform. The frequency of the clock interrupts is up to the
        HAL, not the kernel. For example, the clock interval for most x86
        uniprocessors is about 10 milliseconds (note that these machines are
        no longer supported by Windows and are only used here for example
        purposes), and for most x86 and x64 multiprocessors it is about 15
        milliseconds. This clock interval is stored in the kernel variable
        KeMaximumIncrement as hundreds of
        nanoseconds.
Because thread run-time accounting is based on processor cycles,
        although threads still run in units of clock intervals, the system
        does not use the count of clock ticks as the deciding factor for how
        long a thread has run and whether its quantum has expired. Instead,
        when the system starts up, a calculation is made whose result is the
        number of clock cycles that each quantum is equivalent to. (This value
        is stored in the kernel variable
        KiCyclesPerClockQuantum.) This calculation is
        made by multiplying the processor speed in Hz (CPU clock cycles per
        second) with the number of seconds it takes for one clock tick to fire
        (based on the KeMaximumIncrement value described
        earlier).
The result of this accounting method is that threads do not
        actually run for a quantum number based on clock ticks; they instead
        run for a quantum target, which represents an estimate of what the
        number of CPU clock cycles the thread has consumed should be when its
        turn would be given up. This target should be equal to an equivalent
        number of clock interval timer ticks because, as you just saw, the
        calculation of clock cycles per quantum is based on the clock interval
        timer frequency, which you can check using the following experiment.
        On the other hand, because interrupt cycles are not charged to the
        thread, the actual clock time might be longer.
EXPERIMENT: Determining the Clock Interval Frequency
The Windows GetSystemTimeAdjustment
          function returns the clock interval. To determine the clock
          interval, download and run the Clockres program from Windows
          Sysinternals (www.microsoft.com/technet/sysinternals).
          Here’s the output from a dual-core 64-bit Windows 7 system:
C:\>clockres

ClockRes v2.0 - View the system clock resolution
Copyright (C) 2009 Mark Russinovich
SysInternals - www.sysinternals.com

Maximum timer interval: 15.600 ms
Minimum timer interval: 0.500 ms
Current timer interval: 15.600 ms

Quantum Accounting



Each process has a quantum reset value in the process control
          block (KPROCESS). This value is used when creating new threads
          inside the process and is duplicated in the thread control block
          (KTHREAD), which is then used when giving a thread a new quantum
          target. The quantum reset value is stored in terms of actual quantum units
          (we’ll discuss what these mean soon), which are then multiplied by
          the number of clock cycles per quantum, resulting in the quantum
          target.
As a thread runs, CPU clock cycles are charged at different
          events (context switches, interrupts, and certain scheduling
          decisions). If at a clock interval timer interrupt, the number of
          CPU clock cycles charged has reached (or passed) the quantum target,
          quantum end processing is triggered. If there is another thread at
          the same priority waiting to run, a context switch occurs to the
          next thread in the ready queue.
Internally, a quantum unit is represented as one third of a
          clock tick. (So one clock tick equals three quantums.) This means
          that on client Windows systems, threads, by default, have a quantum
          reset value of 6 (2 * 3), and that server
          systems have a quantum reset value of 36 (12 * 3). For this reason,
          the KiCyclesPerClockQuantum value is divided by
          three at the end of the calculation previously described, because
          the original value describes only CPU clock cycles per clock
          interval timer tick.
The reason a quantum was stored internally as a fraction of a
          clock tick rather than as an entire tick was to allow for partial
          quantum decay-on-wait completion on versions of Windows prior to
          Windows Vista. Prior versions used the clock interval timer for
          quantum expiration. If this adjustment were not made, it would have
          been possible for threads never to have their quantums reduced. For
          example, if a thread ran, entered a wait state, ran again, and
          entered another wait state but was never the currently running
          thread when the clock interval timer fired, it would never have its
          quantum charged for the time it was running. Because threads now
          have CPU clock cycles charged instead of quantums, and because this
          no longer depends on the clock interval timer, these adjustments are
          not required.
EXPERIMENT: Determining the Clock Cycles per
            Quantum
Windows doesn’t expose the number of clock cycles per
            quantum through any function, but with the calculation and
            description we’ve given, you should be able to determine this on
            your own using the following steps and a kernel debugger such as
            WinDbg in local debugging mode:
	Obtain your processor frequency as Windows has detected
                it. You can use the value stored in the PRCB’s MHz field,
                which can be displayed with the !cpuinfo
                command. Here is a sample output of a dual-core Intel system
                running at 2829 MHz:
lkd> !cpuinfo
CP  F/M/S Manufacturer  MHz PRCB Signature    MSR 8B Signature Features
 0  6,15,6 GenuineIntel 2829 000000c700000000 >000000c700000000<a00f3fff
 1  6,15,6 GenuineIntel 2829 000000c700000000                   a00f3fff
                      Cached Update Signature 000000c700000000
                     Initial Update Signature 000000c700000000

	Convert the number to Hertz (Hz). This is the number of
                CPU clock cycles that occur each second on your system. In
                this case, 2,829,000,000 cycles per second.

	Obtain the clock interval on your system by
                using clockres. This measures how long it
                takes before the clock fires. On the sample system used here,
                this interval was 15.600100 ms.

	Convert this number to the number of times the clock
                interval timer fires each second. One second is 1000 ms, so
                divide the number derived in step 3 by 1000. In this case, the
                timer fires every 0.0156001 seconds.

	Multiply this count by the number of cycles each second
                that you obtained in step 2. In our case, 44,132,682.9 cycles
                have elapsed after each clock interval.

	Remember that each quantum unit is one-third of a clock
                interval, so divide the number of cycles by three. In our
                example, this gives us 14,710,894, or 0xE0786E in hexadecimal.
                This is the number of clock cycles each quantum unit should
                take on a system running at 2829 MHz with a clock interval of
                around 15 ms.

	To verify your calculation, dump the value of
                KiCyclesPerClockQuantum on your system—it
                should match.
lkd> dd nt!KiCyclesPerClockQuantum L1
81d31ae8  00e0786e





Controlling the Quantum



You can change the thread quantum for all processes, but you
          can choose only one of two settings: short (2 clock ticks, which is
          the default for client machines) or long (12 clock ticks, which is
          the default for server systems).
Note
By using the job object on a system running with long
            quantums, you can select other quantum values for the processes in
            the job. For more information on the job object, see the Job Objects section later in the chapter.

To change this setting, right-click on your Computer icon on
          the desktop, or in Windows Explorer, choose Properties, click the
          Advanced System Settings label, click on the Advanced tab, click the
          Settings button in the Performance section, and finally click on the
          Advanced tab. The dialog box displayed is shown in Figure 5-18.
[image: Quantum configuration in the Performance Options dialog box]

Figure 5-18. Quantum configuration in the Performance Options dialog
            box

The Programs setting designates the use of short,
          variable quantums—the default for client versions of Windows. If you
          install Terminal Services on a server system and configure the
          server as an application server, this setting is selected so that
          the users on the terminal server have the same quantum settings that
          would normally be set on a desktop or client system. You might also
          select this manually if you were running Windows Server as your
          desktop operating system.
The Background Services option designates the use of long,
          fixed quantums—the default for server systems. The only reason you
          might select this option on a workstation system is if you were
          using the workstation as a server system. However, because changes
          in this option take effect immediately, it might make sense to use
          it if the machine is about to run a background/server-style
          workload. For example, if a long-running computation, encoding or
          modeling simulation needs to run overnight, Background Services mode
          could be selected at night, and the system put back in Programs mode
          in the morning.
Finally, because Programs mode enables variable quantums, let
          us now explain what controls their variability.

Variable Quantums



When variable quantums are enabled, the variable
          quantum table (PspVariableQuantums) is loaded
          into the PspForegroundQuantum table that is
          used by the PspComputeQuantum function. Its
          algorithm will pick the appropriate quantum index based on whether
          or not the process is a foreground process (that is, whether it
          contains the thread that owns the foreground window on the desktop).
          If this is not the case, an index of zero is chosen, which
          corresponds to the default thread quantum described earlier. If it
          is a foreground process, the quantum index corresponds to the
          priority separation.
This priority separation value determines the priority boost
          (described in a later section of this chapter) that the scheduler
          will apply to foreground threads, and it is thus paired with an
          appropriate extension of the quantum: for each extra priority level
          (up to 2), another quantum is given to the thread. For example, if
          the thread receives a boost of one priority level, it receives an
          extra quantum as well. By default, Windows sets the maximum possible
          priority boost to foreground threads, meaning that the priority
          separation will be 2, therefore selecting quantum index 2 in the
          variable quantum table, leading to the thread receiving two extra
          quantums, for a total of 3 quantums.
Table 5-5 describes the exact quantum
          value (recall that this is stored in a unit representing 1/3rd of a
          clock tick) that will be selected based on the quantum index and
          which quantum configuration is in use.
Table 5-5. Quantum Values
	 	Short Quantum
                  Index
	Long Quantum
                  Index

	Variable
	6
	12
	18
	12
	24
	36

	Fixed
	18
	18
	18
	36
	36
	36




Thus, when a window is brought into the foreground on a client
          system, all the threads in the process containing the thread that
          owns the foreground window have their quantums tripled: threads in
          the foreground process run with a quantum of 6 clock ticks, whereas
          threads in other processes have the default client quantum of 2
          clock ticks. In this way, when you switch away from a CPU-intensive
          process, the new foreground process will get proportionally more of
          the CPU, because when its threads run they will have a longer turn
          than background threads (again, assuming the thread priorities are
          the same in both the foreground and background processes).

Quantum Settings Registry Value



The user interface to control quantum settings described
          earlier modifies the registry value
          HKLM\SYSTEM\CurrentControlSet\Control\PriorityControl\Win32PrioritySeparation.
          In addition to specifying the relative length of thread quantums
          (short or long), this registry value also defines whether or not
          variable quantums should be used, as well as the priority separation
          (which, as you’ve seen, will determine the quantum index used when
          variable quantums are enabled). This value consists of 6 bits
          divided into the three 2-bit fields shown in Figure 5-19.
[image: Fields of the Win32PrioritySeparation registry value]

Figure 5-19. Fields of the Win32PrioritySeparation registry
            value

The fields shown in Figure 5-19 can be defined
          as follows:
	Short vs.
                Long. A value of 1 specifies long quantums, and 2 specifies
                short ones. A setting of 0 or 3 indicates that the default
                appropriate for the system will be used (short for client
                systems, long for server systems).

	Variable vs.
                Fixed. A setting of 1 means to enable the variable quantum
                table based on the algorithm shown in the Variable Quantums section. A setting of
                0 or 3 means that
                the default appropriate for the system will be used (variable
                for client systems, fixed for server systems).

	Priority
                Separation. This field (stored in the kernel variable
                PsPrioritySeparation) defines the
                priority separation (up to 2) as explained in the Variable Quantums section.



Note that when you’re using the Performance Options dialog box
          (which was shown in Figure 5-18), you can
          choose from only two combinations: short quantums with foreground
          quantums tripled, or long quantums with no quantum changes for
          foreground threads. However, you can select other combinations by
          modifying the Win32PrioritySeparation registry
          value directly.
Note that the threads part of a process running in the idle
          process priority class always receive a single thread quantum (2
          clock ticks), ignoring any sort of quantum configuration settings,
          whether set by default or set through the registry.
On Windows Server systems configured as applications servers,
          the initial value of the
          Win32PrioritySeparation registry value will be
          hex 26, which is identical to the value set by the Optimize
          Performance For Programs option in the Performance Options dialog
          box. This selects quantum and priority boost behavior like that on
          Windows client systems, which is appropriate for a server primarily
          used to host users’ applications.
On Windows client systems and on servers not configured as
          application servers, the initial value of the
          Win32PrioritySeparation registry value will be
          2. This provides values of 0 for the Short vs. Long and Variable vs.
          Fixed bit fields, relying on the default behavior of the system
          (depending on whether it is a client system or a server system) for
          these options, but it provides a value of 2 for the Priority
          Separation field. Once the registry value has been changed by use of
          the Performance Options dialog box, it cannot be restored to this
          original value other than by modifying the registry directly.
EXPERIMENT: Effects of Changing the Quantum
            Configuration
Using a local debugger (Kd or WinDbg), you can see
            how the two quantum configuration settings, Programs and
            Background Services, affect the
            PsPrioritySeparation and
            PspForegroundQuantum tables, as well as
            modify the QuantumReset value of threads on
            the system. Take the following steps:
	Open the System utility in Control Panel (or right-click
                on your computer name’s icon on the desktop, and choose
                Properties). Click the Advanced System Settings label, click
                on the Advanced tab, click the Settings button in the
                Performance section, and finally click on the Advanced tab.
                Select the Programs option, and click Apply. Keep this window
                open for the duration of the experiment.

	Dump the values of
                PsPrioritySeparation and
                PspForegroundQuantum, as shown here. The
                values shown are what you should see on a Windows system after
                making the change in step 1. Notice how the variable, short
                quantum table is being used, and that a priority boost of 2
                will apply to foreground applications:
lkd> dd PsPrioritySeparation L1
81d3101c  00000002
lkd> db PspForegroundQuantum L3
81d0946c  06 0c 12
...

	Now take a look at the QuantumReset
                value of any process on the system. As described earlier, this
                is the default, full quantum of each thread on the system when
                it is replenished. This value is cached into each thread of
                the process, but the KPROCESS structure is easier to look at.
                Notice in this case it is 6, because
                WinDbg, like most other applications, gets the quantum set in
                the first entry of the
                PspForegroundQuantum table:
lkd> .process
Implicit process is now 85b32d90
lkd> dt nt!_KPROCESS 85b32d90 QuantumReset
nt!_KPROCESS
   +0x061 QuantumReset     : 6 ''

	Now change the Performance option to Background Services
                in the dialog box you opened in step 1.

	Repeat the commands shown in steps 2 and 3. You should
                see the values change in a manner consistent with our
                discussion in this section:
lkd> dd nt!PsPrioritySeparation L1
81d3101c  00000000
lkd> db nt!PspForegroundQuantum L3
81d0946c  24 24 24                                         $$$
lkd> dt nt!_KPROCESS 85b32d90 QuantumReset
nt!_KPROCESS
   +0x061 QuantumReset     : 36 '$'






Priority Boosts



The Windows scheduler periodically adjusts the current
        priority of threads through an internal priority-boosting mechanism.
        In many cases, it does so for decreasing various latencies (that is,
        to make threads respond faster to the events they are waiting on) and
        increasing responsiveness. In others, it applies these boosts to
        prevent inversion and starvation scenarios. Here are some of the boost
        scenarios that will be described in this section (and their
        purpose):
	Boosts due to scheduler/dispatcher events (latency
            reduction)

	Boosts due to I/O completion (latency reduction)

	Boosts due to UI input (latency
            reduction/responsiveness)

	Boosts due to a thread waiting on an executive resource for
            too long (starvation avoidance)

	Boosts when a thread that’s ready to run hasn’t been running
            for some time (starvation and priority-inversion avoidance)



Like any scheduling algorithms, however, these adjustments
        aren’t perfect, and they might not benefit all applications.
Note
Windows never boosts the priority of threads in the real-time
          range (16 through 31). Therefore, scheduling is always predictable
          with respect to other threads in the real-time range. Windows
          assumes that if you’re using the real-time thread priorities, you
          know what you’re doing.

Client versions of Windows also include another pseudo-boosting
        mechanism that occurs during multimedia playback. Unlike the other
        priority boosts, which are applied directly by kernel code, multimedia
        playback boosts are actually managed by a user-mode service called the
        MultiMedia Class Scheduler Service (MMCSS), but they are not really
        boosts—the service merely sets new base priorities for the threads as
        needed (by calling the user-mode native API to change thread
        priorities). Therefore, none of the rules regarding boosts apply.
        We’ll first cover the typical kernel-managed priority boosts and then
        talk about MMCSS and the kind of “boosting” it performs.
Boosts Due to Scheduler/Dispatcher Events



Whenever a dispatch event occurs, the
          KiExitDispatcher routine is called, whose job
          it is to process the deferred ready list by calling
          KiProcessThreadWaitList and then call
          KiCheckForThreadDispatch to check whether any
          threads on the local processor should not be scheduled. Whenever
          such an event occurs, the caller can also specify which type of
          boost should be applied to the thread, as well as what priority
          increment the boost should be associated with. The following
          scenarios are considered as AdjustUnwait
          dispatch events because they deal with a dispatcher object entering
          a signaled state, which might cause one or more threads to wake
          up:
	An APC is queued to a thread.

	An event is set or pulsed.

	A timer was set, or the system time was changed,
              and timers had to be reset.

	A mutex was released or abandoned.

	A process exited.

	An entry was inserted in a queue, or the queue was
              flushed.

	A semaphore was released.

	A thread was alerted, suspended, resumed, frozen, or
              thawed.

	A primary UMS thread is waiting to switch to a scheduled
              UMS thread.



For scheduling events associated with a public API (such as
          SetEvent), the boost increment applied is
          specified by the caller. Windows recommends certain values to be
          used by developers, which will be described later. For alerts, a
          boost of 2 is applied, because the alert API does not have a
          parameter allowing a caller to set a custom increment.
The scheduler also has two special
          AdjustBoost dispatch events, which are part of
          the lock ownership priority mechanism. These boosts attempt to fix
          situations in which a caller that owns the lock at priority X ends
          up releasing the lock to a waiting thread at priority <= X. In
          this situation, the new owner thread must wait for its turn (if
          running at priority X), or worse, it might not even get to run at
          all if its priority is lower than X. This entails the releasing
          thread continuing its execution, even though it should have caused
          the new owner thread to wake up and take control of the processor.
          The following two dispatcher events cause an
          AdjustBoost dispatcher exit:
	An event is set through the
              KeSetEventBoostPriority interface, which is
              used by the ERESOURCE reader-writer kernel lock

	A gate is set through the
              KeSignalGateBoostPriority interface, which
              is used by various internal mechanisms when releasing a gate
              lock.




Unwait Boosts



Unwait boosts attempt to decrease the latency between a thread
          waking up due to an object being signaled (thus entering the Ready
          state) and the thread actually beginning its execution to process
          the unwait (thus entering the Running state). Because the event that
          the thread is waiting on could give some sort of information about,
          say, the state of available memory at the moment, it is important
          for this state not to change behind the scenes while the thread is
          still stuck in the Ready state—otherwise, it might become irrelevant
          or incorrect once the thread does start running.
The various Windows header files specify recommended values
          that kernel-mode callers of APIs such as
          KeSetEvent and
          KeReleaseSemaphore should use, which correspond
          to definitions such as MUTANT_INCREMENT and EVENT_INCREMENT. These
          definitions have always been set to 1 in the headers, so it is safe
          to assume that most unwaits on these objects result in a boost of 1.
          In the user-mode API, an increment cannot be specified, nor do the
          native system calls such as NtSetEvent have
          parameters to specify such a boost. Instead, when these APIs call
          the underlying Ke interface, they use the
          default _INCREMENT definition automatically. This is also the case
          when mutexes are abandoned or timers are reset due to a system time change: the
          system uses the default boost that normally would’ve been applied
          when the mutex would have been released. Finally, the APC boost is
          completely up to the caller. Soon, you’ll see a specific usage of
          the APC boost related to I/O completion.
Note
Some dispatcher objects don’t have boosts associated with
            them. For example, when a timer is set or expires, or when a
            process is signaled, no boost is applied.

All these boosts of +1 attempt to solve the initial problem by
          making the assumption that both the releasing and waiting threads
          are running at the same priority. By boosting the waiting thread by
          one priority level, the waiting thread should preempt the releasing
          thread as soon as the operation completes. Unfortunately on
          uniprocessor systems, if this assumption does not hold, the boost
          might not do much: if the waiting thread is waiting at priority 4
          vs. the releasing thread at priority 8, waiting at priority 5 won’t
          do much to reduce latency and force preemption. On multiprocessor
          systems, however, due to the stealing and balancing algorithms, this
          higher priority thread may have a higher chance to get picked up by
          another logical processor. This reality is due to a design choice
          made in the initial NT architecture, which is not to track lock
          ownership (except a few locks). That means the scheduler can’t be
          sure who really owns an event, and if it’s really being used as a
          lock. Even with lock ownership tracking, ownership is not usually
          passed in order to avoid convoy issues, other than in the ERESOURCE
          case which we’ll explain below.
However, for certain kinds of lock objects using events or
          gates as their underlying synchronization object, the lock ownership
          boost resolves the dilemma. Also, due to the processor-distribution
          and load-balancing schemes you’ll see later, on a multiprocessor
          machine, the ready thread might get picked up on another processor,
          and its high priority might increase the chances of it running on
          that secondary processor instead.

Lock Ownership Boosts



Because the executive-resource (ERESOURCE) and
          critical-section locks use underlying dispatcher objects, releasing
          these locks results in an unwait boost as described earlier. On the
          other hand, because the high-level implementation of these objects
          does track the owner of the lock, the kernel can make a more
          informed decision as to what kind of boost should be applied, by
          using the AdjustBoost reason. In these kinds of
          boosts, AdjustIncrement is set to the current
          priority of the releasing (or setting) thread, minus any GUI
          foreground separation boost, and before the
          KiExitDispatcher function is called,
          KiRemoveBoostThread is called by the event and
          gate code to return the releasing thread back to its regular
          priority (through the KiComputeNewPriority
          function). This step is needed to avoid a lock convoy situation, in
          which two threads repeatedly passing the lock between one another
          get ever-increasing boosts.
Note that pushlocks, which are unfair locks because ownership
          of the lock in a contended acquisition path is not predictable
          (rather, it’s random, just like a spinlock), do not apply priority
          boosts due to lock ownership. This is because doing so only
          contributes to preemption and priority proliferation, which isn’t
          required because the lock becomes immediately free as soon as it is
          released (bypassing the normal wait/unwait path).
Other differences between the lock ownership boost and
          the unwait boost will be exposed in the way that the scheduler
          actually applies boosting, which is the upcoming topic after this
          section.

Priority Boosting After I/O Completion



Windows gives temporary priority boosts upon completion of
          certain I/O operations so that threads that were waiting for an I/O
          have more of a chance to run right away and process whatever was
          being waited for. Although you’ll find recommended boost values in
          the Windows Driver Kit (WDK) header files (by searching for “#define
          IO” in Wdm.h or Ntddk.h), the actual value for the boost is up to
          the device driver. (These values are listed in Table 5-6.) It is the device driver that
          specifies the boost when it completes an I/O request on its call to
          the kernel function, IoCompleteRequest. In
          Table 5-6, notice that I/O
          requests to devices that warrant better responsiveness have higher
          boost values.
Table 5-6. Recommended Boost Values
	Device
	Boost

	Disk, CD-ROM, parallel,
                  video
	1

	Network, mailslot, named pipe,
                  serial
	2

	Keyboard, mouse
	6

	Sound
	8




Note
You might intuitively expect “better responsiveness” from
            your video card or disk than a boost of 1, but in fact, the kernel
            is trying to optimize for latency, which some
            devices (as well as human sensory inputs) are more sensitive to
            than others. To give you an idea, a sound card expects data around
            every 1 ms to play back music without perceptible glitches, while
            a video card needs to output at only 24 frames per second, or once
            every 40 ms, before the human eye can notice glitches.

As hinted earlier, these I/O completion boosts rely on the
          unwait boosts seen in the previous section. In Chapter 8 of Part 2,
          the mechanism of I/O completion will be shown in depth. For now, the
          important detail is that the kernel implements the signaling code in
          the IoCompleteRequest API through the use of
          either an APC (for asynchronous I/O) or through an event (for
          synchronous I/O). When a driver passes in, for example,
          IO_DISK_INCREMENT to IoCompleteRequest for an
          asynchronous disk read, the kernel calls
          KeInsertQueueApc with the boost parameter set
          to IO_DISK_INCREMENT. In turn, when the thread’s wait is broken due
          to the APC, it receives a boost of 1.
Be aware that the boost values given in the previous table are
          merely recommendations by Microsoft—driver developers are free to
          ignore them if they choose to do so, and certain specialized drivers
          can use their own values. For example, a driver handling ultrasound
          data from a medical device, which must notify a user-mode
          visualization application of new data, would probably use a boost
          value of 8 as well, to satisfy the same latency
          as a sound card.
In most cases, however, due to the way Windows driver
          stacks are built (again, see Chapter 8, “I/O System,” in Part 2 for
          more information), driver developers often write
          minidrivers, which call into a Microsoft-owned
          driver that supplies its own boost to
          IoCompleteRequest. For example, RAID or SATA
          controller card developers would typically call
          StorPortCompleteRequest to complete processing
          their requests. This call does not have any parameter for a boost
          value, because the Storport.sys driver fills in the right value when
          calling the kernel.
Additionally, in newer versions of Windows, whenever any file
          system driver (identified by setting its device type to
          FILE_DEVICE_DISK_FILE_SYSTEM or FILE_DEVICE_NETWORK_FILE_SYSTEM)
          completes its request, a boost of IO_DISK_INCREMENT is always
          applied if the driver passed in IO_NO_INCREMENT instead. So this
          boost value has become less of a recommendation and more of a
          requirement enforced by the kernel.

Boosts During Waiting on Executive Resources



When a thread attempts to acquire an executive resource
          (ERESOURCE; see Chapter 3 for more
          information on kernel-synchronization objects) that is already owned
          exclusively by another thread, it must enter a wait state until the
          other thread has released the resource. To limit the risk of
          deadlocks, the executive performs this wait in intervals of five
          seconds instead of doing an infinite wait on the resource.
At the end of these five seconds, if the resource is still
          owned, the executive attempts to prevent CPU starvation by acquiring
          the dispatcher lock, boosting the owning thread or threads to 14
          (only if the original owner priority is less than the waiter’s and
          not already 14), resetting their quantums, and performing another
          wait.
Because executive resources can be either shared or exclusive,
          the kernel first boosts the exclusive owner and then checks for
          shared owners and boosts all of them. When the waiting thread enters
          the wait state again, the hope is that the scheduler will schedule
          one of the owner threads, which will have enough time to complete
          its work and release the resource. Note that this boosting mechanism
          is used only if the resource doesn’t have the Disable Boost flag
          set, which developers can choose to set if the priority-inversion
          mechanism described here works well with their usage of the
          resource.
Additionally, this mechanism isn’t perfect. For example, if
          the resource has multiple shared owners, the executive boosts all
          those threads to priority 14, resulting in a sudden surge of
          high-priority threads on the system, all with full quantums.
          Although the initial owner thread will run first (because it was the
          first to be boosted and therefore is first on the ready list), the
          other shared owners will run next, because the waiting thread’s
          priority was not boosted. Only after all the shared owners have had
          a chance to run and their priority has been decreased below the
          waiting thread will the waiting thread finally get its chance to
          acquire the resource. Because shared owners can promote or convert
          their ownership from shared to exclusive as soon as the exclusive
          owner releases the resource, it’s possible for this mechanism not to
          work as intended.

Priority Boosts for Foreground Threads After Waits



As will be shortly described, whenever a thread in the
          foreground process completes a wait operation on a kernel object,
          the kernel boosts its current (not base) priority by the current
          value of PsPrioritySeparation. (The windowing
          system is responsible for determining which process is considered to
          be in the foreground.) As described in the section on quantum
          controls, PsPrioritySeparation reflects the
          quantum-table index used to select quantums for the threads of
          foreground applications. However, in this case, it is being used as
          a priority boost value.
The reason for this boost is to improve the responsiveness of
          interactive applications—by giving the foreground application a
          small boost when it completes a wait, it has a better chance of
          running right away, especially when other processes at the same base
          priority might be running in the background.
EXPERIMENT: Watching Foreground Priority Boosts and
            Decays
Using the CPU Stress tool (downloadable from
            http://live.sysinternals.com/WindowsInternals),
            you can watch priority boosts in action. Take the following
            steps:
	Open the System utility in Control Panel (or right-click
                on your computer name’s icon on the desktop, and choose
                Properties). Click the Advanced System Settings label, click
                on the Advanced tab, click the Settings button in the
                Performance section, and finally click on the Advanced tab.
                Select the Programs option. This causes
                PsPrioritySeparation to get a value of
                2.

	Run Cpustres.exe, and change the activity of thread 1
                from Low to Busy.

	Start the Performance tool by selecting Programs from
                the Start menu and then selecting Performance Monitor from the
                Administrative Tools menu. Click on the Performance Monitor
                entry under Monitoring Tools.

	Click the Add Counter toolbar button (or press Ctrl+I)
                to bring up the Add Counters dialog box.

	Select the Thread object, and then select the %
                Processor Time counter.

	In the Instances box, select <All Instances> and
                click Search. Scroll down until you see the CPUSTRES process.
                Select the second thread (thread 1). (The first thread is the
                GUI thread.) You should see something like this:
[image: image with no caption]


	Click the Add button, and then click OK.

	Select Properties from the Action menu. Change the
                Vertical Scale Maximum to 16 on the Graph
                tab, and set the interval to 1 in Sample
                Every box of the Graph Elements area on the General
                tab.
[image: image with no caption]


	Now bring the CPUSTRES process to the
                foreground. You should see the priority of the CPUSTRES thread
                being boosted by 2 and then decaying back to the base priority
                as follows:
[image: image with no caption]


	The reason CPUSTRES receives a boost of 2 periodically
                is because the thread you’re monitoring is sleeping about 25
                percent of the time and then waking up. (This is the Busy
                Activity level). The boost is applied when the thread wakes
                up. If you set the Activity level to Maximum, you won’t see
                any boosts because Maximum in CPUSTRES puts the thread into an
                infinite loop. Therefore, the thread doesn’t invoke any wait
                functions and, as a result, doesn’t receive any boosts.

	When you’ve finished, exit Performance Monitor and CPU
                Stress.





Priority Boosts After GUI Threads Wake Up



Threads that own windows receive an additional boost of 2 when
          they wake up because of windowing activity such as the arrival of
          window messages. The windowing system (Win32k.sys) applies this
          boost when it calls KeSetEvent to set an event
          used to wake up a GUI thread. The reason for this boost is similar
          to the previous one—to favor interactive applications.
EXPERIMENT: Watching Priority Boosts on GUI Threads
You can also see the windowing system apply its
            boost of 2 for GUI threads that wake up to process window messages
            by monitoring the current priority of a GUI application and moving
            the mouse across the window. Just follow these steps:
	Open the System utility in Control Panel (or right-click
                on your computer name’s icon on the desktop, and choose
                Properties). Click the Advanced System Settings label, click
                on the Advanced tab, click the Settings button in the
                Performance section, and finally click on the Advanced tab. Be
                sure that the Programs option is selected. This causes
                PsPrioritySeparation to get a value of
                2.

	Run Notepad from the Start menu by selecting All
                Programs/Accessories/Notepad.

	Start the Performance tool by selecting Programs from
                the Start menu and then selecting Performance Monitor from the
                Administrative Tools menu. Click on the Performance Monitor
                entry under Monitoring Tools.

	Click the Add Counter toolbar button (or press Ctrl+N)
                to bring up the Add Counters dialog box.

	Select the Thread object, and then select the Priority
                Current counter.

	In the Instances box, type Notepad, and then click Search.
                Scroll down until you see Notepad/0. Click it, click the Add
                button, and then click OK.

	As in the previous experiment, select Properties from
                the Action menu. Change the Vertical Scale Maximum to
                16 on the Graph tab, set the interval to
                1 in Sample Every box of the Graph
                Elements area of the General tab, and click OK.

	You should see the priority of thread 0 in Notepad at 8
                or 10. Because Notepad entered a wait state shortly after it
                received the boost of 2 that threads in the foreground process
                receive, it might not yet have decayed from 10 to 8.

	With Performance Monitor in the foreground, move the
                mouse across the Notepad window. (Make both windows visible on
                the desktop.) You’ll see that the priority sometimes remains
                at 10 and sometimes at 9, for the reasons just explained. (The
                reason you won’t likely catch Notepad at 8 is that it runs so
                little after receiving the GUI thread boost of 2 that it never
                experiences more than one priority level of decay before
                waking up again because of additional windowing activity and
                receiving the boost of 2 again.)

	Now bring Notepad to the foreground. You should see the
                priority rise to 12 and remain there (or drop to 11, because
                it might experience the normal priority decay that occurs for
                boosted threads on the quantum end) because the thread is
                receiving two boosts: the boost of 2 applied to GUI
                threads when they wake up to process windowing input, and an
                additional boost of 2 because Notepad is in the
                foreground.

	If you then move the mouse over Notepad (while it’s
                still in the foreground), you might see the priority drop to
                11 (or maybe even 10) as it experiences the priority decay
                that normally occurs on boosted threads as they complete their
                turn. However, the boost of 2 that is applied because it’s the
                foreground process remains as long as Notepad remains in the
                foreground.

	When you’ve finished, exit Performance Monitor and
                Notepad.





Priority Boosts for CPU Starvation



Imagine the following situation: you have a priority 7 thread
          that’s running, preventing a priority 4 thread from ever receiving
          CPU time; however, a priority 11 thread is waiting for some resource
          that the priority 4 thread has locked. But because the priority 7
          thread in the middle is eating up all the CPU time, the priority 4
          thread will never run long enough to finish whatever it’s doing and
          release the resource blocking the priority 11 thread. What does
          Windows do to address this situation?
You previously saw how the executive code responsible for
          executive resources manages this scenario by boosting the owner
          threads so that they can have a chance to run and release the
          resource. However, executive resources are only one of the many
          synchronization constructs available to developers, and the boosting
          technique will not apply to any other primitive. Therefore, Windows
          also includes a generic CPU starvation-relief mechanism as part of a
          thread called the balance set manager (a system thread that exists
          primarily to perform memory-management functions and is described in
          more detail in Chapter 10 of Part 2).
Once per second, this thread scans the ready queues for any
          threads that have been in the ready state (that is, haven’t run) for
          approximately 4 seconds. If it finds such a thread, the balance-set
          manager boosts the thread’s priority to 15 and sets the quantum
          target to an equivalent CPU clock cycle count of 3 quantum units.
          Once the quantum expires, the thread’s priority decays immediately
          to its original base priority. If the thread wasn’t finished and a
          higher priority thread is ready to run, the decayed thread returns
          to the ready queue, where it again becomes eligible for another
          boost if it remains there for another 4 seconds.
The balance-set manager doesn’t actually scan all of the ready
          threads every time it runs. To minimize the CPU time it uses, it
          scans only 16 ready threads; if there are more threads at that
          priority level, it remembers where it left off and picks up again on
          the next pass. Also, it will boost only 10 threads per pass—if it
          finds 10 threads meriting this particular boost (which indicates an
          unusually busy system), it stops the scan at that point and picks up
          again on the next pass.
Note
We mentioned earlier that scheduling decisions in
            Windows are not affected by the number of threads and that they
            are made in constant time, or O(1). Because the balance-set
            manager needs to scan ready queues manually, this operation
            depends on the number of threads on the system, and more threads
            will require more scanning time. However, the balance-set manager
            is not considered part of the scheduler or its algorithms and is
            simply an extended mechanism to increase reliability.
            Additionally, because of the cap on threads and queues to scan,
            the performance impact is minimized and predictable in a
            worst-case scenario.

Will this algorithm always solve the priority-inversion issue?
          No—it’s not perfect by any means. But over time, CPU-starved threads
          should get enough CPU time to finish whatever processing they were
          doing and re-enter a wait state.
EXPERIMENT: Watching Priority Boosts for CPU
            Starvation
Using the CPU Stress tool, you can watch priority boosts in
            action. In this experiment, you’ll see CPU usage change when a
            thread’s priority is boosted. Take the following steps:
	Run Cpustres.exe. Change the activity level of the
                active thread (by default, Thread 1) from Low to Maximum.
                Change the thread priority from Normal to Below Normal. The
                screen should look like this:
[image: image with no caption]


	Start the Performance tool by selecting Programs from
                the Start menu and then selecting Performance Monitor from the
                Administrative Tools menu. Click on the Performance Monitor
                entry under Monitoring Tools.

	Click the Add Counter toolbar button (or press Ctrl+N)
                to bring up the Add Counters dialog box.

	Select the Thread object, and then select the Priority
                Current counter.

	In the Instances box, type CPUSTRES, and then click
                Search. Scroll down until you see the second thread (thread
                1). (The first thread is the GUI thread.) You should see
                something like this:
[image: image with no caption]


	Click the Add button, and then click OK.

	Raise the priority of Performance Monitor to real time
                by running Task Manager, clicking on the Processes tab, and
                selecting the Mmc.exe process. Right-click the process, select
                Set Priority, and then select Realtime. (If you receive a Task
                Manager Warning message box warning you of system instability,
                click the Yes button.) If you have a multiprocessor system,
                you also need to change the affinity of the process:
                right-click and select Set Affinity. Then clear all other CPUs
                except for CPU 0.

	Run another copy of CPU Stress. In this copy, change the
                activity level of Thread 1 from Low to Maximum.

	Now switch back to Performance Monitor. You should see
                CPU activity every six or so seconds because the thread is
                boosted to priority 15. You can force updates to occur more
                frequently than every second by pausing the display with
                Ctrl+F, and then pressing Ctrl+U, which forces a manual update
                of the counters. Keep Ctrl+U pressed for continual
                refreshes.



When you’ve finished, exit Performance Monitor and the two
            copies of CPU Stress.

EXPERIMENT: “Listening” to Priority Boosting
To “hear” the effect of priority boosting for CPU
            starvation, perform the following steps on a system with a sound
            card:
	Because of MMCSS’ priority boosts (which we will
                describe in the next subsection), you need to stop the
                MultiMedia Class Scheduler Service by opening the Services
                management interface (Start, Programs, Administrative Tools,
                Services).

	Run Windows Media Player (or some other audio-playback
                program), and begin playing some audio content.

	Run Cpustres, and set the activity level of Thread 1 to
                Maximum.

	Use Task Manager to set the affinities of both Windows
                Media Player and Cpustres to a single CPU.

	Raise the priority of Thread 1 of Cpustres from Normal
                to Time Critical.

	You should hear the music playback stop as the
                computer-bound thread begins consuming all available CPU
                time.

	Every so often, you should hear bits of sound as the
                starved thread in the audio playback process gets boosted to
                15 and runs enough to send more data to the sound card.

	Stop Cpustres and Windows Media Player, and start the
                MMCSS service again.





Applying Boosts



Back in KiExitDispatcher, you saw that
          KiProcessThreadWaitList is called to process
          any threads in the deferred ready list. It is here that the boost
          information passed by the caller is processed. This is done by
          looping through each DeferredReady thread,
          unlinking its wait blocks (only Active and Bypassed blocks are
          unlinked), and then setting two key values in the kernel’s thread
          control block: AdjustReason and
          AdjustIncrement. The reason is one of the two
          Adjust possibilities seen earlier, and the increment corresponds to
          the boost value. KiDeferredReadyThread is then
          called, which makes the thread ready for execution, by running two
          algorithms: the quantum and priority selection algorithm, which you
          are about to see in two parts, and the processor selection
          algorithm, which is shown in its respective section later in this
          topic.
Let’s first look at when the algorithm applies boosts, which
          happens only in the cases where a thread is not in the real-time
          priority range.
For an AdjustUnwait boost, it will be
          applied only if the thread is not already experiencing an unusual
          boost and only if the thread has not disabled boosting by calling
          SetThreadPriorityBoost, which sets the
          DisableBoost flag in the KTHREAD. Another
          situation that can disable boosting in this case is if the kernel has realized that the
          thread actually exhausted its quantum (but the clock interrupt did
          not fire to consume it) and the thread came out of a wait that
          lasted less than two clock ticks.
If these situations are not currently true, the new priority
          of the thread will be computed by adding the
          AdjustIncrement to the thread’s current base
          priority. Additionally, if the thread is known to be part of a
          foreground process (meaning that the memory priority is set to
          MEMORY_PRIORITY_FOREGROUND, which is configured by Win32k.sys when
          focus changes), this is where the priorityseparation boost
          (PsPrioritySeparation) is applied by adding its
          value on top of the new priority. This is also known as the
          Foreground Priority boost, which was explained earlier.
Finally, the kernel checks whether this newly computed
          priority is higher than the current priority of the thread, and it
          limits this value to an upper bound of 15 to avoid crossing into the
          real-time range. It then sets this value as the thread’s new current
          priority. If any foreground separation boost was applied, it sets
          this value in the ForegroundBoost field of the
          KTHREAD, which results in a PriorityDecrement
          equal to the separation boost.
For AdjustBoost boosts, the kernel checks
          whether the thread’s current priority is lower than the
          AdjustIncrement (recall this is the priority of
          the setting thread) and whether the thread’s current priority is
          below 13. If so, and priority boosts have not
          been disabled for the thread, the
          AdjustIncrement priority is used as the new
          current priority, limited to a maximum of 13.
          Meanwhile, the UnusualBoost field of the
          KTHREAD contains the boost value, which results in a
          PriorityDecrement equal to the lock ownership
          boost.
In all cases where a PriorityDecrement is
          present, the quantum of the thread is also recomputed to be the
          equivalent of only one clock tick, based on the value of
          KiLockQuantumTarget. This ensures that
          foreground and unusual boosts will be lost after one clock tick
          instead of the usual two (or other configured value), as will be
          shown in the next section. This also happens when an
          AdjustBoost is requested but the thread is
          running at priority 13 or 14 or with boosts disabled.
After this work is complete, AdjustReason
          is now set to AdjustNone.

Removing Boosts



Removing boosts is done in
          KiDeferredReadyThread just as boosts and
          quantum recomputations are being applied (as shown in the previous
          section). The algorithm first begins by checking the type of
          adjustment being done.
For an AdjustNone scenario, which means
          the thread became ready due to perhaps a preemption, the thread’s
          quantum will be recomputed if it already hit its target but the
          clock interrupt has not yet noticed, as long as the thread was
          running at a dynamic priority level. Additionally, the thread’s
          priority will be recomputed. For an
          AdjustUnwait or
          AdjustBoost scenario on a non-real-time thread,
          the kernel checks whether the thread silently exhausted its quantum
          (just as in the prior section). If it did, or if the thread was
          running with a base priority of 14 or higher, or if no
          PriorityDecrement is present and the thread has
          completed a wait that lasted longer than two clock ticks, the
          quantum of the thread is recomputed, as is its priority.
Priority recomputation happens on non-real-time
          threads, and it’s done by taking the thread’s current priority,
          subtracting its foreground boost, subtracting is unusual boost (the
          combination of these last two items is the
          PriorityDecrement), and finally subtracting
          one. Finally, this new priority is bounded with the base priority as
          the lowest bound, and any existing priority decrement is zeroed out
          (clearing unusual and foreground boosts). This means that in the
          case of a lock ownership boost, or any of the unusual boosts
          explained, the entire boost value is now lost. On the other hand,
          for a regular AdjustUnwait boost, the priority
          naturally trickles down by one due to the subtraction by one. This
          lowering eventually stops when the base priority is hit due to the
          lower bound check.
There is another instance where boosts must be removed, which
          goes through the KiRemoveBoostThread function.
          This is a special-case boost removal, which occurs due to the
          lock-ownership boost rule, which specifies that the setting thread
          must lose its boost when donating its current priority to the waking
          thread (to avoid a lock convoy). It is also used to undo the boost
          due to targeted DPC-calls as well as the boost against ERESOURCE
          lock-starvation boost. The only special detail about this routine is
          that when computing the new priority, it takes special care to
          separate the ForegroundBoost vs.
          UnusualBoost components of the
          PriorityDecrement in order to maintain any GUI
          foreground-separation boost that the thread accumulated. This
          behavior, new to Windows 7, ensures that threads relying on the
          lock-ownership boost do not behave erratically when running in the
          foreground, or vice-versa.
Figure 5-20 displays an
          example of how normal boosts are removed from a thread as it
          experiences quantum end.
[image: Priority boosting and decay]

Figure 5-20. Priority boosting and decay


Priority Boosts for Multimedia Applications and Games



As you just saw in the last experiment, although Windows’
          CPU-starvation priority boosts might be enough to get a thread out
          of an abnormally long wait state or potential deadlock, they simply
          cannot deal with the resource requirements imposed by a
          CPU-intensive application such as Windows Media Player or a 3D
          computer game.
Skipping and other audio glitches have been a common
          source of irritation among Windows users in the past, and the
          user-mode audio stack in Windows makes the situation worse because
          it offers even more chances for preemption. To address this, client
          versions of Windows incorporate a service (called MMCSS, described
          earlier in this chapter) whose purpose is to ensure glitch-free
          multimedia playback for applications that register with it.
MMCSS works by defining several tasks, including the
          following:
	Audio

	Capture

	Distribution

	Games

	Playback

	Pro Audio

	Window Manager



Note
You can find the settings for MMCSS, including a lists of
            tasks (which can be modified by OEMs to include other specific
            tasks as appropriate) in the registry keys under
            HKLM\SOFTWARE\Microsoft\Windows
            NT\CurrentVersion\Multimedia\SystemProfile. Additionally, the
            SystemResponsiveness value allows you to
            fine-tune how much CPU usage MMCSS guarantees to low-priority
            threads.

In turn, each of these tasks includes information about the
          various properties that differentiate them. The most important one
          for scheduling is called the Scheduling Category, which is the
          primary factor determining the priority of threads registered with
          MMCSS. Table 5-7 shows the various
          scheduling categories.
Table 5-7. Scheduling Categories
	Category
	Priority
	Description

	High
	23-26
	Pro Audio threads running at a
                  higher priority than any other thread on the system except
                  for critical system threads

	Medium
	16-22
	The threads part of a foreground
                  application such as Windows Media Player

	Low
	8-15
	All other threads that are not
                  part of the previous categories

	Exhausted
	1-7
	Threads that have exhausted their
                  share of the CPU and will continue running only if no other
                  higher priority threads are ready to run




The main mechanism behind MMCSS boosts the priority of threads
          inside a registered process to the priority level matching their
          scheduling category and relative priority within this category for a
          guaranteed period of time. It then lowers those threads to the
          Exhausted category so that other, nonmultimedia threads on the
          system can also get a chance to execute.
By default, multimedia threads get 80 percent of the
          CPU time available, while other threads receive 20 percent (based on
          a sample of 10 ms; in other words, 8 ms and 2 ms, respectively).
          MMCSS itself runs at priority 27 because it needs to preempt any Pro
          Audio threads in order to lower their priority to the Exhausted
          category.
Keep in mind that the kernel still does the actual boosting of
          the values inside the KTHREAD (MMCSS simply makes the same kind of
          system call any other application would), and the scheduler is still
          in control of these threads. It is simply their high priority that
          makes them run almost uninterrupted on a machine, because they are
          in the real-time range and well above threads that most user
          applications run in.
As was discussed earlier, changing the relative thread
          priorities within a process does not usually make sense, and no tool
          allows this because only developers understand the importance of the
          various threads in their programs. On the other hand, because
          applications must manually register with MMCSS and provide it with
          information about what kind of thread this is, MMCSS does have the
          necessary data to change these relative thread priorities (and
          developers are well aware that this will be happening).
EXPERIMENT: “Listening” to MMCSS Priority Boosting
You’ll now perform the same experiment as the prior one but
            without disabling the MMCSS service. In addition, you’ll look at
            the Performance tool to check the priority of the Windows Media
            Player threads.
	Run Windows Media Player (because other playback
                programs might not yet take advantage of the API calls
                required to register with MMCSS), and begin playing some audio
                content.

	If you have a multiprocessor machine, be sure to set the
                affinity of the Wmplayer.exe process so that it runs on only
                one CPU (because you’ll use only one CPUSTRES worker
                thread).

	Start the Performance tool by selecting Programs from
                the Start menu and then selecting Performance Monitor from the
                Administrative Tools menu. Click on the Performance Monitor
                entry under Monitoring Tools.

	Click the Add Counter toolbar button (or press Ctrl+N)
                to bring up the Add Counters dialog box.

	Select the Thread object, and then select the Priority
                Current.

	In the Instances box, type Wmplayer, click Search, and then
                select all its threads. Click the Add button, and then click
                OK.

	As in the previous experiment, select Properties from
                the Action menu. Change the Vertical Scale Maximum to 31 on
                the Graph tab, set the interval to 1 in Sample Every Seconds
                of the Graph Elements area on the General tab, and click
                OK.
You should see one or more priority 21 threads inside
                Wmplayer, which will be constantly running unless there is a
                higher-priority thread requiring the CPU after they are
                dropped to the Exhausted category.

	Run Cpustres, and set the activity level of Thread 1 to
                Maximum.

	Raise the priority of Thread 1 from Normal to Time
                Critical.

	You should notice the system slowing down considerably,
                but the music playback will continue. Every so often, you’ll
                be able to get back some responsiveness from the rest of the
                system. Use this time to stop Cpustres.

	If the Performance tool was unable to capture data
                during the time Cpustres ran, run it again, but use Highest
                instead of Time Critical. This change will slow down the
                system less, but it still requires boosting from MMCSS.
                Because once the multimedia thread is put in the Exhausted
                category there will always be a higher priority thread
                requesting the CPU (CPUSTRES), you should notice Wmplayer’s
                priority 21 thread drop every so often, as shown here:
[image: image with no caption]





MMCSS’ functionality does not stop at simple priority
          boosting, however. Because of the nature of network drivers on
          Windows and the NDIS stack, deferred procedure calls (DPCs) are
          quite common mechanisms for delaying work after an interrupt has
          been received from the network card. Because DPCs run at an IRQL
          level higher than user-mode code (see Chapter 3 for more information on DPCs and
          IRQLs), long-running network card driver code can still interrupt
          media playback during network transfers or when playing a game, for
          example.
Therefore, MMCSS also sends a special command to the network
          stack, telling it to throttle network packets during the duration of
          the media playback. This throttling is designed to maximize playback
          performance, at the cost of some small loss in network throughput
          (which would not be noticeable for network operations usually
          performed during playback, such as playing an online game). The
          exact mechanisms behind it do not belong to any area of the
          scheduler, so we’ll leave them out of this description.
Note
The original implementation of the network throttling code
            had some design issues that caused significant network throughput
            loss on machines with 1000 Mbit network adapters, especially if
            multiple adapters were present on the system (a common feature of
            midrange motherboards). This issue was analyzed by the MMCSS and
            networking teams at Microsoft and later fixed.



Context Switching



A thread’s context and the procedure for context switching vary
        depending on the processor’s architecture. A typical context switch
        requires saving and reloading the following data:
	Instruction pointer

	Kernel stack pointer

	A pointer to the address space in which the thread runs (the
            process’ page table directory)



The kernel saves this information from the old thread by pushing
        it onto the current (old thread’s) kernel-mode stack, updating the
        stack pointer, and saving the stack pointer in the old thread’s
        KTHREAD structure. The kernel stack pointer is then set to the new
        thread’s kernel stack, and the new thread’s context is loaded. If the
        new thread is in a different process, it loads the address of its page
        table directory into a special processor register so that its address
        space is available. (See the description of address translation in
        Chapter 10 in Part 2.) If a kernel APC that needs to be delivered is
        pending, an interrupt at IRQL 1 is requested. (For more information on
        APCs, see Chapter 3.) Otherwise, control
        passes to the new thread’s restored instruction pointer and the new
        thread resumes execution.

Scheduling Scenarios



Windows bases the question of “Who gets the CPU?” on
        thread priority, but how does this approach work in practice? The
        following sections illustrate just how priority-driven preemptive
        multitasking works on the thread level.
Voluntary Switch



First a thread might voluntarily relinquish use of the
          processor by entering a wait state on some object (such as an event,
          a mutex, a semaphore, an I/O completion port, a process, a thread, a
          window message, and so on) by calling one of the Windows wait
          functions (such as WaitForSingleObject or
          WaitForMultipleObjects). Waiting for objects is
          described in more detail in Chapter 3.
Figure 5-21 illustrates a thread
          entering a wait state and Windows selecting a new thread to run. In
          Figure 5-21, the top block (thread) is
          voluntarily relinquishing the processor so that the next thread in
          the ready queue can run (as represented by the halo it has when in
          the Running column). Although it might appear from this figure that
          the relinquishing thread’s priority is being reduced, it’s not—it’s
          just being moved to the wait queue of the objects the thread is
          waiting for.
[image: Voluntary switching]

Figure 5-21. Voluntary switching


Preemption



In this scheduling scenario, a lower-priority thread is
          preempted when a higher-priority thread becomes ready to run. This
          situation might occur for a couple of reasons:
	A higher-priority thread’s wait completes. (The event that
              the other thread was waiting for has occurred.)

	A thread priority is increased or decreased.



In either of these cases, Windows must determine
          whether the currently running thread should still continue to run or
          whether it should be preempted to allow a higher-priority thread to
          run.
Note
Threads running in user mode can preempt threads running in
            kernel mode—the mode in which the thread is running doesn’t
            matter. The thread priority is the determining factor.

When a thread is preempted, it is put at the head of the ready
          queue for the priority it was running at. Figure 5-22 illustrates this
          situation.
[image: Preemptive thread scheduling]

Figure 5-22. Preemptive thread scheduling

In Figure 5-22, a thread
          with priority 18 emerges from a wait state and repossesses the CPU,
          causing the thread that had been running (at priority 16) to be
          bumped to the head of the ready queue. Notice that the bumped thread
          isn’t going to the end of the queue but to the beginning; when the
          preempting thread has finished running, the bumped thread can
          complete its quantum.

Quantum End



When the running thread exhausts its CPU quantum, Windows must
          determine whether the thread’s priority should be decremented and
          then whether another thread should be scheduled on the
          processor.
If the thread priority is reduced, Windows looks for a more
          appropriate thread to schedule. (For example, a more appropriate
          thread would be a thread in a ready queue with a higher priority
          than the new priority for the currently running thread.) If the
          thread priority isn’t reduced and there are other threads in the
          ready queue at the same priority level, Windows selects the next
          thread in the ready queue at that same priority level and moves the
          previously running thread to the tail of that queue (giving it a new
          quantum value and changing its state from running to ready). This
          case is illustrated in Figure 5-23. If no other thread of
          the same priority is ready to run, the thread gets to run for
          another quantum.
[image: Quantum end thread scheduling]

Figure 5-23. Quantum end thread scheduling

As you saw, instead of simply relying on a clock interval
          timer–based quantum to schedule threads, Windows uses an accurate
          CPU clock cycle count to maintain quantum targets. One factor we
          haven’t yet mentioned is that Windows also uses this count to
          determine whether quantum end is currently appropriate for the
          thread—something that might have happened previously and is
          important to discuss.
Using a scheduling model that relies only on the clock
          interval timer, the following situation can occur:
	Threads A and B become ready to run during the middle of
              an interval. (Scheduling code runs not just at each clock
              interval, so this is often the case.)

	Thread A starts running but is interrupted for a while.
              The time spent handling the interrupt is charged to the
              thread.

	Interrupt processing finishes and thread A starts running
              again, but it quickly hits the next clock interval. The
              scheduler can assume only that thread A had been running all
              this time and now switches to thread B.

	Thread B starts running and has a chance to run for a full
              clock interval (barring pre-emption or interrupt
              handling).



In this scenario, thread A was unfairly penalized in two
          different ways. First, the time it spent handling a device interrupt
          was accounted to its own CPU time, even though the thread probably
          had nothing to do with the interrupt. (Recall that interrupts are
          handled in the context of whichever thread was running at the time.)
          It was also unfairly penalized for the time the system was idling
          inside that clock interval before it was scheduled.
Figure 5-24
          represents this scenario.
[image: Unfair time slicing in previous versions of Windows]

Figure 5-24. Unfair time slicing in previous versions of Windows

Because Windows keeps an accurate count of the exact number of
          CPU clock cycles spent doing work that the thread was scheduled to
          do (which means excluding interrupts), and because it keeps a
          quantum target of clock cycles that should have been spent by the
          thread at the end of its quantum, both of the unfair decisions that
          would have been made against thread A will not happen in
          Windows.
Instead, the following situation occurs:
	Threads A and B become ready to run during the middle of
              an interval.

	Thread A starts running but is interrupted for a while.
              The CPU clock cycles spent handling the interrupt are not
              charged to the thread.

	Interrupt processing finishes and thread A starts running
              again, but it quickly hits the next clock interval. The
              scheduler looks at the number of CPU clock cycles charged to the
              thread and compares them to the expected CPU clock cycles that
              should have been charged at quantum end.

	Because the former number is much smaller than it should
              be, the scheduler assumes that thread A started running in the
              middle of a clock interval and might have been additionally
              interrupted.

	Thread A gets its quantum increased by another clock
              interval, and the quantum target is recalculated. Thread A now
              has its chance to run for a full clock interval.

	At the next clock interval, thread A has finished its
              quantum, and thread B now gets a chance to run.



Figure 5-25
          represents this scenario.
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Figure 5-25. Fair time slicing in current versions of Windows


Termination



When a thread finishes running (either because it
          returned from its main routine, called
          ExitThread, or was killed with
          TerminateThread), it moves from the running
          state to the terminated state. If there are no handles open on the
          thread object, the thread is removed from the process thread list
          and the associated data structures are deallocated and
          released.


Idle Threads



When no runnable thread exists on a CPU, Windows dispatches that
        CPU’s idle thread. Each CPU has its own dedicated idle thread, because
        on a multiprocessor system one CPU can be executing a thread while
        other CPUs might have no threads to execute. Each CPU’s idle thread is
        found via a pointer in that CPU’s PRCB.
All of the idle threads belong to the idle process. The idle
        process and idle threads are special cases in many ways. They are, of
        course, represented by EPROCESS/KPROCESS and ETHREAD/KTHREAD
        structures, but they are not executive manager processes and thread
        objects. Nor is the idle process on the system process list. (This is
        why it does not appear in the output of the kernel debugger’s
        !process 0 0 command.) However, the idle thread
        or threads and their process can be found in other ways.
EXPERIMENT: Displaying the Structures of the Idle Threads and
          Idle Process
The idle thread and process structures can be found in the
          kernel debugger via the !pcr command. “PCR” is
          short for “processor control region.” This command displays a subset
          of information from the PCR and also from the associated PRCB
          (processor control block). !pcr takes a single
          numeric argument, which is the number of the CPU whose PCR is to be
          displayed. The boot processor is processor number 0, and it is
          always present, so !pcr 0 should always work.
          The following output shows the results of this command from a memory
          dump taken from a 64-bit, four-processor system:
3: kd> !pcr 0
KPCR for Processor 0 at fffff800039fdd00:
    Major 1 Minor 1
        NtTib.ExceptionList: fffff80000b95000
            NtTib.StackBase: fffff80000b96080
           NtTib.StackLimit: 000000000008e2d8
         NtTib.SubSystemTib: fffff800039fdd00
              NtTib.Version: 00000000039fde80
          NtTib.UserPointer: fffff800039fe4f0
              NtTib.SelfTib: 000000007efdb000

                    SelfPcr: 0000000000000000
                       Prcb: fffff800039fde80
                       Irql: 0000000000000000
                        IRR: 0000000000000000
                        IDR: 0000000000000000
              InterruptMode: 0000000000000000
                        IDT: 0000000000000000
                        GDT: 0000000000000000
                        TSS: 0000000000000000

              CurrentThread: fffffa8007aa8060
                 NextThread: 0000000000000000
                 IdleThread: fffff80003a0bcc0

                  DpcQueue:
This output shows that CPU 0 was executing a thread
          other than its idle thread at the time the memory dump was obtained,
          because the CurrentThread and
          IdleThread pointers are different. (If you have
          a multi-CPU system you can try !pcr 1,
          !pcr 2, and so on, until you run out; observe
          that each IdleThread pointer is
          different.)
Now use the !thread command on the
          indicated idle thread address:
3: kd> !thread fffff80003a0bcc0
THREAD fffff80003a0bcc0  Cid 0000.0000  Teb: 0000000000000000 Win32Thread:
0000000000000000
  RUNNING on processor 0
Not impersonating
DeviceMap                 fffff8a000008aa0
Owning Process            fffff80003a0c1c0       Image:         Idle
Attached Process          fffffa800792a040       Image:         System
Wait Start TickCount      50774016       Ticks: 12213 (0:00:03:10.828)
Context Switch Count      1147613282
UserTime                  00:00:00.000
KernelTime                8 Days 07:21:56.656
Win32 Start Address nt!KiIdleLoop (0xfffff8000387f910)
Stack Init fffff80000b9cdb0 Current fffff80000b9cd40
Base fffff80000b9d000 Limit fffff80000b97000 Call 0
Priority 16 BasePriority 0 UnusualBoost 0 ForegroundBoost 0 IoPriority 0 PagePriority 0
Child-SP          RetAddr           : Args to Child     [...]: Call Site
fffff800'00b9cd80 00000000'00000000 : fffff800'00b9d000 [...]: nt!KiIdleLoop+0x10d
Finally, use the !process command on the
          “Owning Process” shown in the preceding output. For brevity, we’ll
          add a second parameter value of 3, which causes
          !process to emit only minimal information for
          each thread:
3: kd> !process fffff80003a0c1c0 3
PROCESS fffff80003a0c1c0
    SessionId: none  Cid: 0000    Peb: 00000000  ParentCid: 0000
    DirBase: 00187000  ObjectTable: fffff8a000001630  HandleCount: 1338.
    Image: Idle
    VadRoot fffffa8007846c00 Vads 1 Clone 0 Private 1. Modified 0. Locked 0.
    DeviceMap 0000000000000000
    Token                             fffff8a000004a40
    ElapsedTime                       00:00:00.000
    UserTime                          00:00:00.000
    KernelTime                        00:00:00.000
    QuotaPoolUsage[PagedPool]         0
    QuotaPoolUsage[NonPagedPool]      0
    Working Set Sizes (now,min,max)  (6, 50, 450) (24KB, 200KB, 1800KB)
    PeakWorkingSetSize                6
    VirtualSize                       0 Mb
    PeakVirtualSize                   0 Mb
    PageFaultCount                    1
    MemoryPriority                    BACKGROUND
    BasePriority                      0
    CommitCharge                      0

THREAD fffff80003a0bcc0  Cid 0000.0000  Teb: 0000000000000000 Win32Thread:
0000000000000000
  RUNNING on processor 0
THREAD fffff8800310afc0  Cid 0000.0000  Teb: 0000000000000000 Win32Thread:
0000000000000000
  RUNNING on processor 1
THREAD fffff8800317bfc0  Cid 0000.0000  Teb: 0000000000000000 Win32Thread:
0000000000000000
  RUNNING on processor 2
THREAD fffff880031ecfc0  Cid 0000.0000  Teb: 0000000000000000 Win32Thread:
0000000000000000
  RUNNING on processor 3
These process and thread addresses can be used with
          dt nt!_EPROCESS, dt
          nt!_KTHREAD, and other such commands as well.

The preceding experiment shows some of the anomalies associated
        with the idle process and its threads. The debugger indicates an
        “Image” name of “Idle” (which comes from the EPROCESS structure’s
        ImageFileName member), but various Windows
        utilities report the idle process using different names. Task Manager
        and Process Explorer call it System Idle Process,
        while Tlist calls it System Processes. The process
        ID and thread IDs (the “client IDs”, or “Cid” in the debugger’s
        output) are zero, as are the PEB and TEB pointers, and there are many
        other fields in the idle process or its threads that might be reported
        as 0. This occurs because the idle process has no user-mode address
        space and its threads execute no user-mode code, so they have no need
        of the various data needed to manage a user-mode environment. Also,
        the idle process is not an object-manager process object, and its idle
        threads are not object-manager thread objects. Instead, the initial
        idle thread and idle process structures are statically allocated and
        used to bootstrap the system before the process manager and the object
        manager are initialized. Subsequent idle thread structures are
        allocated dynamically (as simple allocations from nonpaged pool,
        bypassing the object manager) as additional processors are brought
        online. Once process management initializes, it uses the special
        variable PsIdleProcess to refer to the idle
        process.
Perhaps the most interesting anomaly regarding the idle process
        is that Windows reports the priority of the idle threads as 0 (16 on
        x64 systems, as shown earlier). In reality, however, the values of the
        idle threads’ priority members are irrelevant, because these threads
        are selected for dispatching only when there are no other threads to
        run. Their priority is never compared with that of any other thread,
        nor are they used to put an idle thread on a ready queue; idle threads
        are never part of any ready queues. (Remember, only one thread per Windows
        system is actually running at priority 0—the zero page thread,
        explained in Chapter 10 in Part 2.)
Just as the idle threads are special cases in terms of selection
        for execution, they are also special cases for preemption. The idle
        thread’s routine, KiIdleLoop, performs a number
        of operations that preclude its being preempted by another thread in
        the usual fashion. When no non-idle threads are available to run on a
        processor, that processor is marked as idle in its PRCB. After that,
        if a thread is selected for execution on the idle processor, the
        thread’s address is stored in the NextThread
        pointer of the idle processor’s PRCB. The idle thread checks this
        pointer on each pass through its loop.
Although some details of the flow vary between architectures,
        the basic sequence of operations of the idle thread is as
        follows:
	Enables interrupts briefly, allowing any pending interrupts
            to be delivered, and then disables them again (using the STI and
            CLI instructions on x86 and x64 processors). This is desirable
            because significant parts of the idle thread execute with
            interrupts disabled.

	On the debug build on some architectures, checks whether
            there is a kernel debugger trying to break into the system and, if
            so, gives it access.

	Checks whether any DPCs (described in Chapter 3) are pending on the processor. DPCs
            could be pending if a DPC interrupt was not generated when they
            were queued. If DPCs are pending, the idle loop calls
            KiRetireDpcList to deliver them. This will
            also perform timer expiration, as well as deferred ready
            processing; the latter is explained in the upcoming multiprocessor
            scheduling section. KiRetireDpcList must be
            entered with interrupts disabled, which is why interrupts are left
            disabled at the end of step 1.
            KiRetireDpcList exits with interrupts
            disabled as well.

	Checks whether a thread has been selected to run next on the
            processor and, if so, dispatches that thread. This could be the
            case if, for example, a DPC or timer expiration processed in step
            3 resolved the wait of a waiting thread, or if another processor
            selected a thread for this processor to run while it was already
            in the idle loop.

	If requested, checks for threads ready to run on other
            processors and, if possible, schedules one of them locally. (This
            operation is explained in the upcoming Idle Scheduler section.)

	Calls the registered power management processor idle routine
            (in case any power management functions need to be performed),
            which is either in the processor power driver (such as
            intelppm.sys) or in the HAL if such a driver is
            unavailable.




Thread Selection



Whenever a logical processor needs to pick the next thread to
        run, it calls the KiSelectNextThread scheduler
        function. This can happen in a variety of scenarios:
	A hard affinity change has occurred, making the currently
            running or standby thread ineligible for execution on its selected
            logical processor, so another must be chosen.

	The currently running thread reached its quantum
            end, and the SMT set it was currently running on has now become
            busy, while other SMT sets within the ideal node are fully idle.
            (SMT is the abbreviation for Symmetric Multi-Threading, the
            technical name for the Hyperthreading technology described in
            Chapter 2.) The scheduler performs a
            quantum end migration of the current thread, so another must be
            chosen.

	A wait operation has completed, and there were pending
            scheduling operations in the wait status register (in other words,
            the Priority and/or Affinity bits were set).



In these scenarios, the behavior of the scheduler is as
        follows:
	Call KiSelectReadyThread to find the
            next ready thread that the processor should run, and check whether
            one was found.

	If a ready thread was not found, the idle scheduler is
            enabled, and the idle thread is selected for execution.

	Or, if a ready thread was found, it is put in the Standby
            state and set as the NextThread in the KPRCB
            of the logical processor.



The KiSelectNextThread operation is
        performed only when the logical processor needs to pick, but not yet
        run, the next schedulable thread (which is why the thread will enter
        Standby). Other times, however, the logical processor is interested in
        immediately running the next ready thread or performing another action
        if one is not available (instead of going idle), such as when the
        following occurs:
	A priority change has occurred, making the current standby
            or running thread no longer the highest priority ready thread on
            its selected logical processor, so a higher priority ready thread
            must now run.

	The thread has explicitly yielded with
            YieldProcessor or
            NtYieldExecution, and another thread might be
            ready for execution.

	The quantum of the current thread has expired, and other
            threads at the same priority level need their chance to run as
            well

	A thread has lost its priority boost, causing a similar
            priority change to the scenario just described.

	The idle scheduler is running and needs to check whether a
            ready thread has not appeared in the interval between which idle
            scheduling was requested and the idle scheduler ran.



A simple way to remember the difference between which routine
        runs is to check whether or not the logical processor
        must run a different thread (in which case
        KiSelectNextThread is called) or if it
        should, if possible, run a different thread (in
        which case KiSelectReadyThread is called).
In either case, because each processor has its own database of
        threads that are ready to run (the dispatcher database’s ready queues
        in the KPRCB), KiSelectReadyThread can simply
        check the current LP’s queues, removing the first highest priority
        thread that it finds, unless this priority is lower than the one of
        the currently running thread (depending on whether the current thread
        is still allowed to run, which would not be the case in the
        KiSelectNextThread scenario). If there is no
        higher priority thread (or no threads are ready at all), no thread is
        returned.
Idle Scheduler



Whenever the idle thread runs, it checks whether idle
          scheduling has been enabled, such as in one of the scenarios
          described in the previous section. If so, the idle thread then
          begins scanning other processor’s ready queues for threads it can
          run by calling KiSearchForNewThread. Note that
          the runtime costs associated with this operation are not charged as
          idle thread time, but are instead charged as interrupt and DPC time
          (charged to the processor), so idle scheduling time is considered
          system time. The KiSearchForNewThread
          algorithm, which is based on the functions seen in the Thread Selection section earlier, will be explained in
          the upcoming section.


Multiprocessor Systems



On a uniprocessor system, scheduling is relatively simple: the
        highest-priority thread that wants to run is always running. On a
        multiprocessor system, it is more complex, because Windows attempts to
        schedule threads on the most optimal processor for the thread, taking
        into account the thread’s preferred and previous processors, as well
        as the configuration of the multiprocessor system. Therefore, although
        Windows attempts to schedule the highest-priority runnable threads on
        all available CPUs, it guarantees only to be running one of the
        highest-priority threads somewhere.
Before we describe the specific algorithms used to choose which
        threads run where and when, let’s examine the additional information
        Windows maintains to track thread and processor state on
        multiprocessor systems and the three different types of multiprocessor
        systems supported by Windows (SMT, multicore, and NUMA).
Package Sets and SMT Sets



Windows uses five fields in the KPRCB to determine correct
          scheduling decisions when dealing with logical processor topologies.
          The first field, CoresPerPhysicalProcessor,
          determines whether this logical processor is part of a multicore
          package, and it’s computed from the CPUID returned by the processor
          and rounded to a power of two. The second field,
          LogicalProcessorsPerCore determines whether the
          logical processor is part of an SMT set, such as on an Intel
          processor with HyperThreading enabled, and is
          also queried through CPUID and rounded. Multiplying these two
          numbers yields the number of logical processors per package, or an
          actual physical processor that fits into a socket. With these
          numbers, each PRCB can then populate its
          PackageProcessorSet value, which is the
          affinity mask describing which other logical processors within this
          group (because packages are constrained to a group) belong to the
          same physical processor. Similarly, the
          CoreProcessorSet value connects other logical
          processors to the same core, also called an SMT set. Finally, the
          GroupSetMember value defines which bit mask,
          within the current processor group, identifies this very logical
          processor. For example, the logical processor 3 normally has a
          GroupSetMember of 8 (2^3).
EXPERIMENT: Viewing Logical Processor Information
You can examine the information Windows maintains
            for SMT processors using the !smt command in
            the kernel debugger. The following output is from a dual-core
            Intel Core i5 system with SMT (four logical processors):
SMT Summary:
KeActiveProcessors:
****------------------------------------------------------------ (000000000000000f)
KiIdleSummary:
-*-*------------------------------------------------------------ (000000000000000a)
---------------------------------------------------------------- (0000000000000000)
---------------------------------------------------------------- (0000000000000000)
---------------------------------------------------------------- (0000000000000000)

No PRCB             SMT Set                              APIC Id
  0 fffff8000324ae80 **--------------------------------------------------------------
(0000000000000003) 0x00000000
  1 fffff880009e5180 **--------------------------------------------------------------
(0000000000000003) 0x00000001
  2 fffff88002f65180 --**------------------------------------------------------------
(000000000000000c) 0x00000002
  3 fffff88002fd7180 --**------------------------------------------------------------
(000000000000000c) 0x00000003
Maximum cores per physical processor:   8
Maximum logical processors per core:    2


NUMA Systems



Another type of multiprocessor system supported by Windows is
          one with a nonuniform memory access (NUMA) architecture. In a NUMA
          system, processors are grouped together in smaller units called
          nodes. Each node has its own processors and memory and is connected
          to the larger system through a cache-coherent interconnect bus.
          These systems are called “nonuniform” because each node has its own
          local high-speed memory. Although any processor in any node can
          access all of memory, node-local memory is much faster to
          access.
The kernel maintains information about each node in a NUMA
          system in a data structure called KNODE. The kernel variable
          KeNodeBlock is an array of pointers to the
          KNODE structures for each node. The format of the KNODE structure
          can be shown using the dt command in the kernel
          debugger, as shown here:
lkd> dt nt!_KNODE
   +0x000 PagedPoolSListHead : _SLIST_HEADER
   +0x008 NonPagedPoolSListHead : [3] _SLIST_HEADER
   +0x020 Affinity         : _GROUP_AFFINITY
   +0x02c ProximityId      : Uint4B
   +0x030 NodeNumber       : Uint2B
...
   +0x060 ParkLock         : Int4B
   +0x064 NodePad1         : Uint4B
EXPERIMENT: Viewing NUMA Information
You can examine the information Windows maintains
            for each node in a NUMA system using the
            !numa command in the kernel debugger. The
            following partial output is from a 64-processor NUMA system from
            Hewlett-Packard with four processors per node:
26: kd> !numa
NUMA Summary:
------------
Number of NUMA nodes : 16
Number of Processors : 64
MmAvailablePages     : 0x03F55E67

KeActiveProcessors   : ****************************************************************
                       (ffffffffffffffff)

NODE 0 (E000000084261900):
    ProcessorMask    : ****------------------------------------------------------------
...
NODE 1 (E0000145FF992200):
    ProcessorMask    : ----****--------------------------------------------------------
...

Applications that want to gain the most performance out of
          NUMA systems can set the affinity mask to restrict a process to the
          processors in a specific node, although Windows already restricts
          nearly all threads to a single NUMA node due to its NUMA-aware
          scheduling algorithms.
How the scheduling algorithms take into account NUMA systems
          will be covered in the upcoming section Processor Selection (and the optimizations in
          the memory manager to take advantage of node-local memory are
          covered in Chapter 10 in Part 2).

Processor Group Assignment



While querying the topology of the system to build the various
          relationships between logical processors, SMT sets, multicore
          packages and physical sockets, Windows assigns processors to an
          appropriate group that will describe their affinity (through the
          extended affinity mask seen earlier). This work is done by the
          KePerformGroupConfiguration routine, which is
          called during initialization before any other Phase 1 work is done.
          Note that regardless of the group assignment steps below, NUMA node
          0 is always assigned to group 0, no matter what.
First, the function queries all detected nodes
          (KeNumberNodes) and computes the capacity of
          each node (that is, how many logical processors can be part of the
          node). This value is stored as the
          MaximumProcessors in the
          KeNodeBlock, which identifies all NUMA nodes on
          the system. If the system supports NUMA Proximity IDs, the proximity
          ID is queried for each node as well and saved in the node block.
          Second, the NUMA distance array is allocated
          (KeNodeDistance), and the distance between each
          NUMA node is computed as was described in Chapter 3.
The next series of steps deal with specific user-configuration
          options that override default NUMA assignments. For example, on a
          system with Hyper-V installed (and the hypervisor configured to
          auto-start), only one processor group will be enabled, and all NUMA
          nodes (that can fit) will be associated with group 0. This means
          that Hyper-V scenarios cannot take advantage of machines with over
          64 processors at the moment.
Next, the function checks whether any static group assignment
          data was passed by the loader (and thus configured by the user).
          This data specifies the proximity information and group assignment
          for each NUMA node.
Note
Users dealing with large NUMA servers that might need custom
            control of proximity information and group assignments for testing
            or validation purposes can input this data through the Group
            Assignment and Node Distance registry values in the HKLM\SYSTEM
            \CurrentControlSet\Control\NUMA registry key. The exact format of
            this data includes a count, followed by an array of proximity IDs
            and group assignments, which are all 32-bit values.

Before treating this data as valid, the kernel queries the
          proximity ID to match the node number and then associates group
          numbers as requested. It then makes sure that NUMA node 0 is
          associated with group 0, and that the capacity for all NUMA nodes is
          consistent with the group size. Finally, the function checks how
          many groups still have remaining capacity.
Next, the kernel dynamically attempts to assign NUMA nodes to
          groups, while respecting any statically configured nodes if
          passed-in as we just described. Normally, the kernel tries to
          minimize the number of groups created, combining as many NUMA nodes
          as possible per group. However, if this behavior is not desired, it
          can be configured differently with the /MAXGROUP loader parameter,
          which is configured through the maxgroup BCD
          option. Turning this value on overrides the default behavior and
          causes the algorithm to spread as many NUMA nodes as possible into
          as many groups as possible (while respecting that the currently
          implemented group limit is 4). If there is only one node, or if all
          nodes can fit into a single group (and maxgroup
          is off), the system performs the default setting of assigning all
          nodes to group 0.
If there is more than one node, Windows checks the static NUMA
          node distances (if any), and then sorts all the nodes by their
          capacity so that the largest nodes come first. In the
          group-minimization mode, by adding up all the capacities, the kernel
          figures out how many maximum processors there can be. By dividing
          that by the number of processors per group, the kernel assumes there
          will be this many total groups on the machine (limited to a maximum
          of 4). In the group-maximization mode, the initial estimate is that
          there will be as many groups as nodes (limited again to 4).
Now the kernel begins the final assignment process. All fixed
          assignments from earlier are now committed, and groups are created
          for those assignments. Next, all the NUMA nodes are reshuffled to
          minimize the distance between the different nodes within a group. In
          other words, closer nodes are put in the same group and sorted by
          distance. Next, the same process is performed for any dynamically
          configured node to group assignments. Finally, any remaining empty
          nodes are assigned to group 0.

Logical Processors per Group



Generally, Windows assigns 64 processors per group as
          explained earlier, but this configuration can also be customized by
          using different load options, such as the /GROUPSIZE option, which
          is configured through the groupsize BCD
          element. By specifying a number that is a power of two, groups can
          be forced to contain fewer processors than normal, for purposes such
          as testing group awareness in the system (for example, a system with
          8 logical processors can be made to appear to have 1, 2, or 4
          groups). To force the issue, the /FORCEGROUPAWARE option (BCD
          element groupaware) furthermore makes the
          kernel avoid group 0 whenever possible, assigning the highest group
          number available in actions such as thread and DPC affinity
          selection and process group assignment. Avoid setting a group size
          of 1, because this will force almost all applications on the system
          to behave as if they’re running on a uniprocessor machine, because
          the kernel sets the affinity mask of a given process to span only
          one group until the application requests otherwise (which most
          applications today will not do).
Note that in the edge case where the number of logical
          processors in a package cannot fit into a single group, Windows
          adjusts these numbers so that a package can fit into a single group,
          shrinking the CoresPerPhysicalProcessor number,
          and if the SMT cannot fit either, doing this as well for
          LogicalProcessorsPerCore. The exception to this
          rule is if the system actually contains multiple NUMA nodes within a
          single package. Although this is not a possibility as of this
          writing, future Multiple-Chip Modules (MCMs, an extension of
          multicore packages) are due to ship from processor manufacturers in
          the future. In these modules, two sets of cores as well as two
          memory controllers are on the same die/package. If the ACPI SRAT
          table defines the MCM as having two NUMA nodes, depending on group
          configuration algorithms, Windows might associate the two nodes with
          two different groups. In this scenario, the MCM package would span
          more than one group.
Other than causing significant driver and application
          compatibility problems (which they are designed to identify and root
          out, when used by developers), these options have an even greater
          impact on the machine: they will force NUMA behaviors even on a
          non-NUMA machine. This is because Windows will never allow a NUMA
          node to span multiple groups, as was shown in the assignment
          algorithms. So, if the kernel is creating artificially small groups,
          those two groups must each have their own NUMA node. For example, on
          a quad-core processor with a group size of two, this will create two
          groups, and thus two NUMA nodes, which will be subnodes of the main
          node. This will affect scheduling and memory-management policies in
          the same way a true NUMA system would, which can be useful for
          testing.

Logical Processor State



In addition to the ready queues and the ready summary, Windows
          maintains two bitmasks that track the state of the processors on the
          system. (How these bitmasks are used is explained in the upcoming
          section Processor Selection.) Following
          are the bitmasks that Windows maintains.
The first one is the active processor mask
          (KeActiveProcessors), which has a bit set for
          each usable processor on the system. This might be fewer than the
          number of actual processors if the licensing limits of the version
          of Windows running supports fewer than the number of available
          physical processors. To check this, use the variable
          KeRegisteredProcessors to see how many
          processors are actually licensed on the machine. In this instance,
          “processors” refers to physical packages. The
          KeMaximumProcessors variable, on the other
          hand, is the maximum number of logical processors, including all
          future possible dynamic processor additions, bounded within the
          licensing limit, and any platform limitations that are queried by
          calling the HAL and checking with the ACPI SRAT table, if
          any.
The idle summary (KiIdleSummary) is
          actually an array of two extended bitmasks. In the first entry,
          called CpuSet, each set bit represents an idle
          processor, while in the second entry, SMTSet,
          each bit describes an idle SMT set.
The nonparked summary
          (KiNonParkedSummary) defines each nonparked
          logical processor through a bit.

Scheduler Scalability



Because on a multiprocessor system one processor might need to
          modify another processor’s per-CPU scheduling data structures (such
          as inserting a thread that would like to run on a certain
          processor), these structures are synchronized by using a per-PRCB
          queued spinlock, which is held at DISPATCH_LEVEL. Thus, thread
          selection can occur while locking only an individual processor’s
          PRCB. If needed, up to one more processor’s PRCB can also be locked,
          such as in scenarios of thread stealing, which will be described
          later. Thread context switching is also synchronized by using a
          finer-grained per-thread spinlock.
There is also a per-CPU list of threads in the deferred ready
          state. These represent threads that are ready to run but have not
          yet been readied for execution; the actual ready operation has been
          deferred to a more appropriate time. Because each processor
          manipulates only its own per-processor deferred ready list, this
          list is not synchronized by the PRCB spinlock. The deferred ready
          thread list is processed by
          KiProcessDeferredReadyList after a function has
          already done modifications to process or thread affinity, priority
          (including due to priority boosting), or quantum values.
This function calls KiDeferredReadyThread
          for each thread on the list, which performs the algorithm shown
          later in the Processor Selection section,
          which could either cause the thread to run immediately; to be put on
          the ready list of the processor; or if the processor is unavailable,
          to be potentially put on a different processor’s deferred ready
          list, in a standby state, or immediately executed. This property is
          used by the Core Parking engine when parking a core: all threads are
          put into the deferred ready list, and it is then processed. Because
          KiDeferredReadyThread skips parked cores (as
          will be shown), it causes all of this processor’s threads to wind up
          on other processors.

Affinity



Each thread has an affinity mask that specifies the processors
          on which the thread is allowed to run. The thread affinity mask is
          inherited from the process affinity mask. By default, all processes
          (and therefore all threads) begin with an affinity mask that is
          equal to the set of all active processors on their assigned group—in other words, the system is
          free to schedule all threads on any available processor within the
          group associated with the process.
However, to optimize throughput, partition workloads to a
          specific set of processors, or both, applications can choose to
          change the affinity mask for a thread. This can be done at several
          levels:
	Calling the SetThreadAffinityMask
              function to set the affinity for an individual thread.

	Calling the SetProcessAffinityMask
              function to set the affinity for all the threads in a process.
              Task Manager and Process Explorer provide a GUI to this function
              if you right-click a process and choose Set Affinity. The Psexec
              tool (from Sysinternals) provides a command-line interface to
              this function. (See the –a switch in its help output.)

	By making a process a member of a job that has a jobwide
              affinity mask set using the
              SetInformationJobObject function. (Jobs are
              described in the upcoming Job Objects
              section.)

	By specifying an affinity mask in the image header when
              compiling the application. (For more information on the detailed
              format of Windows images, search for “Portable Executable and
              Common Object File Format Specification” on www.microsoft.com.)



An image can also have the “uniprocessor” flag set at link
          time. If this flag is set, the system chooses a single processor at
          process creation time
          (MmRotatingProcessorNumber) and assigns that as
          the process affinity mask, starting with the first processor and
          then going round-robin across all the processors within the group.
          For example, on a dual-processor system, the first time an image
          marked as uniprocessor is launched, it is assigned to CPU 0; the
          second time, CPU 1; the third time, CPU 0; the fourth time, CPU 1;
          and so on. This flag can be useful as a temporary workaround for
          programs that have multithreaded synchronization bugs that, as a
          result of race conditions, surface on multiprocessor systems but
          that don’t occur on uniprocessor systems. If an image exhibits such
          symptoms and is unsigned, the flag can be manually added by editing
          the image header with a tool such as Imagecfg.exe. A better
          solution, also compatible with signed executables, is to use the
          Microsoft Application Compatibility Toolkit and add a shim to force
          the compatibility database to mark the image as uniprocessor-only at
          launch time.
EXPERIMENT: Viewing and Changing Process Affinity
In this experiment, you will modify the affinity settings
            for a process and see that process affinity is inherited by new
            processes:
	Run the command prompt (Cmd.exe).

	Run Task Manager or Process Explorer, and find the
                Cmd.exe process in the process list.

	Right-click the process, and select Set
                Affinity. A list of processors should be displayed. For
                example, on a dual-processor system you will see this:
[image: image with no caption]


	Select a subset of the available processors on the
                system, and click OK. The process’ threads are now restricted
                to run on the processors you just selected.

	Now run Notepad.exe from the command prompt (by typing
                Notepad.exe).

	Go back to Task Manager or Process Explorer and find the
                new Notepad process. Right-click it, and choose Affinity. You
                should see the same list of processors you chose for the
                command-prompt process. This is because processes inherit
                their affinity settings from their parent.




Windows won’t move a running thread that could run on a
          different processor from one CPU to a second processor to permit a
          thread with an affinity for the first processor to run on the first
          processor. For example, consider this scenario: CPU 0 is running a
          priority 8 thread that can run on any processor, and CPU 1 is
          running a priority 4 thread that can run on any processor. A
          priority 6 thread that can run on only CPU 0 becomes ready. What
          happens? Windows won’t move the priority 8 thread from CPU 0 to CPU
          1 (preempting the priority 4 thread) so that the priority 6 thread
          can run; the priority 6 thread has to stay in the ready
          state.
Therefore, changing the affinity mask for a process or a
          thread can result in threads getting less CPU time than they
          normally would, because Windows is restricted from running the
          thread on certain processors. Therefore, setting affinity should be
          done with extreme care—in most cases, it is optimal to let Windows
          decide which threads run where.

Extended Affinity Mask



To support more than 64 processors, which is the limit
          enforced by the affinity mask structure (composed of 64 bits on a
          64-bit system), Windows uses an extended affinity mask
          (KAFFINITY_EX) that is an array of affinity masks, one for each
          supported processor group (currently defined to 4). When the
          scheduler needs to refer to a processor in the extended affinity
          masks, it first de-references the correct bitmask by using its group
          number and then accesses the resulting affinity directly. In the
          kernel API, extended affinity masks are not exposed; instead, the
          caller of the API inputs the group number as a parameter, and
          receives the legacy affinity mask for that group. In the Windows
          API, on the other hand, only information about a single group can
          usually be queried, which is the group of the currently running
          thread (which is fixed).
The extended affinity mask and its underlying
          functionality are also how a process can escape the boundaries of
          its original assigned processor group. By using the extended
          affinity APIs, threads in a process can choose affinity masks on
          other processor groups. For example, if a process has 4 threads and
          the machine has 256 processors, thread 1 can run on processor 4,
          thread 2 can run on processor 68, thread 3 on processor 132, and
          thread 4 on processor 196, if each thread set an affinity mask of
          0x10 (0b10000 in binary) on groups 0, 1, 2, and 3. Alternatively,
          the threads can each set an affinity of 0xFFFFFFFF for their given
          group, and the process then can execute its threads on any available
          processor on the system (with the limitation, that each thread is
          restricted to running within its own group only).
Taking advantage of extended affinity must be done at creation
          time, by specifying a group number in the thread attribute list when
          creating a new thread. (See the previous topic on thread creation
          for more information on attribute lists.)

System Affinity Mask



Because Windows drivers usually execute in the context of the
          calling thread or in the context of an arbitrary thread (that is,
          not in the safe confines of the System process), currently running
          driver code might be subject to affinity rules set by the
          application developer, which are not currently relevant to the
          driver code and might even prevent correct processing of interrupts
          and other queued work. Driver developers therefore have a mechanism
          to temporarily bypass user thread affinity settings, by using the
          APIs
          KeSetSystemAffinityThread(Ex)/KeSetSystemGroupAffinityThread
          and
          KeRevertToUserAffinityThread(Ex)/KeRevertToUserGroupAffinityThread.

Ideal and Last Processor



Each thread has three CPU numbers stored in the kernel thread
          control block:
	Ideal processor, or the preferred processor that this
              thread should run on

	Last processor, or the processor on which the thread last
              ran

	Next processor, or the processor that the thread will be,
              or is already, running on



The ideal processor for a thread is chosen when a thread is
          created using a seed in the process control block. The seed is
          incremented each time a thread is created so that the ideal
          processor for each new thread in the process rotates through the
          available processors on the system. For example, the first thread in
          the first process on the system is assigned an ideal processor of 0.
          The second thread in that process is assigned an ideal processor of
          1. However, the next process in the system has its first thread’s
          ideal processor set to 1, the second to 2, and so on. In that way,
          the threads within each process are spread across the
          processors.
Note that this assumes the threads within a process are doing
          an equal amount of work. This is typically not the case in a
          multithreaded process, which normally has one or more housekeeping
          threads and then a number of worker threads. Therefore, a
          multithreaded application that wants to take full advantage of the platform might find it
          advantageous to specify the ideal processor numbers for its threads
          by using the SetThreadIdealProcessor function.
          To take advantage of processor groups, developers should call
          SetThreadIdealProcessorEx instead, which allows
          selection of a group number for the affinity.
64-bit Windows uses the Stride field in the KPRCB to balance
          the assignment of newly created threads within a process. The stride
          is a scalar number that represents the number of affinity bits
          within a given NUMA node that must be skipped to attain a new
          independent logical processor slice, where “independent” means on
          another core (if dealing with an SMT system) or another package (if
          dealing with a non-SMT but multicore system). Because 32-bit Windows
          doesn’t support large processor configuration systems, it doesn’t
          use a stride, and it simply selects the next processor number,
          trying to avoid sharing the same SMT set if possible. For example,
          on a dual-processor SMT system with four logical processors, if the
          ideal processor for the first thread is assigned to logical
          processor 0, the second thread would be assigned to logical
          processor 2, the third thread to logical processor 1, the fourth
          thread to logical process 3, and so forth. In this way, the threads
          are spread evenly across the physical processors.

Ideal Node



On NUMA systems, when a process is created, an ideal node for
          the process is selected. The first process is assigned to node 0,
          the second process to node 1, and so on. Then the ideal processors
          for the threads in the process are chosen from the process’ ideal
          node. The ideal processor for the first thread in a process is
          assigned to the first processor in the node. As additional threads
          are created in processes with the same ideal node, the next
          processor is used for the next thread’s ideal processor, and so
          on.


Thread Selection on Multiprocessor Systems



Before covering multiprocessor systems in more detail, I should
        summarize the algorithms discussed in the Thread Selection section. They either continued executing
        the current thread (if no new candidate was found) or started running
        the idle thread (if the current thread had to block). However, there
        is a third algorithm for thread selection, which was hinted at in the
        Idle Scheduler section earlier, called
        KiSearchForNewThread. This algorithm is called in
        one specific instance: when the current thread is about to block due
        to a wait on an object, including when doing an
        NtDelayExecutionThread call, also known as the
        Sleep API in Windows.
Note
This shows a subtle difference between the commonly used
          Sleep(1) call, which makes the current thread block until the next
          timer tick, and the SwitchToThread() call,
          which was shown earlier. The “sleep” will use the algorithm about to
          be described, while the “yield” uses the previously shown
          logic.

KiSearchForNewThread initially
        checks whether there is already a thread that was selected for this
        processor (by reading the NextThread field); if
        so, it dispatches this thread immediately in the Running state.
        Otherwise, it calls the KiSelectReadyThread
        routine and, if a thread was found, performs the same steps.
If a thread was not found, however, the processor is marked as
        idle (even though the idle thread is not yet executing) and a scan of
        other logical processors queues is initiated (unlike the other
        standard algorithms, which would now give up). Also, because the
        processor is now considered idle, if the Dynamic Fair Share Scheduling
        mode (described in the next topic) is enabled, a thread will be
        released from the idle-only queue if possible and scheduled instead.
        On the other hand, if the processor core is now parked, the algorithm
        will not attempt to check other logical processors, as it is
        preferable to allow the core to enter the parking state instead
        keeping it busy with new work.
Barring these two scenarios, the work-stealing loop now runs.
        This code looks at the current NUMA node and removes any idle
        processors (because they shouldn’t have threads that need stealing).
        Then, starting from the highest numbered processor, the loop calls
        KiFindReadyThread but points it to the remote
        KPRCB instead of the current one, causing this processor to find the
        best ready thread from the other processor’s queue. If this is
        unsuccessful and Dynamic Fair Share Scheduler is enabled, a thread
        from the idle-only queue of the remote logical processor is released
        on the current processor instead, if possible.
If no candidate ready thread is found, the next lower numbered
        logical processor is attempted, and so on, until all logical
        processors have been exhausted on the current NUMA node. In this case,
        the algorithm keeps searching for the next closest node, and so on,
        until all nodes in the current group have been exhausted. (Recall that
        Windows allows a given thread to have affinity only on a single
        group.) If this process fails to find any candidates, the function
        returns NULL and the processor enters the idle thread in the case of a
        wait (which will skip idle scheduling). If this work was already being
        done from the idle scheduler, the processor enters a sleep
        state.

Processor Selection



Up until now, we’ve described how Windows picks a thread when a
        logical processor needs to make a selection (or when a selection must
        be made for a given logical processor) and assumed the various
        scheduling routines have an existing database of ready threads to
        choose from. Now we’ll see how this database gets populated in the
        first place—in other words, how Windows chooses which LP’s ready
        queues a given ready thread will be associated with. Having described
        the types of multiprocessor systems supported by Windows as well as
        the thread affinity and ideal processor settings, we’re now ready to
        examine how this information is used for this purpose.
Choosing a Processor for a Thread When There Are Idle
          Processors



When a thread becomes ready to run, the
          KiDeferredReadyThread scheduler function is
          called, causing Windows to perform two tasks: adjust priorities and
          refresh quantums as needed, as was explained in the Priority Boosts section, and then pick the best logical
          processor for the thread. Windows first looks up the thread’s ideal processor,
          and then it computes the set of idle processors within the thread’s
          hard affinity mask. This set is then pruned as follows:
	Any idle logical processors that have been parked by the
              Core Parking mechanism are removed. (See Chapter 9, “Storage
              Management,” in Part 2 for more information on Core Parking.) If
              this causes no idle processors to remain, idle processor
              selection is aborted, and the scheduler behaves as if no idle
              processors were available (which is described in the upcoming
              section)

	Any idle logical processors that are not on the ideal node
              (defined as the node containing the ideal processor) are
              removed, unless this would cause all idle processors to be
              eliminated.

	On an SMT system, any non-idle SMT sets are removed, even
              if this might cause the elimination of the ideal processor
              itself. In other words, Windows prioritizes a non-ideal, idle
              SMT set over an ideal processor.

	Windows then checks whether the ideal processor is among
              the remaining set of idle processors. If it isn’t, it must then
              find the most appropriate idle processor. It does so by first
              checking whether the processor that the thread last ran on is
              part of the remaining idle set. If so, this processor is
              considered to be a temporary ideal processor and chosen. (Recall
              that the ideal processor attempts to maximize processor cache
              hits, and picking the last processor a thread ran on is a good
              way of doing so.)

	If the last processor is not part of the remaining idle
              set, Windows next checks whether the current processor (that is,
              the processor currently executing this scheduling code) is part
              of this set; if so, it applies the same logic as in the prior
              step.

	If neither the last nor the current processor is idle,
              Windows performs one more pruning operation, by removing any
              idle logical processors that are not on the same SMT set as the
              ideal processor. If there are none left, Windows instead removes
              any processors not on the SMT set of the current processor,
              unless this, too, eliminates all idle processors. In other
              words, Windows prefers idle processors that share the same SMT
              set as the unavailable ideal processor and/or last processor it
              would’ve liked to pick in the first place. Because SMT
              implementations share the cache on the core, this has nearly the
              same effect as picking the ideal or last processor from the
              caching perspective.

	Finally, if this last step results in more than one
              processor remaining in the idle set, Windows picks the lowest
              numbered processor as the thread’s current processor.



Once a processor has been selected for the thread to run on,
          that thread is put in the standby state and the idle processor’s
          PRCB is updated to point to this thread. If the processor is idle,
          but not halted, a DPC interrupt is sent so that the processor
          handles the scheduling operation immediately.
Whenever such a scheduling operation is initiated,
          KiCheckForThreadDispatch is called, which will
          realize that a new thread has been scheduled on the processor and
          cause an immediate context switch if possible (as well as pending
          APC deliveries), or it will cause a DPC interrupt to be sent.

Choosing a Processor for a Thread When There Are No Idle
          Processors



If there are no idle processors when a thread wants to
          run, or if the only idle processors were eliminated by the first
          pruning (which got rid of parked idle processors), Windows first
          checks whether the latter situation has occurred. In this scenario,
          the scheduler calls KiSelectCandidateProcessor
          to ask the Core Parking engine for the best candidate processor. The
          Core Parking engine selects the highest-numbered processor that is
          unparked within the ideal node. If there are no such processors, the
          engine forcefully overrides the park state of the ideal processor
          and causes it to be unparked. Upon returning to the scheduler, it
          will check whether the candidate it received is idle; if so, it will
          pick this processor for the thread, following the same last steps as
          in the previous scenario.
If this fails, Windows compares the priority of the thread
          running (or the one in the standby state) on the thread’s ideal
          processor to determine whether it should preempt that thread.
If the thread’s ideal processor already has a thread selected
          to run next (waiting in the standby state to be scheduled) and that
          thread’s priority is less than the priority of the thread being
          readied for execution, the new thread preempts that first thread out
          of the standby state and becomes the next thread for that CPU. If
          there is already a thread running on that CPU, Windows checks
          whether the priority of the currently running thread is less than
          the thread being readied for execution. If so, the currently running
          thread is marked to be preempted, and Windows queues a DPC interrupt
          to the target processor to preempt the currently running thread in
          favor of this new thread.
If the ready thread cannot be run right away, it is moved into
          the ready state on the priority queue appropriate to its thread
          priority, where it will await its turn to run. As seen in the
          scheduling scenarios earlier, the thread will be inserted either at
          the head or the tail of the queue, based on whether it entered the
          ready state due to preemption.
As such, regardless of the underlying scenario and various
          possibilities, note that threads are always put on their ideal
          processor’s per-processor ready queues, guaranteeing the consistency
          of the algorithms that determine how a logical processor picks a
          thread to run.



Processor Share-Based Scheduling



In the previous section, the standard thread-based scheduling
      implementation of Windows was described, which has served general user
      and server scenarios reliably since its appearance in the first Windows
      NT release (with scalability improvements done throughout each release).
      However, because thread-based scheduling attempts to fairly share the
      processor or processors only among competing threads of same priority,
      it does not take into account higher-level requirements such as the
      distribution of threads to users and the potential for certain users to
      benefit from more overall CPU time at the expense of other users. This
      kind of behavior, as it turns out, is highly sought after in
      terminal-services environments, where dozens of users can be competing
      for CPU time and a single high-priority thread from a given user has the
      potential to starve threads from all users on the machine if only
      thread-based scheduling is used.
Dynamic Fair Share Scheduling



In this section, two alternative scheduling modes
        implemented by recent versions of Windows will be described: the
        session-based Dynamic Fair Share Scheduler (DFSS) and an older, legacy
        SID-based CPU Rate Limit implementation.
DFSS Initialization



During the very last parts of system initialization, as the
          SOFTWARE hive is initialized by Smss, the
          process manager initiates the final post-boot initialization in
          PsBootPhaseComplete, which calls
          PsInitializeCpuQuota. It is here that the
          system decides which of the two CPU quota mechanisms (DFSS or
          legacy) will be employed. For DFSS to be enabled, the
          EnableCpuQuota registry value must be set to 1
          in both of the two quota keys:
          HKLM\SOFTWARE\Policies\Microsoft\Windows\Session Manager\Quota
          System for the policy-based setting (that can be configured through
          the Group Policy Editor under Computer Configuration\Administrative
          Templates\Windows Components \Remote Desktop Services\Remote Desktop
          Session Host\Connections - Turn off Fair Share CPU Scheduling), as
          well as under the system key
          HKLM\SYSTEM\CurrentControlSet\Control\Session Manager\Quota System,
          which determines if the system supports the functionality (which, by
          default, is set to TRUE on Windows Server with the Remote Desktop
          role).
Note
Due to a bug (which you can learn more about at
            http://technet.microsoft.com/en-us/library/ee808941(WS.10).aspx),
            the group policy setting to turn off DFSS is not honored. The
            system setting must be manually turned off.

If DFSS is enabled, the
          PsCpuFairShareEnabled variable is set to
          true, which will instruct the kernel, through
          various scheduling code paths, to behave differently and/or to call
          into the DFSS engine. Additionally, the default quota is set up to
          150 milliseconds for each DFSS cycle, a number called credit that
          will be explained in more detail shortly.
Once DFSS is enabled, the global
          PspCpuQuotaControl data structure is used to
          maintain DFSS information, such as the list of per-session CPU quota
          blocks (as well as a spinlock and count) and the total weight of all
          sessions on the system. It also stores an array of per-processor
          DFSS data structures, which you’ll see next.

Per-Session CPU Quota Blocks



After DFSS is enabled, whenever a new session is created
          (other than Session 0), MiSessionCreate calls
          PsAllocateCpuQuotaBlock to set up the
          per-session CPU quota block. The first time this happens on the
          system (for example, for Session 1), this calls
          PspLazyInitializeCpuQuota to finalize the
          initialization of DFSS.
This results in the allocation of per-CPU DFSS data structures
          mentioned in the previous sections, which contain the DPC used for
          managing the quota (PspCpuQuotaDpcRoutine, seen
          later) and the total number of cycles credited as well as
          accumulated. This structure also keeps the block generation a
          monotonically increasing sequence to guarantee atomicity, as well as
          keeping the idle-only queue lock protecting the list of the same
          name, which is a central element of the DFSS mechanism yet to be
          described. Each per-CPU DFSS data structure, in turn, is connected
          through a sorted doubly-linked list to the various per-session CPU
          quota blocks that were mentioned at the beginning of this
          discussion.
When the first-time initialization of DFSS is complete,
          PsAllocateCpuQuotaBlock can continue, first by
          allocating the actual CPU quota block for this session. This
          structure maintains overall accounting information on the session,
          as well as per-CPU tracking—including the cycles remaining and
          initially allocated, as well as the idle-only queue itself, in a
          per-CPU quota entry structure.
To begin with, the session ID is stored, and the CPU share
          weight is set to its default of 5. You’ll see
          shortly what a weight is, how it can be computed, and its effects on
          the DFSS engine. Because the quota block has just been created, the
          initial cycle values are all set to their maximum value for now.
          Next, this new per-session CPU block must be visible to the system.
          Therefore, the PspCpuQuotaControl data
          structure is updated with the new total weight of all sessions (by
          adding this weight), and the quota block is inserted into the block
          list (sorted by session ID). Finally,
          PspCalculateCpuQuotaBlockCycleCredits
          enumerates every other session’s quota block and captures the new
          total weight of the system.
Once this is done, the per-session CPU quota block is
          finalized, and the memory manager sets it in the
          CpuQuotaBlock field of the MM_SESSION_SPACE
          structure for this session. Likewise, the current EPROCESS (part of
          this new session’s CpuQuotaBlock field) is also
          updated to point to this session’s CPU quota block. Now that the
          process has received a CPU quota block as soon as it became part of
          the session, future threads created by this process (including the
          first thread itself) will be allocated with an extra structure after
          their typical ETHREAD—a per-process CPU Quota APC structure.
          Additionally, the ETHREAD’s RateApcState field
          will be set to PsRateApcContained, indicating
          that this is an embedded Quota APC, as used by the DFSS mechanism
          (rather than the pool-allocated legacy APC). Finally, the
          CpuThrottled bit is set in the KTHREAD’s
          ThreadControlFlags.
At this point, the global quota-control structure contains a
          pointer to the DFSS per-CPU data structure array, which itself is
          linked to all the per-session CPU blocks that have been created for
          each session and associated with the EPROCESS structure of the
          member processes. In turn, each thread part of such a process has
          CPU throttling turned on. There is a per-CPU DPC ready to execute,
          as well as per-thread APCs for each throttled thread.
When the last process in the session loses all its references,
          PsDeleteCpuQuotaBlock is called. It removes the
          block from the list, refreshes the total weights, and calls
          PspCalculateCpuQuotaBlockCycleCredits to update
          all other per-session CPU quota blocks.

Charging of Cycles to Throttled Threads



After everything is set up, the entire DFSS mechanism is
          triggered by the consumption of CPU cycles—something that was
          already explained in the earlier sections. In other words, not only
          are consumed cycles used for quantum accounting and providing
          finer-grained information to thread APIs, but they also can be “charged” against the
          thread (and thus against its quota). This operation is done by the
          PsChargeProcessCpuCycles function that is
          called whenever a thread has completed the accumulation of cycles in
          its current execution timeline.
The first operation involves accumulating the additional
          cycles to the per-CPU DFSS data structure for this processor,
          increasing the TotalCyclesAccumulated value. If
          this accumulation has reached the total credit, the quota DPC is
          immediately queued. Once the DPC ultimately executes, it calls
          PspStartNewFairShareInterval, which updates the
          generation, resets the cycles accumulated, and resets the credit to
          150 ms. Finally, the idle-only queue is flushed on each processor
          associated with a given session. (You’ll see what this queue is and
          what flushing it entails, later.) This part of the algorithm manages
          the 150-ms interval that controls DFSS.
A second possibility is that the generation of the per-CPU
          quota entry contained in the current process’ CPU quota block (owned
          by the session) does not manage the generation of the current
          per-CPU DFSS data structure. This generation mismatch suggests that
          a new interval has been reached and no cycle limits have yet been
          set, so PspReplenishCycleCredit is called to do
          the work. This reads the per-CPU weight and the total weight that
          were captured earlier in
          PspCalculateCpuQuotaBlockCycleCredits, and it
          uses them to set the base cycle allowance for the current per-CPU
          data inside the process’ CPU quota block. To do this, it uses a
          simple formula: the process receives the equivalent of its cycle
          credit (150 ms) divided by the total weight of all sessions on the
          system. Then the amount of cycles it will be permitted to run for
          (CyclesRemaining) is set to the base cycle
          allowance multiplied by the weight of this particular session. In
          other words, the process runs for a fairly-divided chunk of time
          based on the number of other sessions on the system, calculated as a
          percentage based on its relative weight compared to the overall
          system weight. When the computation is completed, the generation is
          set to match.
In all other cases,
          PsChargeProcessCpuCycles merely subtracts the
          amount of cycles from CyclesRemaining and then
          calls PsCheckThreadCpuQuota to see whether
          these cycles have been exhausted (reaching zero). Note that this
          function can sometimes also be called directly from the context
          switch code when control is about to pass to a thread that has CPU
          throttling enabled.
PsCheckThreadCpuQuota recovers the CPU
          quota block for this process (that is, for the session), and then
          further extracts the precise per-CPU information out of it. Once
          again, it checks whether the generation does not match, which would
          indicate this is the first charge for this 150-ms credit cycle, and
          then it calls PspReplenishCycleCredit. Next, it
          checks whether the CPU quota block for the process indicates there
          are no more cycles remaining. If cycles still remain, the function
          returns; otherwise, it prepares to suspend the thread’s
          execution.
Before stopping execution, the function extracts the per-CPU
          DPC, making sure that it (or the associated per-thread APC) is not
          already running. If this operation is happening due to the
          context-switch scenario brought up earlier, the per-thread APC is
          queued, which will preempt the thread’s execution as soon as the
          context switch completes. Otherwise, if this is occurring as result
          of cycle charging (which happens at DISPATCH_LEVEL or higher), the
          per-CPU DPC is queued instead, which will later queue the per-thread
          APC. (This forces a near-immediate response to the CPU quota
          restriction.) In case further cycle accumulation has
          occurred past the 150-ms cycle credit, the DPC also calls
          PspStartNewFairShareInterval, which was
          explained earlier.

CPU Throttling and Quota Enforcement



So far, you’ve seen how DFSS initializes, how CPU quota blocks
          are created for each session (and then associated with member
          processes), and how threads running with the CPU throttling bit
          (implying they are part of processes that are members of a session
          with DFSS enabled) will consume cycles out of their total
          weight-relative allowance, resetting every 150 ms. You also saw how,
          eventually, an APC is queued in all cases where a thread has
          exhausted its allowed cycles. You’ll now see how the APC enforces
          the CPU quota restriction.
The APC first enters an infinite loop, creating a
          stack-allocated Quota Wait Block that contains the current thread
          being restricted, as well as a resume event. It is this event that
          ultimately allows the thread to continue its execution. Next, the
          APC gets the per-CPU DFSS data structure pointer and acquires the
          idle-only queue lock referenced earlier. It then checks whether the
          idle-only queue on the current processor (which comes from the
          per-CPU quota entry contained in the process’ CPU quota block) is
          empty. If the list is empty, it implies that this CPU has never been
          inserted in the sorted block list that is contained in the per-CPU
          DFSS data structure (part of the
          PspCpuQuotaControl global array). The
          PspInsertQuotaBlockCpuEntry function is thus
          called to rectify the situation.
Because the DFSS scheduler itself (which has yet to be
          described) uses this data structure, it must be inserted in the most
          optimal way—in this case, sorted by the base cycle allowance of each
          per-CPU data contained within the per-process CPU quota block.
          Recall that the base cycle allowance is initially the 150-ms credit
          cycle divided by the total weight of the system (that is, a full
          allowance), but you’ll see how the allowance can be later modified
          by the DFSS scheduler.
Next, now that the per-CPU Quota Entry is in the sorted block
          list (or it might already have been if the idle-only queue was not
          empty), this thread is inserted at the end of the idle-only queue,
          and it’s connected by a linked list entry that’s present in the
          Quota Wait Block. Because this wait block contains the resume event
          initialized earlier, the DFSS scheduler is able to control the
          thread when needed.
Finally, the APC enters a wait on this resume event, with the
          wait reason WrCpuRateControl. By using a tool
          such as Sysinternals PsList, or Process Explorer—all of which
          display wait reasons (as well as a kernel debugger)—you can see such
          threads intermittently blocked on a DFSS system.
[image: image with no caption]


Resuming Execution



With more and more threads possibly hitting their CPU
          quota restrictions and block on their respective idle-queues, how
          will they eventually resume execution? One of the possibilities is
          that a new 150-ms interval has started. Recall from the earlier
          discussion that PspStartNewFairShareInterval
          was said to “flush the idle-only queue.” This operation, performed
          by PspFlushProcessorIdleOnlyQueue, essentially
          scans every per-CPU quota entry for this processor (which is located
          in the sorted block list), and then scans the idle-only queue of
          each such processor. Picking every thread in the list, the function
          removes the thread and manually sets the resume event. Thus, any
          blocked thread on the current CPU gets to resume execution after 150
          ms.
Obviously, flushing is not the usual mechanism through which
          the idle-only queue threads are managed. This work typically is done
          by the DFSS scheduler itself, which provides the
          PsReleaseThreadFromIdleOnlyQueue routine as a
          callback that the regular thread scheduler, when the system is about
          to go idle, can use whenever DFSS-related work is required.
          Specifically, it is the KiSearchForNewThread
          function, thoroughly described earlier, that calls DFSS in the
          following two scenarios:
	If KiSelectReadyThread, which is
              called initially, has not found a new thread for the current
              processor, before it checks other processors’ dispatcher ready
              queues, KiSearchForNewThread will ask DFSS
              to release a thread from the idle-only queue.

	Otherwise, as each CPU’s dispatcher ready queues
              are scanned (by looping KiSelectReadyThread
              calls on each PRCB), if once again no thread is found, the DFSS
              scheduler is called to release a thread from the idle-only queue
              on the target processor as well.



Finally, you’ll see what work
          PsReleaseThreadFromIdleOnlyQueue actually does
          and how the DFSS scheduler is implemented.

DFSS Idle-Only Queue Scheduling



PsReleaseThreadFromIdleOnlyQueue
          initially checks whether the sorted block list is empty (which would
          imply there aren’t even any valid per-CPU quota entries), and it
          exits if this is the case. Otherwise, it acquires the idle-only
          queue spinlock from the per-CPU DFSS data structure and calls
          PspFindHighestPriorityThreadToRun. This
          function scans the sorted block list, recovering every per-CPU quota
          entry, and then scans every entry (which, if you recall, points to
          the Quota Wait Block for the thread). Unfortunately, because threads
          are not inserted by priority (such as real dispatcher ready queues),
          the entire idle-only queue must be scanned, and the highest priority
          found to this point is recorded in each iteration. (Because the lock
          is acquired, no new per-CPU quota entries or idle-only queue threads
          can be inserted during the scan.)
Note
Because DFSS is not truly integrated with the regular thread
            scheduler, the reason the threads are not sorted by priority is
            obvious: DFSS is not aware of priority changes after idle-only
            queue threads have been inserted in its lists. A user could still
            modify the priority, and because the thread scheduler does not
            notify DFSS of this, an incorrect thread would be picked.

Additionally, affinity is carefully checked to ensure only
          correctly affinitized threads are scanned. Although each idle-only
          queue contains only threads for the current processor, scenario #2
          in the preceding section showed how remote processor idle-only
          queues can also be scanned. DFSS must ensure that the current CPU
          will run an appropriate remote-CPU, idle-only thread.
Once the highest priority thread has been found on the current
          per-CPU quota entry, it is removed from the idle-only queue and
          returned to the caller. Additionally, if this was the last thread on
          the idle-only queue, the per-CPU entry is removed from the sorted
          block list. Therefore, note that the other per-CPU quota entries are
          not checked unless a runnable highest-priority thread was not found
          on the first per-CPU quota entry (that is, the one with the highest
          base cycle allowance).
Once the thread is found,
          PsReleaseThreadFromIdleOnlyQueue resumes its
          execution and once more queues the DPC responsible for eventually
          launching the per-thread APC from earlier (after making sure the DPC
          is not already running). Thus, the APC is never directly queued in
          this case, because this function runs as part of the thread
          scheduler, already at DISPATCH_LEVEL. Additionally, it wouldn’t make
          sense to queue another per-thread APC just to notify the original
          APC; instead, the DPC itself will wake up the thread.
This is done by a special check in the DPC routine
          that checks whether the
          ThreadWaitBlockForRelease field in the per-CPU
          DFSS data structure is set. If so, the DPC knows that this is a
          wake-up, not a stop, request, and it sets the resume event
          associated with the Quota Wait Block. Additionally, it forces the
          Idle Scheduler on the current CPU to run, by setting the
          IdleSchedule field in the KPRCB that was
          brought up in the earlier idle scheduler section.
One detail has been glossed over, however: once the idle-only
          thread is picked, as soon as a context switch is initiated, the
          cycle accumulation once again detects that the thread has exhausted
          its cycles, and it re-inserts the thread in the idle-only queue.
          Therefore, PsReleaseThreadFromIdleOnlyQueue
          must update the cycles remaining for the current per-CPU quota
          entry, allowing this CPU to run the thread for a little bit longer.
          How much longer exactly is determined by the value of
          KiCyclesPerClockQuantum, which was shown in the
          earlier Quantum section. Therefore, this CPU is
          allowed to run the current thread for an entire quantum, at
          most.
Additionally, the base cycle allowance for this entry must be
          updated, because the quota for the CPU is actually exhausted and no
          longer working on a 150-ms cycle credit. Therefore, the allowance is
          now updated to include an extra
          KiCyclesPerClockQuantum divided by the weight
          of the session cycle. Because the base cycle allowance has changed,
          the sorted block list is reparsed, and the entries are re-sorted
          correctly to account for this change. Thus, this block will now
          migrate to the front of the list and have a higher chance to be
          picked once a future idle-only thread (within this interval) needs
          to be picked.

Session Weight Configuration



So far, the weight associated to sessions has been described
          as its default value of 5. However, this weight can be set to
          anywhere between 1 and 9, and DFSS provides two internal APIs for
          managing weight information:
          PsQueryCpuInformation and its
          Set equivalent.
Given an array of session handles (to session objects) and
          associated weights, the Set API sets the new weight for each
          session, as well as updating the total weight stored in the
          PspCpuQuotaControl global. By calling
          PspCalculateCpuQuotaBlockCycleCredits again,
          the new settings will be propagated. Likewise, the Query API returns
          an array of weights and session IDs. The
          SeIncreaseQuotaPrivilege is required in both
          cases, as well as SESSION_MODIFY_ACCESS for each session whose
          weight is being modified. Accessing these APIs is done through the
          native API function NtQuerySystemInformation,
          with the SystemCpuQuotaInformation call.
This API, although not provided by the Windows API directly,
          is what the Windows System Resource Manager uses when the
          administrator assigns different priorities to different users when
          the Weighted_Remote_Sessions policy is enabled.
          The three priorities—Premium, Standard, and Basic—map to the 1, 5,
          and 9 weights in the internal DFSS scheduler mechanism,
          respectively.


CPU Rate Limits



As part of the hard quota management system in Windows
        (based on the original soft-limit quota support present since the
        first version of Windows NT), support for limiting CPU usage exists in
        the system in three different ways: per-session, per-user, or
        per-system. Unfortunately, there is no tool that is part of the
        operating system that allows you to set these limits—you must modify
        the registry settings manually. Because all the quotas—save one—are
        memory quotas, we will cover those in Chapter 10 in Part 2, which
        deals with the memory manager, and instead focus our attention here on
        the CPU rate limit.
Note
See the topic “CPU rate limits in Windows Server 2008 R2 and
          Windows 7” in the Microsoft Technet Knowledge Articles at
          http://technet.microsoft.com/en-us/library/ff384148(WS.10).aspx
          for further documentation and examples on when to use CPU rate
          limits.

The new quota system can be accessed through the registry key
        HKLM\SYSTEM\CurrentControlSet\Control\Session Manager\QuotaSystem, as
        well as through the standard
        NtSetInformationProcess system call. CPU rate
        limits can therefore be set in one of three ways:
	By creating a new DWORD value called
            CpuRateLimit and entering the rate
            information.

	By creating a new key with the security ID (SID) of the
            account you want to limit, and creating a
            CpuRateLimit DWORD value inside that
            key.

	By calling NtSetInformationProcess and
            giving it the process handle of the process to limit and the CPU
            rate limiting information, if the process is tied to the system
            quota block.



In all three cases, the CPU rate limit data is a straightforward
        value; it is simply a rate limit expressed as a percentage. For
        example, to limit a user’s applications to consume at most 10% of CPU
        time, you set CpuRateLimit to
        10. The process manager, which is responsible for
        enforcing the CPU rate limit, uses various system mechanisms to do its
        job. First, rate limiting works reliably because of the CPU cycle
        count improvements discussed earlier, which allow the process manager
        to accurately determine how much CPU time a process has taken and know
        whether the limit should be enforced. It then uses a combination of
        DPC and APC routines to throttle down DPC and APC CPU usage, which are
        outside the direct control of user-mode developers but still result in
        CPU usage in the system (in the case of a systemwide CPU rate
        limit).
Finally, the main mechanism through which rate limiting works is
        by creating an artificial wait on an event object (making the thread
        uniquely bound to this object and putting it in a wait state, which
        does not consume CPU cycles). Threads that are artificially waiting
        because of CPU rate limits can be observed because their wait reason
        code is set to WrCpuRateControl. This mechanism
        operates through the normal routine of an APC object queued to the
        thread or threads inside the process currently responsible for the
        work. The event is eventually signaled by the DPC routine associated
        with a timer (firing every half a second) responsible for replenishing
        systemwide CPU usage requests.


Dynamic Processor Addition and Replacement



As you’ve seen, developers can fine-tune which threads are
      allowed to (and in the case of the ideal processor, should) run on which
      processor. This works fine on systems that have a constant number of
      processors during their run time. (For example, desktop machines require
      shutting down the computer to make any sort of hardware changes to the
      processor or their count.)
Today’s server systems, however, cannot afford the downtime that
      CPU replacement or addition normally requires. In fact, one example of
      when adding a CPU is required for a server is at times of high load that
      is above what the machine can support at its current level of
      performance. Having to shut down the server during a period of peak
      usage would defeat the purpose. To meet this requirement, the latest
      generation of server motherboards and systems support the addition of
      processors (as well as their replacement) while the machine is still
      running. The ACPI BIOS and related hardware on the machine have been
      specifically built to allow and be aware of this need, but operating
      system participation is required for full support.
Dynamic processor support is provided through the HAL, which
      notifies the kernel of a new processor on the system through the
      function KeStartDynamicProcessor. This routine does
      similar work to that performed when the system detects more than one
      processor at startup and needs to initialize the structures related to
      them. When a dynamic processor is added, various system components
      perform some additional work. For example, the memory manager allocates
      new pages and memory structures optimized for the CPU. It also
      initializes a new DPC kernel stack while the kernel initializes the
      global descriptor table (GDT), the interrupt Dispatch table (IDT), the
      processor control region (PCR), the process control block (PRCB), and
      other related structures for the processor.
Other executive parts of the kernel are also called, mostly to
      initialize the per-processor look-aside lists for the processor that was
      added. For example, the I/O manager, executive look-aside list code,
      cache manager, and object manager all use per-processor look-aside lists
      for their frequently allocated structures.
Finally, the kernel initializes threaded DPC support for the
      processor and adjusts exported kernel variables to report the new
      processor. Different memory-manager masks and process seeds based on
      processor counts are also updated, and processor features need to be
      updated for the new processor to match the rest of the system (for
      example, enabling virtualization support on the newly added processor).
      The initialization sequence completes with the notification to the
      Windows Hardware Error Architecture (WHEA) component that a new
      processor is online.
The HAL is also involved in this process. It is called once to
      start the dynamic processor after the kernel is aware of it, and it is
      called again after the kernel has finished initialization of the
      processor. However, these notifications and callbacks only make the
      kernel aware and respond to processor changes. Although an additional
      processor increases the throughput of the kernel, it does nothing to
      help drivers.
To handle drivers, the system has a new default executive callback
      object, the ProcessorAdd callback, that drivers can
      register with for notifications. Similar to the callbacks that notify
      drivers of power state or system time changes, this callback allows
      driver code to, for example, create a new worker thread if desirable so
      that it can handle more work at the same time.
Once drivers are notified, the final kernel component called is
      the Plug and Play manager, which adds the processor to the system’s
      device node and rebalances interrupts so that the new processor can
      handle interrupts that were already registered for other processors.
      CPU-hungry applications are also able to take advantage of newer
      processors as well.
However, a sudden change of affinity can have potentially breaking
      changes for a running application (especially when going from a
      single-processor to a multiprocessor environment) through the appearance
      of potential race conditions or simply misdistribution of work (because
      the process might have calculated the perfect ratios at startup, based
      on the number of CPUs it was aware of). As a result, applications do not
      take advantage of a dynamically added processor by default—they must
      request it.
The Windows APIs SetProcessAffinityUpdateMode
      and QueryProcessAffinityMode (which use the
      undocumented
      NtSet/QueryInformationProcess
      system call) tell the process manager that these applications should
      have their affinity updated (by setting the
      AffinityUpdateEnable flag in EPROCESS), or that
      they do not want to deal with affinity updates (by setting the
      AffinityPermanent flag in EPROCESS). Once an
      application has told the system that its affinity is permanent, it
      cannot later change its mind and request affinity updates, so this is a
      one-time change.
As part of KeStartDynamicProcessor, a new
      step has been added after interrupts are rebalanced, which is to call
      the process manager to perform affinity updates through
      PsUpdateActiveProcessAffinity. Some Windows core
      processes and services already have affinity updates enabled, while
      third-party software will need to be recompiled to take advantage of the
      new API call. The System process, Svchost
      processes, and Smss are all compatible with dynamic
      processor addition.

Job Objects



A job object is a nameable, securable, shareable kernel object
      that allows control of one or more processes as a group. A job object’s
      basic function is to allow groups of processes to be managed and
      manipulated as a unit. A process can be a member of only one job object.
      By default, its association with the job object can’t be broken and all
      processes created by the process and its descendants are associated with
      the same job object as well. The job object also records basic
      accounting information for all processes associated with the job and for
      all processes that were associated with the job but have since
      terminated.
Jobs can also be associated with an I/O completion port object,
      which other threads might be waiting for, with the Windows
      GetQueuedCompletionStatus function. This allows
      interested parties (typically, the job creator) to monitor for limit
      violation and events that could affect the job’s security (such as a new
      process being created or a process abnormally exiting).
Job Limits



The following are some of the CPU-related and
        memory-related limits you can specify for a job:
	Maximum number of active
              processes. Limits the number of concurrently existing processes in
              the job.

	Jobwide user-mode CPU time
              limit. Limits the maximum amount of user-mode CPU time that the
              processes in the job can consume (including processes that have
              run and exited). Once this limit is reached, by default all the
              processes in the job are terminated with an error code and no
              new processes can be created in the job (unless the limit is
              reset). The job object is signaled, so any threads waiting for
              the job will be released. You can change this default behavior
              with a call to SetInformationJobObject to
              set the EndOfJobTimeAction information
              class and request a notification to be sent through the job’s
              completion port instead.

	Per-process user-mode CPU time
              limit. Allows each process in the job to accumulate only a fixed
              maximum amount of user-mode CPU time. When the maximum is
              reached, the process terminates (with no chance to clean
              up).

	Job processor
              affinity. Sets the processor affinity mask for each process in the
              job. (Individual threads can alter their affinity to any subset
              of the job affinity, but processes can’t alter their process
              affinity setting.)

	Job group
              affinity. Sets a list of groups to which the processes in the job
              can be assigned to. Any affinity changes are then subject to the
              group selection imposed by the limit. This is treated as a
              group-aware version of the job processor affinity limit
              (legacy), and prevents that limit from being used.

	Job process priority
              class. Sets the priority class for each process in the job.
              Threads can’t increase their priority relative to the class (as
              they normally can). Attempts to increase thread priority are
              ignored. (No error is returned on calls to
              SetThreadPriority, but the increase doesn’t
              occur.)

	Default working set minimum and
              maximum. Defines the specified working set minimum and maximum for
              each process in the job. (This setting isn’t jobwide—each
              process has its own working set with the same minimum and
              maximum values.)

	Process and job committed virtual
              memory limit. Defines the maximum amount of virtual address space that
              can be committed by either a single process or the entire
              job.



You can also place security limits on processes in a job. You
        can set a job so that each process runs under the same jobwide access
        token. You can then create a job to restrict processes from
        impersonating or creating processes that have access tokens that
        contain the local administrator’s group. In addition, you can apply
        security filters so that when threads in processes contained in a job
        impersonate client threads, certain privileges and security IDs (SIDs)
        can be eliminated from the impersonation token.
Finally, you can also place user-interface limits on
        processes in a job. Such limits include being able to restrict
        processes from opening handles to windows owned by threads outside the
        job, reading and/or writing to the clipboard, and changing the many
        user-interface system parameters via the Windows
        SystemParametersInfo function. These
        user-interface limits are managed by the Windows subsystem GDI/USER
        driver, Win32k.sys, and are enforced through one of the special
        callouts that it registers with the process manager, the job
        callout.

Job Sets



The job implementation also allows for finer grained control of
        which job object a given process will be associated with by enabling
        the creation of job sets. A job set is an array that associates a job
        member level with each job object that was created by the caller.
        Later, when the process manager attempts to associate a process with a
        job, it picks the correct job object from the set based on the job
        member level that was associated with the newly created process (which
        must be higher than or equal to the parent’s job member level. This
        allows the parent process to have created multiple job objects, and
        for its children to pick the appropriate one depending on which limits
        the parent might want to enforce.
EXPERIMENT: Viewing the Job Object
You can view named job objects with the Performance tool. (See
          the Job Object and Job Object Details performance objects.) You can
          view unnamed jobs with the kernel debugger !job
          or dt nt!_ejob command.
To see whether a process is associated with a job, you can use
          the kernel debugger !process command or Process
          Explorer. Follow these steps to create and view an unnamed job
          object:
	From the command prompt, use the
              runas command to create a process running
              the command prompt (Cmd.exe). For example, type runas
              /user:<domain>\<
              username> cmd. You’ll be
              prompted for your password. Enter your password, and a Command
              Prompt window will appear. The Windows service that executes
              runas commands creates an unnamed job to
              contain all processes (so that it can terminate these processes
              at logoff time).

	From the command prompt, run Notepad.exe.

	Then run Process Explorer, and notice that the Cmd.exe and
              Notepad.exe processes are highlighted as part of a job. (You can
              configure the colors used to highlight processes that are
              members of a job by clicking Options, Configure Colors.) Here is
              a screen shot showing these two processes:
[image: image with no caption]


	Double-click either the Cmd.exe or Notepad.exe process to
              bring up the process properties. You will see a Job tab in the
              process properties dialog box.

	Click the Job tab to view the details about the job. In
              this case, there are no quotas associated with the job, but
              there are two member processes:
[image: image with no caption]


	Now run the kernel debugger on the live system, display
              the process list with !process, and find
              the recently created process running Cmd.exe. Then display the
              process by using !process <process
              ID>, find the address of the job object, and
              finally display the job object with the
              !job command. Here’s some partial debugger
              output of these commands on a live system:
lkd> !process 0 1 cmd.exe
PROCESS 8567b758  SessionId: 1  Cid: 0fc4    Peb: 7ffdf000  ParentCid: 00b0
    DirBase: 1b3fb000  ObjectTable: e18dd7d0  HandleCount:  19.
    Image: Cmd.exe
...
    BasePriority                      8
    CommitCharge                      636
...    Job                               85557988

lkd> !job 85557988
Job at 85557988
  TotalPageFaultCount      0
  TotalProcesses           2
  ActiveProcesses          2
  TotalTerminatedProcesses 0
  LimitFlags               0
...

	You can also use the dt command to
              display the job object and see the additional fields shown about
              the job, such as its member level, if it is part of a job
              set:
lkd> dt nt!_ejob 85557988
nt!_EJOB
   +0x000 Event            : _KEVENT
...
   +0x0b8 EndOfJobTimeAction : 0
   +0x0bc CompletionPort   : 0x87e3d2e8
   +0x0c0 CompletionKey    : 0x07a89508
   +0x0c4 SessionId        : 1
   +0x0c8 SchedulingClass  : 5
...
   +0x120 MemberLevel      : 0
   +0x124 JobFlags         : 0

	Finally, if the job has UI limits, you can use the
              dt command to display the Win32k job
              structure (tagW32JOB). To do this, you must
              first obtain the W32PROCESS structure pointer as shown in the
              experiment at the beginning of this chapter, and then display
              the pW32Job field within it.



For example, here is the Win32k job structure for a process
          using the Block Access To Global Atom Table UI limitation. The
          structure shows the local atom table this process is using in
          pAtomTable. You can further explore this
          structure with the dt nt!_RTL_ATOM_TABLE
          command and see which atoms are defined:
lkd> ?? ((win32k!tagPROCESSINFO*)(((nt!_EPROCESS*)0x847c4740)->Win32Process))->pW32Job
struct tagW32JOB * 0xfd573300
   +0x000 pNext            : 0xff87c5d8 tagW32JOB
   +0x004 Job              : 0x8356ab90 _EJOB
   +0x008 pAtomTable       : 0x8e03eb18
   +0x00c restrictions     : 0xff
   +0x010 uProcessCount    : 1
   +0x014 uMaxProcesses    : 4
   +0x018 ppiTable         : 0xfe5072c0  -> 0xff97db18 tagPROCESSINFO
   +0x01c ughCrt           : 0
   +0x020 ughMax           : 0
   +0x024 pgh              : (null)



Conclusion



In this chapter, we examined the structure of processes and
      threads and jobs, saw how they are created, and looked at how Windows
      decides which threads should run and for how long, and on which
      processor or processors.
In the next chapter, we’ll look at a part of the system that
      sometimes receives more attention than anything else: the Windows
      security reference monitor.

Chapter 6. Security



Preventing unauthorized access to sensitive data is
    essential in any environment in which multiple users have access to the
    same physical or network resources. An operating system, as well as
    individual users, must be able to protect files, memory, and configuration
    settings from unwanted viewing and modification. Operating system security
    includes obvious mechanisms such as accounts, passwords, and file
    protection. It also includes less obvious mechanisms, such as protecting
    the operating system from corruption, preventing less privileged users
    from performing actions (rebooting the computer, for example), and not
    allowing user programs to adversely affect the programs of other users or
    the operating system.
In this chapter, we explain how every aspect of the design and
    implementation of Microsoft Windows was influenced in some way by the
    stringent requirements of providing robust security.

Security Ratings



Having software, including operating systems, rated against
      well-defined standards helps the government, corporations, and home
      users protect proprietary and personal data stored in computer systems.
      The current security rating standard used by the United States and many
      other countries is the Common Criteria (CC). To understand the security
      capabilities designed into Windows, however, it’s useful to know the
      history of the security ratings system that influenced the design of
      Windows, the Trusted Computer System Evaluation Criteria (TCSEC).
Trusted Computer System Evaluation Criteria



The National Computer Security Center (NCSC) was established in
        1981 as part of the U.S. Department of Defense’s (DoD) National
        Security Agency (NSA). One goal of the NCSC was to create a range of
        security ratings, listed in Table 6-1, to
        be used to indicate the degree of protection commercial operating
        systems, network components, and trusted applications offer. These
        security ratings, which can be found at http://csrc.nist.gov/publications/history/dod85.pdf,
        were defined in 1983 and are commonly referred to as “the Orange
        Book.”
The TCSEC standard consists of “levels of trust” ratings, where
        higher levels build on lower levels by adding more rigorous protection
        and validation requirements. No operating system meets the A1, or
        “Verified Design,” rating. Although a few operating systems have
        earned one of the B-level ratings, C2 is considered sufficient and the
        highest rating practical for a general-purpose operating
        system.
Table 6-1. TCSEC Rating Levels
	Rating
	Description

	A1
	Verified Design

	B3
	Security Domains

	B2
	Structured Protection

	B1
	Labeled Security
                Protection

	C2
	Controlled Access
                Protection

	C1
	Discretionary Access Protection
                (obsolete)

	D
	Minimal Protection




In July 1995, Windows NT 3.5 (Workstation and Server) with
        Service Pack 3 was the first version of Windows NT to earn the C2
        rating. In March 1999, Windows NT 4 with Service Pack 3 achieved an E3
        rating from the U.K. government’s Information Technology Security
        (ITSEC) organization, a rating equivalent to a U.S. C2 rating. In
        November 1999, Windows NT 4 with Service Pack 6a earned a C2 rating in
        both stand-alone and networked configurations.
The following were the key requirements for a C2 security
        rating, and they are still considered the core requirements for any
        secure operating system:
	A secure logon facility, which requires that users can be
            uniquely identified and that they must be granted access to the
            computer only after they have been authenticated in some
            way.

	Discretionary access control, which allows the owner of a
            resource (such as a file) to determine who can access the resource
            and what they can do with it. The owner grants rights that permit
            various kinds of access to a user or to a group of users.

	Security auditing, which affords the ability to detect and
            record security-related events or any attempts to create, access,
            or delete system resources. Logon identifiers record the
            identities of all users, making it easy to trace anyone who
            performs an unauthorized action.

	Object reuse protection, which prevents users from seeing
            data that another user has deleted or from accessing memory that
            another user previously used and then released. For example, in
            some operating systems, it’s possible to create a new file of a
            certain length and then examine the contents of the file to see
            data that happens to have occupied the location on the disk where
            the file is allocated. This data might be sensitive information
            that was stored in another user’s file but had been deleted.
            Object reuse protection prevents this potential security hole by
            initializing all objects, including files and memory, before they
            are allocated to a user.



Windows also meets two requirements of B-level security:
	Trusted path functionality, which prevents Trojan horse
            programs from being able to intercept users’ names and passwords
            as they try to log on. The trusted path functionality in Windows
            comes in the form of its Ctrl+Alt+Delete logon-attention sequence,
            which cannot be intercepted by nonprivileged applications. This
            sequence of keystrokes, which is also known as the secure
            attention sequence (SAS), always displays a system-controlled
            Windows security screen (if a user is already logged on) or the
            logon screen so that would-be Trojan horses can easily be
            recognized. (The secure attention sequence can also be sent
            programmatically via the SendSAS API, if
            group policy allows it.) A Trojan horse presenting a fake logon
            dialog box will be bypassed when the SAS is entered.

	Trusted facility management, which requires support for
            separate account roles for administrative functions. For example,
            separate accounts are provided for administration
            (Administrators), user accounts charged with backing up the
            computer, and standard users.



Windows meets all of these requirements through its security
        subsystem and related components.

The Common Criteria



In January 1996, the United States, United Kingdom, Germany,
        France, Canada, and the Netherlands released the jointly developed
        Common Criteria for Information Technology Security Evaluation
        (CCITSE) security evaluation specification. CCITSE, which is usually
        referred to as the Common Criteria (CC), is the recognized
        multinational standard for product security evaluation. The CC home
        page is at www.niap-ccevs.org/cc-scheme/.
The CC is more flexible than the TCSEC trust ratings and has a
        structure closer to the ITSEC standard than to the TCSEC standard. The
        CC includes the concept of a Protection Profile (PP), used to collect
        security requirements into easily specified and compared sets, and the
        concept of a Security Target (ST), which contains a set of security
        requirements that can be made by reference to a PP. The CC also
        defines a range of seven Evaluation Assurance Levels (EALs), which
        indicate a level of confidence in the certification. In this way, the
        CC (like the ITSEC standard before it) removes the link between
        functionality and assurance level that was present in TCSEC and
        earlier certification schemes.
Windows 2000, Windows XP, Windows Server 2003, and Windows Vista
        Enterprise all achieved Common Criteria certification under the
        Controlled Access Protection Profile (CAPP). This is roughly
        equivalent to a TCSEC C2 rating. All received a rating of EAL 4+, the
        “plus” denoting “flaw remediation.” EAL 4 is the highest level
        recognized across national boundaries.
In March 2011, Windows 7 and Windows Server 2008 R2 were
        evaluated as meeting the requirements of the US Government Protection
        Profile for General-Purpose Operating Systems in a Networked
        Environment, version 1.0, 30 August 2010 (GPOSPP) (http://www.commoncriteriaportal.org/files/ppfiles/pp_gpospp_v1.0.pdf).
        The certification includes the Hyper-V hypervisor, and again Windows
        achieved Evaluation Assurance Level 4 with flaw remediation (EAL-4+).
        The validation report can be found at http://www.commoncriteriaportal.org/files/epfiles/st_vid10390-vr.pdf,
        and the description of the security target, giving details of the
        requirements satisfied, can be found at http://www.commoncriteriaportal.org/files/epfiles/st_vid10390-st.pdf.


Security System Components



These are the core components and databases that implement
      Windows security:
	Security reference monitor
            (SRM). A component in the Windows executive
            (%SystemRoot%\System32\Ntoskrnl.exe) that is responsible for
            defining the access token data structure to represent a security
            context, performing security access checks on objects,
            manipulating privileges (user rights), and generating any
            resulting security audit messages.

	Local Security Authority subsystem
            (LSASS). A user-mode process running the image
            %SystemRoot%\System32\Lsass.exe that is responsible for the local
            system security policy (such as which users are allowed to log on
            to the machine, password policies, privileges granted to users and
            groups, and the system security auditing settings), user
            authentication, and sending security audit messages to the Event
            Log. The Local Security Authority service
            (Lsasrv—%SystemRoot%\System32\Lsasrv.dll), a library that LSASS
            loads, implements most of this functionality.

	LSASS policy
            database. A database that contains the local system security policy
            settings. This database is stored in the registry in an
            ACL-protected area under HKLM\SECURITY. It includes such
            information as what domains are entrusted to authenticate logon
            attempts, who has permission to access the system and how
            (interactive, network, and service logons), who is assigned which
            privileges, and what kind of security auditing is to be performed.
            The LSASS policy database also stores “secrets” that include logon
            information used for cached domain logons and Windows service
            user-account logons. (See Chapter 4, for more information on
            Windows services.)

	Security Accounts Manager
            (SAM). A service responsible for managing the database that
            contains the user names and groups defined on the local machine.
            The SAM service, which is implemented as
            %SystemRoot%\System32\Samsrv.dll, is loaded into the LSASS
            process.

	SAM database. A database that contains the defined local users and groups,
            along with their passwords and other attributes. On domain
            controllers, the SAM does not store the domain-defined users, but
            stores the system’s administrator recovery account definition and
            password. This database is stored in the registry under
            HKLM\SAM.

	Active Directory. A directory service that contains a database that stores
            information about objects in a domain. A
            domain is a collection of computers and their
            associated security groups that are managed as a single entity.
            Active Directory stores information about the objects in the
            domain, including users, groups, and computers. Password
            information and privileges for domain users and groups are stored
            in Active Directory, which is replicated across the computers that
            are designated as domain controllers of the domain. The Active
            Directory server, implemented as %SystemRoot%\System32\Ntdsa.dll,
            runs in the LSASS process. For more information on Active
            Directory, see Chapter 7.

	Authentication
            packages. These include dynamic-link libraries (DLLs) that run
            both in the context of the LSASS process and client processes, and
            implement Windows authentication policy. An authentication DLL is
            responsible for authenticating a user, by checking whether a given
            user name and password match, and if so, returning to the LSASS
            information detailing the user’s security identity, which LSASS
            uses to generate a token.

	Interactive logon manager
            (Winlogon). A user-mode process running
            %SystemRoot%\System32\Winlogon.exe that is responsible for
            responding to the SAS and for managing interactive logon sessions.
            Winlogon creates a user’s first process when the user logs on, for
            example.

	Logon user interface
            (LogonUI). A user-mode process running
            %SystemRoot%\System32\LogonUI.exe that presents users with the
            user interface they can use to authenticate themselves on the
            system. LogonUI uses credential providers to query user
            credentials through various methods.

	Credential providers
            (CPs). In-process COM objects that run in the LogonUI process
            (started on demand by Winlogon when the SAS is performed) and used
            to obtain a user’s name and password, smartcard PIN, or biometric
            data (such as a fingerprint). The standard CPs are
            %SystemRoot%\System32\authui.dll and
            %SystemRoot%\System32\SmartcardCredentialProvider.dll.

	Network logon service
            (Netlogon). A Windows service (%SystemRoot%\System32\Netlogon.dll) that
            sets up the secure channel to a domain controller, over which
            security requests—such as an interactive logon (if the domain
            controller is running Windows NT 4) or LAN Manager and NT LAN
            Manager (v1 and v2) authentication validation—are sent. Netlogon
            is also used for Active Directory logons.

	Kernel Security Device Driver
            (KSecDD). A kernel-mode library of functions that implement the
            advanced local procedure call (ALPC) interfaces that other kernel
            mode security components, including the Encrypting File System
            (EFS), use to communicate with LSASS in user mode. KSecDD is
            located in %SystemRoot%\System32\Drivers\Ksecdd.sys.

	AppLocker. A mechanism that allows administrators to specify which
            executable files, DLLs, and scripts can be used by specified users
            and groups. AppLocker consists of a driver
            (%SystemRoot%\System32\Drivers\AppId.sys) and a service
            (%SystemRoot%\System32\AppIdSvc.dll) running in a SvcHost
            process.



Figure 6-1 shows the
      relationships among some of these components and the databases they
      manage.
[image: Windows security components]

Figure 6-1. Windows security components

EXPERIMENT: Looking Inside HKLM\SAM and HKLM\Security
The security descriptors associated with the SAM and
        Security keys in the registry prevent access by any account other than
        the local system account. One way to gain access to these keys for
        exploration is to reset their security, but that can weaken the
        system’s security. Another way is to execute Regedit.exe while running
        as the local system account. This can be done using the PsExec tool
        from Windows Sysinternals with the –s option, as
        shown here:
C:\>psexec –s –i –d c:\windows\regedit.exe
[image: image with no caption]


The SRM, which runs in kernel mode, and LSASS, which runs
      in user mode, communicate using the ALPC facility described in Chapter 3. During system initialization, the SRM
      creates a port, named SeRmCommandPort, to which LSASS connects. When the
      LSASS process starts, it creates an ALPC port named SeLsaCommandPort.
      The SRM connects to this port, resulting in the creation of private
      communication ports. The SRM creates a shared memory section for
      messages longer than 256 bytes, passing a handle in the connect call.
      Once the SRM and LSASS connect to each other during system
      initialization, they no longer listen on their respective connect ports.
      Therefore, a later user process has no way to connect successfully to
      either of these ports for malicious purposes—the connect request will
      never complete.
Figure 6-2 shows
      the communication paths as they exist after system
      initialization.
[image: Communication between the SRM and LSASS]

Figure 6-2. Communication between the SRM and LSASS


Protecting Objects



Object protection and access logging is the essence of
      discretionary access control and auditing. The objects that can be
      protected on Windows include files, devices, mailslots, pipes (named and
      anonymous), jobs, processes, threads, events, keyed events, event pairs,
      mutexes, semaphores, shared memory sections, I/O completion ports, LPC
      ports, waitable timers, access tokens, volumes, window stations,
      desktops, network shares, services, registry keys, printers, Active
      Directory objects, and so on—theoretically, anything managed by the
      executive object manager. In practice, objects that are not exposed to
      user mode (such as driver objects) are usually not protected.
      Kernel-mode code is trusted and usually uses interfaces to the object
      manager that do not perform access checking. Because system resources
      that are exported to user mode (and hence require security validation)
      are implemented as objects in kernel mode, the Windows object manager
      plays a key role in enforcing object security.
We described the object manager in Chapter 3, showing how the object manager maintains
      the security descriptor for objects. This is illustrated in Figure 6-3 using the
      Sysinternals Winobj tool, showing the security descriptor for an event
      object in the user’s session. Although files are the resources most
      commonly associated with object protection, Windows uses the same
      security model and mechanism for executive objects as it does for files
      in the file system. As far as access controls are concerned, executive
      objects differ from files only in the access methods supported by each
      type of object.
[image: image with no caption]

As you will see later, what is shown in Figure 6-3 is actually the
      object’s discretionary access control list, or DACL. We will describe
      DACLs in detail in a later section.
To control who can manipulate an object, the security system must
      first be sure of each user’s identity. This need to guarantee the user’s
      identity is the reason that Windows requires authenticated logon before
      accessing any system resources. When a process requests a handle to an
      object, the object manager and the security system use the caller’s
      security identification and the object’s security descriptor to
      determine whether the caller should be assigned a handle that grants the
      process access to the object it desires.
[image: An executive object and its security descriptor, viewed by Winobj]

Figure 6-3. An executive object and its security descriptor, viewed by
        Winobj

As discussed later in this chapter, a thread can assume a
      different security context than that of its process. This mechanism is
      called impersonation, and when a thread is impersonating, security
      validation mechanisms use the thread’s security context instead of that
      of the thread’s process. When a thread isn’t impersonating, security
      validation falls back on using the security context of the thread’s
      owning process. It’s important to keep in mind that all the threads in a
      process share the same handle table, so when a thread opens an
      object—even if it’s impersonating—all the threads of the process have
      access to the object.
Sometimes, validating the identity of a user isn’t enough for the
      system to grant access to a resource that should be accessible by the
      account. Logically, one can think of a clear distinction between a
      service running under the Alice account and an unknown application that
      Alice downloaded while browsing the Internet. Windows achieves this kind
      of intra-user isolation with the Windows integrity mechanism, which
      implements integrity levels. The Windows integrity mechanism is used by
      User Account Control (UAC) elevations, Protected Mode Internet Explorer
      (PMIE), and User Interface Privilege Isolation (UIPI).
Access Checks



The Windows security model requires that a thread specify up
        front, at the time that it opens an object, what types of actions it
        wants to perform on the object. The object manager calls the SRM to
        perform access checks based on a thread’s desired access, and if the
        access is granted, a handle is assigned to the thread’s process with
        which the thread (or other threads in the process) can perform further
        operations on the object. As explained in Chapter 3, the object manager records the access
        permissions granted for a handle in the process’ handle table.
One event that causes the object manager to perform
        security access validation is when a process opens an existing object
        using a name. When an object is opened by name, the object manager
        performs a lookup of the specified object in the object manager
        namespace. If the object isn’t located in a secondary namespace, such
        as the configuration manager’s registry namespace or a file system
        driver’s file system namespace, the object manager calls the internal
        function ObpCreateHandle once it locates the
        object. As its name implies, ObpCreateHandle
        creates an entry in the process’ handle table that becomes associated
        with the object. ObpCreateHandle first calls
        ObpGrantAccess to see if the thread has
        permission to access the object; if the thread does,
        ObpCreateHandle calls the executive function
        ExCreateHandle to create the entry in the process
        handle table. ObpGrantAccess calls
        ObCheckObjectAccess to initiate the security
        access check.
ObpGrantAccess passes to
        ObCheckObjectAccess the security credentials of
        the thread opening the object, the types of access to the object that
        the thread is requesting (read, write, delete, and so forth), and a
        pointer to the object. ObCheckObjectAccess first
        locks the object’s security descriptor and the security context of the
        thread. The object security lock prevents another thread in the system
        from changing the object’s security while the access check is in
        progress. The lock on the thread’s security context prevents another
        thread (from that process or a different process) from altering the
        security identity of the thread while security validation is in
        progress. ObCheckObjectAccess then calls the
        object’s security method to obtain the security settings of the
        object. (See Chapter 3 for a description of
        object methods.) The call to the security method might invoke a
        function in a different executive component. However, many executive
        objects rely on the system’s default security management
        support.
When an executive component defining an object doesn’t want to
        override the SRM’s default security policy, it marks the object type
        as having default security. Whenever the SRM calls an object’s
        security method, it first checks to see whether the object has default
        security. An object with default security stores its security
        information in its header, and its security method is
        SeDefaultObjectMethod. An object that doesn’t
        rely on default security must manage its own security information and
        supply a specific security method. Objects that rely on default
        security include mutexes, events, and semaphores. A file object is an
        example of an object that overrides default security. The I/O manager,
        which defines the file object type, has the file system driver on
        which a file resides manage (or choose not to implement) the security
        for its files. Thus, when the system queries the security on a file
        object that represents a file on an NTFS volume, the I/O manager file
        object security method retrieves the file’s security using the NTFS
        file system driver. Note, however, that
        ObCheckObjectAccess isn’t executed when files are
        opened, because they reside in secondary namespaces; the system
        invokes a file object’s security method only when a thread explicitly
        queries or sets the security on a file (with the Windows
        SetFileSecurity or
        GetFileSecurity functions, for example).
After obtaining an object’s security information,
        ObCheckObjectAccess invokes the SRM function
        SeAccessCheck. SeAccessCheck
        is one of the functions at the heart of the Windows security model.
        Among the input parameters SeAccessCheck accepts
        are the object’s security information, the security identity of the
        thread as captured by ObCheckObjectAccess, and
        the access that the thread is requesting.
        SeAccessCheck returns True or False, depending on
        whether the thread is granted the access it requested to the
        object.
Another event that causes the object manager to execute
        access validation is when a process references an object using an
        existing handle. Such references often occur indirectly, as when a
        process calls on a Windows API to manipulate an object and passes an
        object handle. For example, a thread opening a file can request read
        permission to the file. If the thread has permission to access the
        object in this way, as dictated by its security context and the
        security settings of the file, the object manager creates a
        handle—representing the file—in the handle table of the thread’s
        process. The types of accesses the process is granted through the
        handle are stored with the handle by the object manager.
Subsequently, the thread could attempt to write to the file
        using the WriteFile Windows function, passing the
        file’s handle as a parameter. The system service
        NtWriteFile, which WriteFile
        calls via Ntdll.dll, uses the object manager function
        ObReferenceObjectByHandle to obtain a pointer to
        the file object from the handle.
        ObReferenceObjectByHandle accepts the access that
        the caller wants from the object as a parameter. After finding the
        handle entry in the process’ handle table,
        ObReferenceObjectByHandle compares the access
        being requested with the access granted at the time the file was
        opened. In this example,
        ObReferenceObjectByHandle will indicate that the
        write operation should fail because the caller didn’t obtain write
        access when the file was opened.
The Windows security functions also enable Windows applications
        to define their own private objects and to call on the services of the
        SRM (through the AuthZ user-mode APIs, described later) to enforce the
        Windows security model on those objects. Many kernel-mode functions
        that the object manager and other executive components use to protect
        their own objects are exported as Windows user-mode APIs. The
        user-mode equivalent of SeAccessCheck is the
        AuthZ API AccessCheck. Windows applications can
        therefore leverage the flexibility of the security model and
        transparently integrate with the authentication and administrative
        interfaces that are present in Windows.
The essence of the SRM’s security model is an equation that
        takes three inputs: the security identity of a thread, the access that
        the thread wants to an object, and the security settings of the
        object. The output is either “yes” or “no” and indicates whether or
        not the security model grants the thread the access it desires. The
        following sections describe the inputs in more detail and then
        document the model’s access-validation algorithm.

Security Identifiers



Instead of using names (which might or might not be unique) to
        identify entities that perform actions in a system, Windows uses
        security identifiers (SIDs). Users have SIDs, and so do local and
        domain groups, local computers, domains, domain members, and services.
        A SID is a variable-length numeric value that consists of a SID
        structure revision number, a 48-bit identifier authority value, and a
        variable number of 32-bit subauthority or relative identifier (RID)
        values. The authority value identifies the agent that issued the SID,
        and this agent is typically a Windows local system or a domain.
        Subauthority values identify trustees relative to the issuing
        authority, and RIDs are simply a way for Windows to create unique SIDs
        based on a common base SID. Because SIDs are long and Windows takes
        care to generate truly random values within each SID, it is virtually
        impossible for Windows to issue the same SID twice on machines or
        domains anywhere in the world.
When displayed textually, each SID carries an S prefix,
        and its various components are separated with hyphens:
	S-1-5-21-1463437245-1224812800-863842198-1128



In this SID, the revision number is 1, the identifier authority
        value is 5 (the Windows security authority), and four subauthority
        values plus one RID (1128) make up the remainder of the SID. This SID
        is a domain SID, but a local computer on the domain would have a SID
        with the same revision number, identifier authority value, and number
        of subauthority values.
When you install Windows, the Windows Setup program issues the
        computer a machine SID. Windows assigns SIDs to local accounts on the
        computer. Each local-account SID is based on the source computer’s SID
        and has a RID at the end. RIDs for user accounts and groups start at
        1000 and increase in increments of 1 for each new user or group.
        Similarly, Dcpromo.exe (Domain Controller Promote), the utility used
        to create a new Windows domain, reuses the computer SID of the
        computer being promoted to domain controller as the domain SID, and it
        re-creates a new SID for the computer if it is ever demoted. Windows
        issues to new domain accounts SIDs that are based on the domain SID
        and have an appended RID (again starting at 1000 and increasing in
        increments of 1 for each new user or group). A RID of 1028 indicates
        that the SID is the twenty-ninth SID the domain issued.
Windows issues SIDs that consist of a computer or domain SID
        with a predefined RID to many predefined accounts and groups. For
        example, the RID for the administrator account is 500, and the RID for
        the guest account is 501. A computer’s local administrator account,
        for example, has the computer SID as its base with the RID of 500
        appended to it:
	S-1-5-21-13124455-12541255-61235125-500



Windows also defines a number of built-in local and domain SIDs
        to represent well-known groups. For example, a SID that identifies any
        and all accounts (except anonymous users) is the Everyone SID:
        S-1-1-0. Another example of a group that a SID can represent is the
        network group, which is the group that represents users who have
        logged on to a machine from the network. The network-group SID is
        S-1-5-2. Table 6-2, reproduced here from
        the Windows SDK documentation, shows some basic well-known SIDs, their
        numeric values, and their use. Unlike users’ SIDs, these SIDs are
        predefined constants, and have the same values on every Windows system
        and domain in the world. Thus, a file that is accessible by members of
        the Everyone group on the system where it was created is also
        accessible to Everyone on any other system or domain to which the hard
        drive where it resides happens to be moved. Users on those systems
        must, of course, authenticate to an account on those systems before
        becoming members of the Everyone group.
Note
See Microsoft Knowledge Base article 243330 for a list of
          defined SIDs at http://support.microsoft.com/kb/243330.

Finally, Winlogon creates a unique logon SID for each
        interactive logon session. A typical use of a logon SID is in an
        access control entry (ACE) that allows access for the duration of a
        client’s logon session. For example, a Windows service can use the
        LogonUser function to start a new logon session.
        The LogonUser function returns an access token
        from which the service can extract the logon SID. The service can then use the SID in an ACE that allows the
        client’s logon session to access the interactive window station and
        desktop. The SID for a logon session is S-1-5-5-0, and the RID is
        randomly generated.
Table 6-2. A Few Well-Known SIDs
	SID
	Group
	Use

	S-1-0-0
	Nobody
	Used when the SID is
                unknown.

	S-1-1-0
	Everyone
	A group that includes all users
                except anonymous users.

	S-1-2-0
	Local
	Users who log on to terminals
                locally (physically) connected to the system.

	S-1-3-0
	Creator Owner ID
	A security identifier to be replaced
                by the security identifier of the user who created a new
                object. This SID is used in inheritable ACEs.

	S-1-3-1
	Creator Group ID
	Identifies a security identifier to
                be replaced by the primary-group SID of the user who created a
                new object. Use this SID in inheritable ACEs.

	S-1-9-0
	Resource Manager
	Used by third-party applications
                performing their own security on internal data (such as
                Microsoft Exchange).




EXPERIMENT: Using PsGetSid and Process Explorer to View
          SIDs
You can easily see the SID representation for any account
          you’re using by running the PsGetSid utility from
          Sysinternals.
PsGetSid’s options allow you to translate machine and user
          account names to their corresponding SIDs and vice versa.
If you run PsGetSid with no options, it prints the SID
          assigned to the local computer. By using the fact that the
          Administrator account always has a RID of 500, you can determine the
          name assigned to the account (in cases where a system administrator
          has renamed the account for security reasons) simply by passing the
          machine SID appended with -500 as PsGetSid’s command-line
          argument.
To obtain the SID of a domain account, enter the user name
          with the domain as a prefix:
c:\>psgetsid redmond\daryl
You can determine the SID of a domain by specifying the
          domain’s name as the argument to PsGetSid:
c:\>psgetsid Redmond
Finally, by examining the RID of your own account, you know at
          least a number of security accounts (equal to the number resulting
          from subtracting 999 from your RID) have been created in your domain
          or on your local machine (depending on whether you are using a
          domain or local machine account). You can determine what accounts
          have been assigned RIDs by passing a SID with the RID you want to
          query to PsGetSid. If PsGetSid reports that no mapping between the
          SID and an account name was possible and the RID is lower than that
          of your account, you know that the account assigned the RID has been
          deleted.
For example, to find out the name of the account
          assigned the twenty-eighth RID, pass the domain SID appended with
          -1027 to PsGetSid:
c:\>psgetsid S-1-5-21-1787744166-3910675280-2727264193-1027
Account for S-1-5-21-1787744166-3910675280-2727264193-1027:
User: redmond\daryl
Process Explorer can also show you information on account and
          group SIDs on your system through its Security tab. This tab shows
          you information such as who owns this process and which groups the
          account is a member of. To view this information, simply
          double-click on any process (for example, Explorer.exe) in the
          Process list, and then click on the Security tab. You should see
          something similar to the following:
[image: image with no caption]

The information displayed in the User field contains the
          friendly name of the account owning this process, while the SID
          field contains the actual SID value. The Group list includes
          information on all the groups that this account is a member of.
          (Groups are described later in this chapter.)

Integrity Levels



As mentioned earlier, integrity levels can override
          discretionary access to differentiate a process and objects running
          as and owned by the same user, offering the ability to isolate code
          and data within a user account. The mechanism of mandatory integrity
          control (MIC) allows the SRM to have more detailed information about
          the nature of the caller by associating it with an integrity level.
          It also provides information on the trust required to access the
          object by defining an integrity level for it. These integrity levels are specified by a SID. Though
          integrity levels can be arbitrary values, the system uses five
          primary levels to separate privilege levels, as described in Table 6-3.
Table 6-3. Integrity Level SIDs
	SID
	Name (Level)
	Use

	S-1-16-0x0
	Untrusted (0)
	Used by processes started by the
                  Anonymous group. It blocks most write access.

	S-1-16-0x1000
	Low (1)
	Used by Protected Mode Internet
                  Explorer. It blocks write access to most objects (such as
                  files and registry keys) on the system.

	S-1-16-0x2000
	Medium (2)
	Used by normal applications being
                  launched while UAC is enabled.

	S-1-16-0x3000
	High (3)
	Used by administrative
                  applications launched through elevation when UAC is enabled,
                  or normal applications if UAC is disabled and the user is an
                  administrator.

	S-1-16-0x4000
	System (4)
	Used by services and other
                  system-level applications (such as Wininit, Winlogon, Smss,
                  and so forth).




EXPERIMENT: Looking at the Integrity Level of
            Processes
You can use Process Explorer from Sysinternals to quickly
            display the integrity level for the processes on your system. The
            following steps demonstrate this functionality.
	Launch Internet Explorer in Protected Mode.

	Open an elevated Command Prompt window.

	Open Microsoft Paint normally (without elevating
                it).

	Now open Process Explorer, right-click on any of the
                columns in the Process list, and then click Select Columns.
                You should see a dialog box similar to the one shown
                here:
[image: image with no caption]


	Select the Integrity Level check box, and click
                OK to close the dialog box and save the change.

	Process Explorer will now show you the integrity level
                of the processes on your system. You should see the Protected
                Mode Internet Explorer process at Low, Microsoft Paint at
                Medium, and the elevated command prompt at High. Also note
                that the services and system processes are running at an even
                higher integrity level, System.
[image: image with no caption]





Every process has an integrity level that is represented in
          the process’ token and propagated according to the following
          rules:
	A process normally inherits the integrity level of its
              parent (which means an elevated command prompt will spawn other
              elevated processes).

	If the file object for the executable image to which the
              child process belongs has an integrity level and the parent
              process’ integrity level is medium or higher, the child process
              will inherit the lower of the two.

	A parent process can create a child process with an
              explicit integrity level lower than its own (for example, when
              launching Protected Mode Internet Explorer from an elevated
              command prompt). To do this, it uses
              DuplicateTokenEx to duplicate its own
              access token, it uses SetTokenInformation
              to change the integrity level in the new token to the desired
              level, and then it calls
              CreateProcessAsUser with that new
              token.



EXPERIMENT: Understanding Protected Mode Internet
            Explorer
As mentioned earlier, one of the users of the
            Windows integrity mechanism is Internet Explorer’s Protected Mode,
            also called Protected Mode Internet Explorer (PMIE). This feature
            was added in Internet Explorer 7 to take advantage of the Windows
            integrity levels. This experiment will show you how PMIE utilizes
            integrity levels to provide a safer Internet experience. To do
            this, we’ll use Process Monitor to trace Internet Explorer’s
            behavior.
	Make sure that you haven’t disabled UAC and PMIE on your
                systems (they are both on by default), and close any running
                instances of Internet Explorer.

	Run Process Monitor, and select Filter, Filter to
                display the filtering dialog box. Add an include filter for
                the process name Iexplore.exe, as shown next:
[image: image with no caption]


	Run Process Explorer, and repeat the previous experiment
                to display the Integrity Level column.

	Now launch Internet Explorer. You should see a flurry of
                events appear in the Process Monitor window and a quick
                succession of events in Process Explorer, showing some
                processes starting and some exiting.



Once Internet Explorer is running, Process Explorer will
            show you two new Iexplore.exe processes, the parent Iexplore.exe
            running at medium integrity level and its child running at low
            integrity level.
Part of the added protection offered by PMIE is that
            Iexplore.exe processes that access websites run at low integrity.
            Because Internet Explorer hosts tabs in multiple processes, if you
            create additional tabs you might see additional instances of
            Iexplore.exe. There is one parent Iexplore.exe process that acts
            as a broker, providing access to parts of the system not
            accessible by those running at low integrity—for example, to save
            or open files from other parts of the file system.

Table 6-3 lists the
          integrity level associated with processes, but what about objects?
          Objects also have an integrity level stored as part of their
          security descriptor, in a structure that is called the mandatory
          label.
To support migrating from previous versions of Windows (whose
          registry keys and files would not include integrity-level
          information), as well as to make it simpler for application
          developers, all objects have an implicit integrity level to avoid
          having to manually specify one. This implicit integrity level is the
          medium level, meaning that the mandatory policy (described shortly)
          on the object will be performed on tokens accessing this object with
          an integrity level lower than medium.
When a process creates an object without specifying an
          integrity level, the system checks the integrity level in the token.
          For tokens with a level of medium or higher, the implicit integrity
          level of the object remains medium. However, when a token contains
          an integrity level lower than medium, the object is created with an
          explicit integrity level that matches the level in the token.
The reason that objects that are created by high or system
          integrity-level processes have a medium integrity level themselves
          is so that users can disable and enable UAC: if object integrity
          levels always inherited their creator’s integrity level, the
          applications of an administrator who disables UAC and subsequently
          re-enables it would potentially fail because the administrator would
          not be able to modify any registry settings or files created when
          running at the high integrity level. Objects can also have an
          explicit integrity level that is set by the system or by the creator
          of the object. For example, the following objects are given an
          explicit integrity level by the kernel when it creates them:
	Processes

	Threads

	Tokens

	Jobs



The reason for assigning an integrity level to these objects
          is to prevent a process for the same user, but one running at a
          lower integrity level, from accessing these objects and modifying
          their content or behavior (for example, DLL injection or code
          modification).
EXPERIMENT: Looking at the Integrity Level of
            Objects
You can use the Accesschk tool from Sysinternals to display
            the integrity level of objects on the system, such as files,
            processes, and registry keys. Here’s an experiment showing the
            purpose of the LocalLow directory in Windows.
	Browse to C:\Users\UserName\ in a command prompt.

	Try running Accesschk on the AppData folder, as
                follows:
C:\Users\UserName> accesschk –v appdata

	Note the differences between Local and LocalLow in your
                output, similar to the one shown here:
C:\Users\UserName\AppData\Local
  Medium Mandatory Level (Default) [No-Write-Up]
  [...]C:\Users\UserName\AppData\LocalLow
  Low Mandatory Level [No-Write-Up]
  [...]
C:\Users\UserName\AppData\Roaming
  Medium Mandatory Level (Default) [No-Write-Up]
  [...]

	Notice that the LocalLow directory has an integrity
                level that is set to Low, while the Local and Roaming
                directories have an integrity level of Medium (Default). The
                default means the system is using an implicit integrity
                level.

	You can pass the –e flag to
                Accesschk so that it displays only explicit integrity levels.
                If you run the tool on the AppData folder again, you’ll notice
                only the LocalLow information is displayed.



The –o (Object),
            –k (Registry Key), and
            –p (Process) flags allow you to specify
            something other than a file or directory.

Apart from an integrity level, objects also have a mandatory
          policy, which defines the actual level of protection that’s applied
          based on the integrity-level check. Three types are possible, shown
          in Table 6-4. The integrity level
          and the mandatory policy are stored together in the same ACE.
Table 6-4. Object Mandatory Policies
	Policy
	Present on, by
                  Default
	Description

	No-Write-Up
	Implicit on all
                  objects
	Used to restrict write access
                  coming from a lower integrity level process to the
                  object.

	No-Read-Up
	Only on process
                  objects
	Used to restrict read access
                  coming from a lower integrity level process to the object.
                  Specific use on process objects protects against information
                  leakage by blocking address space reads from an external
                  process.

	No-Execute-Up
	Only on binaries implementing COM
                  classes
	Used to restrict execute access
                  coming from a lower integrity level process to the object.
                  Specific use on COM classes is to restrict launch-activation
                  permissions on a COM class.





Tokens



The SRM uses an object called a token (or access
          token) to identify the security context of a process or thread. A
          security context consists of information that describes the account,
          groups, and privileges associated with the process or thread. Tokens
          also include information such as the session ID, the integrity
          level, and UAC virtualization state. (We’ll describe both privileges
          and UAC’s virtualization mechanism later in this chapter.)
During the logon process (described at the end of this
          chapter), LSASS creates an initial token to represent the user
          logging on. It then determines whether the user logging on is a
          member of a powerful group or possesses a powerful privilege. The
          groups checked for in this step are as follows:
	Built-In Administrators

	Certificate Administrators

	Domain Administrators

	Enterprise Administrators

	Policy Administrators

	Schema Administrators

	Domain Controllers

	Enterprise Read-Only Domain Controllers

	Read-Only Domain Controllers

	Account Operators

	Backup Operators

	Cryptographic Operators

	Network Configuration Operators

	Print Operators

	System Operators

	RAS Servers

	Power Users

	Pre-Windows 2000 Compatible Access



Many of the groups listed are used only on
          domain-joined systems and don’t give users local administrative
          rights directly. Instead, they allow users to modify domainwide
          settings.
The privileges checked for are
	SeBackupPrivilege

	SeCreateTokenPrivilege

	SeDebugPrivilege

	SeImpersonatePrivilege

	SeLabelPrivilege

	SeLoadDriverPrivilege

	SeRestorePrivilege

	SeTakeOwnershipPrivilege

	SeTcbPrivilege



These privileges are described in detail in a later
          section.
If one or more of these groups or privileges are present,
          LSASS creates a restricted token for the user (also called a
          filtered admin token), and it creates a logon session for both. The
          standard user token is attached to the initial process or processes
          that Winlogon starts (by default, Userinit.exe).
Note
If UAC has been disabled, administrators run with a token
            that includes their administrator group memberships and
            privileges.

Because child processes by default inherit a copy of the token
          of their creators, all processes in the user’s session run under the
          same token. You can also generate a token by using the Windows
          LogonUser function. You can then use this token
          to create a process that runs within the security context of the
          user logged on through the LogonUser function
          by passing the token to the Windows
          CreateProcessAsUser function. The
          CreateProcessWithLogon function combines these
          into a single call, which is how the Runas command launches
          processes under alternative tokens.
Tokens vary in size because different user accounts have
          different sets of privileges and associated group accounts. However,
          all tokens contain the same types of information. The most important
          contents of a token are represented in Figure 6-4.
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Figure 6-4. Access tokens

The security mechanisms in Windows use two components
          to determine what objects can be accessed and what secure operations
          can be performed. One component comprises the token’s user account
          SID and group SID fields. The security reference monitor (SRM) uses
          SIDs to determine whether a process or thread can obtain requested
          access to a securable object, such as an NTFS file.
The group SIDs in a token indicate which groups a user’s
          account is a member of. For example, a server application can
          disable specific groups to restrict a token’s credentials when the
          server application is performing actions requested by a client.
          Disabling a group produces nearly the same effect as if the group
          wasn’t present in the token. (It results in a deny-only group,
          described later. Disabled SIDs are used as part of security access
          checks, described later in the chapter.) Group SIDs can also include
          a special SID that contains the integrity level of the process or
          thread. The SRM uses another field in the token, which describes the mandatory integrity
          policy, to perform the mandatory integrity check described later in
          the chapter.
The second component in a token that determines what the
          token’s thread or process can do is the privilege array. A token’s
          privilege array is a list of rights associated with the token. An
          example privilege is the right for the process or thread associated
          with the token to shut down the computer. Privileges are described
          in more detail later in this chapter.
A token’s default primary group field and default
          discretionary access control list (DACL) field are security
          attributes that Windows applies to objects that a process or thread
          creates when it uses the token. By including security information in
          tokens, Windows makes it convenient for a process or thread to
          create objects with standard security attributes, because the
          process or thread doesn’t need to request discrete security
          information for every object it creates.
Each token’s type distinguishes a primary token (a token that
          identifies the security context of a process) from an impersonation
          token (a type of token that threads use to temporarily adopt a
          different security context, usually of another user). Impersonation
          tokens carry an impersonation level that signifies what type of
          impersonation is active in the token. (Impersonation is described
          later in this chapter.)
A token also includes the mandatory policy for the process or
          thread, which defines how MIC will behave when processing this
          token. There are two policies:
	TOKEN_MANDATORY_NO_WRITE_UP, which is enabled by default,
              sets the No-Write-Up policy on this token, specifying that the
              process or thread will not be able to access objects with a
              higher integrity level for write access.

	TOKEN_MANDATORY_NEW_PROCESS_MIN, which is also enabled by
              default, specifies that the SRM should look at the integrity
              level of the executable image when launching a child process and
              compute the minimum integrity level of the parent process and
              the file object’s integrity level as the child’s integrity
              level.



Token flags include parameters that determine the behavior of
          certain UAC and UIPI mechanisms, such as virtualization and user
          interface access. Those mechanisms will be described later in this
          chapter.
Each token can also contain attributes that are assigned by
          the Application Identification service (part of AppLocker) when
          AppLocker rules have been defined. AppLocker and its use of
          attributes in the access token are described later in this
          chapter.
The remaining fields in a token serve informational purposes.
          The token source field contains a short textual description of the
          entity that created the token. Programs that want to know where a
          token originated use the token source to distinguish among sources
          such as the Windows Session Manager, a network file server, or the
          remote procedure call (RPC) server. The token identifier is a
          locally unique identifier (LUID) that the SRM assigns to the token
          when it creates the token. The Windows executive maintains the
          executive LUID, a monotonically increasing counter it uses to assign
          a unique numeric identifier to each token. A LUID is guaranteed to
          be unique only until the system is shut down.
The token authentication ID is another kind of LUID. A
          token’s creator assigns the token’s authentication ID when calling
          the LsaLogonUser function. If the creator
          doesn’t specify a LUID, LSASS obtains the LUID from the executive
          LUID. LSASS copies the authentication ID for all tokens descended
          from an initial logon token. A program can obtain a token’s
          authentication ID to see whether the token belongs to the same logon
          session as other tokens the program has examined.
The executive LUID refreshes the modified ID every time a
          token’s characteristics are modified. An application can test the
          modified ID to discover changes in a security context since the
          context’s last use.
Tokens contain an expiration time field that can be used by
          applications performing their own security to reject a token after a
          specified amount of time. However, Windows itself does not enforce
          the expiration time of tokens.
Note
To guarantee system security, the fields in a token are
            immutable (because they are located in kernel memory). Except for
            fields that can be modified through a specific system call
            designed to modify certain token attributes (assuming the caller
            has the appropriate access rights to the token object), data such
            as the privileges and SIDs in a token can never be modified from
            user mode.

EXPERIMENT: Viewing Access Tokens
The kernel debugger dt _TOKEN command
            displays the format of an internal token object. Although this
            structure differs from the user-mode token structure returned by
            Windows API security functions, the fields are similar. For
            further information on tokens, see the description in the Windows
            SDK documentation.
The following output is from the kernel debugger’s dt
            nt!_TOKEN command:
kd> dt nt!_TOKEN
   +0x000 TokenSource      : _TOKEN_SOURCE
   +0x010 TokenId          : _LUID
   +0x018 AuthenticationId : _LUID
   +0x020 ParentTokenId    : _LUID
   +0x028 ExpirationTime   : _LARGE_INTEGER
   +0x030 TokenLock        : Ptr32 _ERESOURCE
   +0x034 ModifiedId       : _LUID
   +0x040 Privileges       : _SEP_TOKEN_PRIVILEGES
   +0x058 AuditPolicy      : _SEP_AUDIT_POLICY
   +0x074 SessionId        : Uint4B
   +0x078 UserAndGroupCount : Uint4B
   +0x07c RestrictedSidCount : Uint4B
   +0x080 VariableLength   : Uint4B
   +0x084 DynamicCharged   : Uint4B
   +0x088 DynamicAvailable : Uint4B
   +0x08c DefaultOwnerIndex : Uint4B
   +0x090 UserAndGroups    : Ptr32 _SID_AND_ATTRIBUTES
   +0x094 RestrictedSids   : Ptr32 _SID_AND_ATTRIBUTES
   +0x098 PrimaryGroup     : Ptr32 Void
   +0x09c DynamicPart      : Ptr32 Uint4B
   +0x0a0 DefaultDacl      : Ptr32 _ACL
   +0x0a4 TokenType        : _TOKEN_TYPE
   +0x0a8 ImpersonationLevel : _SECURITY_IMPERSONATION_LEVEL
   +0x0ac TokenFlags       : Uint4B
   +0x0b0 TokenInUse       : UChar
   +0x0b4 IntegrityLevelIndex : Uint4B
   +0x0b8 MandatoryPolicy  : Uint4B
   +0x0bc ProxyData        : Ptr32 _SECURITY_TOKEN_PROXY_DATA
   +0x0c0 AuditData        : Ptr32 _SECURITY_TOKEN_AUDIT_DATA
   +0x0c4 LogonSession     : Ptr32 _SEP_LOGON_SESSION_REFERENCES
   +0x0c8 OriginatingLogonSession : _LUID
   +0x0d0 SidHash          : _SID_AND_ATTRIBUTES_HASH
   +0x158 RestrictedSidHash : _SID_AND_ATTRIBUTES_HASH
   +0x1e0 VariablePart     : Uint4B
You can examine the token for a process with the
            !token command. You’ll find the address of
            the token in the output of the !process
            command, as shown here:
lkd> !process d6c 1
Searching for Process with Cid == d6c
PROCESS 85450508  SessionId: 1  Cid: 0d6c    Peb: 7ffda000  ParentCid: 0ecc
    DirBase: cc9525e0  ObjectTable: afd75518  HandleCount:  18.
    Image: cmd.exe
    VadRoot 85328e78 Vads 24 Clone 0 Private 148. Modified 0. Locked 0.
    DeviceMap a0688138
    Token                             afd48470
    ElapsedTime                       01:10:14.379
    UserTime                          00:00:00.000
    KernelTime                        00:00:00.000
    QuotaPoolUsage[PagedPool]         42864
    QuotaPoolUsage[NonPagedPool]      1152
    Working Set Sizes (now,min,max)  (566, 50, 345) (2264KB, 200KB, 1380KB)
    PeakWorkingSetSize                582
    VirtualSize                       22 Mb
    PeakVirtualSize                   25 Mb
    PageFaultCount                    680
    MemoryPriority                    BACKGROUND
    BasePriority                      8
    CommitCharge                      437

lkd> !token afd48470
_TOKEN afd48470
TS Session ID: 0x1
User: S-1-5-21-2778343003-3541292008-524615573-500 (User: ALEX-LAPTOP\Administrator)
Groups:
 00 S-1-5-21-2778343003-3541292008-524615573-513 (Group: ALEX-LAPTOP\None)
    Attributes - Mandatory Default Enabled
 01 S-1-1-0 (Well Known Group: localhost\Everyone)
    Attributes - Mandatory Default Enabled
 02 S-1-5-21-2778343003-3541292008-524615573-1000 (Alias: ALEX-LAPTOP\Debugger Users)
    Attributes - Mandatory Default Enabled
 03 S-1-5-32-544 (Alias: BUILTIN\Administrators)
    Attributes - Mandatory Default Enabled Owner
 04 S-1-5-32-545 (Alias: BUILTIN\Users)
    Attributes - Mandatory Default Enabled
 05 S-1-5-4 (Well Known Group: NT AUTHORITY\INTERACTIVE)
    Attributes - Mandatory Default Enabled
 06 S-1-5-11 (Well Known Group: NT AUTHORITY\Authenticated Users)
    Attributes - Mandatory Default Enabled
 07 S-1-5-15 (Well Known Group: NT AUTHORITY\This Organization)
    Attributes - Mandatory Default Enabled
 08 S-1-5-5-0-89263 (no name mapped)
    Attributes - Mandatory Default Enabled LogonId
 09 S-1-2-0 (Well Known Group: localhost\LOCAL)
    Attributes - Mandatory Default Enabled
 10 S-1-5-64-10 (Well Known Group: NT AUTHORITY\NTLM Authentication)
    Attributes - Mandatory Default Enabled
 11 S-1-16-12288 Unrecognized SID
    Attributes - GroupIntegrity GroupIntegrityEnabled
Primary Group: S-1-5-21-2778343003-3541292008-524615573-513 (Group: ALEX-LAPTOP\None)
Privs:
 05 0x000000005 SeIncreaseQuotaPrivilege          Attributes -
 08 0x000000008 SeSecurityPrivilege               Attributes -
 09 0x000000009 SeTakeOwnershipPrivilege          Attributes -
 10 0x00000000a SeLoadDriverPrivilege             Attributes -
 11 0x00000000b SeSystemProfilePrivilege          Attributes -
 12 0x00000000c SeSystemtimePrivilege             Attributes -
 13 0x00000000d SeProfileSingleProcessPrivilege   Attributes -
 14 0x00000000e SeIncreaseBasePriorityPrivilege   Attributes -
 15 0x00000000f SeCreatePagefilePrivilege         Attributes -
 17 0x000000011 SeBackupPrivilege                 Attributes -
 18 0x000000012 SeRestorePrivilege                Attributes -
 19 0x000000013 SeShutdownPrivilege               Attributes -
 20 0x000000014 SeDebugPrivilege                  Attributes -
 22 0x000000016 SeSystemEnvironmentPrivilege      Attributes -
 23 0x000000017 SeChangeNotifyPrivilege           Attributes - Enabled Default
 24 0x000000018 SeRemoteShutdownPrivilege         Attributes -
 25 0x000000019 SeUndockPrivilege                 Attributes -
 28 0x00000001c SeManageVolumePrivilege           Attributes -
 29 0x00000001d SeImpersonatePrivilege            Attributes - Enabled Default
 30 0x00000001e SeCreateGlobalPrivilege           Attributes - Enabled Default
 33 0x000000021 SeIncreaseWorkingSetPrivilege     Attributes -
 34 0x000000022 SeTimeZonePrivilege               Attributes -
 35 0x000000023 SeCreateSymbolicLinkPrivilege     Attributes -
Authentication ID:         (0,be1a2)
Impersonation Level:       Identification
TokenType:                 Primary
Source: User32             TokenFlags: 0x0 ( Token in use )
Token ID: 711076           ParentToken ID: 0
Modified ID:               (0, 711081)
RestrictedSidCount: 0      RestrictedSids: 00000000
OriginatingLogonSession: 3e7
You can indirectly view token contents with Process
            Explorer’s Security tab in its process Properties dialog box. The
            dialog box shows the groups and privileges included in the token
            of the process you examine.

EXPERIMENT: Launching a Program at Low Integrity
            Level
When you elevate a program, either by using the Run As
            Administrator option or because the program is requesting it, the
            program is explicitly launched at high integrity level; however,
            it is also possible to launch a program (other than PMIE) at low
            integrity level by using Psexec from Sysinternals:
	Launch Notepad at low integrity level by using the
                following command:
c:\psexec –l notepad.exe

	Try opening a file (such as one of the .XML files) in
                the %SystemRoot%\System32 directory. Notice that you can
                browse the directory and open any file contained within
                it.

	Now use Notepad’s File | New command, enter some text in
                the window, and try saving it in the %SystemRoot%\System32
                directory. Notepad should present a message box indicating a
                lack of permissions and recommend saving the file in the
                Documents folder.

	Accept Notepad’s suggestion. You will get the same
                message box again, and repeatedly for each attempt.
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	Now try saving the file in the LocalLow directory of
                your user profile, shown in an experiment earlier in the
                chapter.



In the previous experiment, saving a file in the LocalLow
            directory worked because Notepad was running with low integrity
            level, and only the LocalLow directory also had low integrity
            level. All the other locations where you tried to write the file
            had an implicit medium integrity level. (You can verify this with
            Accesschk.) However, reading from the %SystemRoot%\System32
            directory, as well as opening files within it, did work, even
            though the directory and its file also have an implicit medium
            integrity level.


Impersonation



Impersonation is a powerful feature Windows uses
          frequently in its security model. Windows also uses impersonation in
          its client/server programming model. For example, a server
          application can provide access to resources such as files, printers,
          or databases. Clients wanting to access a resource send a request to
          the server. When the server receives the request, it must ensure
          that the client has permission to perform the desired operations on
          the resource. For example, if a user on a remote machine tries to
          delete a file on an NTFS share, the server exporting the share must
          determine whether the user is allowed to delete the file. The
          obvious way to determine whether a user has permission is for the
          server to query the user’s account and group SIDs and scan the
          security attributes on the file. This approach is tedious to
          program, prone to errors, and wouldn’t permit new security features
          to be supported transparently. Thus, Windows provides impersonation
          services to simplify the server’s job.
Impersonation lets a server notify the SRM that the server is
          temporarily adopting the security profile of a client making a
          resource request. The server can then access resources on behalf of
          the client, and the SRM carries out the access validations, but it
          does so based on the impersonated client security context. Usually,
          a server has access to more resources than a client does and loses
          some of its security credentials during impersonation. However, the
          reverse can be true: the server can gain security credentials during
          impersonation.
A server impersonates a client only within the thread that
          makes the impersonation request. Thread-control data structures
          contain an optional entry for an impersonation token. However, a
          thread’s primary token, which represents the thread’s real security
          credentials, is always accessible in the process’ control
          structure.
Windows makes impersonation available through several
          mechanisms. For example, if a server communicates with a client
          through a named pipe, the server can use the
          ImpersonateNamedPipeClient Windows API function
          to tell the SRM that it wants to impersonate the user on the other
          end of the pipe. If the server is communicating with the client
          through Dynamic Data Exchange (DDE) or RPC, it can make similar
          impersonation requests using
          DdeImpersonateClient and
          RpcImpersonateClient. A thread can create an
          impersonation token that’s simply a copy of its process token with
          the ImpersonateSelf function. The thread can
          then alter its impersonation token, perhaps to disable SIDs or
          privileges. A Security Support Provider Interface (SSPI) package can
          impersonate its clients with
          ImpersonateSecurityContext. SSPIs implement a
          network authentication protocol such as LAN Manager version 2 or
          Kerberos. Other interfaces such as COM expose impersonation through
          APIs of their own, such as
          CoImpersonateClient.
After the server thread finishes its task, it reverts to its
          primary security context. These forms of impersonation are
          convenient for carrying out specific actions at the request of a
          client and for ensuring that object accesses are audited correctly.
          (For example, the audit that is generated gives the identity of the
          impersonated client rather than that of the server process.) The
          disadvantage to these forms of impersonation is that they can’t
          execute an entire program in the context of a client. In addition,
          an impersonation token can’t access files or printers on network
          shares unless it is a delegation-level impersonation (described
          shortly) and has sufficient credentials to authenticate to the
          remote machine, or the file or printer share supports null sessions.
          (A null session is one that results from an anonymous logon.)
If an entire application must execute in a client’s
          security context or must access network resources without using
          impersonation, the client must be logged on to the system. The
          LogonUser Windows API function enables this
          action. LogonUser takes an account name, a
          password, a domain or computer name, a logon type (such as
          interactive, batch, or service), and a logon provider as input, and
          it returns a primary token. A server thread can adopt the token as
          an impersonation token, or the server can start a program that has
          the client’s credentials as its primary token. From a security
          standpoint, a process created using the token returned from an
          interactive logon via LogonUser, such as with
          the CreateProcessAsUser API, looks like a
          program a user starts by logging on to the machine interactively.
          The disadvantage to this approach is that a server must obtain the
          user’s account name and password. If the server transmits this
          information across the network, the server must encrypt it securely
          so that a malicious user snooping network traffic can’t capture
          it.
To prevent the misuse of impersonation, Windows doesn’t let
          servers perform impersonation without a client’s consent. A client
          process can limit the level of impersonation that a server process
          can perform by specifying a security quality of service (SQOS) when
          connecting to the server. For instance, when opening a named pipe, a
          process can specify SECURITY_ANONYMOUS, SECURITY_IDENTIFICATION,
          SECURITY_IMPERSONATION, or SECURITY_DELEGATION as flags for the
          Windows CreateFile function. Each level lets a
          server perform different types of operations with respect to the
          client’s security context:
	SecurityAnonymous is the most restrictive level of
              impersonation—the server can’t impersonate or identify the
              client.

	SecurityIdentification lets the server obtain the identity
              (the SIDs) of the client and the client’s privileges, but the
              server can’t impersonate the client.

	SecurityImpersonation lets the server identify and
              impersonate the client on the local system.

	SecurityDelegation is the most permissive level of
              impersonation. It lets the server impersonate the client on
              local and remote systems.



Other interfaces such as RPC use different constants with
          similar meanings (for example, RPC_C_IMP_LEVEL_IMPERSONATE).
If the client doesn’t set an impersonation level, Windows
          chooses the SecurityImpersonation level by default. The
          CreateFile function also accepts
          SECURITY_EFFECTIVE_ONLY and SECURITY_CONTEXT_TRACKING as modifiers
          for the impersonation setting:
	SECURITY_EFFECTIVE_ONLY prevents a server from enabling or
              disabling a client’s privileges or groups while the server is
              impersonating.

	SECURITY_CONTEXT_TRACKING specifies that any changes a
              client makes to its security context are reflected in a server
              that is impersonating it. If this option isn’t specified, the
              server adopts the context of the client at the time of the
              impersonation and doesn’t receive any changes. This option is
              honored only when the client and server processes are on the
              same system.



To prevent spoofing scenarios in which a low integrity
          process could create a user interface that captured user credentials
          and then used LogonUser to obtain that user’s
          token, a special integrity policy applies to impersonation
          scenarios: a thread cannot impersonate a token of higher integrity
          than its own. For example, a low-integrity application cannot spoof
          a dialog box that queries administrative credentials and then
          attempt to launch a process at a higher privilege level. The
          integrity-mechanism policy for impersonation access tokens is that
          the integrity level of the access token that is returned by
          LsaLogonUser must be no higher than the
          integrity level of the calling process.

Restricted Tokens



A restricted token is created from a primary or impersonation
          token using the CreateRestrictedToken function.
          The restricted token is a copy of the token it’s derived from, with
          the following possible modifications:
	Privileges can be removed from the token’s privilege
              array.

	SIDs in the token can be marked as deny-only. These SIDs
              remove access to any resources for which the SID’s access is
              denied by using a matching access-denied ACE that would
              otherwise be overridden by an ACE granting access to a group
              containing the SID earlier in the security descriptor.

	SIDs in the token can be marked as restricted. These SIDs
              are subject to a second pass of the access-check algorithm,
              which will parse only the restricted SIDs in the token. The
              results of both the first pass and the second pass must grant
              access to the resource or no access is granted to the
              object.



Restricted tokens are useful when an application wants to
          impersonate a client at a reduced security level, primarily for
          safety reasons when running untrusted code. For example, the
          restricted token can have the shutdown-system privilege removed from
          it to prevent code executed in the restricted token’s security
          context from rebooting the system.

Filtered Admin Token



As you saw earlier, restricted tokens are also used by UAC to
          create the filtered admin token that all user applications will
          inherit. A filtered admin token has the following
          characteristics:
	The integrity level is set to medium.

	The administrator and administrator-like SIDs mentioned
              previously are marked as deny-only to prevent a security hole if
              the group was removed altogether. For example, if a file had an
              access control list (ACL) that denied the Administrators group
              all access but granted some access to another group the user
              belongs to, the user would be granted access if the
              Administrators group was absent from the token, which would give
              the standard user version of the user’s identity more access
              than the user’s administrator identity.

	All privileges are stripped except Change Notify,
              Shutdown, Undock, Increase Working Set, and Time Zone.



EXPERIMENT: Looking at Filtered Admin Tokens
You can make Explorer launch a process with either
            the standard user token or the administrator token by following
            these steps on a Windows machine with UAC enabled:
	Log on to an account that’s a member of the
                Administrators group.

	Click Start, Programs, Accessories, Command Prompt,
                right-click on the shortcut, and then select Run As
                Administrator. You will see a command prompt with the word
                Administrator in the title bar.

	Now repeat the process, but simply click on the
                shortcut—this will launch a second command prompt without
                administrative privileges.

	Run Process Explorer, and view the Security tab in the
                Properties dialog boxes for the two command prompt processes
                you launched. Note that the standard user token contains a
                deny-only SID and a Medium Mandatory Label, and that it has
                only a couple of privileges. The properties on the right in
                the following screen shot are from a command prompt running
                with an administrator token, and the properties on the left
                are from one running with the filtered administrative
                token:
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Virtual Service Accounts



Windows provides a specialized type of account known as
        a virtual service account (or simply virtual account) to improve the
        security isolation and access control of Windows services with minimal
        administrative effort. (See Chapter 4
        for more information on Windows services.) Without this mechanism,
        Windows services must run either under one of the accounts defined by
        Windows for its built-in services (such as Local Service or Network
        Service) or under a regular domain account. The accounts such as Local
        Service are shared by many existing services and so offer limited
        granularity for privilege and access control; furthermore, they cannot
        be managed across the domain. Domain accounts require periodic
        password changes for security, and the availability of services during
        a password change cycle might be affected. Furthermore, for best
        isolation, each service should run under its own account, but with
        ordinary accounts this multiplies the management effort.
With virtual service accounts, each service runs under its own
        account with its own security ID. The name of the account is always
        “NT SERVICE\” followed by the internal name of the service. Virtual
        service accounts can appear in access control lists and can be
        associated with privileges via Group Policy like any other account
        name. They cannot, however, be created or deleted through the usual
        account management tools, nor assigned to groups.
Windows automatically sets and periodically changes the password
        of the virtual service account. Similar to the “Local System and other
        service accounts” account, there is a password, but the password is
        unknown to the system administrators
EXPERIMENT: Using Virtual Service Accounts
You can create a service that runs under a virtual service
          account by using the Sc (service control) tool by following these
          steps:
	In an Administrator command prompt, use the create command
              of the command-line tool Sc (service control) to create a
              service and a virtual account in which it will run. This example
              uses the “srvany” service from an earlier Windows Resource
              Kit:
C:\Windows\system32>sc create srvany obj= "NT SERVICE\srvany"  binPath= "d:\a\
test\srvany.exe"
[SC] CreateService SUCCESS

	The previous command created the service (in the registry
              and also in the service controller manager’s internal list) and
              also created the virtual service account. Now Run the Services
              MMC snap-in (services.msc), select the new service, and look at
              the Log On tab in the Properties dialog.
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	You can also use the service properties dialog to create a
              virtual service account for an existing service. To do so,
              change the account name to “NT SERVICE\servicename and clear
              both password fields. Note, however, that existing services
              might not run correctly under a virtual service account, because
              that account might not have access to files or other resources
              needed by the service.

	If you run Process Explorer and view the Security tab in
              the Properties dialog boxes for a service that uses a virtual
              account, you can observe the virtual account name and its
              security ID (SID).
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	The virtual service account can appear in an
              access control entry for any object (such as a file) the service
              needs to access. If you open the Properties dialog’s Security
              tab for a file and create an ACL that references the virtual
              service account, you will find that the account name you typed
              (for example, NT SERVICE\srvany) is changed to simply the
              service name (srvany) by the Check Names function, and it
              appears in the access control list in this shortened
              form.
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	The virtual service account can be granted
              permissions (or user rights) via Group Policy. In this example,
              the virtual account for the srvany service has been granted the
              right to create a pagefile.
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	You won’t see the virtual service account in user
              administration tools like lusrmgr.msc because it is not stored
              in the SAM registry hive. However, if you examine the registry
              within the context of the built-in System account (as described
              previously), you will see evidence of the account in the
              HKLM\Security\Policy\Secrets key:
C:\>psexec –s –i –d c:\windows\regedit.exe
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Security Descriptors and Access Control



Tokens, which identify a user’s credentials, are only
        part of the object security equation. Another part of the equation is
        the security information associated with an object, which specifies
        who can perform what actions on the object. The data structure for
        this information is called a security descriptor. A security
        descriptor consists of the following attributes:
	Revision
              number. The version of the SRM security model used to create the
              descriptor.

	Flags. Optional modifiers that define the behavior or
              characteristics of the descriptor. These flags are listed in
              Table 6-5.

	Owner SID. The owner’s security ID.

	Group SID. The security ID of the primary group for the object (used
              only by POSIX).

	Discretionary access control list
              (DACL). Specifies who has what access to the object.

	System access control list
              (SACL). Specifies which operations by which users should be logged
              in the security audit log and the explicit integrity level of an
              object.
Table 6-5. Security Descriptor Flags
	Flag
	Meaning

	SE_OWNER_DEFAULTED
	Indicates a security descriptor
                    with a default owner security identifier (SID). Use this
                    bit to find all the objects that have default owner
                    permissions set.

	SE_GROUP_DEFAULTED
	Indicates a security descriptor
                    with a default group SID. Use this bit to find all the
                    objects that have default group permissions
                    set.

	SE_DACL_PRESENT
	Indicates a security descriptor
                    that has a DACL. If this flag is not set, or if this flag
                    is set and the DACL is NULL, the security descriptor
                    allows full access to everyone.

	SE_DACL_DEFAULTED
	Indicates a security descriptor
                    with a default DACL. For example, if an object creator
                    does not specify a DACL, the object receives the default
                    DACL from the access token of the creator. This flag can
                    affect how the system treats the DACL, with respect to
                    access control entry (ACE) inheritance. The system ignores
                    this flag if the SE_DACL_PRESENT flag is not
                    set.

	SE_SACL_PRESENT
	Indicates a security descriptor
                    that has a system access control list
                    (SACL).

	SE_SACL_DEFAULTED
	Indicates a security descriptor
                    with a default SACL. For example, if an object creator
                    does not specify an SACL, the object receives the default
                    SACL from the access token of the creator. This flag can
                    affect how the system treats the SACL with respect to ACE
                    inheritance. The system ignores this flag if the
                    SE_SACL_PRESENT flag is not set.

	SE_DACL_UNTRUSTED
	Indicates that the ACL pointed
                    to by the DACL of the security descriptor was provided by
                    an untrusted source. If this flag is set and a compound
                    ACE is encountered, the system will substitute known valid
                    SIDs for the server SIDs in the ACEs.

	SE_SERVER_SECURITY
	Requests that the provider for
                    the object protected by the security descriptor should be
                    a server ACL based on the input ACL, regardless of its
                    source (explicit or defaulting). This is done by replacing
                    all the GRANT ACEs with compound ACEs granting the current
                    server access. This flag is meaningful only if the subject
                    is impersonating.

	SE_DACL_AUTO_INHERIT_REQ
	Requests that the provider for
                    the object protected by the security descriptor
                    automatically propagate the DACL to existing child
                    objects. If the provider supports automatic inheritance,
                    the DACL is propagated to any existing child objects, and
                    the SE_DACL_AUTO_INHERITED bit in the security descriptor
                    of the parent and child objects is set.

	SE_SACL_AUTO_INHERIT_REQ
	Requests that the provider for
                    the object protected by the security descriptor
                    automatically propagate the SACL to existing child
                    objects. If the provider supports automatic inheritance,
                    the SACL is propagated to any existing child objects, and
                    the SE_SACL_AUTO_INHERITED bit in the security descriptors
                    of the parent object and child objects is
                    set.

	SE_DACL_AUTO_INHERITED
	Indicates a security descriptor
                    in which the DACL is set up to support automatic
                    propagation of inheritable ACEs to existing child objects.
                    The system sets this bit when it performs the automatic
                    inheritance algorithm for the object and its existing
                    child objects.

	SE_SACL_AUTO_INHERITED
	Indicates a security descriptor
                    in which the SACL is set up to support automatic
                    propagation of inheritable ACEs to existing child objects.
                    The system sets this bit when it performs the automatic
                    inheritance algorithm for the object and its existing
                    child objects.

	SE_DACL_PROTECTED
	Prevents the DACL of a security
                    descriptor from being modified by inheritable
                    ACEs.

	SE_SACL_PROTECTED
	Prevents the SACL of a security
                    descriptor from being modified by inheritable
                    ACEs.

	SE_RM_CONTROL_VALID
	Indicates that the resource
                    control manager bits in the security descriptor are valid.
                    The resource control manager bits are 8 bits in the
                    security descriptor structure that contains information
                    specific to the resource manager accessing the
                    structure.

	SE_SELF_RELATIVE
	Indicates a security descriptor
                    in self-relative format, with all the security information
                    in a contiguous block of memory. If this flag is not set,
                    the security descriptor is in absolute
                    format.







An access control list (ACL) is made up of a header and zero or
        more access control entry (ACE) structures. There are two types of
        ACLs: DACLs and SACLs. In a DACL, each ACE contains a SID and an
        access mask (and a set of flags, explained shortly), which typically
        specifies the access rights (Read, Write, Delete, and so forth) that
        are granted or denied to the holder of the SID. There are nine types
        of ACEs that can appear in a DACL: access allowed, access denied,
        allowed object, denied object, allowed callback, denied callback,
        allowed object callback, denied-object callback, and conditional
        claims. As you would expect, the access-allowed ACE grants access to a
        user, and the access-denied ACE denies the access rights specified in
        the access mask. The callback ACEs are used by applications that make
        use of the AuthZ API (described later) to register a callback that
        AuthZ will call when it performs an access check involving this
        ACE.
The difference between allowed object and access allowed, and
        between denied object and access denied, is that the object types are
        used only within Active Directory. ACEs of these types have a GUID
        (globally unique identifier) field that indicates that the ACE applies
        only to particular objects or subobjects (those that have GUID
        identifiers). In addition, another optional GUID indicates what type
        of child object will inherit the ACE when a child is created within an
        Active Directory container that has the ACE applied to it. (A GUID is
        a 128-bit identifier guaranteed to be universally unique.) The
        conditional claims ACE is stored in a *-callback type ACE structure
        and is described in the section on the AuthZ APIs.
The accumulation of access rights granted by individual
        ACEs forms the set of access rights granted by an ACL. If no DACL is
        present (a null DACL) in a security descriptor, everyone has full
        access to the object. If the DACL is empty (that is, it has zero
        ACEs), no user has access to the object.
The ACEs used in DACLs also have a set of flags that control and
        specify characteristics of the ACE related to inheritance. Some object
        namespaces have containers and objects. A container can hold other
        container objects and leaf objects, which are its child objects.
        Examples of containers are directories in the file system namespace
        and keys in the registry namespace. Certain flags in an ACE control
        how the ACE propagates to child objects of the container associated
        with the ACE. Table 6-6,
        reproduced in part from the Windows SDK, lists the inheritance rules
        for ACE flags.
Table 6-6. Inheritance Rules for ACE Flags
	Flag
	Inheritance Rule

	CONTAINER_INHERIT_ACE
	Child objects that are containers,
                such as directories, inherit the ACE as an effective ACE. The
                inherited ACE is inheritable unless the
                NO_PROPAGATE_INHERIT_ACE bit flag is also set.

	INHERIT_ONLY_ACE
	This flag indicates an inherit-only
                ACE that doesn’t control access to the object it’s attached
                to. If this flag is not set, the ACE controls access to the
                object to which it is attached.

	INHERITED_ACE
	This flag indicates that the ACE was
                inherited. The system sets this bit when it propagates an
                inheritable ACE to a child object.

	NO_PROPAGATE_INHERIT_ACE
	If the ACE is inherited by a child
                object, the system clears the OBJECT_INHERIT_ACE and
                CONTAINER_INHERIT_ACE flags in the inherited ACE. This action
                prevents the ACE from being inherited by subsequent
                generations of objects.

	OBJECT_INHERIT_ACE
	Noncontainer child objects inherit
                the ACE as an effective ACE. For child objects that are
                containers, the ACE is inherited as an inherit-only ACE unless
                the NO_PROPAGATE_INHERIT_ACE bit flag is also
                set.




A SACL contains two types of ACEs, system audit ACEs and system
        audit-object ACEs. These ACEs specify which operations performed on
        the object by specific users or groups should be audited. Audit
        information is stored in the system Audit Log. Both successful and
        unsuccessful attempts can be audited. Like their DACL object-specific
        ACE cousins, system audit-object ACEs specify a GUID indicating the
        types of objects or subobjects that the ACE applies to and an optional
        GUID that controls propagation of the ACE to particular child object
        types. If a SACL is null, no auditing takes place on the object.
        (Security auditing is described later in this chapter.) The
        inheritance flags that apply to DACL ACEs also apply to system audit
        and system audit-object ACEs.
Figure 6-5 is a
        simplified picture of a file object and its DACL.
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Figure 6-5. Discretionary access control list (DACL)

As shown in Figure 6-5, the first ACE
        allows USER1 to query the file. The second ACE allows members of the
        group TEAM1 to have read and write access to the file, and the third
        ACE grants all other users (Everyone) execute access.
EXPERIMENT: Viewing a Security Descriptor
Most executive subsystems rely on the object manager’s default
          security functionality to manage security descriptors for their
          objects. The object manager’s default security functions use the
          security descriptor pointer to store security descriptors for such
          objects. For example, the process manager uses default security, so
          the object manager stores process and thread security descriptors in
          the object headers of process and thread objects, respectively. The
          security descriptor pointer of events, mutexes, and semaphores also
          store their security descriptors. You can use live kernel debugging
          to view the security descriptors of these objects once you locate
          their object header, as outlined in the following steps. (Note that
          both Process Explorer and AccessChk can also show security
          descriptors for processes.)
	Start the kernel debugger.

	Type !process 0 0
              explorer.exe to obtain process information about
              Explorer:
lkd> !process 0 0 explorer.exe
PROCESS 85a3e030  SessionId: 1  Cid: 0aa4    Peb: 7ffd4000  ParentCid: 0a84
    DirBase: 0f419000  ObjectTable: 952cdd18  HandleCount: 1046.
    Image: explorer.exe

	Type !object with the
              address following the word PROCESS in the output of the previous
              command as the argument to show the object data
              structure:
lkd> !object 85a3e030
Object: 85a3e030  Type: (842339e0) Process
    ObjectHeader: 85a3e018 (new version)
    HandleCount: 8  PointerCount: 497

	Type dt _OBJECT_HEADER
              and the address of the object header field from the previous
              command’s output to show the object header data structure,
              including the security descriptor pointer value:
lkd> dt _OBJECT_HEADER 85a3e018
nt!_OBJECT_HEADER
   +0x000 PointerCount     : 0n497
   +0x004 HandleCount      : 0n8
   +0x004 NextToFree       : 0x00000008 Void
   +0x008 Lock             : _EX_PUSH_LOCK
   +0x00c TypeIndex        : 0x7 ''
   +0x00d TraceFlags       : 0 ''
   +0x00e InfoMask         : 0x8 ''
   +0x00f Flags            : 0 ''
   +0x010 ObjectCreateInfo : 0x8577e940 _OBJECT_CREATE_INFORMATION
   +0x010 QuotaBlockCharged : 0x8577e940 Void
   +0x014 SecurityDescriptor : 0x97ed0b94 Void
   +0x018 Body             : _QUAD

	Finally, use the debugger’s !sd command to dump the security
              descriptor. The security descriptor pointer in the object header
              uses some of the low-order bits as flags, and these must be
              zeroed before following the pointer. On 32-bit systems there are
              three flag bits, so use & –8 with the
              security descriptor address displayed in the object header
              structure, as follows. On 64-bit systems there are four flag
              bits, so you use & –10 instead.
lkd> !sd 0x97ed0b94 & -8
->Revision: 0x1
->Sbz1    : 0x0
->Control : 0x8814
            SE_DACL_PRESENT
            SE_SACL_PRESENT
            SE_SACL_AUTO_INHERITED
            SE_SELF_RELATIVE
->Owner   : S-1-5-21-1488595123-1430011218-1163345924-1000
->Group   : S-1-5-21-1488595123-1430011218-1163345924-513
->Dacl    :
->Dacl    : ->AclRevision: 0x2
->Dacl    : ->Sbz1       : 0x0
->Dacl    : ->AclSize    : 0x5c
->Dacl    : ->AceCount   : 0x3
->Dacl    : ->Sbz2       : 0x0
->Dacl    : ->Ace[0]: ->AceType: ACCESS_ALLOWED_ACE_TYPE
->Dacl    : ->Ace[0]: ->AceFlags: 0x0
->Dacl    : ->Ace[0]: ->AceSize: 0x24
->Dacl    : ->Ace[0]: ->Mask : 0x001fffff
->Dacl    : ->Ace[0]: ->SID: S-1-5-21-1488595123-1430011218-1163345924-1000

->Dacl    : ->Ace[1]: ->AceType: ACCESS_ALLOWED_ACE_TYPE
->Dacl    : ->Ace[1]: ->AceFlags: 0x0
->Dacl    : ->Ace[1]: ->AceSize: 0x14
->Dacl    : ->Ace[1]: ->Mask : 0x001fffff
->Dacl    : ->Ace[1]: ->SID: S-1-5-18

->Dacl    : ->Ace[2]: ->AceType: ACCESS_ALLOWED_ACE_TYPE
->Dacl    : ->Ace[2]: ->AceFlags: 0x0
->Dacl    : ->Ace[2]: ->AceSize: 0x1c
->Dacl    : ->Ace[2]: ->Mask : 0x00121411
->Dacl    : ->Ace[2]: ->SID: S-1-5-5-0-178173

->Sacl    :
->Sacl    : ->AclRevision: 0x2
->Sacl    : ->Sbz1       : 0x0
->Sacl    : ->AclSize    : 0x1c
->Sacl    : ->AceCount   : 0x1
->Sacl    : ->Sbz2       : 0x0
->Sacl    : ->Ace[0]: ->AceType: SYSTEM_MANDATORY_LABEL_ACE_TYPE
->Sacl    : ->Ace[0]: ->AceFlags: 0x0
->Sacl    : ->Ace[0]: ->AceSize: 0x14
->Sacl    : ->Ace[0]: ->Mask : 0x00000003
->Sacl    : ->Ace[0]: ->SID: S-1-16-8192



The security descriptor contains three access-allowed
          ACEs: one for the current user
          (S-1-5-21-1488595123-1430011218-1163345924-1000), one for the System
          account (S-1-5-18), and the last for the Logon SID
          (S-1-5-5-0-178173). The system access control list has one entry
          (S-1-16-8192) labeling the process as medium integrity level.

ACL Assignment



To determine which DACL to assign to a new object, the
          security system uses the first applicable rule of the following four
          assignment rules:
	If a caller explicitly provides a security descriptor when
              creating the object, the security system applies it to the
              object. If the object has a name and resides in a container
              object (for example, a named event object in the
              \BaseNamedObjects object manager namespace directory), the
              system merges any inheritable ACEs (ACEs that might propagate
              from the object’s container) into the DACL unless the security
              descriptor has the SE_DACL_PROTECTED flag set, which prevents
              inheritance.

	If a caller doesn’t supply a security descriptor and the
              object has a name, the security system looks at the security
              descriptor in the container in which the new object name is
              stored. Some of the object directory’s ACEs might be marked as
              inheritable, meaning that they should be applied to new objects
              created in the object directory. If any of these inheritable
              ACEs are present, the security system forms them into an ACL,
              which it attaches to the new object. (Separate flags indicate
              ACEs that should be inherited only by container objects rather
              than by objects that aren’t containers.)

	If no security descriptor is specified and the object
              doesn’t inherit any ACEs, the security system retrieves the
              default DACL from the caller’s access token and applies it to
              the new object. Several subsystems on Windows have hard-coded
              DACLs that they assign on object creation (for example,
              services, LSA, and SAM objects).

	If there is no specified descriptor, no inherited ACEs,
              and no default DACL, the system creates the object with no DACL,
              which allows everyone (all users and groups) full access to the
              object. This rule is the same as the third rule, in which a
              token contains a null default DACL.



The rules the system uses when assigning a SACL to a new
          object are similar to those used for DACL assignment, with some
          exceptions. The first is that inherited system audit ACEs don’t
          propagate to objects with security descriptors marked with the
          SE_SACL_PROTECTED flag (similar to the SE_DACL_PROTECTED flag, which
          protects DACLs). Second, if there are no specified security audit
          ACEs and there is no inherited SACL, no SACL is applied to the
          object. This behavior is different from that used to apply default
          DACLs because tokens don’t have a default SACL.
When a new security descriptor containing inheritable ACEs is
          applied to a container, the system automatically propagates the
          inheritable ACEs to the security descriptors of child objects. (Note
          that a security descriptor’s DACL doesn’t accept inherited DACL ACEs
          if its SE_DACL_PROTECTED flag is enabled, and its SACL doesn’t inherit SACL ACEs if the
          descriptor has the SE_SACL_PROTECTED flag set.) The order in which
          inheritable ACEs are merged with an existing child object’s security
          descriptor is such that any ACEs that were explicitly applied to the
          ACL are kept ahead of ACEs that the object inherits. The system uses
          the following rules for propagating inheritable ACEs:
	If a child object with no DACL inherits an ACE, the result
              is a child object with a DACL containing only the inherited
              ACE.

	If a child object with an empty DACL inherits an ACE, the
              result is a child object with a DACL containing only the
              inherited ACE.

	For objects in Active Directory only, if an inheritable
              ACE is removed from a parent object, automatic inheritance
              removes any copies of the ACE inherited by child objects.

	For objects in Active Directory only, if automatic
              inheritance results in the removal of all ACEs from a child
              object’s DACL, the child object has an empty DACL rather than no
              DACL.



As you’ll soon discover, the order of ACEs in an ACL is an
          important aspect of the Windows security model.
Note
Inheritance is generally not directly supported by the
            object stores, such as file systems, the registry, or Active
            Directory. Windows APIs that support inheritance, including
            SetEntriesInAcl, do so by invoking
            appropriate functions within the security inheritance support DLL
            (%SystemRoot%\System32\Ntmarta.dll) that know how to traverse
            those object stores.


Determining Access



Two methods are used for determining access to an
          object:
	The mandatory integrity check, which determines whether
              the integrity level of the caller is high enough to access the
              resource, based on the resource’s own integrity level and its
              mandatory policy.

	The discretionary access check, which determines the
              access that a specific user account has to an object.



When a process tries to open an object, the integrity check
          takes place before the standard Windows DACL check in the kernel’s
          SeAccessCheck function because it is faster to
          execute and can quickly eliminate the need to perform the full
          discretionary access check. Given the default integrity policies in
          its access token (TOKEN_MANDATORY_NO_WRITE_UP and
          TOKEN_MANDATORY_NEW_PROCESS_MIN, described previously), a process
          can open an object for write access if its integrity level is equal
          to or higher than the object’s integrity level and the DACL also
          grants the process the accesses it desires. For example, a
          low-integrity-level process cannot open a medium-integrity-level
          process for write access, even if the DACL grants the process write
          access.
With the default integrity policies, processes can
          open any object—with the exception of process, thread, and token
          objects—for read access as long as the object’s DACL grants them
          read access. That means a process running at low integrity level can
          open any files accessible to the user account in which it’s running.
          Protected Mode Internet Explorer uses integrity levels to help
          prevent malware that infects it from modifying user account
          settings, but it does not stop malware from reading the user’s
          documents.
Recall that process and thread objects are exceptions because
          their integrity policy also includes No-Read-Up. That means a
          process integrity level must be equal to or higher than the
          integrity level of the process or thread it wants to open, and the
          DACL must grant it the accesses it wants for an attempt to open it
          to succeed. Assuming the DACLs allow the desired access, Figure 6-6 shows the
          types of access that the processes running at medium or low have to
          other processes and objects.
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Figure 6-6. Access to processes versus objects for medium and low
            integrity level processes

User Interface Privilege Isolation
The Windows messaging subsystem also honors integrity levels
            to implement User Interface Privilege Isolation (UIPI). The
            subsystem does this by preventing a process from sending window
            messages to the windows owned by a process having a higher
            integrity level, with the following informational messages being
            exceptions:
	WM_NULL

	WM_MOVE

	WM_SIZE

	WM_GETTEXT

	WM_GETTEXTLENGTH

	WM_GETHOTKEY

	WM_GETICON

	WM_RENDERFORMAT

	WM_DRAWCLIPBOARD

	WM_CHANGECBCHAIN

	WM_THEMECHANGED



This use of integrity levels prevents standard user
            processes from driving input into the windows of elevated
            processes or from performing a shatter attack
            (such as sending the process malformed messages that trigger
            internal buffer overflows, which can lead to the execution of code
            at the elevated process’ privilege level). UIPI also blocks window
            hooks from affecting the windows of higher integrity level
            processes so that a standard user process can’t log the keystrokes
            the user types into an administrative application, for example.
            Journal hooks are also blocked in the same way to prevent lower
            integrity level processes from monitoring the behavior of higher
            integrity level processes.
Processes can choose to allow additional messages to pass
            the guard by calling the
            ChangeWindowMessageEx API. This function is
            typically used to add messages required by custom controls to
            communicate outside native common controls in Windows. An older
            API, ChangeWindowMessageFilter performs a
            similar function, but it is per-process rather than per-window.
            With ChangeWindowMessageFilter it is possible
            for two custom controls inside the same process to be using the
            same internal window messages, which could lead to one control’s
            potentially malicious window message to be allowed through, simply
            because it happens to be a query-only message for the other custom
            control.
Because accessibility applications such as the On-Screen
            Keyboard (Osk.exe) are subject to UIPI’s restrictions (which would
            require the accessibility application to be executed for each kind
            of visible integrity-level process on the desktop), these
            processes can enable UI Access. This flag can be present in the
            manifest file of the image and will run the process at a slightly
            higher integrity level than medium (between 0x2000 and 0x3000) if
            launched from a standard user account, or at high integrity level
            if launched from an administrator account. Note that in the second
            case, an elevation request won’t actually be displayed. For a
            process to set this flag, its image must also be signed and in one
            of several secure locations, including %SystemRoot% and
            %ProgramFiles%.

After the integrity check is complete, and assuming the
          mandatory policy allows access to the object based on the caller’s
          integrity, one of two algorithms is used for the discretionary check
          to an object, which will determine the final outcome of the access
          check:
	Determine the maximum access allowed to the object, a form
              of which is exported to user mode with the Windows
              GetEffectiveRightsFromAcl function. This is
              also used when a program specifies a desired access of MAXIMUM_ALLOWED,
              which is what the legacy APIs that don’t have a desired access
              parameter use.

	Determine whether a specific desired access is allowed,
              which can be done with the Windows
              AccessCheck function or the
              AccessCheckByType function.



The first algorithm examines the entries in the DACL as
          follows:
	If the object has no DACL (a null DACL), the object has no
              protection and the security system grants all access.

	If the caller has the take-ownership privilege, the
              security system grants write-owner access before examining the
              DACL. (Take-ownership privilege and write-owner access are
              explained in a moment.)

	If the caller is the owner of the object, the system looks
              for an OWNER_RIGHTS SID and uses that SID as the SID for the
              next steps. Otherwise, read-control and write-DACL access rights
              are granted.

	For each access-denied ACE that contains a SID that
              matches one in the caller’s access token, the ACE’s access mask
              is removed from the granted-access mask.

	For each access-allowed ACE that contains a SID that
              matches one in the caller’s access token, the ACE’s access mask
              is added to the granted-access mask being computed, unless that
              access has already been denied.



When all the entries in the DACL have been examined, the
          computed granted-access mask is returned to the caller as the
          maximum allowed access to the object. This mask represents the total
          set of access types that the caller will be able to successfully
          request when opening the object.
The preceding description applies only to the kernel-mode form
          of the algorithm. The Windows version implemented by
          GetEffectiveRightsFromAcl differs in that it
          doesn’t perform step 2, and it considers a single user or group SID
          rather than an access token.
Owner Rights
Because owners of an object can normally override the
            security of an object by always being granted read-control and
            write-DACL rights, a specialized method of controlling this
            behavior is exposed by Windows: the Owner Rights SID.
The Owner Rights SID exists for two main reasons: improving
            service hardening in the operating system, and allowing more
            flexibility for specific usage scenarios. For example, suppose an
            administrator wants to allow users to create files and folders but
            not to modify the ACLs on those objects. (Users could
            inadvertently or maliciously grant access to those files or
            folders to unwanted accounts.) By using an inheritable Owner
            Rights SID, the users can be prevented from editing or even
            viewing the ACL on the objects they create. A second usage
            scenario relates to group changes. Suppose an employee has been
            part of some confidential or sensitive group, has created several files while a member of that
            group, and has now been removed from the group for business
            reasons. Because that employee is still a user, he could continue
            accessing the sensitive files.
As mentioned, Windows also uses the Owner Rights SID to
            improve service hardening. Whenever a service creates an object at
            run time, the Owner SID associated with that object is the account
            the service is running in (such as local system or local service)
            and not the actual service SID. This means that any other service
            in the same account would have access to the object by being an
            owner. The Owner Rights SID prevents that unwanted
            behavior.

The second algorithm is used to determine whether a specific
          access request can be granted, based on the caller’s access token.
          Each open function in the Windows API that deals with securable
          objects has a parameter that specifies the desired access mask,
          which is the last component of the security equation. To determine
          whether the caller has access, the following steps are
          performed:
	If the object has no DACL (a null DACL), the object has no
              protection and the security system grants the desired
              access.

	If the caller has the take-ownership privilege, the
              security system grants write-owner access if requested and then
              examines the DACL. However, if write-owner access was the only
              access requested by a caller with take-ownership privilege, the
              security system grants that access and never examines the
              DACL.

	If the caller is the owner of the object, the system looks
              for an OWNER_RIGHTS SID and uses that SID as the SID for the
              next steps. Otherwise, read-control and write-DACL access rights
              are granted. If these rights were the only access rights that
              the caller requested, access is granted without examining the
              DACL

	Each ACE in the DACL is examined from first to last. An
              ACE is processed if one of the following conditions is
              satisfied:
	The ACE is an access-deny ACE, and the SID in the ACE
                  matches an enabled SID (SIDs can be enabled or disabled) or
                  a deny-only SID in the caller’s access token.

	The ACE is an access-allowed ACE, and the SID in the
                  ACE matches an enabled SID in the caller’s token that isn’t
                  of type deny-only.

	It is the second pass through the descriptor for
                  restricted-SID checks, and the SID in the ACE matches a
                  restricted SID in the caller’s access token.

	The ACE isn’t marked as inherit-only.




	If it is an access-allowed ACE, the rights in the
              access mask in the ACE that were requested are granted; if all
              the requested access rights have been granted, the access check
              succeeds. If it is an access-denied ACE and any of the requested
              access rights are in the denied-access rights, access is denied
              to the object.

	If the end of the DACL is reached and some of the
              requested access rights still haven’t been granted, access is
              denied.

	If all accesses are granted but the caller’s access token
              has at least one restricted SID, the system rescans the DACL’s
              ACEs looking for ACEs with access-mask matches for the accesses
              the user is requesting and a match of the ACE’s SID with any of
              the caller’s restricted SIDs. Only if both scans of the DACL
              grant the requested access rights is the user granted access to
              the object.



The behavior of both access-validation algorithms depends on
          the relative ordering of allow and deny ACEs. Consider an object
          with only two ACEs, where one ACE specifies that a certain user is
          allowed full access to an object and the other ACE denies the user
          access. If the allow ACE precedes the deny ACE, the user can obtain
          full access to the object, but if the order is reversed, the user
          cannot gain any access to the object.
Several Windows functions, such as
          SetSecurityInfo and
          SetNamedSecurityInfo, apply ACEs in the
          preferred order of explicit deny ACEs preceding explicit allow ACEs.
          Note that the security editor dialog boxes with which you edit
          permissions on NTFS files and registry keys, for example, use these
          functions. SetSecurityInfo and
          SetNamedSecurityInfo also apply ACE inheritance
          rules to the security descriptor on which they are applied.
Figure 6-7 shows an example
          access validation demonstrating the importance of ACE ordering. In
          the example, access is denied a user wanting to open a file even
          though an ACE in the object’s DACL grants the access because the ACE
          denying the user access (by virtue of the user’s membership in the
          Writers group) precedes the ACE granting access.
As we stated earlier, because it wouldn’t be efficient for the
          security system to process the DACL every time a process uses a
          handle, the SRM makes this access check only when a handle is
          opened, not each time the handle is used. Thus, once a process
          successfully opens a handle, the security system can’t revoke the
          access rights that have been granted, even if the object’s DACL
          changes. Also keep in mind that because kernel-mode code uses
          pointers rather than handles to access objects, the access check
          isn’t performed when the operating system uses objects. In other
          words, the Windows executive trusts itself (and all loaded drivers)
          in a security sense.
The fact that an object’s owner is always granted write-DACL
          access to an object means that users can never be prevented from
          accessing the objects they own. If, for some reason, an object had
          an empty DACL (no access), the owner would still be able to open the
          object with write-DACL access and then apply a new DACL with the
          desired access permissions.
[image: Access validation example]

Figure 6-7. Access validation example

A Warning Regarding the GUI Security Editors
When you use the GUI permissions editors to modify
            security settings on a file, a registry, or an Active Directory
            object, or on another securable object, the main security dialog
            box shows you a potentially misleading view of the security that’s
            applied to the object. If you allow Full Control to the Everyone
            group and deny the Administrator group Full Control, the list
            might lead you to believe that the Everyone group access-allowed
            ACE precedes the Administrator deny ACE because that’s the order
            in which they appear. However, as we’ve said, the editors place
            deny ACEs before allow ACEs when they apply the ACL to the
            object.
[image: image with no caption]

[image: image with no caption]

The Permissions tab of the Advanced Security
            Settings dialog box shows the order of ACEs in the DACL. However,
            even this dialog box can be confusing because a complex DACL can
            have deny ACEs for various accesses followed by allow ACEs for
            other access types.
[image: image with no caption]

The only definitive way to know what accesses a particular
            user or group will have to an object (other than having that user
            or a member of the group try to access the object) is to use the
            Effective Permissions tab of the dialog box that is displayed when
            you click the Advanced button in the Properties dialog box. Enter the name
            of the user or group you want to check, and the dialog box shows
            you what permissions they are allowed for the object.
[image: image with no caption]





The AuthZ API



The AuthZ Windows API provides authorization functions and
      implement the same security model as the security reference monitor, but
      it implements the model totally in user mode in the
      %SystemRoot%\System32\Authz.dll library. This gives applications that
      want to protect their own private objects, such as database tables, the
      ability to leverage the Windows security model without incurring the
      cost of user mode to kernel mode transitions that they would make if
      they relied on the security reference monitor.
The AuthZ API uses standard security descriptor data structures,
      SIDs, and privileges. Instead of using tokens to represent clients,
      AuthZ uses AUTHZ_CLIENT_CONTEXT. AuthZ includes user-mode equivalents of
      all access-check and Windows security functions—for example,
      AuthzAccessCheck is the AuthZ version of the
      AccessCheck Windows API that uses the
      SeAccessCheck security reference monitor
      function.
Another advantage available to applications that use AuthZ is that
      they can direct AuthZ to cache the results of security checks to improve
      subsequent checks that use the same client context and security
      descriptor. AuthZ is fully documented in the Windows SDK.
The discretionary access control security mechanisms
      described previously have been part of the Windows NT family since the
      beginning, and they work well enough in a static, controlled
      environment. This type of access checking, using a security ID (SID) and
      security group membership, is known as identity-based access
      control (IBAC), and it requires that the security system
      knows the identity of every possible accessor when the DACL is placed in
      an object’s security descriptor.
Windows includes support for Claims Based Access Control (CBAC),
      where access is granted not based upon the accessor’s identity or group
      membership, but upon arbitrary attributes assigned to the accessor and
      stored in the accessor’s access token. Attributes are supplied by an
      attribute provider, such as AppLocker. The CBAC mechanism provides many
      benefits, including the ability to create a DACL for a user whose
      identity is not yet known or dynamically-calculated user attributes. The
      CBAC ACE (also known as a conditional ACE) is stored in a *-callback ACE
      structure, which is essentially private to AuthZ and is ignored by the
      system SeAccessCheck API. The kernel-mode routine
      SeSrpAccessCheck does not understand conditional
      ACEs, so only applications calling the AuthZ APIs can make use of CBAC.
      The only system component that makes use of CBAC is AppLocker, for
      setting attributes such as path, or publisher. Third-party applications
      can make use of CBAC by taking advantage of the CBAC AuthZ APIs.
Using CBAC security checks allows powerful management policies,
      such as the following:
	Run only applications approved by the corporate IT
          department.

	Allow only approved applications to access your Microsoft
          Outlook contacts or calendar.

	Allow only people on a particular building’s floor to access
          printers on that floor.

	Allow access to an intranet website only to full-time
          employees (as opposed to contractors).



Attributes can be referenced in what is known as a conditional
      ACE, where the presence, absence, or value of one or more attributes is
      checked. An attribute name can contain any alphanumeric Unicode
      characters, as well as “:/._”. The value of an attribute can be one of
      the following: 64-bit integer, Unicode string, byte string, or
      array.
Conditional ACEs



The format of SDDL (Security Descriptor Definition Language)
        strings has been expanded to support ACEs with conditional
        expressions. The new format of an SDDL string is this:
        AceType;AceFlags;Rights;ObjectGuid;InheritObjectGuid;AccountSid;(ConditionalExpression).
The AceType for a conditional ACE is either XA (for
        SDDL_CALLBACK_ACCESS_ALLOWED) or XD (for SDDL_CALLBACK_ACCESS_DENIED).
        Note that ACEs with conditional expressions are used for claims-type
        authorization (specifically, the AuthZ APIs and AppLocker) and are not
        recognized by the object manager or file systems.
A conditional expression can include any of the elements shown
        in Table 6-7.
Table 6-7. Acceptable Elements for a Conditional Expression
	Expression Element
	Description

	AttributeName
	Tests whether the specified
                attribute has a nonzero value.

	exists
                AttributeName
	Tests whether the specified
                attribute exists in the client context.

	AttributeName Operator
                Value
	Returns the result of the specified
                operation. The following operators are defined for use in
                conditional expressions to test the values of attributes. All
                of these are binary operators (as opposed to unary) and are
                used in the form AttributeName Operator
                Value. Operators: Contains any_of , ==, !=, <,
                <=, >, >=

	ConditionalExpression||ConditionalExpression
	Tests whether either of the
                specified conditional expressions is true.

	ConditionalExpression
                && ConditionalExpression
	Tests whether both of the specified
                conditional expressions are true.

	!(ConditionalExpression)
	The inverse of a conditional
                expression.

	Member_of{SidArray}
	Tests whether the SID_AND_ATTRIBUTES
                array of the client context contains all of the security
                identifiers (SIDs) in the comma-separated list specified by
                SidArray.




A conditional ACE can contain any number of conditions, and it
        is either ignored if the resultant evaluation of the condition is
        false or applied if the result is true. A conditional ACE can be added
        to an object using the AddConditionalAce API and
        checked using the AuthzAccessCheck API.
A conditional ACE could specify that access to certain data
        records within a program should be granted only to a user who meets
        the following criteria:
	Holds the Role attribute, with a value
            of Architect, Program Manager, or Development Lead, and the
            Division attribute with a value of Windows

	Whose ManagementChain attribute
            contains the value John Smith

	Whose CommissionType attribute is
            Officer and whose PayGrade attribute is greater than 6 (that is,
            the rank of General Officer in the US military)



Windows does not include tools to view or edit conditional
        ACEs.


Account Rights and Privileges



Many operations performed by processes as they execute cannot be
      authorized through object access protection because they do not involve
      interaction with a particular object. For example, the ability to bypass
      security checks when opening files for backup is an attribute of an
      account, not of a particular object. Windows uses both privileges and
      account rights to allow a system administrator to control what accounts
      can perform security-related operations.
A privilege is the right of an account to perform a particular
      system-related operation, such as shutting down the computer or changing
      the system time. An account right grants or denies the account to which
      it’s assigned the ability to perform a particular type of logon, such as
      a local logon or interactive logon, to a computer.
A system administrator assigns privileges to groups and
      accounts using tools such as the Active Directory Users and Groups MMC
      snap-in for domain accounts or the Local Security Policy Editor
      (%SystemRoot%\System32\secpol.msc). You access the Local Security Policy
      Editor in the Administrative Tools folder of the Control Panel or the
      Start menu (if you’ve configured your Start menu to contain an
      Administrative Tools link). Figure 6-8 shows the User
      Rights Assignment configuration in the Local Security Policy Editor,
      which displays the complete list of privileges and account rights
      available on Windows. Note that the tool makes no distinction between
      privileges and account rights. However, you can differentiate between
      them because any user right that does not contain the words log on is an
      account privilege.
[image: Local Security Policy Editor user rights assignment]

Figure 6-8. Local Security Policy Editor user rights assignment

Account Rights



Account rights are not enforced by the security
        reference monitor, nor are they stored in tokens. The function
        responsible for logon is LsaLogonUser. Winlogon,
        for example, calls the LogonUser API when a user
        logs on interactively to a computer, and
        LogonUser calls
        LsaLogonUser. LogonUser
        takes a parameter that indicates the type of logon being performed,
        which includes interactive, network, batch, service, and Terminal
        Server client.
In response to logon requests, the Local Security Authority
        (LSA) retrieves account rights assigned to a user from the LSA policy
        database at the time that a user attempts to log on to the system. LSA
        checks the logon type against the account rights assigned to the user
        account logging on and denies the logon if the account does not have
        the right that permits the logon type or it has the right that denies
        the logon type. Table 6-8 lists the
        user rights defined by Windows.
Windows applications can add and remove user rights from an
        account by using the LsaAddAccountRights and
        LsaRemoveAccountRights functions, and they can
        determine what rights are assigned to an account with
        LsaEnumerateAccountRights.
Table 6-8. Account Rights
	User Right
	Role

	Deny logon locally,

                Allow logon locally
	Used for interactive logons that
                originate on the local machine

	Deny logon over the network,

                Allow logon over the network
	Used for logons that originate from
                a remote machine

	Deny logon through Terminal
                Services,
 Allow logon through Terminal
                Services
	Used for logons through a Terminal
                Server client

	Deny logon as a service,

                Allow logon as a service
	Used by the service control manager
                when starting a service in a particular user
                account

	Deny logon as a batch job,

                Allow logon as a batch job
	Used when performing a logon of type
                batch





Privileges



The number of privileges defined by the operating system has
        grown over time. Unlike user rights, which are enforced in one place
        by the LSA, different privileges are defined by different components
        and enforced by those components. For example, the debug privilege,
        which allows a process to bypass security checks when opening a handle
        to another process with the OpenProcess Windows
        API, is checked for by the process manager. Table 6-9 is a full list of privileges, and it
        describes how and when system components check for them.
When a component wants to check a token to see whether a
        privilege is present, it uses the PrivilegeCheck
        or LsaEnumerateAccountRights APIs if running in
        user mode and SeSinglePrivilegeCheck or
        SePrivilegeCheck if running in kernel mode. The
        privilege-related APIs are not account-right aware, but the
        account-right APIs are privilege-aware.
Unlike account rights, privileges can be enabled and
        disabled. For a privilege check to succeed, the privilege must be in
        the specified token and it must be enabled. The idea behind this
        scheme is that privileges should be enabled only when their use is
        required so that a process cannot inadvertently perform a privileged
        security operation.
EXPERIMENT: Seeing a Privilege Get Enabled
By following these steps, you can see that the Date and Time
          Control Panel applet enables the SeTimeZonePrivilege privilege in
          response to you using its interface to change the time zone of the
          computer:
	Run Process Explorer, and set the refresh rate to
              Paused.

	Open the Date And Time item by right-clicking on the clock
              in the system tray region of the taskbar, and then select Adjust
              Date/Time. A new Rundll32 process will appear with a green
              highlight when you force a refresh with F5.

	Hover the mouse over the Rundll32 process, and verify that
              the target contains the text “Time Date Control Panel Applet” as
              well as a path to Timedate.cpl. The presence of this argument
              tells Rundll32, which is a Control Panel DLL hosting process, to
              load the DLL that implements the user interface that enables you
              to change the time and date.
[image: image with no caption]


	View the Security tab of the process Properties dialog box
              for your Rundll32 process. You should see that the
              SeTimeZonePrivilege privilege is disabled.
[image: image with no caption]


	Now click the Change Time Zone button in the Control Panel
              item, close the process Properties dialog box, and then open it
              again. On the Security tab, you should now see that the
              SeTimeZonePrivilege privilege is enabled.
[image: image with no caption]





Table 6-9. Privileges
	Privilege
	User Right
	Privilege Usage

	SeAssignPrimaryTokenPrivilege
	Replace a process-level
                token
	Checked for by various components,
                such as NtSetInformationJob, that set a
                process’ token.

	SeAuditPrivilege
	Generate security
                audits
	Required to generate events for the
                Security event log with the ReportEvent
                API.

	SeBackupPrivilege
	Back up files and
                directories
	Causes NTFS to grant the following
                access to any file or directory, regardless of the security
                descriptor that’s present: READ_CONTROL,
                ACCESS_SYSTEM_SECURITY, FILE_GENERIC_READ,
                FILE_TRAVERSE
 Note that when opening a file for
                backup, the caller must specify the FILE_FLAG_BACKUP_SEMANTICS
                flag.
 Also allows corresponding access to
                registry keys when using
                RegSaveKey.

	SeChangeNotifyPrivilege
	Bypass traverse
                checking
	Used by NTFS to avoid checking
                permissions on intermediate directories of a multilevel
                directory lookup. Also used by file systems when applications
                register for notification of changes to the file system
                structure.

	SeCreateGlobalPrivilege
	Create global objects
	Required for a process to create
                section and symbolic link objects in the directories of the
                object manager namespace that are assigned to a different
                session than the caller.

	SeCreatePagefilePrivilege
	Create a pagefile
	Checked for by
                NtCreatePagingFile, which is the function
                used to create a new paging file.

	SeCreatePermanentPrivilege
	Create permanent shared
                objects
	Checked for by the object manager
                when creating a permanent object (one that doesn’t get
                deallocated when there are no more references to
                it).

	SeCreateSymbolicLinkPrivilege
	Create symbolic links
	Checked for by NTFS when creating
                symbolic links on the file system with the
                CreateSymbolicLink API.

	SeCreateTokenPrivilege
	Create a token object
	NtCreateToken,
                the function that creates a token object, checks for this
                privilege.

	SeDebugPrivilege
	Debug programs
	If the caller has this privilege
                enabled, the process manager allows access to any process or
                thread using NtOpenProcess or
                NtOpenThread, regardless of the process’
                or thread’s security descriptor (except for protected
                processes).

	SeEnableDelegationPrivilege
	Enable computer and user accounts to
                be trusted for delegation
	Used by Active Directory services to
                delegate authenticated credentials.

	SeImpersonatePrivilege
	Impersonate a client after
                authentication
	The process manager checks for this
                when a thread wants to use a token for impersonation and the
                token represents a different user than that of the thread’s
                process token.

	SeIncreaseBasePriorityPrivilege
	Increase scheduling
                priority
	Checked for by the process manager
                and is required to raise the priority of a
                process.

	SeIncreaseQuotaPrivilege
	Adjust memory quotas for a
                process
	Enforced when changing a process’
                working set thresholds, a process’ paged and nonpaged pool
                quotas, and a process’ CPU rate quota.

	SeIncreaseWorkingSetPrivilege
	Increase a process working
                set
	Required to call
                SetProcessWorkingSetSize to increase the
                minimum working set. This indirectly allows the process to
                lock up to the minimum working set of memory using
                VirtualLock.

	SeLoadDriverPrivilege
	Load and unload device
                drivers
	Checked for by the
                NtLoadDriver and
                NtUnloadDriver driver
                functions.

	SeLockMemoryPrivilege
	Lock pages in memory
	Checked for by
                NtLockVirtualMemory, the kernel
                implementation of
                VirtualLock.

	SeMachineAccountPrivilege
	Add workstations to the
                domain
	Checked for by the Security Accounts
                Manager on a domain controller when creating a machine account
                in a domain.

	SeManageVolumePrivilege
	Perform volume maintenance
                tasks
	Enforced by file system drivers
                during a volume open operation, which is required to perform
                disk checking and defragmenting activities.

	SeProfileSingleProcessPrivilege
	Profile single
                process
	Checked by Superfetch and the
                prefetcher when requesting information for an individual
                process through the
                NtQuerySystemInformation
                API.

	SeRelabelPrivilege
	Modify an object
                label
	Checked for by the SRM when raising
                the integrity level of an object owned by another user, or
                when attempting to raise the integrity level of an object
                higher than that of the caller’s token.

	SeRemoteShutdownPrivilege
	Force shutdown from a remote
                system
	Winlogon checks that remote callers
                of the InitiateSystemShutdown function
                have this privilege.

	SeRestorePrivilege
	Restore files and
                directories
	This privilege causes NTFS to grant
                the following access to any file or directory, regardless of
                the security descriptor that’s present:

                WRITE_DAC
 WRITE_OWNER

                ACCESS_SYSTEM_SECURITY

                FILE_GENERIC_WRITE
 FILE_ADD_FILE

                FILE_ADD_SUBDIRECTORY
 DELETE

                Note that when opening a file for restore, the caller
                must specify the FILE_FLAG_BACKUP_SEMANTICS flag.

                Allows corresponding access to registry keys when using
                RegSaveKey.

	SeSecurityPrivilege
	Manage auditing and security
                log
	Required to access the SACL of a
                security descriptor, and to read and clear the security event
                log.

	SeShutdownPrivilege
	Shut down the system
	This privilege is checked for by
                NtShutdownSystem and
                NtRaiseHardError, which presents a system
                error dialog box on the interactive console.

	SeSyncAgentPrivilege
	Synchronize directory service
                data
	Required to use the LDAP directory
                synchronization services. It allows the holder to read all
                objects and properties in the directory, regardless of the
                protection on the objects and properties.

	SeSystemEnvironmentPrivilege
	Modify firmware environment
                variables
	Required by
                NtSetSystemEnvironmentValue and
                NtQuerySystemEnvironmentValue to modify
                and read firmware environment variables using the hardware
                abstraction layer (HAL).

	SeSystemProfilePrivilege
	Profile system
                performance
	Checked for by
                NtCreateProfile, the function used to
                perform profiling of the system. This is used by the Kernprof
                tool, for example.

	SeSystemtimePrivilege
	Change the system
                time
	Required to change the time or
                date.

	SeTakeOwnershipPrivilege
	Take ownership of files and other
                objects
	Required to take ownership of an
                object without being granted discretionary
                access.

	SeTcbPrivilege
	Act as part of the operating
                system
	Checked for by the security
                reference monitor when the session ID is set in a token, by
                the Plug and Play manager for Plug and Play event creation and
                management, by BroadcastSystemMessageEx
                when called with BSM_ALLDESKTOPS, by
                LsaRegisterLogonProcess, and when
                specifying an application as a VDM with
                NtSetInformationProcess.

	SeTimeZonePrivilege
	Change the time zone
	Required to change the time
                zone.

	SeTrustedCredManAccessPrivilege
	Access credential manager as a
                trusted caller
	Checked by the credential manager to
                verify that it should trust the caller with credential
                information that can be queried in plain text. It is granted
                only to Winlogon by default.

	SeUndockPrivilege
	Remove computer from a docking
                station
	Checked for by the user-mode Plug
                and Play manager when either a computer undock is initiated or
                a device eject request is made.

	SeUnsolicitedInputPrivilege
	Receive unsolicited data from a
                terminal device
	This privilege isn’t currently used
                by Windows.




EXPERIMENT: The Bypass Traverse Checking Privilege
If you are a systems administrator, you must be aware of the
          Bypass Traverse Checking privilege (internally called
          SeNotifyPrivilege) and its implications. This
          experiment demonstrates that not understanding its behavior can lead
          to improperly applied security.
	Create a folder and, within that folder, a new text file
              with some sample text.

	Navigate in Explorer to the new file, and go to the
              Security tab of its Properties dialog box. Click the Advanced
              button, and clear the check box that controls inheritance.
              Select Copy when you are prompted as to whether you want to
              remove or copy inherited permissions.

	Next, modify the security of the new folder so that your
              account does not have any access to the folder. Do this by
              selecting your account and selecting all the Deny boxes in the
              permissions list.

	Run Notepad, and browse using the File, Open dialog box to
              the new directory. You should be denied access to the
              directory.

	In the File Name field of the Open dialog box, type the
              full path of the new file. The file should open.



If your account does not have the Bypass Traverse Checking
          privilege, NTFS performs an access check on each directory of the
          path to a file when you try to open a file, which results in you
          being denied access to the file in this example.


Super Privileges



Several privileges are so powerful that a user to which
        they are assigned is effectively a “super user” who has full control
        over a computer. These privileges can be used in an infinite number of
        ways to gain unauthorized access to otherwise off-limit resources and
        to perform unauthorized operations. However, we’ll focus on using the
        privilege to execute code that grants the user privileges not assigned
        to the user, with the knowledge that this capability can be leveraged
        to perform any operation on the local machine that the user
        desires.
This section lists the privileges and discusses the ways that
        they can be exploited. Other privileges, such as Lock Pages In
        Physical Memory, can be exploited for denial-of-service attacks on a
        system, but these are not discussed. Note that on systems with UAC
        enabled, these privileges will be granted only to applications running
        at high integrity level or higher, even if the account possesses
        them:
	Debug programs. A user with this privilege can open any process on the
              system (except for a Protected Process) without regard to the
              security descriptor present on the process. The user could
              implement a program that opens the LSASS process, for example,
              copy executable code into its address space, and then inject a
              thread with the CreateRemoteThread Windows
              API to execute the injected code in a more-privileged security
              context. The code could grant the user additional privileges and
              group memberships.

	Take ownership. This privilege allows a holder to take ownership of any
              securable object (even protected processes and threads) by
              writing his own SID into the owner field of the object’s
              security descriptor. Recall that an owner is always granted
              permission to read and modify the DACL of the security
              descriptor, so a process with this privilege could modify the
              DACL to grant itself full access to the object and then close
              and reopen the object with full access. This would allow the
              owner to see sensitive data and to even replace system files
              that execute as part of normal system operation, such as LSASS,
              with his own programs that grant a user elevated
              privileges.

	Restore files and
              directories. A user assigned this privilege can replace any file on the
              system with her own. She could exploit this power by replacing
              system files as described in the preceding paragraph.

	Load and unload device
              drivers. A malicious user could use this privilege to load a device
              driver into the system. Device drivers are considered trusted
              parts of the operating system that can execute within it with
              System account credentials, so a driver could launch privileged
              programs that assign the user other rights.

	Create a token
              object. This privilege can be used in the obvious way to generate
              tokens that represent arbitrary user accounts with arbitrary
              group membership and privilege assignment.

	Act as part of operating
              system. LsaRegisterLogonProcess, the function
              a process calls to establish a trusted connection to LSASS,
              checks for this privilege. A malicious user with this privilege
              can establish a trusted-LSASS connection and then execute
              LsaLogonUser, a function used to create new
              logon sessions. LsaLogonUser requires a
              valid user name and password and accepts an optional list of
              SIDs that it adds to the initial token created for a new logon
              session. The user could therefore use her own user name and
              password to create a new logon session that includes the SIDs of
              more privileged groups or users in the resulting token.



Note that the use of an elevated privilege does not extend past
        the machine boundary to the network, because any interaction with
        another computer requires authentication with a domain controller and
        validation of domain passwords. Domain passwords are not stored on a
        computer either in plain text or encrypted form, so they are not
        accessible to malicious code.


Access Tokens of Processes and Threads



Figure 6-9 brings
      together the concepts covered so far in this chapter by illustrating the
      basic process and thread security structures. In the figure, notice that
      the process object and the thread objects have ACLs, as do the access
      token objects themselves. Also in this figure, thread 2 and thread 3
      each have an impersonation token, whereas thread 1 uses the default
      process access token.
[image: Process and thread security structures]

Figure 6-9. Process and thread security structures


Security Auditing



The object manager can generate audit events as a result
      of an access check, and Windows functions available to user applications
      can generate them directly. Kernel-mode code is always allowed to
      generate an audit event. Two privileges, SeSecurityPrivilege and
      SeAuditPrivilege, relate to auditing. A process must have the
      SeSecurityPrivilege privilege to manage the security Event Log and to
      view or set an object’s SACL. Processes that call audit system services,
      however, must have the SeAuditPrivilege privilege to successfully
      generate an audit record.
The audit policy of the local system controls the decision to
      audit a particular type of security event. The audit policy, also called
      the local security policy, is one part of the security policy LSASS
      maintains on the local system, and it is configured with the Local
      Security Policy Editor as shown in Figure 6-10.
The audit policy configuration (both the basic settings under
      Local Policies and the Advanced Audit Policy Configuration to be
      described later) is stored in the registry as a bitmapped value in the
      key HKEY_LOCAL_MACHINE\SECURITY\Policy\PolAdtEv.
[image: Local Security Policy Editor audit policy configuration]

Figure 6-10. Local Security Policy Editor audit policy configuration

LSASS sends messages to the SRM to inform it of the auditing
      policy at system initialization time and when the policy changes. LSASS
      is responsible for receiving audit records generated based on the audit
      events from the SRM, editing the records, and sending them to the Event
      Logger. LSASS (instead of the SRM) sends these records because it adds
      pertinent details, such as the information needed to more completely
      identify the process that is being audited.
The SRM sends audit records via its ALPC connection to LSASS. The
      Event Logger then writes the audit record to the security Event Log. In
      addition to audit records the SRM passes, both LSASS and the SAM
      generate audit records that LSASS sends directly to the Event Logger,
      and the AuthZ APIs allow for applications to generate
      application-defined audits. Figure 6-11 depicts this overall
      flow.
[image: Flow of security audit records]

Figure 6-11. Flow of security audit records

Audit records are put on a queue to be sent to the LSA as
      they are received—they are not submitted in batches. The audit records
      are moved from the SRM to the security subsystem in one of two ways. If
      the audit record is small (less than the maximum ALPC message size), it
      is sent as an ALPC message. The audit records are copied from the
      address space of the SRM to the address space of the LSASS process. If
      the audit record is large, the SRM uses shared memory to make the
      message available to LSASS and simply passes a pointer in an ALPC
      message.
Object Access Auditing



An important use of the auditing mechanism in many environments
        is to maintain a log of accesses to secured objects, files in
        particular. To do this, the Audit Object Access policy must be
        enabled, and there must be audit ACEs in System Access Control Lists
        that enable auditing for the objects in question.
When an accessor attempts to open a handle to an object, the
        security reference monitor first determines whether the attempt is
        allowed or denied. If object access auditing is enabled, the SRM then
        scans the System ACL of the object. There are two types of audit ACEs,
        access allowed and access denied. An audit ACE must match any of the
        security IDs held by the accessor, it must match any of the access
        methods requested, and its type (access allowed or access denied) must
        match the result of the access check in order to generate an object
        access audit record.
Object access audit records include not just the fact of access
        allowed or denied, but also the reason for the success or failure.
        This “reason for access” reporting generally takes the form of an
        access control entry, specified in SDDL (Security Descriptor
        Definition Language), in the audit record. This allows for a diagnosis
        of scenarios in which an object to which you believe access should be
        denied is being permitted, or vice versa, by identifying
        the specific access control entry that caused the attempted access to
        succeed or fail.
As can be seen in Figure 6-10, object access
        auditing is disabled by default (as are all other auditing
        policies).
EXPERIMENT: Object Access Auditing
You can demonstrate object access auditing by following these
          steps:
	In Explorer, navigate to a file to which you would
              normally have access. In its Properties dialog box, click on the
              Security tab and then select the Advanced settings. Click on the
              Auditing tab, and click through the administrative privileges
              warning. The resulting dialog box allows you to add auditing of
              access control entries to the file’s System Access Control
              List.
[image: image with no caption]


	Click the Add button. In the resulting Select User Or
              Group dialog box, enter your own user name or a group to which
              you belong, such as Everyone, and click Check Names and then OK.
              This presents a dialog box for creating an Auditing Access
              Control Entry for this user or group for this file.
[image: image with no caption]


	In the Successful column, select Full control (which will
              cause all of the other access methods to be selected as well).
              Click OK four times to close the file Properties dialog
              box.

	In Explorer, double-click on the file to open it with its
              associated program.

	In Event Viewer, navigate to the Security log. Note that
              there is no entry for access to the file. This is because the
              audit policy for object access is not yet configured.

	In the Local Security Policy Editor, navigate to Local
              Policies, Audit Policy. Double-click on Audit Object Access, and
              then click Success to enable auditing of successful access to
              files.

	In Event Viewer, click Action, Refresh. Note that the
              changes to audit policy resulted in audit records.

	In Explorer, double-click on the file to open it
              again.

	In Event Viewer, click Action, Refresh. Note that several
              file access audit records are now present.



Find one of the file access audit records for Event ID 4656,
          This shows up as “a handle to an object was requested.” Scroll down
          in the text box to find the Access Reasons section. The following
          example shows that two access methods, READ_CONTROL and
          ReadAttributes, were requested. The former was granted because the
          accessor was the owner of the file, and the latter was granted
          because of the indicated Access Control Entry. The ACE includes the
          SID of the user who attempted the access and includes the
          designation A:FA, indicating that this SID is Allowed (A) all file
          access methods (FA) to the file.
[image: image with no caption]



Global Audit Policy



In addition to object-access ACEs on individual objects,
        a global audit policy can be defined for the system that enables
        object access auditing for all file system objects, for all registry
        keys, or for both. A security auditor can therefore be certain that
        the desired auditing will be performed, without having to set or
        examine SACLs on all of the individual objects of interest.
An administrator can set or query the global audit policy via
        the AuditPol command with the /resourceSACL option. This can also be
        done with a program calling the
        AuditSetGlobalSacl and
        AuditQueryGlobalSacl APIs. As with changes to
        objects’ SACLs, changing these global SACLs requires
        SeSecurityPrivilege.
EXPERIMENT: Setting Global Audit Policy
You can use the AuditPol command to enable global audit
          policy.
	If not already done in the previous experiment, in the
              Local Security Policy Editor, navigate to the Audit Policy
              settings (as shown in Figure 6-10),
              double-click Audit Object Access, and enable auditing for both
              success and failure. Note that on most systems, SACLs specifying
              object access auditing are uncommon, so few if any object access
              audit records will be produced at this point.

	In an elevated command prompt window, enter the
              following command:
C:\> auditpol /resourceSACL
This will produce a summary of the commands for setting
              and querying global audit policy.

	In the same elevated command prompt window, enter the
              following commands:
C:\> auditpol /resourceSACL /type:File /view
C:\> auditpol /resourceSACL /type:Key /view
On a typical system, each of these commands will report
              that no Global SACL exists for the respective resource type.
              (Note that the keywords “File” and “Key” are
              case-sensitive.)

	In the same elevated command prompt window, enter the
              following command:
C:\> auditpol /resourceSACL /set /type:File /user:yourusername /success /failure /access:FW
This will set a global audit policy such that all attempts
              to open files for write access (FW) by the indicated user will
              result in audit records, whether the open attempts succeed or
              fail. The user name can be a specific user name on the system, a
              group such as Everyone, a domain-qualified user name such as
              domainname\username, or a SID.

	While running under the user name indicated, use Explorer
              or other tools to open a file. Then look at the security log in
              the system Event Log to find the audit records.

	At the end of the experiment, use the auditpol command to
              remove the global SACL you created in step 4, as follows:
C:\> auditpol /resourceSACL /remove /type:File /user:yourusername




The global audit policy is stored in the registry as a pair of
        system access control lists in
        HKEY_LOCAL_MACHINE\SECURITY\Policy\GlobalSaclNameFile and
        HKEY_LOCAL_MACHINE\SECURITY\Policy\GlobalSaclNameKey. These keys can
        be examined by running Regedit.exe under the System account, as
        described earlier in the Security System Components
        section. These keys will not exist until the corresponding global
        SACLs have been set at least once.
The global audit policy cannot be overridden by SACLs on
        objects, but object-specific SACLs can allow for additional auditing.
        For example, global audit policy could require auditing of read access
        by all users to all files, but SACLs on individual files could add
        auditing of write access to those files by specific users or by more
        specific user groups.
Global audit policy can also be configured via the Local
        Security Policy Editor in the Advanced Audit Policy settings,
        described in the next subsection.

Advanced Audit Policy Settings



In addition to the Audit Policy settings described
        previously, the Local Security Policy Editor offers a much more
        fine-grained set of audit controls under the Advanced Audit Policy
        Configuration heading, as shown in Figure 6-12.
[image: Local Security Policy Editor Advanced Audit Policy Configuration settings]

Figure 6-12. Local Security Policy Editor Advanced Audit Policy
          Configuration settings

Each of the nine audit policy settings under Local Policies, as
        illustrated previously in Figure 6-10, maps to a group
        of settings here that provide more detailed control. For example,
        while the Audit Object Access settings under Local Policies allow
        access to all objects to be audited, the settings here allow auditing
        of access to various types of objects to be controlled individually.
        Enabling one of the audit policy settings under Local Policies
        implicitly enables all of the corresponding advanced audit policy
        events, but if finer control over the contents of the audit log is
        desired, the advanced settings can be set individually. The standard
        settings then become a product of the advanced settings; however, this
        is not visible in the Local Security Policy Editor. Attempts to
        specify audit settings by using both the basic and the advanced
        options can cause unexpected results.
The Global Object Access Auditing option under the Advanced
        Audit Policy Configuration item can be used to configure the Global
        SACLs described in the previous section, using a graphical interface
        identical to that seen in Explorer or the Registry Editor for security
        descriptors in the file system or the registry.


Logon



Interactive logon (as opposed to network logon) occurs
      through the interaction of the logon process (Winlogon), the logon user
      interface process (LogonUI) and its credential providers, LSASS, one or
      more authentication packages, and the SAM or Active Directory.
      Authentication packages are DLLs that perform authentication checks.
      Kerberos is the Windows authentication package for interactive logon to
      a domain, and MSV1_0 is the Windows authentication package for
      interactive logon to a local computer, for domain logons to trusted
      pre–Windows 2000 domains, and for times when no domain controller is
      accessible.
Winlogon is a trusted process responsible for managing
      security-related user interactions. It coordinates logon, starts the
      user’s first process at logon, handles logoff, and manages various other
      operations relevant to security, including launching LogonUI for
      entering passwords at logon, changing passwords, and locking and
      unlocking the workstation. The Winlogon process must ensure that
      operations relevant to security aren’t visible to any other active
      processes. For example, Winlogon guarantees that an untrusted process
      can’t get control of the desktop during one of these operations and thus
      gain access to the password.
Winlogon relies on the credential providers installed on the
      system to obtain a user’s account name or password. Credential providers
      are COM objects located inside DLLs. The default providers are
      %SystemRoot%\System32\authui.dll and
      %SystemRoot%\System32\SmartcardCredentialProvider.dll, which support
      both password and smartcard PIN authentication. Allowing other
      credential providers to be installed allows Windows to use different
      user-identification mechanisms. For example, a third party might supply
      a credential provider that uses a thumbprint recognition device to
      identify users and extract their passwords from an encrypted
      database.
To protect Winlogon’s address space from bugs in credential
      providers that might cause the Winlogon process to crash (which, in
      turn, will result in a system crash, because Winlogon is considered a
      critical system process), a separate process, LogonUI.exe, is used to
      actually load the credential providers and display the Windows logon
      interface to users. This process is started on demand whenever Winlogon
      needs to present a user interface to the user, and it exits after the
      action has finished. It also allows Winlogon to simply restart a new
      LogonUI process should it crash for any reason.
Winlogon is the only process that intercepts logon requests from
      the keyboard, which are sent through an RPC message from Win32k.sys.
      Winlogon immediately launches the LogonUI application to display the
      user interface for logon. After obtaining a user name and password from
      credential providers, Winlogon calls LSASS to authenticate the user
      attempting to log on. If the user is authenticated, the logon process
      activates a logon shell on behalf of that user. The interaction between
      the components involved in logon is illustrated in Figure 6-13.
[image: Components involved in logon]

Figure 6-13. Components involved in logon

In addition to supporting alternative credential
      providers, LogonUI can load additional network provider DLLs that need
      to perform secondary authentication. This capability allows multiple
      network providers to gather identification and authentication
      information all at one time during normal logon. A user logging on to a
      Windows system might simultaneously be authenticated on a UNIX server.
      That user would then be able to access resources of the UNIX server from
      the Windows machine without requiring additional authentication. Such a
      capability is known as one form of single sign-on.
Winlogon Initialization



During system initialization, before any user applications are
        active, Winlogon performs the following steps to ensure that it
        controls the workstation once the system is ready for user
        interaction:
	Creates and opens an interactive window station (for
            example, \Sessions\1\Windows\WindowStations\WinSta0 in the object
            manager namespace) to represent the keyboard, mouse, and monitor.
            Winlogon creates a security descriptor for the station that has
            one and only one ACE containing only the System SID. This unique
            security descriptor ensures that no other process can access the
            workstation unless explicitly allowed by Winlogon.

	Creates and opens two desktops: an application desktop
            (\Sessions\1\Windows\WinSta0\Default, also known as the
            interactive desktop) and a Winlogon desktop
            (\Sessions\1\Windows\WinSta0\Winlogon, also known as the secure
            desktop). The security on the Winlogon desktop is created so that
            only Winlogon can access that desktop. The other desktop allows
            both Winlogon and users to access it. This arrangement means that
            any time the Winlogon desktop is active, no other process has
            access to any active code or data associated with the desktop. Windows uses this
            feature to protect the secure operations that involve passwords
            and locking and unlocking the desktop.

	Before anyone logs on to a computer, the visible desktop is
            Winlogon’s. After a user logs on, pressing Ctrl+Alt+Delete
            switches the desktop from Default to Winlogon and launches
            LogonUI. (This explains why all the windows on your interactive
            desktop seem to disappear when you press Ctrl+Alt+Delete, and then
            return when you dismiss the Windows Security dialog box.) Thus,
            the SAS always brings up a secure desktop controlled by
            Winlogon.

	Establishes an ALPC connection with LSASS’s
            LsaAuthenticationPort. This connection will be used for exchanging
            information during logon, logoff, and password operations and is
            made by calling
            LsaRegisterLogonProcess.

	Registers the Winlogon RPC message server, which listens for
            SAS, logoff, and workstation lock notifications from Win32k. This
            measure prevents Trojan horse programs from gaining control of the
            screen when the SAS is entered.



Note
The Wininit process performs steps similar to steps 1 and 2 to
          allow legacy interactive services running on session 0 to display
          windows, but it does not perform any other steps because session 0
          is not available for user logon. (See Chapter 3 for more information on Wininit and
          session isolation.)

How SAS Is Implemented
The SAS is secure because no application can intercept the
          Ctrl+Alt+Delete keystroke combination or prevent Winlogon from
          receiving it. Win32k.sys reserves the Ctrl+Alt+Delete key
          combination so that whenever the Windows input system (implemented
          in the raw input thread in Win32k) sees the combination, it sends an
          RPC message to Winlogon’s message server, which listens for such
          notifications. The keystrokes that map to a registered hot key are
          otherwise not sent to any process other than the one that registered
          it, and only the thread that registered a hot key can unregister it,
          so a Trojan horse application cannot deregister Winlogon’s ownership
          of the SAS.
A Windows function, SetWindowsHook,
          enables an application to install a hook procedure that’s invoked
          every time a keystroke is pressed, even before hot keys are
          processed, and it allows the hook to squash keystrokes. However, the
          Windows hot key processing code contains a special case for
          Ctrl+Alt+Delete that disables hooks so that the keystroke sequence
          can’t be intercepted. In addition, if the interactive desktop is
          locked, only hot keys owned by Winlogon are processed.

Once the Winlogon desktop is created during initialization, it
        becomes the active desktop. When the Winlogon desktop is active, it is
        always locked. Winlogon unlocks its desktop only to switch to the
        application desktop or the screen-saver desktop. (Only
        the Winlogon process can lock or unlock a desktop.)

User Logon Steps



Logon begins when a user presses the SAS (Ctrl+Alt+Delete).
        After the SAS is pressed, Winlogon starts LogonUI, which calls the
        credential providers to obtain a user name and password. Winlogon also
        creates a unique local logon SID for this user that it assigns to this
        instance of the desktop (keyboard, screen, and mouse). Winlogon passes
        this SID to LSASS as part of the LsaLogonUser
        call. If the user is successfully logged on, this SID will be included
        in the logon process token—a step that protects access to the desktop.
        For example, another logon to the same account but on a different
        system will be unable to write to the first machine’s desktop because
        this second logon won’t be in the first logon’s desktop token.
When the user name and password have been entered, Winlogon
        retrieves a handle to a package by calling the LSASS function
        LsaLookupAuthenticationPackage. Authentication
        packages are listed in the registry under
        HKLM\SYSTEM\CurrentControlSet\Control\Lsa. Winlogon passes logon
        information to the authentication package via
        LsaLogonUser. Once a package authenticates a
        user, Winlogon continues the logon process for that user. If none of
        the authentication packages indicates a successful logon, the logon
        process is aborted.
Windows uses two standard authentication packages for
        interactive logons: Kerberos and MSV1_0. The default authentication
        package on a stand-alone Windows system is MSV1_0
        (%SystemRoot%\System32\Msv1_0.dll), an authentication package that
        implements LAN Manager 2 protocol. LSASS also uses MSV1_0 on
        domain-member computers to authenticate to pre–Windows 2000 domains
        and computers that can’t locate a domain controller for
        authentication. (Computers that are disconnected from the network fall
        into this latter category.) The Kerberos authentication package,
        %SystemRoot%\System32\Kerberos.dll, is used on computers that are
        members of Windows domains. The Windows Kerberos package, with the
        cooperation of Kerberos services running on a domain controller,
        supports the Kerberos protocol. This protocol is based on Internet RFC
        1510. (Visit the Internet Engineering Task Force [IETF]
        website, www.ietf.org, for
        detailed information on the Kerberos standard.)
The MSV1_0 authentication package takes the user name and a
        hashed version of the password and sends a request to the local SAM to
        retrieve the account information, which includes the hashed password,
        the groups to which the user belongs, and any account restrictions.
        MSV1_0 first checks the account restrictions, such as hours or type of
        accesses allowed. If the user can’t log on because of the restrictions
        in the SAM database, the logon call fails and MSV1_0 returns a failure
        status to the LSA.
MSV1_0 then compares the hashed password and user name to that
        obtained from the SAM. In the case of a cached domain logon, MSV1_0
        accesses the cached information by using LSASS functions that store
        and retrieve “secrets” from the LSA database (the SECURITY hive of the
        registry). If the information matches, MSV1_0 generates a LUID for the
        logon session and creates the logon session by calling LSASS,
        associating this unique identifier with the session and passing the
        information needed to ultimately create an access token for the
        user. (Recall that an access token includes the user’s SID, group
        SIDs, and assigned privileges.)
Note
MSV1_0 does not cache a user’s entire password hash in the
          registry because that would enable someone with physical access to
          the system to easily compromise a user’s domain account and gain
          access to encrypted files and to network resources the user is
          authorized to access. Instead, it caches half of the hash. The
          cached half-hash is sufficient to verify that a user’s password is
          correct, but it isn’t sufficient to gain access to EFS keys and to
          authenticate as the user on a domain because these actions require
          the full hash.

If MSV1_0 needs to authenticate using a remote system, as when a
        user logs on to a trusted pre–Windows 2000 domain, MSV1_0 uses the
        Netlogon service to communicate with an instance of Netlogon on the
        remote system. Netlogon on the remote system interacts with the MSV1_0
        authentication package on that system, passing back authentication
        results to the system on which the logon is being performed.
The basic control flow for Kerberos authentication is the same
        as the flow for MSV1_0. However, in most cases, domain logons are
        performed from member workstations or servers (rather than on a domain
        controller), so the authentication package must communicate across the
        network as part of the authentication process. The package does so by
        communicating via the Kerberos TCP/IP port (port 88) with the Kerberos
        service on a domain controller. The Kerberos Key Distribution Center
        service (%SystemRoot%\System32\Kdcsvc.dll), which implements the
        Kerberos authentication protocol, runs in the LSASS process on domain
        controllers.
After validating hashed user name and password information with
        Active Directory’s user account objects (using the Active Directory
        server %SystemRoot%\System32\Ntdsa.dll), Kdcsvc returns domain
        credentials to LSASS, which returns the result of the authentication
        and the user’s domain logon credentials (if the logon was successful)
        across the network to the system where the logon is taking
        place.
Note
This description of Kerberos authentication is highly
          simplified, but it highlights the roles of the various components
          involved. Although the Kerberos authentication protocol plays a key
          role in distributed domain security in Windows, its details are
          outside the scope of this book.

After a logon has been authenticated, LSASS looks in the local
        policy database for the user’s allowed access, including interactive,
        network, batch, or service process. If the requested logon doesn’t
        match the allowed access, the logon attempt will be terminated. LSASS
        deletes the newly created logon session by cleaning up any of its data
        structures and then returns failure to Winlogon, which in turn
        displays an appropriate message to the user. If the requested access
        is allowed, LSASS adds the appropriate additional security IDs (such
        as Everyone, Interactive, and the like). It then checks its policy
        database for any granted privileges for all the SIDs for this user and
        adds these privileges to the user’s access token.
When LSASS has accumulated all the necessary
        information, it calls the executive to create the access token. The
        executive creates a primary access token for an interactive or service
        logon and an impersonation token for a network logon. After the access
        token is successfully created, LSASS duplicates the token, creating a
        handle that can be passed to Winlogon, and closes its own handle. If
        necessary, the logon operation is audited. At this point, LSASS
        returns success to Winlogon along with a handle to the access token,
        the LUID for the logon session, and the profile information, if any,
        that the authentication package returned.
EXPERIMENT: Listing Active Logon Sessions
As long as at least one token exists with a given logon
          session LUID, Windows considers the logon session to be active. You
          can use the LogonSessions tool from Sysinternals, which uses the
          LsaEnumerateLogonSessions function (documented
          in the Windows SDK) to list the active logon sessions:
C:\>logonsessions
Logonsesions v1.21
Copyright (C) 2004-2010 Bryce Cogswell and Mark Russinovich
Sysinternals - wwww.sysinternals.com

[0] Logon session 00000000:000003e7:
    User name:    KERNELS\LAPT8$
    Auth package: NTLM
    Logon type:   (none)
    Session:      0
    Sid:          S-1-5-18
    Logon time:   2012-01-16 22:03:38
    Logon server:
    DNS Domain:
    UPN:

[1] Logon session 00000000:0000cf19:
    User name:
    Auth package: NTLM
    Logon type:   (none)
    Session:      0
    Sid:          (none)
    Logon time:   2012-01-16 22:03:38
    Logon server:
    DNS Domain:
    UPN:

[2] Logon session 00000000:000003e4:
    User name:    KERNELS\LAPT8$
    Auth package: Negotiate
    Logon type:   Service
    Session:      0
    Sid:          S-1-5-20
    Logon time:   2012-01-16 22:03:40
    Logon server:
    DNS Domain:
    UPN:

[3] Logon session 00000000:000003e5:
    User name:    NT AUTHORITY\LOCAL SERVICE
    Auth package: Negotiate
    Logon type:   Service
    Session:      0
    Sid:          S-1-5-19
    Logon time:   2012-01-16 22:03:40
    Logon server:
    DNS Domain:
    UPN:

[4] Logon session 00000000:00021ed2:
    User name:    NT AUTHORITY\ANONYMOUS LOGON
    Auth package: NTLM
    Logon type:   Network
    Session:      0
    Sid:          S-1-5-7
    Logon time:   2012-01-16 22:03:46
    Logon server:
    DNS Domain:
    UPN:

[5] Logon session 00000000:000882c2:
    User name:    LAPT8\jeh
    Auth package: NTLM
    Logon type:   Interactive
    Session:      1
    Sid:          S-1-5-21-1488595123-1430011218-1163345924-1000
    Logon time:   2012-01-17 01:34:46
    Logon server: LAPT8
    DNS Domain:
    UPN:

[6] Logon session 00000000:000882e3:
    User name:    LAPT8\jeh
    Auth package: NTLM
    Logon type:   Interactive
    Session:      1
    Sid:          S-1-5-21-1488595123-1430011218-1163345924-1000
    Logon time:   2012-01-17 01:34:46
    Logon server: LAPT8
    DNS Domain:
    UPN:
Information reported for a session includes the SID and name
          of the user associated with the session, as well as the session’s
          authentication package and logon time. Note that the Negotiate
          authentication package, seen in logon session 2 in the preceding
          output, will attempt to authenticate via Kerberos or NTLM, depending
          on which is most appropriate for the authentication request.
The LUID for a session is displayed on the “Logon Session”
          line of each session block, and using the Handle utility (also from
          Sysinternals), you can find the tokens that represent a particular logon session. For example, to find the
          tokens for logon session 5 in the example output just shown, you
          could enter this command:
C:\Windows\system32>handle -a 882c2

Handle v3.46
Copyright (C) 1997-2011 Mark Russinovich
Sysinternals - www.sysinternals.com

System             pid: 4      type: Directory      D60: \Sessions\0\DosDevices\00000000-000882c2
winlogon.exe       pid: 440    type: Event           DC:
 \BaseNamedObjects\00000000000882c2_WlballoonSmartCardUnlockNotificationEventName
winlogon.exe       pid: 440    type: Event           E4:
 \BaseNamedObjects\00000000000882c2_WlballoonKerberosNotificationEventName
winlogon.exe       pid: 440    type: Event          1D4:
 \BaseNamedObjects\00000000000882c2_WlballoonAlternateCredsNotificationEventName
lsass.exe          pid: 492    type: Token          508: LAPT8\jeh:882c2
lsass.exe          pid: 492    type: Token          634: LAPT8\jeh:882c2
svchost.exe        pid: 892    type: Token          7C4: LAPT8\jeh:882c2
svchost.exe        pid: 960    type: Token          E70: LAPT8\jeh:882c2
svchost.exe        pid: 960    type: Token         1034: LAPT8\jeh:882c2
svchost.exe        pid: 960    type: Token         1194: LAPT8\jeh:882c2
svchost.exe        pid: 960    type: Token         1384: LAPT8\jeh:882c2

Winlogon then looks in the registry at the value
        HKLM\SOFTWARE\Microsoft\Windows NT\Current Version\Winlogon\Userinit
        and creates a process to run whatever the value of that string is.
        (This value can be several .EXEs separated by commas.) The default
        value is Userinit.exe, which loads the user profile settings and then
        creates a process to run whatever the value of
        HKCU\SOFTWARE\Microsoft\Windows NT\Current Version\Winlogon\Shell is,
        if that value exists. That value does not exist by default. If it
        doesn’t exist, Userinit.exe does the same for
        HKLM\SOFTWARE\Microsoft\Windows NT\Current Version\Winlogon\Shell,
        which defaults to Explorer.exe. Userinit then exits (which is why
        Explorer.exe shows up as having no parent when examined in Process
        Explorer). For more information on the steps followed during the user
        logon process, see Chapter 13, “Startup and Shutdown,” in Part
        2.

Assured Authentication



A fundamental problem with password-based authentication is that
        passwords can be revealed, or stolen, and used by malicious third
        parties. New in Windows 7 and Windows Server 2008/R2 is a mechanism
        that tracks the authentication strength of how a user authenticated
        with the system, which allows objects to be protected from access if a
        user did not authenticate securely. (Smartcard authentication is
        considered to be a stronger form of authentication than password
        authentication.)
On systems that are joined to a domain, the domain administrator
        can specify a mapping between an Object Identifier (OID), which is a
        unique numeric string representing a specific object type, on a
        certificate used for authenticating a user (such as on a smartcard or
        hardware security token) and a Security ID (SID) that is placed into the user’s access
        token when the user successfully authenticates with the system. An ACE
        in a DACL on an object can specify such a SID be part of a user’s
        token in order for the user to gain access to the object. Technically,
        this is known as a group claim. In other words, the user is claiming
        membership in a particular group, which is allowed certain access
        rights on specific objects, with the claim based upon the
        authentication mechanism. This feature is not enabled by default, and
        it must be configured by the domain administrator in a domain with
        certificate-based authentication.
Assured Authentication builds upon existing Windows security
        features in a way that provides a great deal of flexibility to IT
        administrators and anyone concerned with enterprise IT security. The
        enterprise decides which OIDs to embed in the certificates it uses for
        authenticating users and the mapping of particular OIDs to Active
        Directory universal groups (SIDs). A user’s group membership can be
        used to identify whether a certificate was used during the logon
        operation. Different certificates can have different issuance policies
        and, thus, different levels of security, which can be used to protect
        highly sensitive objects (such as files or anything else that might
        have a security descriptor).
Authentication protocols (APs) retrieve OIDs from certificates
        during certificate-based authentication. These OIDs must be mapped to
        SIDs, which are in turn processed during group membership expansion,
        and placed in the access token. The mapping of OID to universal group
        is specified in Active Directory.
As an example, an organization might have several certificate
        issuance policies with the names Contractor, Full Time Employee, and
        Senior Management, which map to the universal groups Contractor-Users,
        FTE-Users, and SM-Users, respectively. A user named Abby has a
        smartcard with a certificate issued using the Senior Management
        issuance policy, and when she logs in using her smartcard, she
        receives an additional group membership (which is represented by a SID
        in her access token) indicating that she is a member of the SM-Users
        group. Permissions can be set on objects (using an ACL) such that only
        members of the FTE-Users or SM-Users group (identified by their SIDs
        within an ACE) are granted access. If Abby logs in using her
        smartcard, she can access those objects, but if she logs in with just
        her user name and password (without the smartcard), she cannot access
        those objects because she will not have either the FTE-Users or
        SM-Users group in her access token. A user named Toby who logs in with
        a smartcard that has a certificate issued using the Contractor
        issuance policy would not be able to access an object that has an ACE
        requiring FTE-Users or SM-Users group membership.

Biometric Framework for User Authentication



Windows provides a standardized mechanism for supporting certain
        types of biometric devices—specifically, fingerprint scanners—to
        support user identification via a fingerprint swipe. Like many other
        such frameworks, the Windows Biometric Framework was developed to
        isolate the various functions involved in supporting such devices, so
        as to minimize the code required to implement a new device.
The primary components of the Windows Biometric
        Framework are shown in Figure 6-14. Except as noted
        in the following list, all of these components are supplied by
        Windows:
	The Windows Biometric Service
              (%SystemRoot%\System32\Wbiosrvc.dll. This provides the process execution environment in which
              one or more biometric service providers can execute.

	The Windows Biometric
              API. This allows existing Windows components such as WinLogon
              and LoginUI to access the biometric service. Third-party
              applications have access to the biometric API and can use the
              biometric scanner for functions other than logging in to
              Windows. An example of a function in this API is
              WinBioEnumServiceProviders. The Biometric
              API is exposed by %SystemRoot%\System32\Winbio.dll.

	The Fingerprint Biometric Service
              Provider. This wraps the functions of biometric-type-specific
              adapters so as to present a common interface, independent of the
              type of biometric, to the Windows Biometric Service. In the
              future, additional types of biometrics, such as retinal scans or
              voiceprint analyzers, might be supported by additional Biometric
              Service Providers. The Biometric Service Provider in turn uses
              three adapters, which are user-mode DLLs:
	The sensor adapter exposes the data-capture
                functionality of the scanner. The sensor adapter will usually
                use Windows I/O calls to access the scanner hardware. Windows
                provides a sensor adapter that can be used with simple
                sensors, those for which a Windows Biometric Device Interface
                (WBDI) driver exists. For more complex sensors, the sensor
                adapter is written by the sensor vendor.

	The engine adapter exposes processing and comparison
                functionality specific to the scanner’s raw data format and
                other features. The actual processing and comparison might be
                performed within the engine adapter DLL, or the DLL might
                communicate with some other module. The engine adapter is
                always provided by the sensor vendor.

	The storage adapter exposes a set of secure storage
                functions. These are used to store and retrieve templates
                against which scanned biometric data is matched by the engine
                adapter. Windows provides a storage adapter using Windows
                cryptography services and standard disk file storage. A sensor
                vendor might provide a different storage adapter.




	The Windows Biometric Driver
              Interface. This is a set of interface definitions (IRP major function
              codes, DeviceIoControl codes, and so forth)
              to which any driver for a biometric scanner device must conform
              if it is to be compatible with the Windows Biometric Service.
              WBDI is described in the Windows Driver Kit documentation. The
              Windows Driver Kit includes a sample WBDI driver.

	The functional device driver for
              the actual biometric scanner device. This exposes the WBDI at its upper edge, and it usually
              uses the services of a lower-level bus driver, such as the USB
              bus driver, to access the scanner device. It can be a User-Mode
              Driver Framework (UMDF) driver, a Kernel-Mode Driver Framework
              (KMDF) driver, or a Windows Driver Model (WDM) driver. This
              driver is always provided by the sensor vendor. Microsoft
              recommends the use of UMDF and a USB hardware interface for the
              scanner.



[image: Windows Biometric Framework components and architecture]

Figure 6-14. Windows Biometric Framework components and
          architecture

A typical sequence of operations to support logging in
        via a fingerprint scan might be as follows:
	After initialization, the sensor adapter receives from the
            service provider a request for capture data. The sensor adapter in
            turn sends a DeviceIoControl request with the
            IOCTL_BIOMETRIC_CAPTURE_DATA control code to the WBDI driver for
            the fingerprint scanner device.

	The WBDI driver puts the scanner into capture mode and
            queues the IOCTL_BIOMETRIC_CAPTURE_DATA request until a
            fingerprint scan occurs.

	A prospective user swipes a finger across the scanner. The
            WBDI driver receives notification of this, obtains the raw scan
            data from the sensor, and returns this data to the sensor driver
            in a buffer associated with the IOCTL_BIOMETRIC_CAPTURE_DATA
            request.

	The sensor adapter provides the data to the Fingerprint
            Biometric Service Provider, which in turn passes the data to the
            engine adapter.

	The engine adapter processes the raw data into a form
            compatible with its template storage.

	The Fingerprint Biometric Service Provider uses the storage
            adapter to obtain templates and corresponding security IDs from
            secure storage. It invokes the engine adapter to compare each
            template to the processed scan data. The engine adapter returns a
            status indicating whether it’s a match or not a match.

	If a match is found, the Biometric Service notifies
            WinLogon, via a credential provider DLL, of a successful login and
            passes it the security ID of the identified user. This
            notification is sent via an Advanced Local Procedure Call message,
            providing a path that cannot be spoofed





User Account Control and Virtualization



UAC is meant to enable users to run with standard user
      rights, as opposed to administrative rights. Without administrative
      rights, users cannot accidentally (or deliberately) modify system
      settings, malware can’t normally alter system security settings or
      disable antivirus software, and users can’t compromise the sensitive
      information of other users on shared computers. Running with standard
      user rights can thus mitigate the impact of malware and protect
      sensitive data on shared computers.
UAC had to address several problems to make it practical for a
      user to run with a standard user account. First, because the Windows
      usage model has been one of assumed administrative rights, software
      developers assumed their programs would run with those rights and so
      could access and modify any file, registry key, or operating system
      setting. The second problem UAC had to address was that users sometimes
      need administrative rights to perform such operations as installing
      software, changing the system time, and opening ports in the
      firewall.
The UAC solution to these problems is to run most applications
      with standard user rights, even though the user is logged in to an
      account with administrative rights; but at the same time, UAC makes it
      possible for standard users to access administrative rights when they
      need them—whether for legacy applications that require them or for
      changing certain system settings.
As described previously, UAC accomplishes this by creating a
      filtered admin token as well as the normal admin token when a user logs
      in to an administrative account. All processes created under the user’s
      session will normally have the filtered admin token in effect so that
      applications that can run with standard user rights will do so. However,
      the administrative user can run a program or perform other functions
      that require full administrator rights by performing UAC
      Elevation.
Windows also allows certain tasks that were previously considered
      reserved for administrators to be performed by standard users, enhancing
      the usability of the standard user environment. For example, Group
      Policy settings exist that can enable standard users to install printer
      and other device drivers approved by IT administrators and to install
      ActiveX controls from administrator-approved sites.
Finally, when software developers test in the UAC environment,
      they are encouraged to develop applications that can run without
      administrative rights. Fundamentally, nonadministrative programs should
      not need to run with Administrator privileges; programs that often
      require Administrator privileges are typically legacy programs using old
      APIs or techniques, and they should be updated.
Together, these changes obviate the need for users to run with
      administrative rights all the time.
File System and Registry Virtualization



Although some software legitimately requires administrative
        rights, many programs needlessly store user data in system-global
        locations. When an application executes, it can be running in
        different user accounts, and it should therefore store user-specific
        data in the per-user %AppData% directory and save per-user settings in
        the user’s registry profile under HKEY_CURRENT_USER\Software. Standard
        user accounts don’t have write access to the
        %ProgramFiles% directory or HKEY_LOCAL_MACHINE\Software, but because
        most Windows systems are single-user and most users have been
        administrators until UAC was implemented, applications that
        incorrectly saved user data and settings to these locations worked
        anyway.
Windows enables these legacy applications to run in standard
        user accounts through the help of file system and registry namespace
        virtualization. When an application modifies a system-global location
        in the file system or registry and that operation fails because access
        is denied, Windows redirects the operation to a per-user area. When
        the application reads from a system-global location, Windows first
        checks for data in the per-user area and, if none is found, permits
        the read attempt from the global location.
Windows will always enable this type of virtualization
        unless
	The application is 64-bit. Because virtualization is purely
            an application-compatibility technology meant to help legacy
            applications, it is enabled only for 32-bit applications. The
            world of 64-bit applications is relatively new and developers
            should follow the development guidelines for creating standard
            user-compatible applications.

	The application is already running with administrative
            rights. In this case, there is no need for any
            virtualization.

	The operation came from a kernel-mode caller.

	The operation is being performed while the caller is
            impersonating. For example, any operations not originating from a
            process classified as legacy according to this definition,
            including network file-sharing accesses, are not
            virtualized.

	The executable image for the process has a UAC-compatible
            manifest (specifying a
            requestedExecutionLevel setting, described in
            the next section).

	The administrator does not have write access to the file or
            registry key. This exception exists to enforce backward
            compatibility, because the legacy application would have failed
            before UAC was implemented even if the application was run with
            administrative rights.

	Services are never virtualized.



You can see the virtualization status (as discussed previously,
        the process’ virtualization status is stored as a flag in its token)
        of a process by adding the UAC Virtualization column to Task Manager’s
        Processes page, as shown in Figure 6-15. Most Windows
        components—including the Desktop Window Manager (Dwm.exe), the Client
        Server Run-Time Subsystem (Csrss.exe), and Explorer—have
        virtualization disabled because they have a UAC-compatible manifest or
        are running with administrative rights and so do not allow
        virtualization. Internet Explorer (Iexplore.exe) has virtualization
        enabled because it can host multiple ActiveX controls and scripts and
        must assume that they were not written to operate correctly with
        standard user rights.
In addition to file system and registry virtualization, some
        applications require additional help to run correctly with standard
        user rights. For example, an application that tests the account in
        which it’s running for membership in the Administrators group might
        otherwise work, but it won’t run if it’s not in that group. Windows defines a number of
        application-compatibility shims to enable such applications to work
        anyway. The shims most commonly applied to legacy applications for
        operation with standard user rights are shown in Table 6-10. Note that, if required,
        virtualization can be completely disabled for a system using a local
        security policy setting.
[image: Using Task Manager to view virtualization status]

Figure 6-15. Using Task Manager to view virtualization status

Table 6-10. UAC Virtualization Shims
	Flag
	Meaning

	ElevateCreateProcess
	Changes
                CreateProcess to handle
                ERROR_ELEVATION_REQUIRED errors by calling the application
                information service to prompt for elevation

	ForceAdminAccess
	Spoofs queries of Administrator
                group membership

	VirtualizeDeleteFile
	Spoofs successful deletion of global
                files and directories

	LocalMappedObject
	Forces global section objects into
                the user’s namespace

	VirtualizeHKCRLite
	Redirects global registration of COM
                objects to a per-user location

	VirtualizeRegisterTypeLib
	Converts per-machine
                typelib registrations to per-user
                registrations




File Virtualization



The file system locations that are virtualized for legacy
          processes are %ProgramFiles%, %ProgramData%, and %SystemRoot%,
          excluding some specific subdirectories. However, any file with an
          executable extension—including .exe, .bat, .scr, .vbs, and others—is
          excluded from virtualization. This means that programs that update
          themselves from a standard user account fail instead of creating
          private versions of their executables that aren’t visible to an
          administrator running a global updater.
Note
To add additional extensions to the exception list,
            enter them in the
            HKEY_LOCAL_MACHINE\System\CurrentControlSet\Services\Luafv\Parameters\ExcludedExtensionsAdd
            registry key and reboot. Use a multistring type to delimit
            multiple extensions, and do not include a leading dot in the
            extension name.

Modifications to virtualized directories by legacy processes
          are redirected to the user’s virtual root directory,
          %LocalAppData%\VirtualStore. The Local component of the path
          highlights the fact that virtualized files don’t roam with the rest
          of the profile when the account has a roaming profile. If you
          navigate in Explorer to a directory containing virtualized files,
          Explorer displays a button labeled Compatibility Files in its
          toolbar, as shown in Figure 6-16. Clicking the
          button takes you to the corresponding VirtualStore subdirectory to
          show you the virtualized files.
[image: Virtualized files are displayed here]

Figure 6-16. Virtualized files are displayed here

The UAC File Virtualization Filter Driver
          (%SystemRoot%\System32\Drivers\Luafv.sys) implements file system
          virtualization. Because this is a file system filter driver, it sees
          all local file system operations, but it implements functionality
          only for operations from legacy processes. As shown in Figure 6-17, the filter
          driver changes the target file path for a legacy process that
          creates a file in a system-global location but does not for a
          nonvirtualized process with standard user rights. Default
          permissions on the \Windows directory deny access to the application
          written with UAC support, but the legacy process acts as though the
          operation succeeds, when it really created the file in a location
          fully accessible by the user.
[image: UAC File Virtualization Filter Driver operation]

Figure 6-17. UAC File Virtualization Filter Driver operation

EXPERIMENT: File Virtualization Behavior
In this experiment, we will enable and disable
            virtualization on the command prompt and see several behaviors to
            demonstrate UAC file virtualization:
	Open a nonelevated command prompt (you must have UAC
                enabled for this to work), and enable virtualization for it.
                You can change the virtualization status of a process by
                selecting UAC Virtualization from the shortcut menu that
                appears when you right-click the process in Task
                Manager.

	Navigate to the C:\Windows directory, and use the
                following command to write a file:
echo hello-1 > test.txt

	Now list the contents of the directory:
dir test.txt
You’ll see that the file appears.

	Now disable virtualization by right-clicking on the
                process on the Processes page in Task Manager and deselecting
                UAC Virtualization, and then list the directory as in step 3.
                Notice that the file is gone. However, a directory listing of
                the VirtualStore directory will reveal the file:
dir %LOCALAPPDATA%\VirtualStore\Windows\test.txt

	Enable virtualization again for this
                process.

	To take a look at a more complex scenario, create a new
                command prompt window, but elevate it this time, and then
                repeat steps 2 and 3 using the string “hello-2”.

	Examine the text inside these files by using the
                following command in both command prompts:
echo test.txt
The following two screen shots show the expected
                output.
[image: image with no caption]

[image: image with no caption]


	Finally, from your elevated command prompt, delete the
                test.txt file:
del test.txt

	Repeat step 6 of the experiment. Notice that the
                elevated command prompt cannot find the file anymore, while
                the standard user command prompt shows the old contents of the
                file again. This demonstrates the failover mechanism described
                earlier—read operations will look in the per-user virtual
                store location first, but if the file doesn’t exist, read
                access to the system location will be granted.





Registry Virtualization



Registry virtualization is implemented slightly differently
          from file system virtualization. Virtualized registry keys include
          most of the HKEY_LOCAL_MACHINE\Software branch, but there are
          numerous exceptions, such as the following:
	HKLM\Software\Microsoft\Windows

	HKLM\Software\Microsoft\Windows NT

	HKLM\Software\Classes



Only keys that are commonly modified by legacy applications,
          but that don’t introduce compatibility or interoperability problems,
          are virtualized. Windows redirects modifications of virtualized keys
          by a legacy application to a user’s registry virtual root at HKEY_
          CURRENT_USER\Software\Classes\VirtualStore. The key is located in
          the user’s Classes hive,
          %LocalAppData%\Microsoft\Windows\UsrClass.dat, which, like any other
          virtualized file data, does not roam with a roaming user profile.
          Instead of maintaining a fixed list of virtualized locations as
          Windows does for the file system, the virtualization status of a key
          is stored as a combination of flags, shown in Table 6-11.
Table 6-11. Registry Virtualization Flags
	Flag
	Meaning

	REG_KEY_DONT_VIRTUALIZE
	Specifies whether virtualization
                  is enabled for this key. If the flag is set, virtualization
                  is disabled.

	REG_KEY_DONT_SILENT_FAIL
	If the REG_KEY_DONT_VIRTUALIZE
                  flag is set (virtualization is disabled), this key specifies
                  that a legacy application that would be denied access
                  performing an operation on the key is instead granted
                  MAXIMUM_ALLOWED rights to the key (any access the account is
                  granted), instead of the rights the application requested.
                  If this flag is set, it implicitly disables virtualization
                  as well.

	REG_KEY_RECURSE_FLAG
	Determines whether the
                  virtualization flags will propagate to the child keys
                  (subkeys) of this key.




You can use the Reg.exe utility included in Windows, with the
          flags option, to display the current virtualization state for a key
          or to set it. In Figure 6-18, note that the
          HKLM\Software key is fully virtualized, but the Windows subkey (and
          all its children) have only silent failure enabled.
[image: UAC registry virtualization flags on the Software and Windows keys]

Figure 6-18. UAC registry virtualization flags on the Software and
            Windows keys

Unlike file virtualization, which uses a filter driver,
          registry virtualization is implemented in the configuration manager.
          (See Chapter 4 for more information
          on the registry and the configuration manager.) As with file system
          virtualization, a legacy process creating a subkey of a virtualized key is redirected
          to the user’s registry virtual root, but a UAC-compatible process is
          denied access by default permissions. This is shown in Figure 6-19.
[image: UAC registry virtualization operation]

Figure 6-19. UAC registry virtualization operation



Elevation



Even if users run only programs that are compatible with
        standard user rights, some operations still require administrative
        rights. For example, the vast majority of software installations
        require administrative rights to create directories and registry keys
        in system-global locations or to install services or device drivers.
        Modifying system-global Windows and application settings also requires
        administrative rights, as does the parental controls feature. It would
        be possible to perform most of these operations by switching to a
        dedicated administrator account, but the inconvenience of doing so
        would likely result in most users remaining in the administrator
        account to perform their daily tasks, most of which do not require
        administrative rights.
It’s important to be aware that UAC elevations are conveniences
        and not security boundaries. A security boundary requires that
        security policy dictate what can pass through the boundary. User
        accounts are an example of a security boundary in Windows, because one
        user can’t access the data belonging to another user without having
        that user’s permission.
Because elevations aren’t security boundaries, there’s no
        guarantee that malware running on a system with standard user rights
        can’t compromise an elevated process to gain administrative rights.
        For example, elevation dialog boxes only identify the executable that
        will be elevated; they say nothing about what it will do when it
        executes.
Running with Administrator Rights



Windows includes enhanced “run as” functionality so
          that standard users can conveniently launch processes with
          administrative rights. This functionality requires giving
          applications a way to identify operations for which the system can
          obtain administrative rights on behalf of the application, as
          necessary. (We’ll say more on this topic shortly.)
To enable users acting as system administrators to run with
          standard user rights but not have to enter user names and passwords
          every time they want to access administrative rights, Windows makes
          use of a mechanism called Admin Approval Mode (AAM). This feature
          creates two identities for the user at logon: one with standard user
          rights and another with administrative rights. Since every user on a
          Windows system is either a standard user or acting for the most part
          as a standard user in AAM, developers must assume that all Windows
          users are standard users, which will result in more programs working
          with standard user rights without virtualization or shims.
Granting administrative rights to a process is called
          elevation. When elevation is performed by a standard user account
          (or by a user who is part of an administrative group but not the
          actual Administrators group), it’s referred to as an
          over-the-shoulder (OTS) elevation because it requires the entry of
          credentials for an account that’s a member of the Administrators
          group, something that’s usually completed by a user typing over the
          shoulder of a standard user. An elevation performed by an AAM user
          is called a consent elevation because the user simply has to approve
          the assignment of his administrative rights.
Stand-alone systems, which are typically home computers, and
          domain-joined systems treat AAM access by remote users differently
          because domain-connected computers can use domain administrative
          groups in their resource permissions. When a user accesses a
          stand-alone computer’s file share, Windows requests the remote
          user’s standard user identity, but on domain-joined systems, Windows
          honors all the user’s domain group memberships by requesting the
          user’s administrative identity. Executing an image that requests
          administrative rights causes the application information service
          (AIS, contained in %SystemRoot%\System32\Appinfo.dll), which runs
          inside a service host process (%SystemRoot%\System32\Svchost.exe),
          to launch Consent.exe (%SystemRoot%\System32\Consent.exe). Consent
          captures a bitmap of the screen, applies a fade effect to it,
          switches to a desktop that’s accessible only to the local system
          account (the secure desktop), paints the bitmap as the background,
          and displays an elevation dialog box that contains information about
          the executable. Displaying this dialog box on a separate desktop
          prevents any application present in the user’s account from
          modifying the appearance of the dialog box.
If an image is a Windows component digitally signed by
          Microsoft and the image is in the Windows system directory, the
          dialog box displays a blue stripe across the top, as shown at the
          top of Figure 6-20,
          with a blue and gold shield at the left end of the stripe. If the
          image is signed by someone other than Microsoft, or if it is signed
          by Microsoft but resides in a directory tree other than the Windows
          directory tree, the shield becomes solid blue with a question mark
          over it. If the image is unsigned, the shield background and the
          stripe both become orange, the shield has an exclamation point over
          it, and the prompt stresses the unknown origin of the image. The
          elevation dialog box shows the image’s icon, description, and
          publisher for digitally signed images, but it shows only the file
          name and “Unknown publisher” for unsigned images. This difference
          makes it harder for malware to mimic the appearance of legitimate
          software. The Details button at the bottom of the dialog box expands
          it to show the command line that will be passed to the executable if
          it launches.
[image: AAC UAC elevation dialog boxes based on image signature]

Figure 6-20. AAC UAC elevation dialog boxes based on image
            signature

The OTS consent dialog box, shown in Figure 6-21, is similar, but prompts for
          administrator credentials. It will list any accounts with
          administrator rights.
[image: OTS consent dialog box]

Figure 6-21. OTS consent dialog box

If a user declines an elevation, Windows returns an
          access-denied error to the process that initiated the launch. When a
          user agrees to an elevation by either entering administrator
          credentials or clicking Continue, AIS calls
          CreateProcessAsUser to launch the process with
          the appropriate administrative identity. Although AIS is technically
          the parent of the elevated process, AIS uses new support in the
          CreateProcessAsUser API that sets the process’
          parent process ID to that of the process that originally launched
          it. (See Chapter 5,
          for more information on processes and this mechanism.) That’s why
          elevated processes don’t appear as children of the AIS
          service-hosting process in tools such as Process Explorer that show
          process trees. Figure 6-22 shows the
          operations involved in launching an elevated process from a standard
          user account.
[image: Launching an administrative application as a standard user]

Figure 6-22. Launching an administrative application as a standard
            user


Requesting Administrative Rights



There are a number of ways the system and applications
          identify a need for administrative rights. One that shows up in the
          Explorer user interface is the Run As Administrator context menu
          command and shortcut option. These items also include a blue and
          gold shield icon that should be placed next to any button or menu
          item that will result in an elevation of rights when it is selected.
          Choosing the Run As Administrator command causes Explorer to call
          the ShellExecute API with the “runas”
          verb.
The vast majority of installation programs require
          administrative rights, so the image loader, which initiates the
          launch of an executable, includes installer-detection code to
          identify likely legacy installers. Some of the heuristics it uses are as
          simple as detecting internal version information or whether the
          image has the words setup, install, or update in its file name. More
          sophisticated means of detection involve scanning for byte sequences
          in the executable that are common to third-party installation
          wrapper utilities. The image loader also calls the application
          compatibility library to see if the target executable requires
          administrator rights. The library looks in the application
          compatibility database to see whether the executable has the
          RequireAdministrator or
          RunAsInvoker compatibility flag associated with
          it.
The most common way for an executable to request
          administrative rights is for it to include a
          requestedExecutionLevel tag in its application
          manifest file. The element’s level attribute can have one of the
          three values shown in Table 6-12.
Table 6-12. Requested Elevation Levels
	Elevation Level
	Meaning
	Usage

	As Invoker
	No need for administrative rights;
                  never ask for elevation.
	Typical user applications that
                  don’t need administrative privileges—for example,
                  Notepad.

	Highest Available
	Request approval for highest
                  rights available. If the user is logged on as a standard
                  user, the process will be launched as invoker; otherwise, an
                  AAM elevation prompt will appear, and the process will run
                  with full administrative rights.
	Applications that can function
                  without full administrative rights but expect users to want
                  full access if it’s easily accessible. For example, the
                  Registry Editor, Microsoft Management Console, and the Event
                  Viewer use this level.

	Require
                  Administrator
	Always request administrative
                  rights—an OTS elevation dialog box prompt will be shown for
                  standard users; otherwise, AAM.
	Applications that require
                  administrative rights to work, such as the Firewall Settings
                  editor, which affects systemwide security.




The presence of the trustInfo element in
          a manifest (which you can see in the excerpted string dump of
          eventvwr.exe discussed next) denotes an executable that was written
          with support for UAC and the
          requestedExecutionLevel element nests within
          it. The uiAccess attribute is where
          accessibility applications can use the UIPI bypass functionality
          mentioned earlier.
C:\>strings c:\Windows\System32\eventvwr.exe
...
<trustInfo xmlns="urn:schemas-microsoft-com:asm.v3">
    <security>
        <requestedPrivileges>
            <requestedExecutionLevel
                level="highestAvailable"
                uiAccess="false"
            />
        </requestedPrivileges>
    </security>
</trustInfo>
<asmv3:application>
   <asmv3:windowsSettings xmlns="http://schemas.microsoft.com/SMI/2005/WindowsSettings">
        <autoElevate>true</autoElevate>
   </asmv3:windowsSettings>
</asmv3:application>
...
An easier way to determine the values specified by an
          executable is to view its manifest with the Sysinternals Sigcheck
          utility, like this:
sigcheck –m <executable>
EXPERIMENT: Using Application-Compatibility Flags
In this experiment, we will use an application-compatibility
            flag to run the Registry Editor as a standard user process. This
            will bypass the RequireAdministrator manifest
            flag and force virtualization on Regedit.exe, allowing you to make
            changes to the virtualized registry directly.
	Navigate to your %SystemRoot% directory, and copy the
                Regedit.exe file to another path on your system (such as C:\
                or your Desktop folder).

	Go to the HKLM\Software\Microsoft\Windows
                NT\CurrentVersion\AppCompatFlags\Layers registry key, and
                create a new string value whose name is the path where you
                copied Regedit.exe, such as c:\regedit.exe

	Set the value of this key to RUNASINVOKER.

	Now start Regedit.exe from its location. (Be sure to
                close any running copies of the Registry Editor first.) You
                will not see the typical AAM dialog box, and Regedit.exe will
                now run with standard user rights. You will also be subject to
                the virtualized view of the registry, meaning you can now see
                what legacy applications see when accessing the
                registry.





Auto-Elevation



In the default configuration (see the next section for
          information on changing this), most Windows executables and control
          panel applets do not result in elevation prompts for administrative
          users, even if they need administrative rights to run. This is
          because of a mechanism called auto-elevation. Auto-elevation is
          intended to preclude administrative users from seeing elevation
          prompts for most of their work; the programs will automatically run
          under the user’s full administrative token.
Auto-elevation has several requirements. The executable in
          question must be considered as a Windows executable. This means it
          must be signed by the Windows publisher (not just by Microsoft), and
          it must be in one of several directories considered secure:
          %SystemRoot%\System32 and most of its subdirectories,
          %Systemroot%\Ehome, and a small number of directories under
          %ProgramFiles%—for example, those containing Windows Defender and
          Windows Journal.
There are additional requirements, depending on the type of
          executable.
.exe files other than Mmc.exe auto-elevate if they are
          requested via an autoElevate element in their
          manifest. The string dump of EventVwr.exe in the previous section
          illustrates this.
Windows also includes a short internal list of
          executables that are auto-elevated without the autoElevate element.
          Two examples are Spinstall.exe, the service pack installer, and
          Pkgmgr.exe, the package manager. They are handled this way because
          they are also supplied external to Windows 7; they must be able to
          run on earlier versions of Windows where the autoExecute element in
          their manifest might cause an error. These executables must still
          meet the signing and directory requirements for Windows executables
          as described previously.
Mmc.exe is treated as a special case, because whether it
          should auto-elevate or not depends on which system management
          snap-ins it is to load. Mmc.exe is normally invoked with a command
          line specifying an .msc file, which in turn specifies which snap-ins
          are to be loaded. When Mmc.exe is run from a protected administrator
          account (one running with the limited administrator token), it asks
          Windows for administrative rights. Windows validates that Mmc.exe is
          a Windows executable and then checks the .msc. The .msc must also
          pass the tests for a Windows executable, and furthermore must be on
          an internal list of auto-elevate .msc’s. This list includes nearly
          all .msc files in Windows.
Finally, COM objects can request administrative rights within
          their registry key. To do so requires a subkey named Elevation with
          a REG_DWORD value named Enabled, having a value of 1. Both the COM
          object and its instantiating executable must meet the Windows
          executable requirements, though the executable need not have
          requested auto-elevation.

Controlling UAC Behavior



UAC can be modified via the dialog box shown in Figure 6-23. This dialog box is
          available under Control Panel, Action Center, Change User Account
          Control Settings. Figure 6-23
          shows the control in its default position for Windows 7.
[image: User Account Control settings]

Figure 6-23. User Account Control settings

The four possible settings have the effects described
          in Table 6-13.
Table 6-13. User Account Control Options
	Slider Position
	When
                  administrative user not running with administrative
                  rights...
	Remarks

	 	...attempts to change Windows
                  settings, for example, use certain Control Panel
                  applets
	...attempts to install
                  software, or run a program whose manifest calls for
                  elevation, or uses Run As Administrator
	 
	Highest position (“Always
                  notify”)
	UAC elevation prompt appears on
                  the secure desktop
	UAC elevation prompt appears on
                  the secure desktop
	This was the Windows Vista
                  behavior

	Second position
	UAC elevation occurs automatically
                  with no prompt or notification
	UAC elevation prompt appears on
                  the secure desktop
	Windows 7 default
                  setting

	Third position
	UAC elevation occurs automatically
                  with no prompt or notification
	UAC elevation prompt appears on
                  the user’s normal desktop
	Not recommended

	Lowest position (“Never
                  notify”)
	UAC is turned off for
                  administrative users
	UAC is turned off for
                  administrative users
	Not recommended.




The third position is not recommended because the UAC
          elevation prompt appears not on the secure desktop but on the normal
          user’s desktop. This could allow a malicious program running in the
          same session to change the appearance of the prompt. It is intended
          for use only in systems where the video subsystem takes a long time
          to dim the desktop or is otherwise unsuitable for the usual UAC
          display.
The lowest position is strongly discouraged because it turns
          UAC off completely as far as administrative accounts are concerned.
          All processes run by a user with an administrative account will be
          run with the user’s full administrative rights in effect; there is
          no filtered admin token. Registry and file system virtualization are
          disabled as well for these accounts, and the Protected mode of
          Internet Explorer is disabled. However, virtualization is still in
          effect for nonadministrative accounts, and nonadministrative
          accounts will still see an OTS elevation prompt when they attempt to
          change Windows settings, run a program that requires elevation, or
          use the Run As Administrator context menu option in Explorer.
The UAC setting is stored in four values in the registry under
          HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windows\CurrentVersion\Policies\System,
          as shown in Table 6-14.
          ConsentPromptBehaviorAdmin controls the UAC elevation prompt for
          administrators running with a filtered admin token, and
          ConsentPromptBehaviorUser controls the UAC prompt for users other
          than administrators.
Table 6-14. User Account Control Registry Values
	Slider Position
	ConsentPrompt
                  BehaviorAdmin
	ConsentPrompt
                  BehaviorUser
	EnableLUA
	PromptOnSecureDesktop

	Highest position (“Always
                  notify”)
	2 (display AAC UAC elevation
                  prompt)
	3 (display OTS UAC elevation
                  prompt)
	1 (enabled)
	1 (enabled)

	Second position
	5 (display AAC UAC elevation
                  prompt, except for changes to Windows
                  settings)
	3
	1
	1

	Third position
	5
	3
	1
	0 (disabled; UAC prompt appears on
                  user’s normal desktop)

	Lowest position (“Never
                  notify”)
	0
	3
	0 (disabled. Logins to
                  administrative accounts do not create a restricted admin
                  access token)
	0







Application Identification (AppID)



Historically, security decisions in Windows have been based upon a
      user’s identity (in the form of the user’s SID and group membership),
      but a growing number of security components (AppLocker, firewall,
      antivirus, antimalware, Rights Management Services, and others) need to
      make security decisions based upon what code is to be run. In the past,
      each of these security components used their own proprietary method for
      identifying applications, which led to inconsistent and
      overly-complicated policy authoring. The purpose of AppID is to bring
      consistency to how the security components recognize applications by
      providing a single set of APIs and data structures.
Note
This is not the same as the AppID used by DCOM/COM+
        applications, where a GUID represents a process that is shared by
        multiple CLSIDs, nor is it the AppID used by Windows Live
        applications.

Just as a user is identified when she logs in, an application is
      identified just before it is started by generating the main program’s
      AppID. An AppID can be generated from any of the following attributes of
      the application: Fields within a code-signing certificate embedded
      within the file allow for different combinations of publisher name,
      product name, file name, and version. APPID://FQBN is a Fully Qualified
      Binary Name, and it is a string in the following form:
      {Publisher\Product\Filename,Version}. The Publisher name is the Subject
      field of the x.509 certificate used to sign the code, using the
      following fields: O = Organization, L = Locality, S = State or Province,
      and C = Country.
File hash. There are several methods that can be used for
      hashing. The default is APPID://SHA256HASH. However, for backward
      compatibility with SRP and most x.509 certificates, SHA-1
      (APPID://SHA1HASH) is still supported. APPID://SHA256HASH specifies the
      SHA-256 hash of the file.
The partial or complete path to the file. APPID://Path specifies a
      path with optional wildcard characters (“*”).
Note
An AppID does not serve as a means for certifying the quality or
        security of an application. An AppID is simply a way of identifying an
        application so that administrators can reference the application in
        security policy decisions.

The AppID is stored in the process’s access token, allowing any
      security component to make authorization decisions based upon a single,
      consistent identification. AppLocker uses conditional ACEs (described
      earlier) for specifying whether a particular program is allowed to be
      run by the user.
When an AppID is created for a signed file, the certificate from
      the file is cached and verified to a trusted root certificate. The
      certificate path is re-verified daily to ensure the certificate path
      remains valid. Certificate caching and verification are recorded in the
      system event log. See Figure 6-24.
[image: Event Viewer showing AppID service verifying signature of a program.]

Figure 6-24. Event Viewer showing AppID service verifying signature of a
        program.


AppLocker



New to Windows 7 and Windows Server 2008/R2 (Enterprise
      and Ultimate editions) is a feature known as AppLocker, which allows an
      administrator to lockdown a system to prevent unauthorized programs from
      being run. Windows XP introduced Software Restriction Policies (SRP),
      which was the first step toward this capability, but SRP suffered from
      being difficult to manage, and it couldn’t be applied to specific users
      or groups. (All users were affected by SRP rules.) AppLocker is a
      replacement for SRP, and yet coexists alongside SRP, with AppLocker’s
      rules being stored separately from SRP’s rules. If both AppLocker and
      SRP rules are in the same Group Policy object (GPO), only the AppLocker
      rules will be applied. Another feature that makes AppLocker superior to
      SRP is AppLocker’s auditing mode, which allows an administrator to
      create an AppLocker policy and examine the results (stored in the system
      event log) to determine whether the policy will perform as
      expected—without actually performing the restrictions. AppLocker
      auditing mode can be used to monitor which applications are being used
      by one, or more, users on a system.
AppLocker allows an administrator to restrict the following types
      of files from being run:
	Executable images (.EXE and .COM)

	Dynamic-Link Libraries (.DLL and .OCX)

	Microsoft Software Installer (.MSI and .MSP) for both install
          and uninstall

	Scripts

	Windows PowerShell (.PS1)

	Batch (.BAT and .CMD)

	VisualBasic Script (.VBS)

	Java Script (.JS)



AppLocker provides a simple GUI rule-based mechanism, which is
      very similar to network firewall rules, for determining which
      applications or scripts are allowed to be run by specific users and
      groups, using conditional ACEs and AppID attributes. There are two types
      of rules in AppLocker:
	Allow the specified files to run, denying everything
          else.

	Deny the specified files from being run, allowing everything
          else. “Deny” rules take precedence over “allow” rules.



Each rule can also have a list of exceptions to exclude files from
      the rule. Using an exception, you could create a rule to “Allow
      everything in the C:\Windows or C:\Program Files directories to be run,
      except the built-in games.”
AppLocker rules can be associated with a specific user or group.
      This allows an administrator to support compliance requirements by
      validating and enforcing which users can run specific applications. For
      example, you can create a rule to “Allow users in the Finance security
      group to run the finance line-of-business applications.” This blocks
      everyone who is not in the Finance security group from running finance applications (including
      administrators) but still provides access for those that have a business
      need to run the applications. Another useful rule would be to prevent
      users in the Receptionists group from installing or running unapproved
      software.
AppLocker rules depend upon conditional ACEs and attributes
      defined by AppID. Rules can be created using the following
      criteria:
	Fields within a code-signing certificate embedded within the
          file, allowing for different combinations of publisher name, product
          name, file name, and version. For example, a rule could be created
          to “Allow all versions greater than 9.0 of Contoso Reader to run” or
          “Allow anyone in the graphics group to run the installer or
          application from Contoso for GraphicsShop as long as the version is
          14.*”. For example, the following SDDL string denies execute access
          to any signed programs published by Contoso for the user account
          RestrictedUser (identified by the user’s SID):
D:(XD;;FX;;;S-1-5-21-3392373855-1129761602-2459801163-1028;((Exists APPID://FQBN)
&& ((APPID://FQBN) >= ({"O=CONTOSO, INCORPORATED, L=REDMOND,
S=CWASHINGTON, C=US\*\*",0}))))

	Directory path, allowing only files within a particular
          directory tree to run. This can also be used to identify specific
          files. For example, the following SDDL string denies execute access
          to the programs in the directory C:\Tools for the user account
          RestrictedUser (identified by the user’s SID):
D:(XD;;FX;;;S-1-5-21-3392373855-1129761602-2459801163-1028;(APPID://PATH
Contains "%OSDRIVE%\TOOLS\*"))

	File hash. Using a hash will also detect if a file has been
          modified and prevent it from running, which can also be a weakness
          if files are changed frequently, because the hash rule will need to
          be updated frequently. File hashes are often used for scripts
          because few scripts are signed. For example, this SDDL string denies
          execute access to programs with the specified hash values for the
          user account RestrictedUser (identified by the user’s SID):
D:(XD;;FX;;;S-1-5-21-3392373855-1129761602-2459801163-1028;(APPID://SHA256HASH
Any_of {#7a334d2b99d48448eedd308dfca63b8a3b7b44044496ee2f8e236f5997f1b647,
#2a782f76cb94ece307dc52c338f02edbbfdca83906674e35c682724a8a92a76b}))



AppLocker rules can be defined on the local machine using the
      Security Policy MMC snap-in (%SystemRoot%\System32\secpol.msc) or a
      Windows PowerShell script, or they can be pushed to machines within a
      domain using group policy. AppLocker rules are stored in multiple
      locations within the registry:
	HKLM\Software\Policies\Microsoft\Windows\SrpV2. This key is also mirrored to
            HKLM\SOFTWARE\Wow6432Node\Policies\Microsoft\Windows\SrpV2. The
            rules are stored in XML format.

	HKLM\SYSTEM\CurrentControlSet\Control\Srp\Gp\Exe. The rules are stored as SDDL and a binary
            ACE.

	HKEY_CURRENT_USER\Software\Microsoft\Windows\CurrentVersion\Group
            Policy
            Objects\{GUID}Machine\Software\Policies\Microsoft\Windows\SrpV2. AppLocker policy pushed down from a domain as part of a
            Group Policy Object (GPO) are stored here in XML format.



Certificates for files that have been run are cached in the
      registry under the key
      HKLM\SYSTEM\CurrentControlSet\Control\AppID\CertStore. AppLocker also
      builds a certificate chain (stored in
      HKLM\SYSTEM\CurrentControlSet\Control\AppID\CertChainStore) from the
      certificate found in a file back to a trusted root certificate. See
      Figure 6-25.
[image: AppLocker configuration page in Local Security Policy]

Figure 6-25. AppLocker configuration page in Local Security Policy

There are also AppLocker-specific PowerShell commands (also known
      as cmdlets) to enable deployment and testing via scripting. Figure 6-26 demonstrates using
      PowerShell commands to determine which files in a directory tree have
      been signed, saving the current AppLocker policy in an XML file, and
      displaying which executable files in a directory tree could be run by a
      user named RestrictedUser.
[image: Powershell cmdlets used to examine executables for signatures, save AppLocker policies in an XML file, and test the ability of a user to run the executables]

Figure 6-26. Powershell cmdlets used to examine executables for signatures,
        save AppLocker policies in an XML file, and test the ability of a user
        to run the executables

The AppID and SRP services co-exist in the same binary
      (%SystemRoot%\System32\AppIdSvc.dll), which runs within an SvcHost
      process. The service requests a registry change notification to monitor
      any changes under that key, which is written by either a GPO or the
      AppLocker UI in the Local Security Policy MMC snap-in. When a change is
      detected, the AppID service triggers a user-mode task
      (%SystemRoot%\System32\AppIdPolicyConverter.exe), which reads the new
      XML rules and translates them into binary format ACEs and SDDL strings,
      which are understandable by both the user-mode and kernel-mode AppID and
      AppLocker components. The task stores the translated rules under
      HKLM\SYSTEM\CurrentControlSet\Control\Srp\Gp. This key is writable only
      by SYSTEM and Administrators, and it is marked read-only for
      authenticated users. Both user-mode and kernel-mode AppID components
      read the translated rules from the registry directly. The service also
      monitors the local machine trusted root certificate store, and it
      invokes a user-mode task (%SystemRoot%\System32\AppIdCertStoreCheck.exe)
      to reverify the certificates at least once per day and whenever there is
      a change to the certificate store. The AppID kernel-mode driver
      (%SystemRoot%\System32\drivers\AppId.sys) is notified about rule changes
      by the AppID service through an APPID_POLICY_CHANGED DeviceIoControl
      request. See Figure 6-27.
[image: Scheduled task that runs every day to convert software restriction policies stored in XML to binary format]

Figure 6-27. Scheduled task that runs every day to convert software
        restriction policies stored in XML to binary format

An administrator can track which applications are being
      allowed or denied by looking at the system Event Log using the event
      viewer (once AppLocker has been configured and the service started). See
      Figure 6-28.
[image: Event Viewer showing AppLocker allowing and denying access to various applications. Event ID 8004 is “denied”; 8002 is “allowed.”]

Figure 6-28. Event Viewer showing AppLocker allowing and denying access to
        various applications. Event ID 8004 is “denied”; 8002 is
        “allowed.”

The implementations of AppID, AppLocker, and SRP are
      somewhat blurred and violate strict layering, with various logical
      components co-existing within the same executables, and the naming is
      not as consistent as one would like.
The AppID service runs as LocalService so that it has access to
      the Trusted Root Certificate Store on the system. This also enables it
      to perform certificate verification. The AppID service is responsible
      for the following:
	Verification of publisher certificates

	Adding new certificates to the cache

	Detecting AppLocker rule updates, and notifying the AppID
          driver



The AppID driver performs the majority of the AppLocker
      functionality and relies upon communication (via
      DeviceIoControl requests) from the AppID service,
      so its device object is protected by an ACL, granting access only to the
      NT SERVICE\AppIDSvc, NT SERVICE\LOCAL SERVICE and BUILTIN\Administrators
      groups. Thus, the driver cannot be spoofed by malware.
When the AppID driver is first loaded, it requests a process
      creation callback (CreateProcessNotifyEx) by
      calling PsSetCreateProcessNotifyRoutineEx. When the
      CreateProcessNotifyEx routine is called, it is
      passed a PPS_CREATE_NOTIFY_INFO structure (describing the process being
      created). It then gathers the AppID attributes that identify the
      executable image and writes them to the process’ access token. Then it
      calls the undocumented routine SeSrpAccessCheck,
      which examines the process token and the conditional ACE AppLocker
      rules, and determines whether the process should be allowed to run. If
      the process should not be allowed to run, the driver writes
      STATUS_ACCESS_DISABLED_BY_POLICY_OTHER to the Status field of the
      PPS_CREATE_NOTIFY_INFO structure, which causes the process creation to
      be canceled (and sets the process’ final completion status).
To perform DLL restriction, the image loader will send a
      DeviceIoControl request to the AppID driver
      whenever it loads a DLL into a process. The driver then checks the DLL’s
      identity against the AppLocker conditional ACEs, just like it would for
      an executable.
Note
Performing these checks for every DLL load is time consuming and
        might be noticeable to end users. For this reason, DLL rules are
        normally disabled, and they must be specifically enabled via the
        Advanced tab in the AppLocker properties page in the Local Security
        Policy snap-in.

The scripting engines and the MSI installer have been modified to
      call the user-mode SRP APIs whenever they open a file, to check whether
      a file is allowed to be opened. The user-mode SRP APIs call the AuthZ
      APIs to perform the conditional ACE access check.

Software Restriction Policies



Windows also contains a user-mode mechanism called
      Software Restriction Policies that enables administrators to control
      what images and scripts execute on their systems. The Software
      Restriction Policies node of the Local Security Policy Editor, shown in
      Figure 6-29, serves as
      the management interface for a machine’s code execution policies,
      although per-user policies are also possible using domain group
      policies.
Several global policy settings appear beneath the Software
      Restriction Policies node:
	The Enforcement policy configures whether restriction policies
          apply to libraries, such as DLLs, and whether policies apply to
          users only or to administrators as well.

	The Designated File Types policy records the extensions for
          files that are considered executable code.

	Trusted Publishers control who can select which certificate
          publishers are trusted.



[image: Software Restriction Policy configuration]

Figure 6-29. Software Restriction Policy configuration

When configuring a policy for a particular script or image, an
      administrator can direct the system to recognize it using its path, its
      hash, its Internet Zone (as defined by Internet Explorer), or its
      cryptographic certificate, and she can specify whether it is associated
      with the Disallowed or Unrestricted security policy.
Enforcement of Software Restriction Policies takes place within
      various components where files are treated as containing executable
      code. Some of these components are listed here:
	The user-mode Windows CreateProcess
          function in %SystemRoot%\System32\Kernel32.dll enforces it for
          executable images.

	The DLL loading code of Ntdll
          (%SystemRoot%\System32\Ntdll.dll) enforces it for DLLs.

	The Windows command prompt (%SystemRoot%\System32\Cmd.exe)
          enforces it for batch file execution.

	Windows Scripting Host components that start
          scripts—%SystemRoot%\System32\Cscript.exe (for command-line
          scripts), %SystemRoot%\System32\Wscript.exe (for UI scripts), and
          %SystemRoot%\System32\Scrobj.dll (for script objects)—enforce it for
          script execution.



Each of these components determines whether the restriction
      policies are enabled by reading the registry value
      HKEY_LOCAL_MACHINE\Software\Microsoft\Policies\Windows\Safer\CodeIdentifiers\TransparentEnabled,
      which if set to 1 indicates that policies are in effect. Then it
      determines whether the code it’s about to execute matches one of the
      rules specified in a subkey of the CodeIdentifiers key and, if so,
      whether or not the execution should be allowed. If there is no match,
      the default policy, as specified in the DefaultLevel value of the
      CodeIdentifiers key, determines whether the execution is allowed.
Software Restriction Policies are a powerful tool for preventing
      the unauthorized access of code and scripts, but only if properly
      applied. Unless the default policy is set to disallow execution, a user
      can make minor changes to an image that’s been marked as disallowed so
      that he can bypass the rule and execute it. For example, a user can
      change an innocuous byte of a process image so that a hash rule fails to
      recognize it, or copy a file to a different location to avoid a
      path-based rule.
EXPERIMENT: Watching Software Restriction Policy
        Enforcement
You can indirectly see Software Restriction Policies being
        enforced by watching accesses to the registry when you attempt to
        execute an image that you’ve disallowed.
	Run secpol.msc to open the Local Security Policy Editor, and
            navigate to the Software Restriction Policies node.

	Choose Create New Policies from the context menu if no
            policies are defined.

	Create a path-based disallow restriction policy for
            %SystemRoot%\System32\Notepad.exe.

	Run Process Monitor, and set an include filter for Safer.
            (See Chapter 4 for a description of
            Process Monitor.)

	Open a command prompt, and run Notepad from the
            prompt.



Your attempt to run Notepad should result in a message telling
        you that you cannot execute the specified program, and Process Monitor
        should show the command prompt (cmd.exe) querying the local machine
        restriction policies.


Conclusion



Windows provides an extensive array of security functions that
      meet the key requirements of both government agencies and commercial
      installations. In this chapter, we’ve taken a brief tour of the internal
      components that are the basis of these security features. In the next
      chapter, we’ll look at the I/O system.

Chapter 7. Networking



Microsoft Windows was designed with networking in mind, and
    it includes broad networking support that is integrated with the I/O
    system and the Windows APIs. The four basic types of network software
    components are services, APIs, protocols, and drivers for network
    adapters—with each component layered on top of the next to form a network
    stack. Windows has well-defined interfaces for each layer, so in addition
    to using the wide variety of APIs, protocols, and network adapter device
    drivers that ship with Windows, third parties can extend the operating
    system’s networking capabilities by developing their own
    components.
In this chapter, we take you from the top of the Windows networking
    stack to the bottom. First, we present the mapping between the Windows
    networking software components and the Open Systems Interconnection (OSI)
    reference model. Then we briefly describe the networking APIs available on
    Windows and explain how they are implemented. You’ll learn how multiple
    redirector support and name resolution work, see how to access and cache
    remote files, and learn how a multitude of drivers interact to form a
    network protocol stack. After looking at the implementation of network
    adapter device drivers, we examine binding, which is
    the glue that connects services, protocol stacks, and network
    adapters.

Windows Networking Architecture



The goal of network software is to take a request (in the form of
      an I/O request) from an application on one machine, pass it to another
      machine, execute the request on the remote machine, and return the
      results to the first machine. In the course of this process, the request
      must be transformed several times. A high-level request, such as “read
      x number of bytes from file y
      on machine z,” requires software that can determine
      how to get to machine z and what communication
      software that machine understands. Then the request must be altered for
      transmission across a network—for example, divided into short packets of
      information. When the request reaches the other side, it must be checked
      for completeness, decoded, and sent to the correct operating system
      component for execution. Finally, the reply must be encoded for sending
      back across the network.
The OSI Reference Model



To help different computer manufacturers standardize and
        integrate their networking software, in 1984 the International
        Organization for Standardization (ISO) defined a software model for
        sending messages between machines. The result was the Open
        Systems Interconnection (OSI) reference
        model. The model defines six layers of software and one
        physical layer of hardware, as shown in Figure 7-1.
[image: OSI reference model]

Figure 7-1. OSI reference model

The OSI reference model is an idealized scheme that few systems
        implement precisely, but it’s often used to frame discussions of
        networking principles. Each layer on one machine assumes that it is
        “talking to” the same layer on the other machine. Both machines
        “speak” the same language, or protocol, at the same level. In reality,
        however, a network transmission must pass down each layer on the
        client machine, be transmitted across the network, and then pass up
        the layers on the destination machine until it reaches a layer that
        can understand and implement the request.
The purpose of each layer in the OSI model is to provide
        services to higher layers and to abstract how the services are
        implemented at lower layers. Describing the details of each layer is
        beyond the scope of this book, but following is a brief description of
        each layer in the OSI model.
Note
Most network descriptions start with the top-most layer and
          work down to the lowest layer; however, here the description of the
          layers will start at the bottom and work toward the top, to
          demonstrate how each layer builds upon the services provided by the
          layer beneath it.

	Physical. This is the lowest layer in the OSI model, and it
              exchanges signals between cooperating network entities over some
              physical medium (wire, radio, fiber, or other type). The
              physical layer specifies the mechanical, electrical, functional,
              and procedural standards for accessing the medium, such as
              connectors, cabling, signaling, and so on. Common examples are
              Ethernet (IEEE 802.3) and Wi-Fi (IEEE 802.11).

	Datalink. This layer exchanges data frames (also called
              packets) between physically
              adjacent network entities (known as
              stations) using the services provided by
              the physical layer. By its nature, the datalink layer is tightly
              tied to the physical layer and is really more of an
              architectural abstraction than the other layers within the
              model. The datalink layer provides each station with its own unique address on the network, and it
              provides point-to-point communications between stations (such as
              between two systems connected to the same Ethernet). The
              capabilities of the datalink layer vary considerably, depending
              upon the physical layer. Typically, transmit and receive errors
              are detected by the datalink layer, and in some instances, the
              error might be corrected. A datalink layer can be connection
              oriented, which is typically used in wide area networks (WANs),
              or connectionless, which is typically used in local area
              networks (LANs). The IEEE (Institute of Electrical and
              Electronics Engineers) 802 committee is responsible for the
              majority of the LAN architectures used throughout the world, and
              they specify the physical and datalink layers of most networking
              equipment. They divide the datalink layer into two sublayers:
              the Logical Link Control (LLC) and the Medium Access Control
              (MAC). The LLC layer provides a single access method for the
              network layer to communicate with any 802.x MAC, insulating the
              network layer from the physical LAN type. The MAC layer provides
              access-control functions to the shared network medium, and it
              specifies signaling, the sharing protocol, address recognition,
              frame generation, CRC generation, and so on. The datalink layer
              does not guarantee that frames will be delivered to their
              destination.

	Network. The network layer implements node addresses and routing
              functions to allow packets to traverse multiple datalinks. This
              layer understands the network topology (hiding it from the
              transport layer) and knows how to direct packets to the nearest
              router. Any network entity containing the network, datalink, and
              physical layers is considered to be a node,
              and the network layer can transfer data between any two nodes on
              the network. There are two types of nodes implemented by the
              network layer: end nodes, which are the source or destination of
              data, and intermediate nodes (usually referred to as
              routers), which route packets between end
              nodes. Network-layer service can be either connection oriented,
              where all packets traveling between the end nodes follow the
              same path through the network, or connectionless, where each
              packet is routed independently. The network layer does not
              guarantee that packets will be delivered to their
              destination.

	Transport. The transport layer provides a transparent data-transfer
              mechanism between end nodes. On the sending side, the transport
              layer receives an unstructured stream of data from the layer
              above and segments the data into discrete packets, which can be
              sent across the network, using the services of the network layer
              beneath it. On the receiving side, the transport layer
              reassembles the packets received from the network layer into a
              stream of data and provides it to the layer above. This layer
              provides reliable data transfer and will
              re-transmit lost or corrupted packets to ensure that the data
              stream received is identical to the data stream that was
              sent.

	Session. This layer implements a connection or
              pipe between cooperating applications. Each
              connection endpoint has its own address (often called a
              port), which is unique on that system.
              There are a variety of communications services provided by
              session layers, such as two-way simultaneous (full-duplex),
              two-way alternate (single-duplex), or one-way. Once a connection
              is established, the systems typically send periodic messages to
              each other to ensure that each end of the connection is
              functioning. If an uncorrectable transmission error is detected
              over a connection, the connection is typically terminated and
              disconnected.

	Presentation. The presentation layer is responsible for
              preserving the information content of data sent over the
              network. It handles data formatting, including issues such as
              whether lines end in a carriage return/line feed (CR/LF) or just
              a carriage return (CR), whether data is to be compressed or
              encrypted, converting binary data from little-endian to
              big-endian, and so on. This layer is not present in most network
              protocol stacks, so its functionality is implemented at the
              application layer.

	Application. This is a layer that handles the information transfer
              between two network applications, including functions such as
              security checks, identification of the participating machines,
              and initiation of the data exchange. This is the protocol that
              is used by two communicating applications, and is application
              specific.



The gray lines in Figure 7-1
        represent protocols used in transmitting a request to a remote
        machine. As stated earlier, each layer of the hierarchy assumes that
        it is speaking to the same layer on another machine and uses a common
        protocol. The collection of protocols through which a request passes
        on its way down and back up the layers of the network is called a
        protocol stack.
Not all network protocol suites implement all the layers in the
        OSI model. (The presentation layer is rarely provided.) In particular,
        the TCP/IP protocol stack (which predates the OSI model) matches
        poorly to the abstractions of OSI. As data travels down the network
        stack, each layer adds a header (and possibly a trailer) to the data
        payload, building up a structure that is very similar to the layers of
        an onion. When this structure is received on a remote node, it travels
        up the network stack, with each layer stripping off its header (and
        trailer) until the data payload is delivered to the receiving
        application.

Windows Networking Components



Figure 7-2
        provides an overview of the components of Windows networking, showing
        how each component fits into the OSI reference model and which
        protocols are used between layers. The mapping between OSI layers and
        networking components isn’t precise, which is the reason that some
        components cross layers. The various components include the
        following:
	Networking APIs provide a
            protocol-independent way for applications to communicate across a
            network. Networking APIs can be implemented in user mode or in
            both user mode and kernel mode. In some cases, they are wrappers
            around another networking API that implements a specific
            programming model or provides additional services. (Note that the
            term networking API also describes any
            programming interfaces provided by networking-related
            software.)

	Transport Driver Interface (TDI)
            clients are legacy kernel-mode device drivers that
            usually implement the kernel-mode portion of a networking API’s
            implementation. TDI clients get their name from the fact that the
            I/O request packets (IRPs) they send to protocol drivers are
            formatted according to the Windows Transport Driver Interface
            standard (documented in the Windows Driver Kit). This standard
            specifies a common programming interface for kernel-mode device
            drivers. (See Chapter 8, “I/O System,” in Part 2 for more
            information about IRPs.) The TDI interface is deprecated and will
            be removed in a future version of Windows. The TDI interface is now being exported by the TDI Extension
            (TDX) Driver. Kernel-mode network clients should now use the
            Winsock Kernel (WSK) interface for accessing the network
            stack.

	TDI transports (also known as
            transports) and Network Driver Interface
            Specification (NDIS) protocol drivers (or protocol drivers) are
            kernel-mode network protocol drivers. They accept IRPs from TDI
            clients and process the requests these IRPs represent. This
            processing might require network communications with a peer,
            prompting the TDI transport to add protocol-specific headers (for
            example, TCP, UDP, and/or IP) to data passed in the IRP, and to
            communicate with adapter drivers using NDIS functions (also
            documented in the Windows Driver Kit). TDI transports generally
            facilitate application network communications by transparently
            performing message operations such as segmentation and reassembly,
            sequencing, acknowledgment, and retransmission.

	Microsoft has decided that TCP/IP has won the network
            protocol wars, so it has re-architected the network protocol
            portion of the network stack from being protocol-neutral to being
            TCP/IP-centric. The interface between the TCP/IP protocol driver
            and Winsock is known as the Transport Layer Network
            Provider Interface (TLNPI) and is currently
            undocumented.

	Winsock Kernel (WSK) is a
            transport-independent, kernel-mode networking API that replaces
            the legacy TDI. WSK provides network communication by using
            socket-like programming semantics similar to user-mode Winsock,
            while also providing unique features such as asynchronous I/O
            operations built on IRPs and event callbacks. WSK also natively
            supports IP version 6 (IPv6) functionality in the Next Generation
            TCP/IP network stack in Windows.

	The Windows Filtering Platform (WFP) is
            a set of APIs and system services that provide the ability to
            create network filtering applications. The WFP allows applications
            to interact with packet processing at different levels of the
            Windows networking stack, much like file system filters.
            Similarly, network data can be traced, filtered, and also modified
            before it reaches its destination.

	WFP callout drivers are kernel-mode
            drivers that implement one or more callouts,
            which extend the capabilities of the WFP by processing
            TCP/IP-based network data in ways that extend the basic
            functionality provided by the WFP.

	The NDIS library (Ndis.sys) provides an
            abstraction mechanism that encapsulates Network Interface Card
            (NIC) drivers (also known as NDIS miniports),
            hiding from them the specifics of the Windows kernel-mode
            environment. The NDIS library exports functions for use by TCP/IP
            and legacy TDI transports.

	NDIS miniport drivers are kernel-mode
            drivers that are responsible for interfacing the network stack to
            a particular NIC. NDIS miniport drivers are written so that they
            are wrapped by the Windows NDIS library. NDIS miniport drivers
            don’t process IRPs; rather, they register a call-table interface
            to the NDIS library that contains pointers to functions that
            perform simple operations on the NIC, such as sending a packet or
            querying properties. NDIS miniport drivers communicate with
            network adapters by using NDIS library functions that resolve to
            hardware abstraction layer (HAL) functions.



As Figure 7-2 shows, the OSI
        layers don’t correspond to actual software. WSK transport providers,
        for example, frequently cross several boundaries. In fact, the bottom
        three layers of software and the hardware layer are often referred to
        collectively as the transport. Software
        components residing in the upper three layers are referred to as
        users or clients of the
        transport.”
[image: OSI model and Windows networking components]

Figure 7-2. OSI model and Windows networking components

In the remainder of this chapter, we’ll examine the networking
        components shown in Figure 7-2 (as well as
        others not shown in the figure), looking at how they fit together and
        how they relate to Windows as a whole.


Networking APIs



Windows implements multiple networking APIs to provide
      support for legacy applications and compatibility with industry
      standards. In this section, we’ll briefly look at the networking APIs
      and describe how applications use them. Keep in mind that the decision
      about which API an application uses depends on characteristics of the
      API, such as which protocols the API can layer over, whether the API
      supports reliable (or bidirectional) communication, and the API’s
      portability to other Windows platforms the application might run on.
      We’ll discuss the following networking APIs:
	Windows Sockets (Winsock)

	Winsock Kernel (WSK)

	Remote procedure call (RPC)

	Web access APIs

	Named pipes and mailslots

	NetBIOS

	Other networking APIs



Windows Sockets



The original Windows Sockets (Winsock) (version 1.0) was
        Microsoft’s implementation of BSD (Berkeley Software Distribution)
        Sockets, a programming API that became the standard by which UNIX
        systems have communicated over the Internet since the 1980s. Support
        for sockets on Windows makes the task of porting UNIX networking
        applications to Windows relatively straightforward. The modern
        versions of Winsock include most of the functionality of BSD Sockets
        but also include Microsoft-specific enhancements, which continue to
        evolve. Winsock supports reliable, connection-oriented communication
        as well as unreliable, connectionless communication. (“Reliable,” in
        this sense, indicates whether the sender is notified of any problems
        in the delivery of data to the receiver.) Windows provides Winsock
        2.2, which adds numerous features beyond the BSD Sockets
        specification, such as functions that take advantage of Windows
        asynchronous I/O, to offer far better performance and scalability than
        straight BSD Sockets programming.
Winsock includes the following features:
	Support for scatter-gather and asynchronous application
            I/O.

	Quality of Service (QoS) conventions so that applications
            can negotiate latency and bandwidth requirements when the
            underlying network supports QoS.

	Extensibility so that Winsock can be used with third-party
            protocols (deprecated).

	Support for integrated namespaces with third-party namespace
            providers. A server can publish its name in Active Directory, for
            example, and by using namespace extensions, a client can look up
            the server’s address in Active Directory.

	Support for multicast messages, where messages
            transmit from a single source to multiple receivers.



We’ll examine typical Winsock operation and then describe ways
        that Winsock can be extended.
Winsock Client Operation



The first step a Winsock application takes is to initialize
          the Winsock API with a call to an initialization function. A Winsock
          application’s next step is to create a socket
          that will represent a communications endpoint. The application
          obtains the address of the server to which it wants to connect by
          calling getaddrinfo (and later calling
          freeaddrinfo to release the information). The
          getaddrinfo function returns the list of
          protocol-specific addresses assigned to the server, and the client
          attempts to connect to each one in turn until it is able to
          establish a connection with one of them. This ensures that a client
          that supports both IP version 4 (IPv4) and IPv6 will connect to the
          appropriate and/or most efficient address on a server that might
          have both IPv4 and IPv6 addresses assigned to it. (IPv6 is preferred
          over IPv4.) Winsock is a protocol-independent API, so an address can
          be specified for any protocol installed on the system over which
          Winsock operates. After obtaining the server address, a
          connection-oriented client attempts to connect to the server by
          using connect and specifying the server
          address.
When a connection is established, the client can send and
          receive data over its socket using the recv and
          send APIs. A connectionless client specifies
          the remote address with connectionless APIs, such as the
          connectionless equivalents of send and
          recv, and sendto and
          recvfrom. Clients can also use the
          select and WSAPoll APIs to
          wait on or poll multiple sockets for synchronous I/O operations, or
          to check their state.

Winsock Server Operation



The sequence of steps for a server application differs from
          that of a client. After initializing the Winsock API, the server
          creates a socket and then binds it to a local address by using
          bind. Again, the address family
          specified—whether it’s TCP/IPv4, TCP/IPv6, or some other address
          family—is up to the server application.
If the server is connection oriented, it performs a
          listen operation on the socket, indicating the
          backlog, or the number of connections the
          server asks Winsock to hold until the server is able to accept them.
          Then it performs an accept operation to allow a
          client to connect to the socket. If there is a pending connection
          request, the accept call completes immediately;
          otherwise, it completes when a connection request arrives. When a
          connection is made, the accept function returns
          a new socket that represents the server’s end of the connection.
          (The original socket used for listening is not used for
          communications, only for receiving connection requests.) The server
          can perform receive and send operations by using functions such as
          recv and send. Like
          Winsock clients, servers can use the select and
          WSAPoll functions to query the state of one or
          more sockets; however, the Winsock
          WSAEventSelect function and overlapped
          (asynchronous) I/O extensions are preferred for better scalability.
          Figure 7-3 shows
          connection-oriented communication between a Winsock client and
          server.
[image: Connection-oriented Winsock operation]

Figure 7-3. Connection-oriented Winsock operation

After binding an address, a connectionless server is
          no different from a connectionless client: it can send and receive
          data over the socket simply by specifying the remote address with
          each operation. Most connectionless protocols are unreliable and, in
          general, will not know whether the destination actually received the
          sent data packets (which are known as
          datagrams). Datagram protocols are ideal for
          quick message passing, where the overhead of establishing a
          connection is too much and reliability is not required (although an
          application can build reliability on top of the protocol).

Winsock Extensions



In addition to supporting functions that correspond directly
          to those implemented in BSD Sockets, Microsoft has added a handful
          of functions that aren’t part of the BSD standard. Two of these
          functions, AcceptEx (the
          Ex suffix is short for
          Extended) and
          TransmitFile, are worth describing because many
          Web servers on Windows use them to achieve high performance.
          AcceptEx is a version of the
          accept function that, in the process of
          establishing a connection with a client, returns the client’s
          address and the client’s first message.
          AcceptEx allows the server application to queue
          multiple accept operations so that high volumes of incoming
          connection requests can be handled. With this function, a web server
          avoids executing multiple Winsock functions that would otherwise be
          required.
After establishing a connection with a client, a web server
          frequently sends a file, such as a web page, to the client. The
          TransmitFile function’s implementation is
          integrated with the Windows cache manager so that a file can be sent
          directly from the file system cache. Sending data in this way is
          called zero-copy because the server doesn’t
          have to read the file data to send it; it simply specifies a handle
          to a file and the byte range (offset and length) of the file to
          send. In addition, TransmitFile allows a server
          to add prefix or suffix data to the file’s data so that the server
          can send header information, trailer information, or both, which
          might include the name of the web server and a field that indicates
          to the client the size of the message the server is sending.
          Internet Information Services (IIS), which is included with Windows,
          uses both AcceptEx and
          TransmitFile to achieve better
          performance.
Windows also supports a handful of other multifunction APIs,
          including ConnectEx,
          DisconnectEx, and
          TransmitPackets. ConnectEx
          establishes a connection and sends the first message on the
          connection. DisconnectEx closes a connection
          and allows the socket handle representing the connection to be
          reused in a call to AcceptEx or
          ConnectEx. Finally,
          TransmitPackets is similar to
          TransmitFile, except that it allows for the
          sending of in-memory data in addition to, or in lieu of, file data.
          Finally, by using the WSAImpersonateSocketPeer
          and WSARevertImpersonation functions, Winsock
          servers can perform impersonation (described in Chapter 6) to perform authorization or to gain
          access to resources based on the client’s security
          credentials.

Extending Winsock



Winsock is an extensible API on Windows because third parties
          can add a transport service provider that
          interfaces Winsock with other protocols, or layers on top of
          existing protocols, to provide functionality such as proxying. Third
          parties can also add a namespace service
          provider to augment Winsock’s name-resolution facilities.
          Service providers plug in to Winsock by using the Winsock
          service provider interface (SPI). When a
          transport service provider is registered with Winsock, Winsock uses
          the transport service provider to implement socket functions, such
          as connect and accept, for
          the address types that the provider indicates it implements. There
          are no restrictions on how the transport service provider implements
          the functions, but the implementation usually involves communicating
          with a transport driver in kernel mode.
Note
Layered service providers are not secure and can be
            bypassed; secure network protocol layering must be done in kernel
            mode. Installing itself as a Winsock layered service provider
            (LSP) is a technique used frequently by malware and
            spyware.

A requirement of any Winsock client/server application is for
          the server to make its address available to clients so that the
          clients can connect to the server. Standard services that execute on
          the TCP/IP protocol use well-known addresses to
          make their addresses available. As long as a browser knows the name
          of the computer a Web server is running on, it can connect to the
          web server by specifying the well-known web server address (the IP
          address of the server concatenated with :80, the port number used
          for HTTP). Namespace service providers make it possible for servers
          to register their presence in other ways. For example, one namespace
          service provider might on the server side register the server’s
          address in Active Directory and on the client side look up the
          server’s address in Active Directory. Namespace service providers
          supply this functionality to Winsock by implementing standard
          Winsock name-resolution functions such as
          getaddrinfo and
          getnameinfo.
EXPERIMENT: Looking at Winsock Service and Namespace
            Providers
The Network Shell (Netsh.exe) utility included with Windows
            is able to show the registered Winsock transport and namespace
            providers by using the netsh winsock show
            catalog command. For example, if there are two TCP/IP
            transport service providers, the first one listed is the default
            provider for Winsock applications using the TCP/IP protocol.
            Here’s sample output from Netsh showing the registered transport
            service providers:
C:\Users\Toby>netsh winsock show catalog

Winsock Catalog Provider Entry
------------------------------------------------------
Entry Type:            Base Service Provider
Description:           MSAFD Tcpip [TCP/IP]
Provider ID:           {E70F1AA0-AB8B-11CF-8CA3-00805F48A192}
Provider Path:         %SystemRoot%\system32\mswsock.dll
Catalog Entry ID:      1001
Version:               2
Address Family:        2
Max Address Length:    16
Min Address Length:    16
Socket Type:           1
Protocol:              6
Service Flags:         0x20066
Protocol Chain Length: 1

Winsock Catalog Provider Entry
------------------------------------------------------
Entry Type:            Base Service Provider
Description:           MSAFD Tcpip [UDP/IP]
Provider ID:           {E70F1AA0-AB8B-11CF-8CA3-00805F48A192}
Provider Path:         %SystemRoot%\system32\mswsock.dll
Catalog Entry ID:      1002
Version:               2
Address Family:        2
Max Address Length:    16
Min Address Length:    16
Socket Type:           2
Protocol:              17
Service Flags:         0x20609
Protocol Chain Length: 1

Winsock Catalog Provider Entry
------------------------------------------------------
Entry Type:            Base Service Provider
Description:           MSAFD Tcpip [RAW/IP]
Provider ID:           {E70F1AA0-AB8B-11CF-8CA3-00805F48A192}
Provider Path:         %SystemRoot%\system32\mswsock.dll
Catalog Entry ID:      1003
Version:               2
Address Family:        2
Max Address Length:    16
Min Address Length:    16
Socket Type:           3
Protocol:              0
Service Flags:         0x20609
Protocol Chain Length: 1
.
.
.
Name Space Provider Entry
------------------------------------------------------
Description:           Network Location Awareness Legacy (NLAv1) Namespace
Provider ID:           {6642243A-3BA8-4AA6-BAA5-2E0BD71FDD83}
Name Space:            15
Active:                1
Version:               0

Name Space Provider Entry
------------------------------------------------------
Description:           E-mail Naming Shim Provider
Provider ID:           {964ACBA2-B2BC-40EB-8C6A-A6DB40161CAE}
Name Space:            37
Active:                1
Version:               0


Name Space Provider Entry
------------------------------------------------------
Description:           PNRP Cloud Namespace Provider
Provider ID:           {03FE89CE-766D-4976-B9C1-BB9BC42C7B4D}
Name Space:            39
Active:                1
Version:               0
.
.
.
You can also use the Autoruns utility from Windows
            Sysinternals (www.microsoft.com/technet/sysinternals)
            to view namespace and transport providers, as well as to disable
            or delete those that might be causing problems or unwanted
            behavior on the system.


Winsock Implementation



Winsock’s implementation is shown in Figure 7-4. Its application
          interface consists of an API DLL, Ws2_32.dll
          (%SystemRoot%\System32\Ws2_32.dll), which provides applications
          access to Winsock functions. Ws2_32.dll calls on the services of
          namespace and transport service providers to carry out name and
          message operations. The Mswsock.dll
          (%SystemRoot%\System32\mswsock.dll) library acts as a transport
          service provider for the protocols supported by Microsoft and uses
          Winsock Helper libraries that are protocol
          specific to communicate with kernel-mode protocol drivers. For
          example, Wshtcpip.dll (%SystemRoot%\System32\wshtcpip.dll) is the
          TCP/IP helper. Mswsock.dll implements the Microsoft Winsock
          extension functions, such as TransmitFile,
          AcceptEx, and
          WSARecvEx.
Windows ships with helper DLLs for TCP/IPv4, TCPv6, Bluetooth,
          NetBIOS, IrDA (Infrared Data Association), and PGM (Pragmatic
          General Multicast). It also includes namespace service providers for
          DNS (TCP/IP), Active Directory (NTDS), NLA (Network Location
          Awareness), PNRP (Peer Name Resolution Protocol), and
          Bluetooth.
Like the named-pipe and mailslot APIs (described later in this
          chapter), Winsock integrates with the Windows I/O model and uses
          file handles to represent sockets. This support requires the aid of
          a kernel-mode driver, so Msafd.dll (%SystemRoot%\System32\msafd.dll)
          uses the services of the Ancillary Function Driver
          (AFD—%SystemRoot%\System32\Drivers\Afd.sys) to implement
          socket-based functions. AFD is a Transport Layer Network Provider
          Interface (TLNPI) client and executes network socket operations,
          such as sending and receiving messages. TLNPI is the undocumented
          interface between AFD and the TCP/IP protocol stack. If a legacy
          protocol driver is installed, Windows will use the TDI-TLNPI
          translation driver TDX (%SystemRoot%\System32\Drivers\tdx.sys) to
          map TDI IRPs to TLNPI requests.
[image: Winsock implementation]

Figure 7-4. Winsock implementation



Winsock Kernel



To enable kernel-mode drivers and modules to have access
        to networking API interfaces similar to those available to user-mode
        applications, Windows implements a socket-based networking programming
        interface called Winsock Kernel (WSK). WSK replaces the legacy TDI API
        interface present on older versions of Windows but maintains the TDI
        API interface for transport providers. Compared to TDI, WSK provides
        better performance, better security, better scalability, and a much
        easier programming paradigm, because it relies less on internal kernel
        behavior and more on socket-based semantics. Additionally, WSK was
        written to take full advantage of the latest technologies in the
        Windows TCP/IP stack, which TDI was not originally anticipated to
        support. As shown in Figure 7-5, WSK makes use of
        the Network Module Registrar (NMR) component of Windows (part of
        %SystemRoot%\System32\drivers\NetIO.sys) to attach and detach from
        transport protocols, and it can be used, just like Winsock, to support
        many types of network clients—for example, the Http.sys driver for the
        HTTP Server API (mentioned later in the chapter) is a WSK client.
        Using NMR with WSK is rather complicated, so registration-support APIs
        are provided to register with WSK (WskRegister,
        WskDeregister, WskCaptureProviderNPI, and
        WskReleaseProviderNPI).
Note
The Raw transport protocol is not really a protocol and does
          not perform any encapsulation of the user data. This allows the
          client to directly control the contents of the frames transmitted
          and received by the network interface.

WSK enhances security by restricting address
        sharing—which allows multiple sockets to use the same transport
        (TCP/IP) address—through the use of nondefault sharing and security
        descriptors on addresses. WSK uses the security descriptor specified
        by the first socket for an address, and it checks the owning process
        and thread for each subsequent attempt to use that address.
[image: WSK overview]

Figure 7-5. WSK overview

WSK Implementation



WSK’s implementation is shown in Figure 7-6. At its core is the WSK
          subsystem itself, which uses the Next Generation TCP/IP Stack
          (%SystemRoot%\System32\Drivers\Tcpip.sys) and the NetIO support
          library (%SystemRoot%\System32\Drivers\NetIO.sys) but is actually
          implemented in AFD. The subsystem is responsible for the provider
          side of the WSK API. The subsystem interfaces with the TCP/IP
          transport protocols (shown at the bottom of Figure 7-5). Attached to the WSK subsystem are WSK
          clients, which are kernel-mode drivers that implement the
          client-side WSK API in order to perform network operations. The WSK
          subsystem calls WSK clients to notify them of asynchronous
          events.
[image: WSK implementation]

Figure 7-6. WSK implementation

WSK clients are bound to the WSK subsystem through the NMR or
          through the WSK’s registration functions, which allow WSK clients to
          dynamically detect when the WSK subsystem becomes available and then
          load their own dispatch table to describe the provider and
          client-side implementations of the WSK API. These implementations
          provide the standard WSK socket-based functions, such as
          WskSocket, WskAccept,
          WskBind, WskConnect,
          WskReceive, and WskSend,
          which have similar semantics (but not necessarily similar
          parameters) as their user-mode Winsock counterparts. However, unlike
          user-mode Winsock, the WSK subsystem defines four
          kinds of socket categories, which identify
          which functions and events are available:
	Basic sockets, which are used only to get and set
              information on the transport. They cannot be used to send or
              receive data or be bound to an address.

	Listening sockets, which are used for sockets that accept
              only incoming connections.

	Datagram sockets, which are used solely for sending and
              receiving datagrams.

	Connection-oriented sockets, which support all the
              functionality required to send and receive network traffic over
              an established connection.



Apart from the socket functions described, WSK also provides
          events through which clients are notified of network status. Unlike
          the model for socket functions, in which a client controls the
          connection, events allow the subsystem to control the connection and
          merely notify the client. These include the
          WskAcceptEvent,
          WskInspectEvent,
          WskAbortEvent,
          WskReceiveFromEvent,
          WskReceiveEvent,
          WskDisconnectEvent, and
          WskSendBacklogEvent routines.
Finally, like user-mode Winsock, WSK can be extended through
          extension interfaces that clients can associate
          with sockets. These extensions can enhance the default functionality
          provided by the WSK subsystem.


Remote Procedure Call



Remote procedure call (RPC) is a network programming standard
        originally developed in the early 1980s. The Open Software Foundation
        (now The Open Group) made RPC part of the distributed computing
        environment (DCE) distributed computing standard. Although there is a
        second RPC standard, SunRPC, the Microsoft RPC implementation is
        compatible with the OSF/DCE standard. RPC builds on other networking
        APIs, such as named pipes or Winsock, to provide an alternate
        programming model that in some respects hides the details of
        networking programming from an application developer. Fundamentally,
        RPC provides a mechanism for creating programs that are distributed
        across a network, with portions of the application running
        transparently on one or more systems.
RPC Operation



An RPC facility is one that allows a programmer to create an
          application consisting of any number of procedures, some that
          execute locally and others that execute on remote computers via a
          network. It provides a procedural view of networked operations
          rather than a transport-centered view, thus simplifying the
          development of distributed applications.
Networking software is traditionally structured around an I/O
          model of processing. In Windows, for example, a network operation is
          initiated when an application issues an I/O request. The operating
          system processes the request accordingly by forwarding it to a
          redirector, which acts as a remote file system
          by making the client interaction with the remote file system
          invisible to the client. The redirector passes the operation to the
          remote file system, and after the remote system fulfills the request
          and returns the results, the local network card
          interrupts. The kernel handles the interrupt, and the original I/O
          operation completes, returning results to the caller.
RPC takes a different approach altogether. RPC applications
          are like other structured applications, with a main program that
          calls procedures or procedure libraries to perform specific tasks.
          The difference between RPC applications and regular applications is
          that some of the procedure libraries in an RPC application are
          stored and execute on remote computers, as shown in Figure 7-7, whereas others execute
          locally.
To the RPC application, all the procedures appear to execute
          locally. In other words, instead of making a programmer actively
          write code to transmit computational or I/O-related requests across
          a network, handle network protocols, deal with network errors, wait
          for results, and so forth, RPC software handles these tasks
          automatically. And the Windows RPC facility can operate over any
          available transport protocols loaded into the system.
[image: RPC operation]

Figure 7-7. RPC operation

To write an RPC application, the programmer decides which
          procedures will execute locally and which will execute remotely. For
          example, suppose an ordinary workstation has a network connection to
          a supercomputer (a very fast machine usually designed for high-speed
          vector operations). If the programmer were writing an application
          that manipulated large matrices, it would make sense from a
          performance perspective to offload the mathematical calculations to
          the supercomputer by writing the program as an RPC
          application.
RPC applications work like this: As an application runs, it
          calls local procedures as well as procedures that aren’t present on
          the local machine. To handle the latter case, the application is
          linked to a local library or DLL that contains stub
          procedures, one for each remote procedure. For simple
          applications, the stub procedures are statically linked with the
          application, but for bigger components the stubs are included in
          separate DLLs. In DCOM, covered later in the chapter, the latter
          method is typically used. The stub procedures have the same name and
          use the same interface as the remote procedures, but instead of
          performing the required operations, the stub takes the parameters
          passed to it and marshals them for transmission
          across the network. Marshaling parameters means ordering and
          packaging them in a particular way to suit a network link, such as
          resolving references and picking up a copy of any data structures
          that a pointer refers to.
The stub then calls RPC run-time procedures that
          locate the computer where the remote procedure resides, determines
          which network transport mechanisms that computer uses, and sends the
          request to it using local transport software. When the remote server
          receives the RPC request, it unmarshals the
          parameters (the reverse of marshaling), reconstructs the original
          procedure call, and calls the procedure with the parameters passed
          from the calling system. When the server finishes, it performs the
          reverse sequence to return results to the caller.
In addition to the synchronous function-call-based interface
          described here, Windows RPC also supports asynchronous
          RPC. Asynchronous RPC lets an RPC application execute a
          function but not wait until the function completes to continue
          processing. Instead, the application can execute other code and
          later, when a response has arrived from the server, the RPC runtime
          notifies the client that the operation has completed. The RPC
          runtime uses the notification mechanism requested by the client. If
          the client uses an event synchronization object for notification, it
          waits for the signaling of the event object by calling either
          WaitForSingleObject or
          WaitForMultipleObjects. If the client provides
          an asynchronous procedure call (APC), the runtime queues the
          execution of the APC to the thread that executed the RPC function.
          (The APC will not be delivered until the requesting thread enters an
          alertable wait state. See Chapter 3, for more information on APCs.) If
          the client program uses an I/O completion port as its notification
          mechanism, it must call
          GetQueuedCompletionStatus to learn of the
          function’s completion. Alternatively, a client can poll for
          completion by calling
          RpcAsyncGetCallStatus.
In addition to the RPC runtime, Microsoft’s RPC facility
          includes a compiler, called the Microsoft Interface
          Definition Language (MIDL) compiler. The MIDL compiler
          simplifies the creation of an RPC application by generating the
          necessary stub routines. The programmer writes a series of ordinary
          function prototypes (assuming a C or C++ application) that describe
          the remote routines and then places the routines in a file. The
          programmer then adds some additional information to these
          prototypes, such as a network-unique identifier for the package of
          routines and a version number, plus attributes that specify whether
          the parameters are input, output, or both. The embellished
          prototypes form the developer’s Interface Definition Language (IDL)
          file.
Once the IDL file is created, the programmer compiles it with
          the MIDL compiler, which produces client-side and server-side stub
          routines (mentioned previously), as well as header files to be
          included in the application. When the client-side application is
          linked to the stub routines file, all remote procedure references
          are resolved. The remote procedures are then installed, using a
          similar process, on the server machine. A programmer who wants to
          call an existing RPC application need only write the client side of
          the software and link the application to the local RPC run-time
          facility.
The RPC runtime uses a generic RPC transport
          provider interface to talk to a transport protocol. The
          provider interface acts as a thin layer between the RPC facility and
          the transport, mapping RPC operations onto the functions provided by
          the transport. The Windows RPC facility implements transport
          provider DLLs for named pipes, HTTP, TCP/IP, and UDP. In a similar
          fashion, the RPC facility is designed to work with different network
          security facilities.
Most of the Windows networking services are RPC applications,
          which means that both local applications and applications on remote
          computers might call them. Thus, a remote client computer might call
          the server service to list shares, open files, write to print
          queues, or activate users on your server, all subject to security constraints, of
          course. The majority of client-management APIs are implemented using
          RPC.
Server name publishing, which is the
          ability of a server to register its name in a location accessible
          for client lookup, is in RPC and is integrated with Active
          Directory. If Active Directory isn’t installed, the RPC name locator
          services fall back on NetBIOS broadcast. This behavior allows RPC to
          function on stand-alone servers and workstations.

RPC Security



Windows RPC includes integration with security support
          providers (SSPs) so that RPC clients and servers can use
          authenticated or encrypted communications. When an RPC server wants
          secure communication, it tells the RPC runtime what authentication
          service to add to the list of available authentication
          services. When a client wants to use secure
          communication, it binds to the server. At that time, it must tell
          the RPC runtime the authentication service and
          authentication level it wants. Various
          authentication levels exist to ensure that only authorized clients
          connect to a server, verify that each message a server receives
          originates at an authorized client, check the integrity of RPC
          messages to detect manipulation, and even encrypt RPC message data.
          Obviously, higher authentication levels require more processing. The
          client can also optionally specify the server principal
          name. A principal is an entity that the RPC security
          system recognizes. The server must register its SSP-specific
          principal name with an SSP.
An SSP handles the details of performing network communication
          authentication and encryption, not only for RPC but also for
          Winsock. Windows includes a number of built-in SSPs, including a
          Kerberos SSP to implement Kerberos version 5 authentication
          (including AES support) and Secure Channel (SChannel), which
          implements Secure Sockets Layer (SSL) and the Transport Layer
          Security (TLS) protocols. SChannel also supports TLS and SSL
          extensions, which allow you to use the AES cipher as well as
          elliptic curve cryptographic (ECC) ciphers on top of the protocols.
          Also, because it supports an open cryptographic
          interface (OCI) and crypto-agile capabilities, SChannel
          allows an administrator to replace or add to the existing
          cryptographic algorithms. In the absence of a specified SSP, RPC
          software uses the built-in security of the underlying transport.
          Some transports, such as named pipes or local RPC, have built-in
          security. Others, like TCP, do not, and in this case RPC makes
          unsecure calls in the absence of a specified SSP.
Note
The use of unencrypted RPC might pose serious security
            issues for your organization.

Another feature of RPC security is the ability of a server to
          impersonate the security identity of a client with the
          RpcImpersonateClient function. After a server
          has finished performing impersonated operations on behalf of a
          client, it returns to its own security identity by calling
          RpcRevertToSelf or
          RpcRevertToSelfEx. (See Chapter 6 for more information on
          impersonation.)

RPC Implementation



RPC implementation is depicted in Figure 7-8, which shows that an
          RPC-based application links with the RPC run-time DLL
          (%SystemRoot%\System32\Rpcrt4.dll). The RPC run-time DLL provides
          marshaling and unmarshaling functions for use by an application’s
          RPC function stubs as well as functions for sending and receiving
          marshaled data. The RPC run-time DLL includes support routines to
          handle RPC over a network as well as a form of RPC called
          local RPC. Local RPC can be used for
          communication between two processes located on the same system, and
          the RPC run-time DLL uses the advanced local procedure call (ALPC)
          facilities in kernel mode as the local networking API. (See Chapter 3 for more information on ALPCs.) When
          RPC is based on nonlocal communication mechanisms, the RPC run-time
          DLL uses the Winsock or named pipe APIs.
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Figure 7-8. RPC implementation

The RPC subsystem (RPCSS—%SystemRoot%\System32\Rpcss.dll) is
          implemented as a Windows service. RPCSS is itself an RPC application
          that communicates with instances of itself on other systems to
          perform name lookup, registration, and dynamic endpoint mapping.
          (For clarity, Figure 7-8 doesn’t
          show RPCSS linked with the RPC run-time DLL.)
Windows also includes support for RPC in kernel mode through
          the kernel-mode RPC driver
          (%SystemRoot%\System32\Drivers\Msrpc.sys). Kernel-mode RPC is for
          internal use by the system and is implemented on top of ALPC.
          Winlogon includes an RPC server with a documented set of interfaces
          that user-mode RPC clients might call, while Win32k.sys includes an
          RPC client that communicates with Winlogon for internal
          notifications, such as the secure attention sequence (SAS). (See
          Chapter 6 for more information.) The
          TCP/IP stack in Windows (as well as the WFP) also uses kernel-mode
          RPC to communicate with the Network Storage Interface
          (NSI) service, which handles network configuration
          information.


Web Access APIs



To ease the development of Internet applications,
        Windows provides both client and server Internet APIs. By using the
        APIs, applications can provide HTTP services and use FTP and HTTP
        services without knowledge of the intricacies of the corresponding
        protocols. The client APIs include Windows
        Internet, also known as WinInet, which
        enables applications to interact with the FTP and HTTP protocols, and
        WinHTTP, which enables applications to interact with the HTTP protocol
        and is more suitable than WinInet in certain situations (Windows
        services and middle-tier applications). HTTP Server is a server-side
        API that enables the development of web server applications.
WinInet



WinInet supports the HTTP, FTP, and Gopher protocols. The APIs
          break down into sub-API sets specific to each protocol. Using the
          FTP-related APIs—such as InternetConnect to
          connect to an HTTP server, followed by
          HttpOpenRequest to open an HTTP request handle,
          HttpSendRequestEx to send a request to the
          sever and receive a response, InternetWriteFile
          to send a file, and InternetReadFileEx to
          receive a file—an application developer avoids the details of
          establishing a connection and formatting TCP/IP messages to the
          various protocols. The HTTP-related APIs also provide cookie
          persistence, client-side file caching, and automatic credential
          dialog handling. WinInet is used by core Windows components such as
          Windows Explorer and Internet Explorer.
Note
WinINet does not support server implementations or use by
            services. For these types of usage, use WinHTTP instead.

WinHTTP provides an abstraction of the HTTP v1.1 protocol for
          HTTP client applications similar to what the WinInet HTTP-related
          APIs provide. However, whereas the WinInet HTTP API is intended for
          user-interactive, client-side applications, the WinHTTP API is
          designed for server applications that communicate with HTTP servers.
          Server applications are often implemented as Windows services that
          do not provide a user interface and so do not desire the dialog
          boxes that WinInet APIs display. In addition, the WinHTTP APIs are
          more scalable (such as supporting uploads of greater than 4 GB) and
          offer security functionality, such as thread impersonation, that is
          not available from the WinInet APIs.

HTTP



Using the HTTP Server API implemented by Windows, server
          applications can register to receive HTTP requests for particular
          URLs, receive HTTP requests, and send HTTP responses. The HTTP
          Server API includes SSL support so that applications can exchange
          data over secure HTTP connections. The API includes server-side
          caching capabilities, synchronous and asynchronous I/O models, and
          both IPv4 and IPv6 addressing. The HTTP server APIs are used by IIS
          and other Windows services that rely on HTTP as a transport.
The HTTP Server API, which applications access through
          %SystemRoot%\System32\Httpapi.dll, relies on the kernel-mode
          %SystemRoot%\System32\Drivers\Http.sys driver. Http.sys starts on
          demand the first time any application on the system calls
          HttpInitialize. Applications then call
          HttpCreateServerSession to initialize a server
          session for the HTTP Server API. Next they use
          HttpCreateRequestQueue to create a private request queue and
          HttpCreateUrlGroup to create a URL group,
          specifying the URLs that they want to handle requests for with
          HttpAddUrlToUrlGroup. Using the request queues
          and their registered URLs (which they associate by using
          HttpSetUrlGroupProperty), Http.sys allows more
          than one application to service HTTP requests on a given port (port
          80 for example), with each servicing HTTP requests to different
          parts of the URL namespace, as shown in Figure 7-9.
[image: HTTP request queues and URL groups]

Figure 7-9. HTTP request queues and URL groups

HttpReceiveHttpRequest receives incoming
          requests directed at registered URLs, and
          HttpSendHttpResponse sends HTTP responses. Both
          functions offer asynchronous operation so that an application can
          use GetOverlappedResult or I/O completion ports
          to determine when an operation is completed.
Applications can use Http.sys to cache data in nonpaged
          physical memory by calling
          HttpAddFragmentToCache and associating a
          fragment name (specified as a URL prefix) with
          the cached data. Http.sys invokes the memory manager function
          MmAllocatePagesForMdlEx to allocate unmapped
          physical pages. (For large requests, Http.sys also attempts to use
          large pages to optimize access to the buffered data.) When Http.sys
          requires a virtual address mapping for the physical memory described
          by an entry in the cache—for instance, when it copies data to the
          cache or sends data from the cache—it uses
          MmMapLockedPagesSpecifyCache and then
          MmUnmapLockedPages after it completes its
          access. Http.sys maintains cached data until an application
          invalidates it or an optional application-specified timeout
          associated with the data expires. Http.sys also trims cached data in
          a worker thread that wakes up when the low-memory notification event
          is signaled. (See Chapter 10, “Memory Management,” in Part 2 for
          information on the low-memory notification event.) When an
          application specifies one or more fragment names in a call to
          HttpSendHttpResponse, Http.sys passes a pointer to the cached data in
          physical memory to the TCP/IP driver and avoids a copy operation.
          Http.sys also contains code for performing server-side
          authentication, including full SSL support, which removes the need
          to call back to the user-mode API to perform encryption and
          decryption of traffic.
Finally, the HTTP Server API contains many configuration
          options that clients can use to set functionality, such as
          authentication policies, bandwidth throttling, logging, connection
          limits, server state, response caching, and SSL certificate
          binding.


Named Pipes and Mailslots



Named pipes and mailslots are programming APIs for interprocess
        communication. Named pipes provide for reliable bidirectional
        communications, whereas mailslots provide unreliable, unidirectional
        data transmission. An advantage of mailslots is that they support
        broadcast capability. In Windows, both APIs make use of standard
        Windows security authentication and authorization mechanisms, which
        allow a server to control precisely which clients can connect to
        it.
The names that servers assign to named pipes and clients conform
        to the Windows Universal Naming Convention (UNC), which is a
        protocol-independent way to identify resources on a Windows network.
        The implementation of UNC names is described later in the
        chapter.
Named-Pipe Operation



Named-pipe communication consists of a named-pipe server and a
          named-pipe client. A named-pipe server is an application that
          creates a named pipe to which clients can connect. A named pipe’s
          name has the format \\Server\Pipe\PipeName. The
          Server component of the name specifies the
          computer on which the named-pipe server is executing. (A named-pipe
          server can’t create a named pipe on a remote system.) The name can
          be a DNS name (for example,
          mspress.microsoft.com), a NetBIOS name
          (mspress), or an IP address (131.107.0.1). The
          Pipe component of the name must be the string
          “Pipe”, and PipeName is the unique name
          assigned to a named pipe. The unique portion of the named pipe’s
          name can include subdirectories; an example of a named-pipe name
          with a subdirectory is
          \\MyComputer\Pipe\MyServerApp\ConnectionPipe.
A named-pipe server uses the
          CreateNamedPipe Windows function to create a
          named pipe. One of the function’s input parameters is a pointer to
          the named-pipe name, in the form \\.\Pipe\PipeName. The “\\.\” is a
          Windows-defined alias for “this system,” because a pipe must be
          created on the local system (although it can be accessed from a
          remote system). Other parameters the function accepts include an
          optional security descriptor that protects access to the named pipe,
          a flag that specifies whether the pipe should be bidirectional or
          unidirectional, a value indicating the maximum number of
          simultaneous connections the pipe supports, and a flag specifying
          whether the pipe should operate in byte mode or
          message mode.
Most networking APIs operate only in byte mode, which means
          that a message sent with one send function might require the
          receiver to perform multiple receive operations, building up the
          complete message from fragments. A named pipe operating in
          message mode simplifies the implementation of a receiver because
          there is a one-to-one correspondence between send and receive
          requests. A receiver therefore obtains an entire message each time
          it completes a receive operation and doesn’t have to concern itself
          with keeping track of message fragments.
The first call to CreateNamedPipe for a
          particular name creates the first instance of that name and
          establishes the behavior of all named-pipe instances having that
          name. A server creates additional instances, up to the maximum
          specified in the first call, with additional calls to
          CreateNamedPipe. After creating at least one
          named-pipe instance, a server executes the
          ConnectNamedPipe Windows function, which
          enables the named pipe the server created to establish connections
          with clients. ConnectNamedPipe can be executed
          synchronously or asynchronously, and it doesn’t complete until a
          client establishes a connection with the instance (or an error
          occurs).
A named-pipe client uses the Windows
          CreateFile or
          CallNamedPipe function, specifying the name of
          the pipe a server has created, to connect to a server. If the server
          has performed a ConnectNamedPipe call, the
          client’s security profile and the access it requests to the pipe
          (read, write) are validated against the named pipe’s security
          descriptor. (See Chapter 6 for more
          information on the security-check algorithms Windows uses.) If the
          client is granted access to a named pipe, it receives a handle
          representing the client side of a named-pipe connection and the
          server’s call to ConnectNamedPipe
          completes.
After a named-pipe connection is established, the client and
          server can use the ReadFile and
          WriteFile Windows functions to read from and
          write to the pipe. Named pipes support both synchronous and
          asynchronous operations for message transmittal, depending upon how
          the handle to the pipe was opened. Figure 7-10 shows a server and client
          communicating through a named-pipe instance.
[image: Named-pipe communications]

Figure 7-10. Named-pipe communications

Another characteristic of the named-pipe networking API is
          that it allows a server to impersonate a client by using the
          ImpersonateNamedPipeClient function. See the
          Impersonation section in Chapter 6 for a discussion of how impersonation
          is used in client/server applications. A second advanced area of
          functionality of the named-pipe API is that it allows for atomic
          send and receive operations through the
          TransactNamedPipe API, which behaves according
          to a simple transactional model in which a message is both sent and
          received in the same operation. In other words, it combines a write
          operation and a read operation into a single operation by not
          completing a write request until it has been read by the
          recipient.

Mailslot Operation



Mailslots provide an unreliable, unidirectional,
          multicast network transport. Multicast is a
          term used to describe a sender sending a message on the network to
          one or more specific listeners, which is different from a
          broadcast, which all systems would receive. One
          example of an application that can use this type of communication is
          a time-synchronization service, which might send a source time
          across the domain every few seconds. Such a message would be
          received by all applications listening on the particular mailslot.
          Receiving the source-time message isn’t crucial for every computer
          on the network (because time updates are sent relatively
          frequently); therefore, a source-time message is a good example for
          the use of mailslots, because the loss of a message will not cause
          any harm.
Like named pipes, mailslots are integrated with the Windows
          API. A mailslot server creates a mailslot by using the
          CreateMailslot function.
          CreateMailslot accepts a UNC name of the form
          “\\.\Mailslot\MailslotName” as an input parameter. Again like named
          pipes, a mailslot server can create mailslots only on the machine
          it’s executing on, and the name it assigns to a mailslot can include
          subdirectories. CreateMailslot also takes a
          security descriptor that controls client access to the mailslot. The
          handles returned by CreateMailslot are
          overlapped, which means that operations
          performed on the handles, such as sending and receiving messages,
          are asynchronous.
Because mailslots are unidirectional and unreliable,
          CreateMailslot doesn’t take many of the
          parameters that CreateNamedPipe does. After it
          creates a mailslot, a server simply listens for incoming client
          messages by executing the ReadFile function on
          the handle representing the mailslot.
Mailslot clients use a naming format similar to that used by
          named-pipe clients but with variations that make it possible to send
          messages to all the mailslots of a given name within the client’s
          domain or a specified domain. To send a message to a particular
          instance of a mailslot, the client calls
          CreateFile, specifying the computer-specific
          name. An example of such a name is “\\Server\Mailslot\MailslotName”.
          (The client can specify “\\.\” to represent the local computer.) If
          the client wants to obtain a handle representing all the mailslots
          of a given name on the domain it’s a member of, it specifies the
          name in the format “\\*\Mailslot\MailslotName”, and if the client
          wants to broadcast to all the mailslots of a given name within a
          different domain, the format it uses is
          “\\DomainName\Mailslot\MailslotName”.
After obtaining a handle representing the client side of a
          mailslot, the client sends messages by calling
          WriteFile. Because of the way mailslots are
          implemented, only messages smaller than 424 bytescan be sent. If a
          message is larger than 424 bytes, the mailslot implementation uses a
          reliable communications mechanism that requires a one-to-one
          client/server connection, which precludes multicast capability. This
          limitation makes mailslots generally unsuitable for messages larger
          than 424 bytes. Figure 7-11 shows an
          example of a client broadcasting to multiple mailslot servers within
          a domain.
[image: Mailslot broadcast]

Figure 7-11. Mailslot broadcast


Named Pipe and Mailslot Implementation



As evidence of their tight integration with Windows,
          named-pipe and mailslot functions are all implemented in the
          Kernel32.dll Windows client-side DLL. ReadFile
          and WriteFile, which are the functions
          applications use to send and receive messages using named pipes or
          mailslots, are the primary Windows I/O routines. The
          CreateFile function, which a client uses to
          open either a named pipe or a mailslot, is also a standard Windows
          I/O routine. However, the names specified by named-pipe and mailslot
          applications specify file-system namespaces managed by the
          named-pipe file-system driver
          (%SystemRoot%\System32\Drivers\Npfs.sys) and the mailslot
          file-system driver (%SystemRoot%\System32\Drivers\Msfs.sys), as
          shown in Figure 7-12.
The name- pipe file-system driver creates a device object
          named \Device\NamedPipe and a symbolic link to that object named
          \Global??\Pipe. The mailslot file-system driver creates a device
          object named \Device\Mailslot and a symbolic link named
          “\Global??\Mailslot”, which points to that device object. (See Chapter 3 for an explanation of the \Global??
          object manager directory.) Names passed to
          CreateFile of the form “\\.\Pipe\...” and
          “\\.\Mailslot\...” have their prefix of “\\.\” translated to
          “\Global??\” so that the names resolve through a symbolic link to a
          device object. The special functions
          CreateNamedPipe and
          CreateMailslot use the corresponding native
          functions NtCreateNamedPipeFile and
          NtCreateMailslotFile, which ultimately call
          IoCreateFile.
[image: Named-pipe and mailslot implementation]

Figure 7-12. Named-pipe and mailslot implementation

Later in the chapter, we’ll discuss how the redirector
          file system driver is involved when a name that specifies a remote
          named pipe or mailslot resolves to a remote system. However, when a
          named pipe or mailslot is created by a server or opened by a client,
          the appropriate file-system driver (FSD) on the machine where the
          named pipe or mailslot is located is eventually invoked. The reason
          that named pipes and mailslots are implemented as FSDs is that they
          can take advantage of the existing infrastructure in the object
          manager, the I/O manager, the redirector (covered later in this
          chapter), and the Server Message Block (SMB) protocol. (For more
          information about SMB, see Chapter 12, “File Systems,” in Part 2.)
          This integration results in several benefits:
	The FSDs use kernel-mode security functions to implement
              standard Windows security for named pipes and mailslots.

	Applications can use CreateFile to
              open a named pipe or mailslot because FSDs integrate with the
              object manager namespace.

	Applications can use Windows functions such as
              ReadFile and WriteFile
              to interact with named pipes and mailslots.

	The FSDs rely on the object manager to track handle and
              reference counts for file objects representing named pipes and
              mailslots.

	The FSDs can implement their own named pipe and mailslot
              namespaces, complete with subdirectories.



EXPERIMENT: Listing the Named-Pipe Namespace and Watching
            Named-Pipe Activity
It’s not possible to use the Windows API to open the root of
            the named-pipe FSD and perform a directory listing, but you can do
            this by using native API services. The PipeList tool from
            Sysinternals shows you the names of the named pipes defined on a
            computer as well as the number of instances that have been created
            for a name and the maximum number of instances as defined by a
            server’s call to CreateNamedPipe. Here’s an
            example of PipeList output:
C:\>pipelist

PipeList v1.01
by Mark Russinovich
http://www.sysinternals.com

Pipe Name                                    Instances       Max Instances
---------                                    ---------       -------------
InitShutdown                                      3               -1
lsass                                             6               -1
protected_storage                                 3               -1
ntsvcs                                            3               -1
scerpc                                            3               -1
net\NtControlPipe1                                1                1
plugplay                                          3               -1
net\NtControlPipe2                                1                1
Winsock2\CatalogChangeListener-394-0              1                1
epmapper                                          3               -1
Winsock2\CatalogChangeListener-25c-0              1                1
LSM_API_service                                   3               -1
net\NtControlPipe3                                1                1
eventlog                                          3               -1
net\NtControlPipe4                                1                1
Winsock2\CatalogChangeListener-3f8-0              1                1
net\NtControlPipe5                                1                1
net\NtControlPipe6                                1                1
net\NtControlPipe0                                1                1
atsvc                                             3               -1
Winsock2\CatalogChangeListener-438-0              1                1
Winsock2\CatalogChangeListener-2c8-0              1                1
net\NtControlPipe7                                1                1
net\NtControlPipe8                                1                1
net\NtControlPipe9                                1                1
net\NtControlPipe10                               1                1
net\NtControlPipe11                               1                1
net\NtControlPipe12                               1                1
142CDF96-10CC-483c-A516-3E9057526912              1                1
net\NtControlPipe13                               1                1
net\NtControlPipe14                               1                1
TSVNCache-000000000001b017                       20               -1
TSVNCacheCommand-000000000001b017                 2               -1
Winsock2\CatalogChangeListener-2b0-0              1                1
Winsock2\CatalogChangeListener-468-0              1                1
TermSrv_API_service                               3               -1
Ctx_WinStation_API_service                        3               -1
PIPE_EVENTROOT\CIMV2SCM EVENT PROVIDER            2               -1
net\NtControlPipe15                               1                1
keysvc                                            3               -1
It’s clear from this output that several system
            components use named pipes as their communications mechanism. For
            example, the InitShutdown pipe is created by
            WinInit to accept remote shutdown commands, and the
            Atsvc pipe is created by the Task Scheduler
            service to enable applications to communicate with it to schedule
            tasks. You can determine what process has each of these pipes open
            by using the object search facility in Process Explorer.
Note
A Max Instances value of –1 means that there is no upper
              limit on the number of instances.




NetBIOS



Until the 1990s, the Network Basic Input/Output System
        (NetBIOS) programming API had been the most widely used network
        programming API on PCs. NetBIOS allows for both reliable
        connection-oriented and unreliable connectionless communication.
        Windows supports NetBIOS for its legacy applications. Microsoft
        discourages application developers from using NetBIOS because other
        APIs, such as named pipes and Winsock, are much more flexible and
        portable. NetBIOS is supported by the TCP/IP protocol on
        Windows.
NetBIOS Names



NetBIOS relies on a naming convention whereby computers and
          network services are assigned a 16-byte NetBIOS name. The sixteenth
          byte of a NetBIOS name is treated as a modifier that can specify a
          name as unique or as part of a group. Only one instance of a unique
          NetBIOS name can be assigned to a network, but multiple applications
          can assign the same group name. A client can send multicast messages
          by sending them to a group name.
To support interoperability with Windows NT 4 systems as well
          as Windows 9x/Me, Windows automatically defines a NetBIOS name for a
          domain that includes up to the first 15 bytes of the left-most
          Domain Name System (DNS) name that an administrator assigns to the
          domain. For example, if a domain were named
          mspress.microsoft.com, the NetBIOS name of the
          domain would be mspress.
Another concept used by NetBIOS is that of LAN adapter (LANA)
          numbers. A LANA number is assigned to every NetBIOS-compatible
          protocol that layers above a network adapter. For example, if a
          computer has two network adapters and TCP/IP and NWLink can use
          either adapter, there would be four LANA numbers. LANA numbers are
          important because a NetBIOS application must explicitly assign its
          service name to each LANA through which it’s willing to accept
          client connections. If the application listens for client
          connections on a particular name, clients can access the name only
          via protocols on the network adapters for which the name is
          registered.

NetBIOS Operation



A NetBIOS server application uses the NetBIOS API to enumerate
          the LANAs present on a system and assign a NetBIOS name representing
          the application’s service to each LANA. If the server is connection
          oriented, it performs a NetBIOS listen command to wait for client
          connection attempts. After a client is connected, the server
          executes NetBIOS functions to send and receive data. Connectionless
          communication is similar, but the server simply reads messages
          without establishing connections.
A connection-oriented client uses NetBIOS functions to
          establish a connection with a NetBIOS server and then executes
          further NetBIOS functions to send and receive data. An established
          NetBIOS connection is also known as a session.
          If the client wants to send connectionless messages, it simply
          specifies the NetBIOS name of the server with the send
          function.
NetBIOS consists of a number of functions, but they
          all route through the same interface: Netbios.
          This routing scheme is the result of a legacy left over from the
          time when NetBIOS was implemented on MS-DOS as an MS-DOS interrupt
          service. A NetBIOS application would execute an MS-DOS interrupt and
          pass a data structure to the NetBIOS implementation that specified
          every aspect of the command being executed. As a result, the
          Netbios function in Windows takes a single
          parameter, which is a data structure that contains the parameters
          specific to the service the application requests.
EXPERIMENT: Using Nbtstat to See
            NetBIOS Names
You can use the Nbtstat command, which
            is included with Windows, to list the active sessions on a system,
            the NetBIOS-to-TCP/IP name mappings cached on a computer, and the
            NetBIOS names defined on a computer. Here’s an example of the
            Nbtstat command with the
            –n option, which lists the NetBIOS names
            defined on the computer:
C:\Users\Toby>nbtstat -n

Local Area Connection:
Node IpAddress: [192.168.0.193] Scope Id: []

                NetBIOS Local Name Table

       Name               Type         Status
    ---------------------------------------------
    WIN-NLRTEOW2ILZ<00>  UNIQUE      Registered
    WORKGROUP      <00>  GROUP       Registered
    WIN-NLRTEOW2ILZ<20>  UNIQUE      Registered


NetBIOS API Implementation



The components that implement the NetBIOS API are shown in
          Figure 7-13. The
          Netbios function is exported to applications by
          %SystemRoot%\System32\Netbios.dll. Netbios.dll opens a handle to the
          kernel-mode driver named the NetBIOS emulator
          (%SystemRoot%\System32\Drivers\Netbios.sys) and issues Windows
          DeviceIoControl file commands on behalf of an
          application. The NetBIOS emulator translates NetBIOS commands issued
          by an application into TDI commands that it sends to protocol
          drivers.
[image: NetBIOS API implementation]

Figure 7-13. NetBIOS API implementation

If an application wants to use NetBIOS over the TCP/IP
          protocol, the NetBIOS emulator requires the presence of the NetBT
          driver (%SystemRoot%\System32\Drivers\Netbt.sys). NetBT is known as
          the NetBIOS over TCP/IP driver and is responsible for supporting
          NetBIOS semantics that are inherent to the NetBIOS Extended User
          Interface (NetBEUI) protocol (included in previous versions of
          Windows) but not the TCP/IP protocol. For example, NetBIOS relies on
          NetBEUI’s message-mode transmission and NetBIOS name-resolution
          facilities, so the NetBT driver implements them on top of the TCP/IP
          protocol.


Other Networking APIs



Windows includes other networking APIs that are used less
        frequently or are layered on the APIs already described (and outside
        the scope of this book). Five of these, however—Background Intelligent
        Transfer Service (BITS), Distributed Component Object Model (DCOM),
        Message Queuing (MSMQ), Peer-to-Peer Infrastructure (P2P), and
        Universal Plug and Play (UPnP) with Plug and Play Extensions
        (PnP-X)—are important enough to the operation of a Windows system and
        many applications to merit brief descriptions.
Background Intelligent Transfer Service



BITS is a service and an API that provides reliable
          asynchronous transfer of files between systems, using either the
          SMB, HTTP, or HTTPS protocol. BITS normally runs in the background,
          making use of unutilized network bandwidth by monitoring network
          utilization and throttling itself so that it consumes only resources
          that would otherwise be unused; however, BITS transfers might also
          take place in the foreground and compete for resources with other
          processes running on the system.
BITS keeps track of ongoing, or scheduled, transfers in what
          are known as transfer jobs (not to be confused
          with jobs and job objects as described in Chapter 5) for each user.
          Each job is an entry in a queue and describes the files to transfer,
          the security context (access tokens) to run under, and the priority
          of the job. BITS version 4.0 is integrated into BranchCache
          (described later in this chapter) to further reduce network
          bandwidth.
BITS is used by many other components in Windows, such as
          Microsoft Update, Windows Update, Internet Explorer (version 9 and
          later, for downloading files), Microsoft Outlook (for downloading
          address books), Microsoft Security Essentials (for downloading daily
          virus signature updates), and others, making BITS the most widely
          used network file-transfer system in use today.
BITS provides the following capabilities:
	Seamless data
                transfer. Components create BITS transfer jobs that will then run
                until the files are transferred. When a user logs out, the
                system restarts, or the system loses network connectivity,
                BITS pauses the transfer. The transfer resumes from where it
                left off once the user logs in again or network connectivity
                is restored. The application that created a transfer job does
                not need to remain running, but the user must remain logged
                in, while the transfer is taking place. Transfer jobs created
                under service accounts (such as Windows Update) are always
                considered to be logged on, allowing those jobs to run
                continuously.

	Multiple transfer
                types. BITS supports three transfer types: download (server to
                client), upload (client to server), and upload-reply (client
                to server, with a notification receipt from the
                server).

	Prioritization of
                transfers. When a transfer job is created, the priority is
                specified (either Foreground, Background High, Background
                Normal, or Background Low). All background priority jobs make
                use only of unutilized network resources, while jobs with
                foreground priority compete with applications for network
                resources. If there are multiple jobs, BITS processes them in
                priority order, using a round-robin scheduling system within a
                particular priority so that all jobs make progress on their
                transfers.

	Secure data
                transfer. BITS normally runs the transfer job using the security
                context of the job’s creator, but you can also use the BITS
                API to specify the credentials to use for impersonating a
                user. For privacy across the network, you should use the HTTPS
                protocol.

	Management. The BITS API consists of methods for creating, starting,
                stopping, monitoring, enumerating, modifying, or requesting
                notification of transfer-job status changes. Tools include
                BITSAdmin (which is deprecated and will be removed in a future
                version of Windows), and Windows PowerShell
                cmdlets (the preferred management
                mechanism).



When downloading files, BITS writes the file to a
          temporary hidden file in the destination directory. Of course, BITS
          will impersonate the user to ensure that file-system security and
          quotas are enforced properly. When the application calls the
          IBackgroundCopyJob::Complete method (or the
          Complete-BitsTransfer cmdlet in PowerShell),
          BITS renames the temporary files to their destination names, and the
          files are available to the client. If there is already a file in the
          destination directory with the same name, BITS overwrites the
          file.
When uploading files, by default, BITS does not allow
          overwriting an existing file. When the transfer is finished and BITS
          would overwrite the file, an error is returned to the client. To
          allow overwrites, set the BITSAllowOverwrites
          property to True in the Internet Information
          Services (IIS) metabase using PowerShell or Windows Management
          Instrumentation (WMI) scripting.
The BITS server is a server-side component that lets you
          configure an IIS server to allow BITS clients to perform file
          transfers to IIS virtual directories. Upon completion of a file
          upload, the BITS server can notify a web application of the new
          file’s presence (via an HTTP POST message) so the web application
          can process the uploaded files.
The BITS server extends IIS to support throttled, restartable
          uploads of files. To make use of the upload feature, you must create
          an IIS virtual directory on the server where you want the clients to
          upload their files. BITS adds properties to the IIS metabase for the
          virtual directory you create and uses these properties to determine
          how to upload the files.
For security reasons, BITS will not permit uploading files to
          a virtual directory that has scripting and execute permissions
          enabled. If you upload a file to a virtual directory that has these
          permissions enabled, the job will fail. Also, BITS does not require
          the virtual directory to be write-enabled, so it is recommended that
          you turn off write access to the virtual directory; however, the
          user must have write access to the physical directory.
In some cases, the BITS Compact Server might be used instead
          of IIS. The Compact Server is intended for use by enterprise and
          small business customers that meet the following conditions:
	The anticipated usage is a maximum of 25 URL groups, and
              each URL group supports up to three simultaneous file
              transfers

	File transfers occur between systems in the same domain or
              mutually trusted domains

	File transfers are not intended for Internet-facing
              clients



Figure 7-14 demonstrates how
          to load the BITS module within PowerShell, and some of the BITS
          PowerShell cmdlets.
Figure 7-15 demonstrates the use of the
          BITSAdmin tool, which is now deprecated in favor of PowerShell for
          managing and using BITS.
[image: Using BITS from PowerShell]

Figure 7-14. Using BITS from PowerShell

[image: BitsAdmin tool]

Figure 7-15. BitsAdmin tool

Figure 7-16
          shows BITS messages written to the event log.
[image: BITS messages in the event log]

Figure 7-16. BITS messages in the event log


Peer-to-Peer Infrastructure



Peer-to-Peer Infrastructure is a set of APIs that cover
          different technologies to enhance the Windows networking stack by
          providing flexible peer-to-peer (P2P) support for applications and
          services. The P2P infrastructure covers four major technologies,
          shown in Figure 7-17.
[image: Peer-to-peer architecture]

Figure 7-17. Peer-to-peer architecture

Here are the major peer-to-peer components:
	Peer-to-Peer
                Graphing. Allows applications to pass data between peers
                efficiently and reliably by using nodes and events.

	Peer-to-Peer Namespace
                Provider. Enables serverless name resolution of peers and their
                services (described later in the Name Resolution section).

	Peer-to-Peer
                Grouping. Combines graphing and namespace technologies to group
                and isolate services and/or peers into a defined group and
                uniquely identify it.

	Peer-to-Peer Identity
                Manager. Enhances the services offered by the namespace provider
                to securely create, publish, and identify peer names, as well
                as to identify group members that are part of the grouping
                API.



The Peer-to-Peer Infrastructure in Windows is also paired with
          the Peer-to-Peer Collaboration Interface, which adds support for
          creating collaborative P2P applications (such as online games and
          group instant messaging) and supersedes the Real-Time Communications
          (RTC) architecture in earlier versions of Windows. It also provides
          presence capabilities through the People Near Me (PNM)
          architecture.

DCOM



Microsoft’s COM API lets applications consist of different
          components, each component being a replaceable, self-contained
          module. A COM object exports an object-oriented interface to methods
          for manipulating the data within the object. Because COM objects
          present well-defined interfaces, developers can implement new
          objects to extend existing interfaces and dynamically update
          applications with the new support.
DCOM (Distributed Component Object Model) extends COM by
          letting an application’s components reside on different computers,
          which means that applications don’t need to be concerned that one
          COM object might be on the local computer and another might be
          across the network. DCOM thus provides location transparency, which
          simplifies developing distributed applications. DCOM isn’t a
          self-contained API but relies on RPC to carry out its work.

Message Queuing



Message Queuing is a general-purpose platform for developing
          distributed applications that take advantage of loosely coupled
          messaging. Message Queuing is therefore an API and a messaging
          infrastructure. Its flexibility comes from the fact that its queues
          serve as message repositories in which senders can queue messages
          for receivers, and receivers can de-queue the messages at their
          discretion. Senders and receivers do not need to establish
          connections to use Message Queuing, nor do they need to be executing
          at the same time, which allows for disconnected asynchronous message
          exchange.
A notable feature of Message Queuing is that it is
          integrated with Microsoft Transaction Server (MTS) and SQL Server,
          so it can participate in Microsoft Distributed Transaction
          Coordinator (MS DTC) coordinated transactions. Using MS DTC with
          Message Queuing allows you to develop reliable transaction
          functionality for three-tier applications.

UPnP with PnP-X



Universal Plug and Play is an architecture for peer-to-peer
          network connectivity of intelligent appliances, devices, and
          control points. It is designed to bring
          easy-to-use, flexible, standards-based connectivity to ad-hoc,
          managed, or unmanaged networks, whether these networks are in the
          home, in small businesses, or attached directly to the Internet.
          Universal Plug and Play is a distributed, open networking
          architecture that uses existing TCP/IP and Web technologies to
          enable seamless proximity networking in addition to control and data
          transfer among networked devices.
Universal Plug and Play supports zero-configuration, invisible
          networking, and automatic discovery for a range of device categories
          from a wide range of vendors. This enables a device to dynamically
          join a network, obtain an IP address, and convey its capabilities
          upon request. Then other control points can use the Control Point
          API with UPnP technology to learn about the presence and
          capabilities of other devices. A device can leave a network smoothly
          and automatically when it is no longer in use.
Plug and Play Extensions (PnP-X), shown in Figure 7-18, is an additional component of
          Windows that allows network-attached devices to integrate with the
          Plug and Play manager in the kernel. With PnP-X, network-connected
          devices are shown in the Device Manager like locally attached
          devices and provide the same installation, management, and
          behavioral experience as a local device. (For example, installation
          is performed through the standard Add New Hardware Wizard.)
[image: PnP-X implementation]

Figure 7-18. PnP-X implementation

PnP-X uses a virtual network bus driver that uses an IP bus
          enumerator service (%SystemRoot%\System32\Ipbusenum.dll) to discover
          PnP-X compatible devices, which include UPnP devices (through the
          Simple Service Discovery Protocol) and the newer Device Profile for
          Web Services (DPWS) devices (using the WS-Discovery protocol). The
          IP bus enumerator reports devices it discovers to the Plug and Play
          manager, which uses user-mode Plug and Play manager services if
          needed (such as for driver installation). It’s similar to wireless
          discovery (like Bluetooth) and unlike wired device discovery (like USB), however, PnP-X enumeration and
          driver installation must be explicitly requested by a user from the
          Network Explorer.
Note
DPWS v1.1 became an OASIS standard in June 2009 and has
            goals similar to those of UPnP, but it is tightly integrated with
            web services standards and frameworks and allows greater
            extensibility than UPnP.




Multiple Redirector Support



Applications access file-system resources on remote systems (often
      called file shares) using UNC paths—for example,
      \\servername\sharename\file. Resources can be accessed directly using
      the UNC name if it is already known and the logged-on user’s credentials
      are sufficient. Optionally, the Windows Networking (WNet) API can be
      used to enumerate computers and resources that those computers export
      for sharing, map drive letters to UNC paths, and explicitly specify
      credentials. To access SMB servers from a client, Microsoft supplies an
      SMB client, which has a kernel-mode component called the
      mini-redirector and a user-mode component called
      the Workstation service. (SMB is described in
      Chapter 12 in Part 2.) Microsoft also makes available redirectors that
      can access WebDAV resources, NFS v2/v3 resources (Windows Professional
      and Enterprise editions only), and Terminal Services–shared drives.
      Third parties can add their own redirectors to Windows. In this section,
      we’ll examine the software that decides which redirector to invoke for
      file access using UNC paths. Here are the responsible components:
	Multiple Provider Router (MPR) is a DLL
          (%SystemRoot%\System32\Mpr.dll) that determines which network to
          access when an application uses the Windows WNet API for browsing
          remote file resources.

	Multiple UNC Provider (MUP) is a driver
          (%SystemRoot%\System32\Drivers\Mup.sys) that determines which
          network to access when an application uses the Windows I/O APIs to
          open remote files through UNC paths or drive letters mapped to UNC
          paths.



Multiple Provider Router



The Windows WNet functions allow applications (including the
        Network and Sharing Center) to connect to network resources, such as
        file servers and printers, and to browse the different share points.
        Because the WNet API can be called to work across different networks
        using different transport protocols, software must be present to send
        the request to the correct network and to understand the results that
        the remote server returns. Figure 7-19 shows the
        redirector software responsible for these tasks.
[image: MPR components]

Figure 7-19. MPR components

A provider is software that
        establishes Windows as a client of a remote network server. Some of
        the operations a WNet provider performs include making and breaking
        network connections, as well as supporting network printing. The
        built-in SMB WNet provider includes a DLL, the Workstation service,
        and the redirector. Other network vendors need to supply only a DLL
        and a redirector.
When an application calls a WNet routine, the call passes
        directly to the MPR DLL. MPR takes the call and determines which
        network provider recognizes the resource being accessed. Each provider
        DLL beneath MPR supplies a set of standard functions collectively
        called the network provider interface. This
        interface allows MPR to determine which network the application is
        trying to access and to direct the request to the appropriate WNet
        provider software. The SMB Workstation service’s provider is
        %SystemRoot%\System32\Ntlanman.dll, as specified by the
        ProviderPath value under the
        HKLM\SYSTEM\CurrentControlSet\Services\LanmanWorkstation\NetworkProvider
        registry key.
When called by the WNetAddConnection2 or
        WNetAddConnection3 API function to connect to a
        remote network resource, MPR checks the
        HKLM\SYSTEM\CurrentControlSet\Control\NetworkProvider\HwOrder\ProviderOrder
        registry value to determine which network providers are loaded. It
        polls them one at a time, in the order in which they’re listed in the
        registry, until a provider recognizes the resource or until all
        available providers have been polled. You can change the
        ProviderOrder by using the Advanced Settings
        dialog box shown in Figure 7-20. You can
        access the dialog box by opening the Start menu, typing view network connections in the search box,
        and pressing Enter. This brings up the Network Connections dialog box.
        Press the Alt key on the keyboard, which will display the menus in the
        dialog box. Click on the Advanced drop-down menu, and choose Advanced
        Settings, and then click on the Provider Order tab.
[image: The provider order editor]

Figure 7-20. The provider order editor

The WNetAddConnection function can
        also assign a drive letter or device name to a remote resource. When
        called to do so, WNetAddConnection routes the
        call to the appropriate network provider. The provider, in turn,
        creates a symbolic-link object in the object manager’s namespace that
        maps the drive letter being defined to the redirector (that is, the
        remote FSD) for that network.
Figure 7-21 shows the
        Session 0 DosDevices directory corresponding to the LUID of the user
        who performed the drive-letter mapping, which is where connections to
        remote file shares are stored. The symbolic link created by network
        providers relies on MUP to serve as the connection between a network
        path and the corresponding redirector. The figure shows that MUP
        creates a device object named
        \Device\LanmanRedirector, which is itself a
        symbolic link to \Device\MUP (which is not shown in the figure because
        the symbolic link is in the \Device directory), with additional text
        included in the symbolic link’s value indicating to the MUP redirector
        which mini-redirector the drive letter corresponds to. The “\Global??”
        directory shows you the drive letters available to the system
        session—others will be mapped in the session-specific DosDevices
        directory.
Then, when the WNet or other API calls the object manager to
        open a resource on a different network, the object manager uses the
        device object as a jumping-off point into the remote file system. It
        calls an I/O manager parse method associated with the device object to
        locate the redirector FSD that can handle the request. (See Chapter 12
        in Part 2 for more information on file system drivers.)
[image: Resolving a network resource name]

Figure 7-21. Resolving a network resource name


Multiple UNC Provider



The Multiple UNC Provider (MUP,
        %SystemRoot%\System32\Drivers\mup.sys) is a file-system driver that
        exposes remote file systems to Windows. It is a single point where
        file system filter drivers can be layered to filter any and all I/O
        requests made to remote file systems. (Prior to Windows Vista, there
        were many inconsistencies and difficulties regarding filtering remote
        file systems.) MUP receives I/O requests for access to remote file
        systems (via UNC paths or drive letters mapped to them) and determines
        which redirector will handle the request. The term
        redirector is used because it redirects an I/O
        request to a remote system. Before, and optionally after, calling the
        redirector, MUP will call any registered surrogate
        providers that might provide file caching and path
        rewriting.
MUP implements what is known as a prefix
        cache, which is a list of which remote file system paths
        (\\<server name>[\<share name>]) that are handled by each
        redirector. It is possible that multiple redirectors could handle a
        particular prefix, so there is a list in the registry
        (HKLM\System\CurrentControlSet\Control\NetworkProvider\Order\ProviderOrder)
        containing a comma-separated list of the priority order in which MUP
        forwards requests to the redirectors. This list is also used to load
        the providers. Under ProviderOrder, there are two
        subkeys (HwOrder and Order)
        containing identical information in a value named
        ProviderOrder. A typical value is the
        following:
ProviderOrder     REG_SZ     RDPNP,LanmanWorkstation,webClient
Each entry specifies the name of a service in
        HKLM\System\CurrentControlSet\Services, where another subkey named
        NetworkProvider is found. For example, in the key
        HKLM\System\CurrentControlSet\Services\RDPNP\NetworkProvider are the
        following values:
DeviceName      REG_SZ         \Device\RdpDr
DisplayName     REG_EXPAND_SZ     @%systemroot%\system32\drprov.dll,-100
Name                 REG_SZ         Microsoft Terminal Services
ProviderPath      REG_EXPAND_SZ    %SystemRoot%\System32\drprov.dll
The DeviceName value is the name assigned
        to the kernel-mode redirector’s device object.
        DisplayName is the formal name of the provider.
        (This can be either a string or the location of a string in the
        resource section of a DLL, as seen here.) Name is
        the name that will be displayed by net use to
        identify which redirector owns a particular drive.
        ProviderPath specifies the path where the
        provider DLL is located.
Note
Not all redirectors are, or have to be, listed in provider
          order. (Typically, you will see only RDPNP,
          LanmanWorkstation, webclient listed.) The priority of the
          redirectors not listed in the registry follows those that are listed
          in decreasing order and is then based upon the order in which the
          mini-redirector registered with MUP via
          FsRtlRegisterUncProviderEx via
          RxRegisterMinirdr.

The components of a prefix (server name and share name) that are
        claimed by a redirector varies; most redirectors usually claim both
        the server name and the share name of a UNC path (\\<server
        name>\<share name>[\<path>]). For example, for the path
        \\Server\Users\Brian\Documents, a redirector might claim the prefix
        \\Server\Users, which would cause MUP to route all requests containing
        that prefix to that particular redirector, such as
        \\Server\Users\David\Documents\Chapter7.doc; however, a path with the
        prefix \\Server\Backups will have to be resolved by querying the
        redirectors in priority order. If a redirector claims a prefix
        consisting of just a server name (for example, \\Server), MUP sends
        requests for all shares (for example, \\Server\Users, \\Server\WebDAV,
        and so on) on that server to the redirector.
MUP uses the names found in ProviderOrder
        to look up the name of the device implementing the redirector, by
        looking in HKLM\System\CurrentControlSet\Services\<redirector
        name>\NetworkProvider\DeviceName. DeviceName
        is a symbolic link, pointing back to MUP—for example,
        \Device\MUP\;LanmanRedirector. (The semicolon identifies this as a
        “targeted open,” meaning that MUP will not look in the prefix
        cache.)
The relationships between MUP and the other components that are
        part of the remote file system are shown in Figure 7-22.
[image: MPR and UNC architecture]

Figure 7-22. MPR and UNC architecture


Surrogate Providers



Prior to Windows Vista, the caching of remote file
        systems (Offline Files) was implemented inside the SMB
        mini-redirector, and the DFS-N (Distributed File System Namespace)
        client was implemented inside MUP. A unified cache was needed, so the
        remote file system architecture was redesigned for Windows Vista. The
        DFS-N client was moved into a separate driver component known as a
        MUP surrogate provider, and Offline Files became
        a separate driver acting both as a mini-redirector and a surrogate
        provider. Currently, there are two surrogate providers:
	Offline Files (%SystemRoot%\System32\Drivers\csc.sys), which
            determines whether a requested file should be or has been cached
            locally. Offline Files is hardcoded to be the highest priority
            surrogate.

	Distributed File System Client
            (%SystemRoot%\System32\Drivers\dfsc.sys), which determines whether
            the path to a requested file needs to be changed (rewritten) to
            point to another server or share. (The essence of DFS-N is that it
            collects one or more network shares in the same namespace.)
            DFSCDFS is hardcoded to be the second highest priority
            surrogate.



It might appear that having surrogates in the path between MUP
        and the redirectors would cause a performance penalty, but Offline
        Files does not process paths that are not enabled for offline access,
        and after rejecting a path, MUP will not forward Offline Files further
        I/Os directed at the path. Likewise, DFS does not process non-DFS
        paths.
The list of surrogates is hardcoded, so MUP does not support the
        addition of additional surrogates.

Redirector



A network redirector consists of software components installed
        on a system that support access to various types of resources on
        remote systems, using various network file protocols. The types of
        resources a redirector supports depends upon the redirector and the
        capabilities of the protocol system. Virtually all redirectors support
        UNC names, which allows the remote sharing of resources such as files,
        printers, named pipes, and mailslots (although a redirector might opt
        out of supporting pipes and mailslots, while still supporting printers
        and files). All redirectors shipping as part of Windows include the
        following components:
	A DLL loaded by MPR in user mode, to perform
            non-file-related operations such as determining the capabilities
            of the network provider, enumerating remote network resources,
            logging on to a remote network, and mounting remote network
            shares.

	A kernel-mode driver known as a
            mini-redirector that imports the RDBSS
            (Redirected Drive Buffering SubSystem) export driver
            (%SystemRoot%\System32\Drivers\rdbss.sys). The mini-redirector
            services file I/O requests directed at remote systems.



Some redirectors require one or more of the following optional
        components:
	A service process to assist the DLL and possibly store
            sensitive information or information that is global across client
            applications using a particular network or share. For example, the
            Workstation service (running in an SVCHOST process) keeps track of
            drive-letter to \\server\share mappings.

	A network protocol driver that implements the legacy
            Transport Driver Interface (TDI) on its upper edge is required if
            the redirector uses a network protocol not supplied by Windows.
            (In essence, this means anything other than TCP/IP.) Such a
            protocol driver is responsible for implementing communications
            with the remote system.

	A service process to assist the redirector. For example, the
            WebDav redirector forwards file-access operations to the WebClient
            user-mode service, which in turn issues the actual WebDav network
            protocol requests using HTTP APIs.



A redirector presents resources that are attached to
        remote systems as if they were attached to the local system. In
        Windows, there are no special file I/O APIs required to access
        resources on a remote system. When accessing a resource, an
        application generally does not know—nor does it care—whether the
        resource is located on the local system or on a remote system. The
        name “redirector” is used because it redirects file system operations
        to the remote system and returns to the application the responses from
        the remote system.
All redirectors that ship with Windows are implemented using the
        mini-redirector architecture, where protocol-specific code is
        implemented in a mini-redirector driver that imports the RDBSS
        library. RDBSS is implemented like a class driver, and the
        mini-redirectors are akin to port drivers. RDBSS registers with MUP by
        calling FsRtlRegisterUncProviderEx.
When a mini-redirector registers with RDBSS via
        RxRegisterMiniRdr, RDBSS in turn registers with
        MUP by calling FsRtlRegisterUncProviderEx. MUP
        routes requests (IRPs) to RDBSS, which performs processing that is
        common to all remote file systems, and then issues simplified requests
        via callback routines that mini-redirectors linked against it have
        registered. RDBSS provides common functionality such as a data
        structure and locking model, Cache Manager and Memory Manager
        integration, and handling of IRPs. This simplifies the implementation
        of the mini-redirectors, and it vastly reduces the amount of code that
        needs to be written and debugged.
Because RDBSS integrates with Cache Manager, RDBSS
        mini-redirectors might not directly see read and write requests on
        buffered handles (handles opened without
        specifying the FILE_FLAG_NO_BUFFERING flag to the
        CreateFile API); changes are cached by the cache
        manager on the local system until they need to be written back to the
        remote system. This improves response time, and it saves network
        bandwidth by aggregating writes and eliminating duplicate reads. RDBSS
        relies on the mini-redirector to tell it when it is safe to cache data
        for read and/or write. For example, the SMB mini-redirector uses
        opportunistic locks (more commonly known as
        oplocks, which are discussed in Chapter 12 in
        Part 2) to manage caching. An oplock is a cache coherency mechanism
        that allows file-system consumers to dynamically alter their caching
        state for a given file or stream (see Chapter 12 in Part 2 for more
        information about file system streams), while maintaining cache
        coherency between multiple concurrent users of a file. If the file (or
        stream) is not currently opened for read or write by another accessor
        (either locally or remotely), a client can locally cache reads,
        writes, and byte range locks. If the file is open by others but is not
        being written, writes and locks will not be locally cached, but reads
        can still be cached.

Mini-Redirectors



A mini-redirector implements a protocol necessary to contact a
        remote system and access its shared resources. The mini-redirector
        tries to make access to remote resources as transparent as possible to
        the local client application. For example, if there are network
        problems, a redirector might retry a request multiple times before it
        returns an error to the client application.
There are several mini-redirectors included with
        Windows:
	RDPDR (Remote Desktop Protocol Device Redirection), which
            allows access from a Terminal Server system to the client system’s
            files and printers
            (%SystemRoot%\System32\Drivers\rdpdr.sys)

	SMB (Server Message Block), which is the standard remote
            file system used by Windows (also known as CIFS, or Common
            Internet File System) (%SystemRoot%\System32\Drivers\MRxSMB.SYS).
            MRxSMB.SYS will load sub-redirectors, which are covered in the
            next section.

	WebDAV (Web Differencing and Versioning), which enables
            access to files over the HTTP(S) protocol
            (%SystemRoot%\System32\Drivers\MRxDAV.SYS).

	MailSlot (part of MRxSMB.SYS). Mailslots are handled very
            differently from named pipes. The surrogates are not called for
            I/Os sent to a mailslot, and prefix caching is not used. (All
            paths having “mailslot” as the share name are targeted directly at
            the mailslot mini-redirector.) There can be, at most, one mailslot
            mini-redirector, and it is currently reserved for the SMB
            redirector.

	Network File System (NFS) is an optional component that was
            formerly installed with Services For Unix (SFU) and is now an
            optional Windows component (available on all Server editions, but
            only Enterprise and Ultimate editions of Windows client) that can
            be installed using the Programs and Features control panel. (Click
            Turn Windows Features On Or Off, and then select Services For
            NFS.) NFS protocol versions 2 and 3 are supported.



Offline Files, covered in a following section, optionally
        enables disk caching and offline access to files accessed through the
        SMB protocol. Offline Files also registers as a MUP surrogate
        provider.

Server Message Block and Sub-Redirectors



The Server Message Block (SMB) protocol is the primary remote
        file-access protocol used by Windows clients and servers, and dates
        back to the 1980s. SMB version 1.0 (generally referred to as just
        SMB) was designed to operate in a friendly LAN
        environment, where speeds were typically 10 Mb/s and no one was trying
        to steal your data. To accomplish many common tasks required a series
        of synchronous messages between the client and the server. Little
        thought was given to WANs, because WANs were scarce at the time. In
        1996, SMB was submitted to the IETF as the Common Internet File System
        (CIFS). Microsoft documents the CIFS/SMB protocol in the MS-CIFS and
        MS-SMB protocol documents.
The SMB 2.0 protocol was released in Windows Vista and Windows
        Server 2008, and it was a complete redesign of the main remote file
        protocol for Windows. SMB 2.0 provides a number of improvements over
        SMB, such as the following:
	Greatly reduced complexity. The number of opcodes was
            reduced from over 100 to just 19.

	Reduced the chattiness of the protocol
            to make it more suitable for running across WANs, which generally
            have much longer latencies and lower bandwidth than LANs.

	Compound requests allow
            multiple requests to be sent in a single network packet.

	Pipelining requests allow multiple
            requests and data to be sent before the answer to a previous
            request is received (also known as credit-based flow
            control).

	Larger reads and writes.

	Caching of folder and file properties.

	Improved message-signing algorithm (HMAC SHA-256 replaced
            MD5).

	Improved scalability of file sharing.

	Works well with Network Address Translation (NAT).

	Support for symbolic links.



Version 2.1 of the SMB protocol (released with Windows 7 and
        Windows Server 2008/R2) is a minor release (documented in the MS-SMB2
        protocol specification). It adds the following improvements:
	A new opportunistic lock (oplock) leasing model, which
            allows greater file and handle caching opportunities—without
            requiring changes to existing applications

	Support for even larger transmission units (large MTU), from
            a previous maximum of 64 KB to 1 MB (by default, but configurable
            up to 8 MB via the registry).



To maintain backward compatibility with SMB servers, an SMB2
        client uses the existing SMB connection setup mechanisms, and then
        advertises that it supports a higher version of the protocol. The SMB
        mini-redirector contains all the functionality that is common between
        the different versions of the protocol, with a separate sub-redirector
        implementing each variant of the SMB protocol. An SMB2 client
        establishes a connection and sends an SMB negotiate request that
        contains both the supported SMB and SMB2 dialects. If the server
        supports SMB2, it responds with an SMB2 negotiate response, and the
        client hands the connection to the SMB2 sub-redirector. At that point,
        all messages on the connection are SMB2. If the server does not
        support SMB2, it responds with an SMB negotiate response, and the
        client hands the connection to the SMB1 sub-redirector:
	The common portions are implemented by
            %SystemRoot%\System32\Drivers\MRxSMB.sys.

	The SMB 1 protocol is implemented by
            %SystemRoot%\System32\Drivers\MRxSMB10.sys.

	The SMB 2 protocol is implemented by
            %SystemRoot%\System32\Drivers\MRxSMB20.sys.





Distributed File System Namespace



Distributed File System Namespace (DFS-N) is a namespace
      aggregation and availability feature of Windows. As organizations grow,
      the number of file servers tends to increase, and users find it
      increasingly difficult to find the files they need because the files
      might be spread over a number of different servers with completely
      unrelated names. DFS-N allows an administrator to create a new file
      share (also known as a root or
      namespace) that aggregates multiple file shares,
      from the same or different servers, into a single namespace. For
      example, assume the Aura Corporation had the following shares:
      \\Development\Projects, \\Accounting\FY2012, and \\Marketing\CoolStuff.
      These shares could be presented to users through a DFS-N
      namespace \\Aura\Teams containing DFS-N
      links called \\Aura\Teams\\Aura\Development,
      \\Aura\Teams\Accounting, and \\Aura\Teams\Marketing. The redirection of
      a client accessing the path \\Aura\Teams\Marketing to the real share
      path \\Marketing\CoolStuff is invisible to the user. In this example,
      \\Marketing\CoolStuff is the link target of
      \\Aura\Teams\Marketing. Link targets can, in fact, refer to paths below
      the root of a share like \\Marketing\CoolStuff\Presentations.
Other benefits that DFS-N provides are redundancy and
      location-aware redirection. Another major capability of DFS is
      availability, through a feature known as DFS Replication (DFSR).
      Replication provides two benefits: high availability in case of a
      failure, and load balancing. As an organization grows geographically,
      accessing file servers from remote offices with wide area network (WAN)
      connections might be slow and inefficient. An administrator could create
      a replicated version of a file server within the remote office,
      providing high-speed access to the files from the users within the
      remote office. A DFS-N link, such as \\Aura\Teams\Accounting in the
      preceding example, might have multiple link targets
      associated with it—for example, \\AccountingEurope\FY2012 and
      \\AccountingUS\FY2012. In this case, the DFS-N server returns to the
      client an ordered list of available target servers and takes into
      account the location of the client and the target servers (using Active
      Directory site information) when ordering the list so that the client
      can access the closest target first. If access to one link target fails,
      DFS-N tries the next available target, if available. When a DFS-N link
      has multiple target shares, the targets should normally contain the same
      data because the client accessing the namespace will access only one of
      the targets at a time. This can be accomplished using DFS Replication
      (DFS-R), discussed in the next section. A server-side implementation of
      DFS-N consists of a Windows service (%SystemRoot%\System32\Dfssvc.exe)
      and a device driver (%SystemRoot%\System32\Drivers\Dfs.sys). The DFSSVC
      service is responsible for exporting DFS topology-management interfaces
      and maintaining the DFS topology in either the registry (on non–Active
      Directory systems) or Active Directory. The DFS driver performs topology
      lookups when it receives a client request touching a link so that it can
      direct the client to the share where the file it is requesting
      resides.
On the client side, DFS-N support is implemented in a MUP
      surrogate provider driver (%SystemRoot%\System32\Drivers\Dfsc.sys) and
      an MPR/WNet provider implemented in %SystemRoot%\System32\Ntlanman.dll.
      The Distributed File System Client (DFSC) driver is responsible for
      determining if a UNC path is a DFS namespace, and if so, it translates
      the specified path into the name of one or more target shares.
      Communication with DFS-N servers is accomplished using the SMB
      redirector. The DFS-N client is only part of the I/O path when a file or
      directory is being created or opened. Once it returns the name of a target share to
      MUP, DFSC is not involved with subsequent I/O to the file.
The DFS-N protocols are documented in the MS-DFSC and MS-DFSNM
      protocol documents.

Distributed File System Replication



Distributed File System Replication (DFS-R) provides
      bandwidth-efficient, asynchronous, multimaster replication of
      file-system changes between servers. In addition to general-purpose,
      file-system replication (for example, keeping data on multiple DFS-N
      link target shares in sync), DFS-R is also used for replicating a domain
      controller’s \SYSVOL directory, which is where Windows domain
      controllers store logon scripts and Group Policy files. (Group Policy
      permits administrators to define usage and security policies for the
      computers that belong to a domain.) Because DFS-R supports multimaster
      replication, file-system changes can occur on any server, potentially
      simultaneously, and DFS-R will automatically handle conflicts and
      maintain synchronization of the file-system contents.
The fundamental unit of DFS replication is a DFS replicated
      folder, which is a directory tree whose contents will be synchronized
      across multiple servers according to an administratively defined
      schedule and replication topology. Replication schedules allow
      administrators to restrict replication activity to specific windows of
      time or restrict the amount of bandwidth that DFS-R will use.
Replication topologies allow administrators to define the network
      connections between a set of servers (called a replication
      group). Arbitrary topologies are supported, including common
      topologies such as ring, star, or mesh. The replication topology
      configuration is stored in Active Directory. Only directories on NTFS
      volumes can be replicated because DFS-R relies on the NTFS USN journal
      to detect changes to the contents of a replicated folder.
DFS-R uses several technologies to conserve network bandwidth,
      making it well-suited to replication over WANs that might have high
      latency and low bandwidth. Remote Differential Compression (RDC) allows
      DFS-R to identify and replicate only those pieces of a file that have
      changed, rather than the whole file. DFS-R also compresses content
      before sending it to a remote partner, providing additional bandwidth
      savings. On Enterprise or Datacenter SKUs, DFS-R makes use of an
      extended version of RDC called RDC Similarity to provide further
      bandwidth savings; if content is modified in a replicated folder on
      server A, and chunks of the modified content are similar to chunks of
      any file in partner server B’s replicated folder, server B satisfies the
      similar chunks of the update’s content locally from the similar files,
      rather than downloading all of the modified content from server
      A.
New capabilities for DFS-R in Windows Server 2008 R2 include
      support for clustering and true read-only replicas.
DFS-R is implemented as a Windows service
      (%SystemRoot%\System32\DfsrS.exe) that uses authenticated RPC with
      encryption to communicate between instances of itself running on
      different computers. There is also a WMI interface for configuration and
      management of the service, a file system minifilter used to protect
      read-only replicas from modification, and a cluster resource DLL for
      integration with MSCS. The DFS-R protocol is documented in the MS-FRS2
      specification.

Offline Files



Offline Files (also known internally as client-side
      caching, or CSC) transparently caches files from a remote system (a file
      server) on the local machine to make the files available when the local
      machine is not connected to the network. Offline Files caches files for
      remote files accessed over the SMB protocol. Files can be cached by
      users by simply right-clicking on a remote file, folder, or drive and
      selecting Always Available Offline, thus pinning
      the selected files to the cache. Cached items can be viewed in the Sync
      Center control panel. Caching also can be specified administratively
      using Group Policy.
There is a single Offline Files cache on the system, which is
      shared by all users of the system. All cached files are stored in an
      ACL-protected directory, which by default is %SystemRoot%\CSC. If you
      choose, you can encrypt the files in the Offline Files cache (accessed
      by going to Control Panel, Sync Center, and then clicking Manage Offline
      Files, clicking on the Encryption tab, and clicking the Encrypt button).
      Access to the cache is permitted only by using Offline File tools and
      the IOfflineFilesXxx COM APIs. The easiest way to examine the contents
      of the cache is to use the Sync Center control panel interface (click
      Manage Offline Files, and then click the View Your Offline Files
      button).
Offline Files understands two types of objects:
	Files. Includes files, folders, and symbolic links. Caching is not
            done at the NTFS level, so not all file NTFS attributes are cached
            or are cacheable. Cacheable attributes include the standard Win32
            file attributes (metadata), such as the name,
            ACL, and the contents—only a file’s (unnamed) data stream will be
            cached.

	Scope. A scope is the portion of a namespace that corresponds to a
            physical share. In a DFS namespace, the root of a scope is the
            object that is pointed to by a DFS link, which can contain
            additional DFS links to other scopes. If DFS is not being used, a
            scope and a share are the same thing.



Offline Files does not support complete NTFS semantics for cached
      files and has the following limitations:
	Offline Files does not cache alternate data streams, which are
          therefore not available offline. When online, access to alternate
          data streams works because I/O requests for streams go directly to
          the server.

	Offline Files does not cache Extended Attributes (EAs). An
          implication of this is that if a file containing EAs is cached and
          the cached version is modified while the server is offline, any EAs
          on the server are deleted when changes are written back to the
          server.



Offline Files consists of the following components, as shown in
      Figure 7-23:
	A user-mode agent (%SystemRoot%\System32\cscsvc.dll) running
          as a service in an SVCHOST process. This service is primarily
          concerned with maintaining synchronization between the cache and
          remote file systems. It also implements the COM interfaces used to
          interact with the Offline Files cache.

	A remote file system driver
          (%SystemRoot%\System32\Drivers\csc.sys) that acts as both a MUP
          surrogate provider and a mini-redirector. This driver is responsible
          for controlling when I/O requests are sent to the cache or to the
          remote file system. The driver also implements the local cache,
          updating the cached data as appropriate based on the I/O requests
          seen.

	An Explorer extension DLL (%SystemRoot%\System32\cscui.dll)
          for selecting which files, folders, or drives to pin in the Offline
          Files cache, and for displaying icon overlays to identify offline
          (cached) files. CSCUI links against
          %SystemRoot%\System32\cscobj.dll, which provides the interface to
          the Offline Files service.

	A DLL (%SystemRoot%\System32\cscapi.dll) containing publicly
          available Win32 APIs for interacting with the Offline Files from
          applications.

	An in-process COM object (%SystemRoot%\System32\cscobj.dll)
          used by application clients of Offline Files COM APIs.



[image: Offline Files architecture]

Figure 7-23. Offline Files architecture

Caching Modes



Offline Files has five caching modes. The mode for an
        object is dependent upon the object’s connection status, which is
        determined by whether or not the local system has a network connection
        to the file server.
Online



This is the default mode for objects cached by Offline Files.
          In this mode, the server is available. The file system metadata
          operations and write operations flow to the server, and the cache
          state is updated as required. Read operations are serviced from the
          cache. When working online, Offline Files attempt to cache data only
          if the SMB client has been granted at least read-caching privileges
          from the file server.

Offline (Slow Connection)



To isolate the user from fluctuations in network performance,
          Offline Files transition into Offline (Slow Connection) mode when
          the network performance meets the configured slow-link latency or
          bandwidth thresholds. In Windows 7, a default slow-link latency
          threshold is configured at 80 milliseconds (ms). The latency and
          bandwidth thresholds can be controlled via the Group Policy editor
          (%SystemRoot%\gpedit.msc) via the Configure Slow-Link Mode
          policy.
When working in this mode, all file-system operations are
          serviced by the Offline Files cache. The data is synchronized back
          to the server every six hours by default, but this synchronization
          frequency can be controlled through Group Policy via the Configure
          Background Sync policy.
The Offline Files Service periodically checks the network
          performance of the shares in the Offline Files cache. If the network
          latency improves to be less than half the configured slow-link
          latency threshold, the user will transition back to working
          online.
The slow-link behavior can be controlled via the Group Policy
          editor (%SystemRoot%\gpedit.msc) as shown in Figure 7-24.
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Figure 7-24. Offline Files Group Policy settings


Offline (Working Offline)



The user can force the client to work offline by
          clicking the Work Offline button in Explorer. When running in this
          mode, all file-system operations are satisfied from the cache.
          Periodic background synchronization of the data can be enabled in
          this mode through the Configure Background Sync policy, but by
          default they are not enabled. If the user wants to work online
          again, he must click the Work Online button in Explorer.

Offline (Not Connected)



A cached object is in Offline (Not Connected) mode when the
          server is not accessible. The transition to offline is transparently
          satisfied through the Offline Files cache, without the application
          knowing. When the network connection to the server is
          re-established, any changes written to the file are synchronized
          back to the server by the Offline Files agent. If a file is modified
          on both the client and the remote system while the file was offline,
          the conflict must be resolved by the user through Sync
          Center.

Offline (Need to Sync)



When a user transitions back online after making changes to
          the version of the file in the local cache, the status of this file
          will be Offline (Need to Sync) until the changes are synchronized
          back to the server. Offline Files keep the user working offline for
          the affected files until that synchronization is complete to ensure
          that the user sees a consistent view of the files, include the
          changes made while working offline.


Ghosts



When files are selected to be available offline, they
        must be copied from the server to the client. Until the transfer is
        complete, not all the files will be visible on the client. This can
        cause confusion for the user if the server drops offline and the user
        tries to access a file before it is in the cache. To address this
        case, Offline Files creates ghosts of the files
        and directories on the server within the cache as soon as caching is
        enabled. The ghosts are markers for files and directories that have
        not been copied and are unavailable in the cache. Explorer displays
        ghosted files with an overlay on the file’s icon. As the cache is
        filled, the ghost entries eventually disappear. If the user tries to
        access a ghosted file and the server is online, the file is copied
        immediately to the cache and the ghost overlay is removed.
When a subdirectory of a share is pinned into the Offline Files
        cache, ghosts are also used to provide the user context to the
        surrounding namespace that is not cached. When offline, the sibling
        files and directories appear in a ghosted state so that the user does
        not think that this other content somehow disappeared. When files and
        directories are ghosted for this purpose, they are neither cached by
        Offline Files nor are they available while working offline, unless
        they are explicitly pinned in the Offline Files cache.

Data Security



The goal of Offline Files is to provide the same file-access
        experience for remote files that the user experience for local files.
        To achieve that end, Offline Files caches the users and their
        effective access for each file and directory in the cache. This
        information is used by the Offline Files driver to enforce the
        appropriate access on the objects in the cache. Encrypted files using
        EFS on the server are also encrypted in the cache.
Offline Files caches access for a given user as the data is
        accessed or synchronized on behalf of that user. For example, if two
        users, Able and Baker, share a laptop, and user Able marks a file on
        the server to be available offline, the file is copied to the cache
        and only Able’s access is cached. If the server drops offline, user
        Baker would not be able to access the file in the cache; however, when
        the server is online again, and Baker tries to access the file,
        Offline Files updates the cache to reflect user Baker’s access,
        allowing both users to access the file when working offline.
Files protected with EFS remain protected but are encrypted in
        the security context of the first user to bring the data into the
        cache. When working offline, only this user will be able to access the
        data in the cache.

Cache Structure



By default, the root directory for the Offline Files cache is
        located in %SystemRoot%\CSC and is protected with a DACL that grants
        Administrators full control of the directory and everyone else read,
        Read & Execute, and List Folder Contents access. As shown in Figure 7-25, beneath the
        root directory is a subdirectory with a name equal to the current
        version of the database schema (currently, 2.0.6) and a security
        descriptor specifying an owner SID of S-1-5-12, which is used to
        indicate it is owned by restricted code and
        cannot be accessed by anyone other than the Offline Files service.
        This security descriptor is inherited by all files and subdirectories
        beneath the schema version directory.
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Figure 7-25. Default Offline Files directory structure

In the schema version directory are two files and two
        directories. The files consist of the Priority Queue (pq) and SID Map
        (sm) databases. The Priority Queue is a database that tracks the usage
        of the files within the cache and orders them from most recently used
        to least recently used. The Offline Files agent threads walk the queue
        tail to head when pushing files out of the cache when the cache’s disk
        quota has been exceeded. Within the Offline Files cache, an internal
        user ID is used to represent a user when storing that user’s access.
        The SID Map is used to map these internal user IDs to SIDs. This
        becomes important when the server is offline and Offline Files must
        validate the user’s access itself.
The namespace directory is the root of the
        cache and contains a directory for each server that Offline Files is
        caching. The temp directory is for encryption and
        is also used as a temporary location for files that are removed from
        the namespace before they are deleted. The temp directory is used as a
        scratch area by Offline Files.
For every file in the Offline Files cache, Offline Files adds a
        sparse NTFS alternate data stream named
        CscBitmapStream, which contains a bitmap
        indicating which pages of the file have been modified while the file
        was “offline” (server not reachable). Each bit in the bitmap
        represents a 4-KB page within the file. This bitmap is not created
        until the first offline write to a file. Writes that extend the file
        are not included in the bitmap. If the file is truncated while
        offline, the bitmap is also truncated to match the new length of the
        file. When the server is next online, only the changed pages are
        written to the server.


BranchCache



BranchCache is a generalized content-caching mechanism
      designed to reduce network bandwidth, especially over WANs. The name
      BranchCache comes from the concept of branch
      offices within a company connecting to the company’s centralized servers
      via WAN links, which are typically hundreds of times slower than LAN
      links and caching content used by computers in the branch office within
      that branch office. Moving the content cache to the branch office
      drastically reduces the time to access the content because the data does
      not have to traverse the WAN.
Unlike Offline Files, which caches only files, BranchCache caches
      content, which is anything that can be identified
      by a URL, such as files, web pages, an HTTP video stream, or even a blob
      accessed from a database or cloud service.
BranchCache does not access the files in the CSC cache, because
      CSC is a client of BranchCache. Instead, Offline Files uses BranchCache
      to populate its own cache.
A variety of protocols make use of BranchCache, including the
      following ones:
	Server Message Block
            (SMB). Used to access files on file servers

	HTTP(S). Web pages, video streams, and other content identified by a
            URL

	Background Intelligent Transfer
            Service (BITS). Used to transfer files, and runs over HTTP/TLS 1.1



Figure 7-26 depicts the
      BranchCache architecture.
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Figure 7-26. BranchCache architecture

BranchCache’s operation is transparent to the applications
      accessing the content being cached, as shown in Figure 7-26. When BranchCache is enabled on a
      client, a request made by that client to a content server carries
      headers/metadata (the exact mechanism depends upon the protocol used) to
      let the remote content server know that the client has BranchCache
      enabled. In this case, the content server returns content information
      (CI) describing that content, rather than the requested content. The CI
      contains hashes of all the segments and blocks in which the content is
      chunked. (This is covered in more detail later.) The client uses the CI
      for retrieving part, or all, of the content from the local BranchCache.
      If any part of the content is not available locally, the client goes
      back to the remote content server to retrieve the data that was not
      present in the local BranchCache and, once the data is retrieved, offers
      the missing data to the local BranchCache so that the same data can be
      served to other clients in the future.
BranchCache operates in two caching modes, as shown in
      Figure 7-27:
	Hosted Cache. A single server in a branch office (running Windows Server
            2008/R2, or later), with the BranchCache feature enabled, contains
            the entire content cache for all BranchCache-enabled systems
            within that branch office.

	Distributed
            Cache. Instead of a hosted cache server caching content for the
            remote office, the clients within the remote office cache the
            content files themselves. The cache is spread across all the
            clients on the same subnet. There is no effort to evenly
            distribute the contents of the cache among peers within a branch
            office. In general, until the maximum local cache size is reached,
            each client has a copy of all the content it has accessed
            (resulting in content being duplicated throughout the distributed
            cache). This is desirable because it adds redundancy and some
            resiliency to the cache, especially when clients join and leave
            the branch office network frequently, as is often the case when
            the users are working on laptops. The distributed cache is
            implemented using peer-to-peer networking, using the Web Services
            Discovery (WS-D) multicast protocol to locate which client has the
            content in its cache, with a 300-millisecond timeout.



[image: Types of BranchCache caching]

Figure 7-27. Types of BranchCache caching

BranchCache is fully compatible with end-to-end encryption, such
      as IPsec. Just like with CSC, Windows’ existing security mechanisms are
      used to ensure that access to cached content operates the same way that
      it would if the content were not cached.
BranchCache is similar to Offline Files, but it differs in
      several important ways. The most important of which is that content in
      the BranchCache is not available if the WAN is down. This is because the
      content is identified by a hash list generated and stored on the server,
      which the client uses to locate the cached content within the
      BranchCache (distributed or hosted). Some BranchCache features the
      following behaviors:
	Data transfer uses AES encryption.

	For content that is not file-based, BranchCache caches only
          content that is larger than 64 KB. (This can be changed by editing
          the registry value
          HKLM\System\CurrentControlSet\Services\PeerDistKM\Parameters\MinContentLength
          on the server.)



Caching Modes



BranchCache maintains two different local caches on each
        BranchCache-enabled system (which can be BranchCache content servers
        on one side of the WAN link, and BranchCache clients and BranchCache
        hosted cache servers on other side):
	The publication cache stores content
            information metadata for content published using the BranchCache
            Server APIs (PeerDistServerXxx). The content
            information structure contains hashes of the various segments and
            blocks in which BranchCache breaks up the content into chunks,
            along with the secret needed to generate public and private
            content identifiers and the encryption key.

	Publishing is usually thought of as a server-side operation,
            though any BranchCache client can publish content. With regard to
            publishing, BranchCache offers two different approaches to its
            client applications/protocols for generating/managing/storing
            BranchCache content information metadata:
	An application and/or protocol that uses BranchCache
                acceleration can ask BranchCache to store content information
                metadata on its behalf (in the BranchCache publication cache),
                allowing BranchCache to manage the lifetime of that metadata
                according to rules, timelines, and limits shared across
                multiple applications using BranchCache. This is achieved by
                publishing via the PeerDistServerXxx
                APIs, and it is what the HTTP-BranchCache and BITS-BranchCache
                integrations do.

	Alternatively, an application/protocol that wants to use
                BranchCache acceleration can ask BranchCache to generate only
                content information metadata without storing it, and instead
                simply return the metadata to the application or protocols. In
                this case, the application or protocol has to implement its
                own way to store or manage that metadata. This is what the
                SMB-BranchCache integrations does.



In both cases, the protocol integrated with BranchCache or
            the application using BranchCache directly is responsible for
            transporting that content information metadata through the WAN
            link from the publishing content server to the clients in the
            remote branches. BranchCache does not have, or control, a data
            channel crossing the WAN link. The transport of content
            information metadata is intentionally left to the protocol or
            application using BranchCache acceleration, so that the metadata can be
            transported with the same level of security, authentication, and
            authorization that would have been used for retrieving the actual
            content when BranchCache is not used. This is consistent with the
            fact that, from a security standpoint, owning a copy of the
            BranchCache content information for a given content is equivalent
            to owning the entire content and therefore being authorized to
            retrieve a copy of it from other BranchCache entities (clients,
            hosted cache servers, or third-party implementations).
The publication cache does not store any actual data of the
            published content; it stores only content information metadata.
            Publications tend to last for long periods of time, though the
            actual length of time is determined by the application that
            publishes the content. By default, the publication cache is
            constrained to consume no more than one percent of the volume on
            which it is located, which is specified by
            %SystemRoot%\ServiceProfiles\NetworkService\AppData\Local\PeerDistPub.
            The size and location of the publication cache can be changed
            using NetSh:
	netsh branchcache set publicationcache
                directory=C:\PublicationCacheFolder

	netsh branchcache set publicationcachesize size=20
                percent=TRUE




	The republication cache contains both
            metadata (but no secrets) and actual data (chunked in segments and
            blocks) for the BranchCache content retrieved by the local
            BranchCache client. It is stored with the purpose of making those
            chunks of content available to other BranchCache clients.
            Republished content is stored for up to 28 days, but it can be
            flushed out earlier if the republication cache has reached its
            limit and space is needed for newer content to be republished. By
            default, the republication cache is constrained to consume no more
            than five percent of the volume on which it is located, which is
            by specified by
            %SystemRoot%\ServiceProfiles\NetworkService\AppData\Local\PeerDistRepub.
            The location and the size of the republication cache can be
            changed using NetSh:
	netsh branchcache set localcache
                directory=C:\BranchCache\Localcache

	netsh branchcache set localcache size=20
                percent=TRUE






BranchCache attempts to persist the republication cache across
        system reboots through the use of an index file that contains the
        database of segment descriptors. When the system reboots, BranchCache
        validates the general integrity of the republication cache by checking
        that it was properly closed. If the republication cache fails this
        consistency check, it is discarded. The publication cache is not
        persisted across reboots. The private SMB-BranchCache publication
        cache needs no explicit persistence; persistence comes for free, as a
        result of the SMB-BranchCache integration (which was covered
        previously) and the fact that with the SMB all published content is
        actual files. The hashes are validated before access to the files in
        the cache is allowed.
Configuration



BranchCache can be configured using the Local Security Group
          Policy editor as shown in Figure 7-28, using the
          network shell (NetSh) as shown in Figure 7-29, or as part of
          Group Policy pushed by an administrator (within a domain).
[image: Configuring BranchCache using the Group Policy editor]

Figure 7-28. Configuring BranchCache using the Group Policy
            editor

[image: Configuring BranchCache using the network shell]

Figure 7-29. Configuring BranchCache using the network shell

	BranchCache Implementationservice in
              %SystemRoot%\PeerDistSvc.dll. This service starts when the
              BranchCache is enabled on both clients and servers, and it
              interacts with the kernel-mode components (drivers).

	HTTP extension driver in
              %SystemRoot%\System32\Drivers\PeerDistKM.sys. This driver
              registers with the Network Module Registrar (NMR) as a client of
              the http.sys driver and examines all HTTP packets going into and
              out of the system. It adds files to the cache and retrieves
              cached content information for published content from the
              BranchCache service, rather than sending the request to the web
              server.

	BranchCache APIs
              (PeerDistXxx) are exported by
              %SystemRoot%\System32\PeerDist.dll, which uses LRPC/ALPC to
              communicate with the BranchCache service.

	The BranchCache HTTP transport in
              %SystemRoot%\System32\PeerDistHttpTrans.dll implements the
              transport on top of which the Peer Content Caching and
              Retrieval: Retrieval Protocol [MS-PCCRR] exchanges data between
              BranchCache clients and/or hosted cache servers. Each MS-PCCRR
              message is encapsulated in a simple transport message, which in
              turn, is sent over an HTTP request.

	The Web Services Discovery Provider in
              %SystemRoot%\System32\PeerDistWSDDiscoProv.dll implements the
              WS-D protocol to discover which clients on the LAN are caching a
              particular file (or part of a file).

	The BranchCache Network Shell Helper in
              %SystemRoot%\System32\PeerDistSh.dll is an extension to the
              Network Shell (%SystemRoot%\System32\Netsh.exe) application that
              provides users with a means of monitoring and configuring the
              BranchCache service. Network Shell helper DLLs are installed by
              adding a string value to
              HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\NetSh, which provides the
              Network Shell with the path to the helper DLL.

	A standalone variant of all the BranchCache APIs are
              implemented in
              %SystemRoot%\System32\PeerDistHashPeerDistHash.dll (only present
              on Windows Server systems), which contains all of the
              BranchCache APIs and functionality and does not require the use
              of the BranchCache service. This component is designed for use
              by other Windows features that are tightly integrated with
              BranchCache, such as the SMB Groveler, which generates the
              hashes on the server.

	Hash groveler service in %SystemRoot%\System32\smbhash.exe
              (only on Windows Server systems). The groveler runs on the file
              or web server and generates hashes when clients request a hash
              list. The groveler monitors a given namespace or share and
              ensures that the BranchCache hashes are updated for all files
              within that namespace. All groveler I/O runs at low I/O priority
              so as not to interfere with the normal operation of the
              system.



BranchCache uses the following protocols, which are documented
          at www.microsoft.com:
Peer Content Caching and Retrieval: Content Identification, as
          defined in [MS-PCCRC], defines the content information structures
          previously described. Peer Content Caching and Retrieval: Discovery
          Protocol, as defined in [MS-PCCRD], specifies a multicast to
          discover and locate services based on the Web Services Dynamic
          Discovery (WS-Discovery) protocol [WS-Discovery]. There are two
          modes of operations in WS-Discovery: client-initiated probes and
          service-initiated announcements. Both are sent through IP multicast
          to a predefined group. The primary role in the Content Caching and
          Retrieval System is Content Discovery.
	Peer Content Caching and Retrieval: Retrieval Protocol, as
              defined in [MS-PCCRR], specifies the messages that are necessary
              for querying peer-role servers or a hosted cache server for the
              availability of certain content, and for retrieving the content.
              The primary role in the Content Caching and Retrieval System is
              Content Retrieval.

	Peer Content Caching and Retrieval: Hosted Cache
              Protocol, as defined in [MS-PCHC], specifies an HTTPS-based
              mechanism for clients to notify a hosted cache server regarding
              the availability of content and for a hosted cache server to
              indicate interest in the content. The primary role in the
              Content Caching and Retrieval System is Content
              Notification.

	Peer Content Caching and Retrieval: Hypertext Transfer
              Protocol (HTTP) Extensions, as defined in [MS-PCCRTP], specifies
              a content encoding known as PeerDist that
              is used by an HTTP/1.1 client and an HTTP/1.1 server to
              communicate content to each other. The primary role in the
              Content Caching and Retrieval System is Metadata (Hash)
              Retrieval.

	Server Message Block (SMB) Version 2.1 Protocol, as
              defined in [MS-SMB2]. Version 2.1 of this protocol has
              enhancements for the detection of content caching-enabled shares
              and retrieval of metadata related to content caching. The
              primary role in the Content Caching and Retrieval System is
              Metadata (Hash) Retrieval.



Supporting SMB-BranchCache integration requires the following
          changes on both the clients and servers. On the client, the
          functionality of the existing client-side caching (CSC) components
          were extended. On the server, the SMB Server Driver (srv2.sys) was
          extended to support hash list retrieval from the server, and a new
          service was added, the SMB Hash Generation Service (also known as
          the Groveler), to manage the generation, updating, and deletion of
          hashes for content on an SMB share.


BranchCache Optimized Application Retrieval: SMB
        Sequence



The following sequence describes how content that is cached by
        BranchCache is delivered to an application without requiring any
        changes to the application, as shown in Figure 7-30. This sequence refers to the
        case when the channel/protocol of choice for that application is
        SMB—for example, the application opens the file from the remote share
        with CreateFile (or something that calls
        CreateFile, such as fopen)
        and reads from the file. If the application decides to retrieve the
        data via an HTTP request (backed by either
        WinHTTP or WinInet), the
        sequence is very different, but it is still a sequence completely
        transparent to the application.
BranchCache and SMB are integrated through the Offline Files
        component in Windows. The Offline Files service opportunistically
        tries to prefetch files accessed via SMB to optimize network usage and
        user experience on the client side. The offline files driver might
        temporarily delay the application’s read to give the prefetch from
        BranchCache an opportunity to stay ahead of the application’s read
        position. This delay is calculated based on the measured latency to
        the file server.
Data retrieval begins with an application reading data from a
        file on a remote SMB share. When Offline Files is enabled on the
        client and BranchCache is not enabled, the application’s read request
        flow through the offline files driver to the SMB server. When both
        offline files and BranchCache are enabled on the client, the following
        steps occur:
	The offline files driver intercepts the read I/O request and
            determines whether the following specific conditions have been met
            to initiate prefetching the file:
	The data is not already stored in the offline files
                cache. If the data is already present, the application’s read
                will be satisfied by this data without making any data
                requests to the file server.

	The latency to the server (as observed by the client so
                far) is above the configured threshold.

	BranchCache hash generation is enabled on the file
                share.

	The target file size is at least 64 KB.

	The read is beyond the first 64 KB of the file.




	If the preceding conditions are met, the offline files
            driver notifies the offline files service to start prefetching the
            file.

	The offline files service then retrieves the content
            information from the file server. If the server has the up-to-date
            content information for the specified file, it returns it to the
            client. If there is no content information for the specified file
            or if it is out of date, the SMB hash-generation service on the
            file server will be requested to generate new content information
            for this file, and no content information is returned to the
            client, causing offline files to skip BranchCache retrieval for
            this file.

	If content information is retrieved from the file server,
            the offline files service then uses that information to attempt to
            retrieve data from BranchCache.

	BranchCache attempts to retrieve the data either from peers
            or the hosted cache (depending on the configuration). If data is
            found, it is returned to the offline files service; otherwise, an
            error is returned.

	If data is found in BranchCache, the data is written to the
            offline files cache and the prefetch thread continues to attempt
            to retrieve data from BranchCache until it has retrieved up to 8
            MB of data or it fails to retrieve data.

	When the application’s read operation is allowed to proceed,
            it attempts to read the data from the offline files cache, which
            is prepopulated by data from BranchCache if the prefetch thread
            successfully retrieved data. Otherwise, the application’s read is
            allowed to flow to the server to retrieve data. Data retrieved
            from the file server is then cached in the offline files cache for
            later publication to BranchCache.

	When the Offline Files Service is requested to prefetch data
            from BranchCache, it also attempts to publish any data to
            BranchCache for the file from the offline files cache. File data
            is stored in the offline files cache until the offline files cache
            needs to reclaim space for newer files. The same data is also
            stored in BranchCache’s republication cache so that it can be
            shared with other BranchCache clients and across different
            protocols/applications integrated with BranchCache.



If the client accesses the same content again (after
        closing the file and opening it again) and the content has not been
        changed on the server, the application will be able to retrieve the
        data from the Offline Files cache without doing the BranchCache
        lookup. This is called transparent
        caching.
If the requested data cannot be found through BranchCache, once
        it is retrieved from the SMB server it will be republished to the
        BranchCache for access by other clients. (These steps are not shown in
        Figure 7-30.)
[image: BranchCache request flows]

Figure 7-30. BranchCache request flows


BranchCache Optimized Application Retrieval: HTTP
        Sequence



The following sequence describes how content that is cached by
        BranchCache is delivered to an application without requiring any
        changes to the application. This sequence covers the case when the
        channel/protocol of choice for that application is HTTP, for example
        the application retrieves the content via an HTTP request based on
        either WinInet or WinHTTP APIs.
BranchCache and HTTP are tightly integrated, both in terms of
        HTTP.sys on the server side and WinInet and WinHTTP on the client
        side. In contrast with the SMB-BranchCache integration, when
        BranchCache is enabled on both client and server, an application’s
        HTTP requests are always stalled, waiting for BranchCache retrievals.
        The HTTP-BranchCache integration is focuses on minimizing the usage of
        the WAN’s bandwidth (even when the WAN happens to be very fast and has
        very low latency), and all the data that can be retrieved via
        BranchCache will be transferred via BranchCache.
	Data retrieval begins with an application issuing an HTTP
            Request.

	When BranchCache is enabled on the client, the HTTP client
            stack (either WinInet or WinHTTP) adds headers to the request
            indicating that the client is capable of understanding the
            PeerDist HTTP encoding (as defined in [MS-PCCRTP]).

	The HTTP client stack sends the request to the remote
            content server, typically across the WAN link.

	The kernel-mode HTTP driver (HTTP.sys) receives the request
            on the content server. If BranchCache is enabled on that server,
            HTTP.sys forwards a copy of the request to the BranchCache HTTP
            extension driver (PeerDistKM.sys), which keeps track of the
            request and retrieves content information for that content
            (identified by its URL and content tags) from the BranchCache
            service.

	The kernel-mode HTTP driver delivers the HTTP request to the
            associated web server in user mode (typically, IIS or a web
            service) and waits for a response.

	The HTTP server authenticates and authorizes the client, it
            generates the response accordingly, and it starts streaming the
            response down to HTTP.sys.

	Because BranchCache is enabled, HTTP.sys redirects the
            response through PeerDistKM.sys.

	If the content information for that HTTP content is not
            available (or not yet available) or if the content tags do not
            match, the following steps occur:
	PeerDistKM.sys sends a copy of the response stream to
                the BranchCache service for publication so that the next
                request for the same URL will find the content
                information.

	It allows the response stream to go back to HTTP.sys
                unchanged.

	HTTP.sys sends out the response with actual data in it
                and no BranchCache metadata.




	If, instead, the content information for that HTTP content
            is available and, based on content tags, it is found to be up to
            date with the content returned, the following steps occur:
	PeerDistKM.sys replaces the body of the response with
                the content information describing it in BranchCache
                terms.

	It modifies the response headers adding that the
                response is now PeerDist-encoded.

	It returns the modified (and, in general, much shorter)
                response stream to HTTP.sys.

	HTTP.sys sends out the modified response, containing
                only BranchCache content information metadata, but not any
                actual content data.




	The response is received on the client side. If the response
            contains BranchCache content information, the HTTP client stack
            passes that metadata to the BranchCache service, and it starts serving the first application read for the
            actual contents of that response by asking BranchCache to retrieve
            the content data associated with the size of that first
            read.

	BranchCache retrieves that data from the local republication
            cache (if available), or it retrieves a superset including the
            requested data either from other BranchCache clients in the LAN or
            from the hosted cache server (depending on the
            configuration).

	If any of the requested data is missing, BranchCache signals
            to the HTTP stack the range of missing data, and the HTTP stack
            issues a range request back to the remote server for the missing
            data (or a superset including it).

	Once all the data is reassembled for the specific
            application read, it is returned to the application in a way
            completely transparent to the application.

	The last three steps are repeated until all the
            application’s reads on the HTTP response in question are
            completed.





Name Resolution



Name resolution is the process by which a character-based name,
      such as www.microsoft.com
      or Mycomputer, is translated into a numeric address, such as
      192.168.1.1, that the network protocol stack can recognize. This section
      describes the three TCP/IP-related name resolution protocols provided by
      Windows: Domain Name System (DNS), Windows Internet Name Service (WINS),
      and Peer Name Resolution Protocol (PNRP).
Domain Name System



Domain Name System (DNS) is the standard (RFC 1035, et al.) by
        which Internet names (such as www.microsoft.com)
        are translated to their corresponding IP addresses. A network
        application that wants to resolve a DNS name to an IP address sends a
        DNS lookup request using the UDP/IP protocol (TCP/IP is used for
        requests whose response size exceeds 512 bytes) to a DNS server. DNS
        servers implement a distributed database of name/IP address pairs that
        are used to perform translations, and each server maintains the
        translations for a particular zone. Describing
        the details of DNS is outside the scope of this book, but DNS is the
        foundation of naming in Windows and so it is the primary Windows name
        resolution protocol.
The Windows DNS server is implemented as a Windows service
        (%SystemRoot%\System32\Dns.exe) that is included in server versions of
        Windows. Standard DNS server implementation relies on a text file as
        the translation database, but the Windows DNS server can be configured
        to store zone information in Active Directory.

Peer Name Resolution Protocol



The Peer Name Resolution Protocol
        (PNRP) is a distributed peer-to-peer protocol that allows
        for dynamic name resolution and publication exclusively across IPv6
        networks. It allows Internet-connected devices to publish
        peer names and their associated IPv6 address, as
        well as optional information. Other devices will then resolve the peer
        name, retrieve the IPv6 address, and establish a connection.
PNRP offers significant advantages over DNS, mainly by being
        distributed, which means that it is essentially serverless (other than
        for early bootstrapping), can scale to potentially millions of names,
        and is fault tolerant and bottleneck free. Because it includes secure
        name publication services, changes to name records can be performed
        from any system. DNS generally requires contacting a DNS server
        administrator to perform updates. PNRP name updates also occur in real
        time, making it appropriate for highly mobile devices, whereas DNS
        caches results. Finally, PNRP allows for naming more than just
        computers and services by allowing extended information to be
        published with name records. The specification for the Peer Name
        Resolution Protocol [MS-PNRP] can be found at www.microsoft.com.
Windows exposes PNRP via a PNRP API for applications and
        services, as well as by extending the getaddrinfo
        Winsock API described earlier in the chapter to perform resolution of
        PNRP IDs (described next) when an address includes the reserved
        .pnrp.net domain suffix.
PNRP peer names (also called P2P IDs) are
        made up of two components:
	Authority. For secure clients (which have their
              name records signed by a certifying authority), the authority is
              identified by a SHA-1 hash of an associated public key, and for
              unsecured clients, it is zero. If a client
              is secure, PNRP validates the name record before publishing
              it.

	Classifier. The classifier uses a simple string to identify a service
              provided by a peer, which allows multiple services to be
              provided by the same device.



To create a PNRP ID, PNRP hashes the P2P ID and combines it with
        a unique 128-bit ID called the service location,
        as shown in Figure 7-31. The service
        location identifies different instances of the same P2P ID in the same
        cloud. (PNRP uses two clouds: a global
        cloud, which corresponds to all IPv6 addresses on the
        Internet, and the link-local cloud, which
        corresponds to IPv6 addresses with the fe80::/10
        prefix and is analogous to an IPv4 subnet.)
[image: PNRP ID generation]

Figure 7-31. PNRP ID generation

PNRP Resolution and Publication



PNRP name resolution occurs in two phases:
	Endpoint
                determination. In this phase, the requesting peer determines the IPv6
                address associated with the peer responsible for publishing
                the PNRP ID of the desired service.

	PNRP ID
                resolution. In this phase, once the requesting peer has located and
                confirmed the availability of the peer associated with the
                IPv6 address, it sends a PNRP request message for the PNRP ID
                of the service being requested. The peer providing the service
                replies to confirm the PNRP ID and can supply a comment and up
                to 4 KB of additional data, such as context information
                related to the service.



During the first phase, PNRP iterates over nodes while
          locating the publishing node, such that the node performing name
          resolution will be responsible for contacting nodes that are
          successively closer to the desired PNRP ID. Each iteration works as
          follows: Once a peer receives a request message, it performs a
          lookup in its cache for the requested PNRP ID. If a match is found,
          the request message is sent directly; otherwise, it is sent to the
          next closest PNRP ID (by seeing how much of the ID matches).
When a node receives a request message for which it cannot
          find a PNRP ID, it checks the distance of any other IDs in the cache
          to the target ID. If it finds a node that is closer, the requested
          node sends a reply to the requesting node, where the reply contains
          the IPv6 address of the peer that most closely matches the target
          PNRP ID. The requesting node can then use the IPv6 address to send
          another query to that address’ node. If no node is closer, the
          requesting node is notified, and that node sends the request to the
          next closest node. Assuming PNRP IDs of 200, 350, 450, 500, and 800,
          Figure 7-32 depicts a
          possible endpoint determination phase for an example in which peer A
          is trying to find the endpoint for PNRP 800 (peer E).
To publish its PNRP ID(s), a peer first sends PNRP publication
          messages to its closest neighbors (entries in its cache that have
          IDs that are in the lowest levels) to seed their caches. It then
          randomly chooses nodes in the cloud that are not neighbors and sends
          them PNRP name resolution requests for its own PNRP ID. Through a
          mechanism described earlier, the endpoint determination phase
          results in the seeding of the PNRP ID across the caches of the
          random nodes that were chosen in the cloud.
[image: Example of PNRP name resolution]

Figure 7-32. Example of PNRP name resolution




Location and Topology



Today, networked computers often move between networks
      that require different configuration settings—for example, a corporate
      LAN and a home-based wireless network. Windows includes the Network
      Location Awareness (NLA) service to enable the dynamic configuration of
      network applications and settings based on location, and Link-Layer
      Topology Discovery (LLTD) to enable the intelligent discovery and
      mapping of networked devices.
Network Location Awareness



The Network Location Awareness (NLA) service provider is
        implemented as a Winsock Namespace Provider (NSP) and provides the
        necessary framework for allowing computers and devices that move
        across different networks to select the most appropriate configuration
        settings. For example, an application taking advantage of NLA can
        detect when the user moves from a high-speed LAN to a high-latency
        wireless network and fine-tune its bandwidth use appropriately. NLA
        can also detect when a home computer on a LAN might also have a
        secondary VPN connection to the office and select the proper
        configuration options.
Instead of having developers rely on manual network interface
        information to figure out the type of network, and the IP addresses or
        DNS names associated with them, NLA provides a standardized query API
        for enumerating all the local network attachment information and
        correlating it with network interface information. The NLA API also
        includes notifications that enable applications to respond to changes
        when they occur. NLA provides applications two pieces of location
        information:
	Logical network
              identity. This identity is based on the logical network’s DNS domain
              name. If one does not exist, NLA uses custom static information
              stored in the registry together with the network’s subnet
              address as the identity.

	Logical network
              interfaces. For each network that a device is attached to, NLA creates
              an adapter name that identifies interfaces
              such as NICs or RAS connections in a unique fashion.
              Applications use adapter names with the IP Helper API
              (%SystemRoot%\System32\iphlpapi.dll) to query interface
              information and characteristics.



Each logical network is implemented as a service class with an
        associated GUID and properties. NLA creates instances of that service
        class when it returns information about a logical network. Service
        classes are schemas that describe a namespace; they define the name,
        identifier, and namespace-specific information that is common to all
        instances. These classes are then used in combination with the
        WSALookupServiceXxx APIs when performing name
        resolution.
The best way to get network location information
        programmatically is to use the Network List Manager (NLM) APIs—for
        example INetworkListManager,
        INetwork, IEnumNetworks,
        INetworkEvents, and so on.

Network Connectivity Status Indicator



Network Connectivity Status Indicator (NCSI) determines in real
        time the connectivity level of network connections on a system. It is
        loaded by the NLA service and functions solely as an information
        provider for NLA. NLA enables network-interacting programs to change
        their behavior based on how the computer is connected to the network.
        NCSI does not register as a client of NLA, but it does receive certain
        private notifications directly from it. NCSI detects local vs.
        Internet connectivity, hotspot networks, and corporate connectivity
        detection and level.
The connectivity level of a network connection is assessed and
        is based on whether or not the system has access to the Internet and
        to network devices such as the default gateway, DNS servers, and web
        proxy servers. This network connectivity information is used by
        various applications such as the Networking Tray Icon, Mini Map,
        Network Connection Wizard, Windows Media Center, DirectAccess, Windows
        Update, and Outlook. NCSI information is displayed in the tray as an
        overlay on the network icon. Most of NCSI’s activity is disabled if a
        user is not logged in.
NCSI performs the primary tasks described in the following
        sections.
Passive Poll



Every five seconds (configurable in the registry),
          NCSI activates to perform its general processing. The main purpose
          of this action is to query the network stack using the Network
          Storage Interface (NSI), and looks for:
	Evidence that some traffic has been received. NSI returns
              packet counts for each network interface. If any packets have
              been received on an interface, that interface will have at least
              local connectivity.

	Evidence that traffic has been received from either the
              Internet or corporate network. This is a little more complex and
              is determined by calculating the average number of hops a packet
              takes to depart from a system’s local ISP network (in a
              home/nondomain environment) or intranet (in a corporate
              environment). NSI returns the largest hop count seen since the
              last time the hop counts were requested. If this value exceeds
              the average for a given IP family (for example, IPv4 vs. IPv6)
              on a given interface, that interface has
              internet connectivity.

	Evidence that the host is communicating with a web proxy.
              The IP addresses for web proxies will have been identified using
              Web Proxy AutoDetect (WPAD), or DNS, and proxies configured
              manually through Internet control panel. NSI returns details of
              the current TCP paths from the network stack. If this is a new
              path to a proxy, that interface has
              internet connectivity.

	Evidence that an IPSEC Security Association (SA) has been
              established between the system and a host that has an IPv6
              address matching the corporate network prefix defined in the
              registry. (This is passive corporate connectivity
              detection.)

	Evidence that there is a reachable path reported by NSI to
              a host with an IPv6 prefix matching the corporate network prefix
              in the registry. The interface is marked with
              corporate connectivity.



In addition to handling the NSI queries, the passive poll is
          also used by NCSI to carry out most time-based processing. If there
          are no networks connected, NCSI continues to poll, but stops polling
          three polling periods after the last data is received.

Network Change Monitoring



NCSI has to be aware of changes to the configuration of
          interfaces on the system. This is handled by two event monitors that
          watch for NSI interface change notifications and DHCP status change
          notifications.
When NCSI detects that the network has changed, it records the
          current time in a data structure associated with each interface. The
          passive poll task queries this value and, if it is older than 15
          seconds, it will perform an active probe. The 15-second delay (for
          example, three poll periods have elapsed) is used to re-evaluate the
          Internet connectivity state if it has seen one or more unreachable
          paths.
NCSI registers for DHCP events and responds to them
          immediately (that is, there is no dampening that happens). If in
          that callback, DHCP reports that an interface is stable, an active
          probe is queued for that interface.

Registry Change Monitoring



NCSI monitors two parent keys in the registry for any
          changes to themselves or their children using the registry change
          notification API. Any changes trigger NCSI to reload all values
          under each key:
	HKLM\System\CurrentControlSet\Services\NlaSvc\Parameters\Internet

	HKLM\SOFTWARE\Policies\Microsoft\Windows\NetworkConnectivityStatusIndicator




Active Probe



NCSI has two mechanisms for actively testing an interface to
          determine whether it has Internet connectivity, both of which are
          configurable (and can be disabled) using the registry keys.
The first time an active probe is performed on an interface,
          it will be a web probe. This consists of an attempt to download the
          file http://www.msftncsi.com/ncsi.txt,_and it
          compares the contents of that file with the expected value of
          “Microsoft NCSI”. If the comparison succeeds, the active probe is
          considered successful.
If NCSI has detected proxy servers, it checks to see if the
          interface being probed is the best interface over which to reach the
          first proxy server. If so, it applies the proxy settings to the HTTP
          request. Otherwise, it first tries without the proxy settings, only
          applying them and making a second attempt if the first failed with
          name resolution failure. This is to support multihomed scenarios,
          where one interface is connected via proxy and the interface being
          probed is not.
If an active probe succeeds, either the IPv4 or IPv6 Internet
          state will be brought to internet connectivity.
          Because NCSI does not know whether the request was satisfied using
          IPv4 or IPv6 connectivity, it makes a guess based on the existence
          of default gateways for each address family, with IPv4 being
          selected if an exact determination cannot be made.
The next time an active probe is to be performed, if the
          hardware address of the default gateway is already in the list of
          known proxy-less gateways, a DNS probe is performed instead of a web
          probe. This is an optimization that produces quicker results. A DNS
          probe performs a simple DNS lookup for the name listed in the
          registry, with the default being dns.msftncsi.com.
HTTP probe behavior changes in multihomed scenarios when a
          proxy is detected. When an active probe is executed on an interface,
          a check is made whether or not that interface is preferred by the
          network stack to reach the first proxy server address. If so, the
          web probe is continued as normal. If not, the web probe is first
          attempted without the use of the proxy. If that fails because the
          name could not be resolved via DNS, NCSI concludes it must be behind
          the proxy after all and applies the proxy server settings and
          retries the probe.
The content retrieved by the HTTP request is compared to known
          content in the registry. If the content does not match, NCSI assumes
          that the interface is connected to a hotspot network (which has
          rerouted the HTTP request to a login page). It then uses the Network
          List Manager (NLM) APIs to send a message to the PNIDUI
          (%SystemRoot%\System32\pnidui.dll) Shell Service Object (SSO), which
          then displays a balloon to indicate to the user that she needs to
          log in before connecting to the Internet. The gateway MAC address is
          also recorded in a known hotspot gateway list for proxy detection
          optimization later.
NSCI can be configured via Group Policy, as shown in
          Figure 7-33, or via
          the registry.
[image: NCSI parameters in the Group Policy editor]

Figure 7-33. NCSI parameters in the Group Policy editor



Link-Layer Topology Discovery



The Link-Layer Topology Discovery (LLTD) protocol operates over
        both wired and wireless networks and enables applications to discover
        the topology of a network. For example, the Network
        Map functionality in Windows uses LLTD to draw the local
        network topology for the connected devices that support the LLTD
        protocol. Additionally, LLTD supports Quality of Service (QoS)
        extensions, which allow applications to diagnose network problems such
        as low signal strength on a wireless network and bandwidth constraints
        on home networks. Because it operates on the OSI data-link layer, LLTD
        works only on a single LAN or subnet and cannot cross routers, but its
        capabilities make it suitable for most home and small-office networks.
        The specification for the Link-Layer Topology Discovery protocol
        [MS-LLTD] can be found at www.microsoft.com.
The LLTD Mapper I/O and the LLTD
        Responder components implement LLTD. The former is
        responsible for the discovery process and for generating network maps.
        Because it uses a protocol different from IP, the LLTD Mapper uses
        NDIS APIs to directly send commands to the network via the network
        adapter. The LLTD Responder listens for and responds to discovery
        commands with information about the computer. As mentioned earlier,
        only devices that have a responder are shown in the network
        map.


Protocol Drivers



Network drivers take high-level I/O requests and translate
      them into low-level network protocol requests for transmission across
      the network. The network APIs rely on transport protocol drivers in
      kernel mode to perform the actual translation. Separating APIs from
      underlying protocols gives the networking architecture the flexibility
      of letting each API use a number of different protocols. The Internet’s
      explosive growth and reliance on the TCP/IP protocol has made TCP/IP the
      preeminent protocol in Windows. The Defense Advanced Research Projects
      Agency (DARPA) developed TCP/IP in 1969, specifically as the foundation
      for a large-scale, fault-tolerant network that became the Internet;
      therefore, TCP/IP has WAN-friendly characteristics such as routability
      and good WAN performance. TCP/IP is the preferred Windows protocol and
      is installed by default.
The 4-byte network addresses used by the IPv4 protocol on the
      legacy TCP/IP stack limits the number of public IP addresses to roughly
      four billion, which is nearly exhausted as more and more devices, such
      as cell phones and PDAs, acquire an Internet presence. For this reason,
      the IPv6 protocol, which has 16-byte addresses, is gaining adoption.
      Windows includes a combined TCP/IP stack, called the Next
      Generation TCP/IP Stack, which supports both IPv4 and IPv6
      simultaneously, with IPv6 being the preferred protocol. When operating
      on IPv6 networks, the stack also supports coexistence with IPv4 networks
      through the use of tunneling. The Next Generation TCP/IP Stack offers
      several advanced features to improve network performance, some of which
      are outlined in the following list:
	Receive Window Auto
            Tuning. The TCP protocol defines a receive window
            size, which determines how much data a receiver can
            accept before the server requires an acknowledgment. Optimally,
            the receive window size should be equal to the bandwidth-delay
            product, which is the network link’s capacity multiplied by its
            end-to-end delay. This calculates the amount of data that can be
            “in transit” between the sender and receiver at any given time.
            The Windows TCP/IP stack analyzes the conditions of a network link
            and chooses the optimal receive window size, adjusting it as
            needed if the network conditions change.

	Compound TCP
            (CTCP). Network congestion occurs when a node or link reaches its
            carrying capacity. CTCP implements a congestion-avoidance
            algorithm that monitors network bandwidth, latency, and packet
            losses. It aggressively increases the amount of data that can be
            sent by a machine when the network will support it, and it backs
            off when the network is congested. Using CTCP on a high-bandwidth,
            low-latency network can significantly improve transfer
            speeds

	Explicit Congestion Notification
            (ECN). Whenever a TCP packet is lost (unacknowledged), the TCP
            protocol assumes that the data was dropped because of router
            congestion and enforces congestion control, which dramatically
            lowers the sender’s transmission rate. ECN allows routers to
            explicitly mark packets as being forwarded during congestion,
            which is read by the Windows TCP/IP stack as a sign that
            transmission rates should be lowered. Lowering rates in this
            manner results in better performance than relying on loss-based
            congestion control. ECN is disabled by default, because many
            outdated routers might drop packets with the ECN bit set instead of ignoring the bit. To
            determine whether your network supports ECN, you can use the
            Microsoft Internet Connectivity Evaluation Tool (http://www.microsoft.com/windows/using/tools/igd/default.mspx).
            You can examine and modify the ECN capability using the network
            shell (from an Admin command window), as shown in Figure 7-34.
[image: Using the network shell to examine and configure TCP parameters]

Figure 7-34. Using the network shell to examine and configure TCP
            parameters


	High-loss throughput improvements, including the NewReno Fast
          Recovery Algorithm, Enhanced Selective Acknowledgment (SACK),
          Forward RTO-Recovery (F-RTO), and Limited Transit. These algorithms
          reduce the overall retransmission of acknowledgments or TCP segments
          during high-loss scenarios while still maintaining the integrity of
          the TCP stream. This allows for greater bandwidth in these
          environments and preserves TCP’s reliable transport
          semantics.



The Next Generation TCP/IP Stack
      (%SystemRoot%\System32\Drivers\Tcpip.sys), shown in Figure 7-35, implements TCP,
      UDP, IP, ARP, ICMP, and IGMP. To support legacy protocols such as
      NetBIOS, which make use of the deprecated TDI interface, the network
      stack also includes a component called TDX (TDI translation), which
      creates device objects that represent legacy protocols so that clients
      can obtain a file object representing a protocol and issue network I/O
      to the protocol using TDI IRPs. The TDX component creates several device
      objects that represent various TDI client–accessible protocols:
      \Device\Tcp6, \Device\Tcp, \Device\Udp6, \Device\Udp, \Device\Rawip, and
      \Device\Tdx.
[image: Windows Next Generation TCP/IP Stack]

Figure 7-35. Windows Next Generation TCP/IP Stack

EXPERIMENT: Looking at TCP/IP’s Device Objects
Using the kernel debugger to look at a live system, you
        can examine TCP/IP’s device objects. After performing the
        !drvobj command to see the addresses of each of
        the driver’s device objects, execute !devobj to
        view the name and other details about the device object.
kd> !drvobj tdx
Driver object (861d9478) is for:
 \Driver\tdx
Driver Extension List: (id , addr)

Device Object list:
861db310  861db440  861d8440  861d03e8
861cd440  861d2318  861d9350
lkd> !devobj 861cd440
Device object (861cd440) is for:
 Tcp6 \Driver\tdx DriverObject 861d9478
Current Irp 00000000 RefCount 7 Type 00000012 Flags 00000050
Dacl 8b1bc54c DevExt 861cd4f8 DevObjExt 861cd500
ExtensionFlags (0x00000800)
                             Unknown flags 0x00000800
Device queue is not busy.
lkd> !devobj 861db440
Device object (861db440) is for:
 RawIp \Driver\tdx DriverObject 861d9478
Current Irp 00000000 RefCount 0 Type 00000012 Flags 00000050
Dacl 8b1bc54c DevExt 861db4f8 DevObjExt 861db500
ExtensionFlags (0x00000800)
                             Unknown flags 0x00000800
Device queue is not busy.
lkd> !devobj 861d8440
Device object (861d8440) is for:
 Udp6 \Driver\tdx DriverObject 861d9478
Current Irp 00000000 RefCount 0 Type 00000012 Flags 00000050
Dacl 8b1bc54c DevExt 861d84f8 DevObjExt 861d8500
ExtensionFlags (0x00000800)
                             Unknown flags 0x00000800
Device queue is not busy.
lkd> !devobj 861d03e8
Device object (861d03e8) is for:
 Udp \Driver\tdx DriverObject 861d9478
Current Irp 00000000 RefCount 6 Type 00000012 Flags 00000050
Dacl 8b1bc54c DevExt 861d04a0 DevObjExt 861d04a8
ExtensionFlags (0x00000800)
                             Unknown flags 0x00000800
Device queue is not busy.
lkd> !devobj 861cd440
Device object (861cd440) is for:
 Tcp6 \Driver\tdx DriverObject 861d9478
Current Irp 00000000 RefCount 7 Type 00000012 Flags 00000050
Dacl 8b1bc54c DevExt 861cd4f8 DevObjExt 861cd500
ExtensionFlags (0x00000800)
                             Unknown flags 0x00000800
Device queue is not busy.
lkd> !devobj 861d2318
Device object (861d2318) is for:
 Tcp \Driver\tdx DriverObject 861d9478
Current Irp 00000000 RefCount 167 Type 00000012 Flags 00000050
Dacl 8b1bc54c DevExt 861d23d0 DevObjExt 861d23d8
ExtensionFlags (0x00000800)
                             Unknown flags 0x00000800
Device queue is not busy.
lkd> !devobj 861d9350
Device object (861d9350) is for:
 Tdx \Driver\tdx DriverObject 861d9478
Current Irp 00000000 RefCount 0 Type 00000021 Flags 00000050
Dacl 8b0649a8 DevExt 00000000 DevObjExt 861d9408
ExtensionFlags (0x00000800)
                             Unknown flags 0x00000800
Device queue is not busy.

Windows Filtering Platform



Windows includes a rich and extensible platform for
        monitoring, intercepting, and processing network traffic at all levels
        in the network stack. Other Windows networking services extend basic
        networking features of the TCP/IP protocol driver by relying on
        Windows Filtering Platform (WFP). These include Network Address
        Translation (NAT), IP filtering, IP inspection, and Internet Protocol
        Security (IPsec). Figure 7-36 shows how the
        different components of the WFP are integrated with the TCP/IP stack.
        These include
	Filter engine. The filter engine is implemented in both user mode and
              kernel mode and performs all the filtering operations on the
              network. Each filter engine component consists of filtering
              layers, one for each component of the network stack. The
              user-mode engine, responsible for RPC and IPsec keying policy,
              among other things, contains approximately 10 filters, while the
              kernel-mode engine, which performs the network and transport
              layer filtering of the TCP/IP stack, contains around 50.

	Shims. Shims are the kernel-mode components that reside between
              the network stack and the filter engine. They are responsible
              for making the decision to allow or block network traffic based
              on their filtering behavior, which is defined by the filter
              engine. A shim operates in three steps: it parses the incoming
              data to match incoming values with entries in the filter engine,
              calls the filter engine to return an action based on the
              incoming values, and then interprets the action (drop the
              packet, for example).

	Base filtering engine
              (BFE). The BFE is a user-mode service
              (%SystemRoot%\System32\Bfe.dll) that manages all WFP operations.
              It is responsible for adding and removing filters from the WFP
              stack, managing the filter configuration, and enforcing security
              on the filter database.

	Callout
              drivers. Callout drivers are kernel-mode components that add custom
              filtering functionality outside the basic support provided by
              the WFP. Callout drivers associate callout functions with one or
              more kernel-mode filtering layers, and the WFP enables callout
              functions to perform deep packet inspection and modification.
              Network Address Translation (described next) and IPsec are
              implemented as callout drivers, for example.



[image: Windows Filtering Platform architecture]

Figure 7-36. Windows Filtering Platform architecture

Network Address Translation



Network Address Translation (NAT) is a routing service
          that allows multiple private IP addresses to map to a single public
          IP address. Without NAT, each computer of a LAN must be assigned a
          public IP address to communicate across the Internet. NAT allows one
          computer of the LAN to be assigned an IP address and the other
          computers to use private IP addresses and be connected to the
          Internet through that computer. NAT translates between private IP
          addresses and the public IP address as necessary, routing packets
          between LAN computers and the Internet.
NAT components on Windows consist of a NAT device driver,
          %SystemRoot%\System32\Drivers\ipnat.sys, that interfaces with the
          WFP stack as a callout driver, as well as packet editors that can
          perform additional packet processing beyond address and port
          translation.

IP Filtering



Windows includes a very basic IP filtering capability with
          which a user can choose to allow only certain ports or IP protocols
          into or out of the network. Although this capability can serve to
          protect a computer from unauthorized network accesses, its drawback
          is that it is static and does not automatically create new filters
          for traffic initiated by applications running on the
          computer.
Windows also includes a host firewall capability, called
          Windows Firewall, that goes beyond the basic filtering just
          described. Windows Firewall uses WFP to provide a stateful
          firewall, which is one that keeps track of traffic flow
          so that it distinguishes between TCP/IP traffic that originates on
          the local LAN and unsolicited traffic that originates on the
          Internet. When Windows Firewall is enabled on an interface, one of
          three profiles can be applied—public, private, and domain. By
          default, when the public profile is chosen (or until a profile is
          selected), all unsolicited incoming traffic received by the computer
          is discarded. A user or application can define exceptions so that
          services running on the computer, such as file and printer sharing
          or a website, can be accessed from other computers.
The Windows Firewall service, which executes in a Svchost
          process, uses the BFE to pass exception rules defined in the
          configuration user interface to the IPNat driver. The WFP filter
          engine executes the callback functions of each registered callout
          driver as it processes both inbound and outbound IP packets. A
          callback function can provide NAT functionality by modifying source
          and destination addresses in a packet, or as a firewall by returning
          a status code to TCP/IP that requests that TCP/IP drop the packet
          and cease processing for it. In kernel mode, Windows Firewall uses
          the Microsoft Protection Service driver
          (%SystemRoot%\System32\Drivers\Mpsdrv.sys) that provides support for
          PPTP and FTP filtering, because those protocols provide their own
          independent control and data channels. The driver must analyze the
          control channel to figure out which data channel to manipulate. The
          driver is also used for displaying notification windows when an
          application starts listening on a socket.

Internet Protocol Security



Internet Protocol Security (IPsec), which is integrated with
          the Windows TCP/IP stack, helps protect unicast (IPsec itself
          supports multicast, but the Windows implementation does not) IP data
          against attacks such as eavesdropping, sniffer attacks, data
          modification, IP address spoofing, and man-in-the-middle attacks (as
          long as the identity of the remote machine can be verified, such as a VPN). You
          can use IPsec to provide defense-in-depth against network-based
          attacks from untrusted computers; certain attacks that can result in
          the denial-of-service of applications, services, or the network;
          data corruption, data theft, and user-credential theft; and the
          administrative control over servers, other computers, and the
          network. IPsec helps defend against network-based attacks through
          cryptography-based security services, security protocols, and
          dynamic key management.
IPsec provides the following properties for unicast IP packets
          sent between trusted hosts:
	Data origin authentication, which verifies the origin of
              an IP packet and ensures that unauthenticated parties cannot
              access data.

	Data integrity, which protects an IP packet from being
              modified in transit without being detected.

	Data confidentiality, which encrypts the payload of IP
              packets before transmission. Data confidentiality ensures that
              only the IPsec peer with which a computer is communicating can
              read and interpret the contents of the packets. This property is
              optional.

	Anti-replay (or replay protection), which ensures that
              each IP packet is unique and can’t be reused. This property
              prevents an attacker from intercepting IP packets and inserting
              modified packets into a data stream between a source computer
              and a destination computer. When anti-replay is used, attackers
              cannot reply to captured messages to establish a session or gain
              unauthorized access to data.



You can use IPsec to help defend against network-based attacks
          by configuring host-based IPsec packet filtering and enforcing
          trusted communications. When you use IPsec for host-based IPsec
          packet filtering, IPsec can permit or block specific types of
          unicast IP traffic based on source and destination address
          combinations and specific protocols and specific ports.
In an Active Directory environment, Group Policy can be used
          to configure domains, sites, and organizational units (OUs), and
          IPsec policies (called connection security
          rules) can then be assigned as required to Group Policy
          objects (GPOs) through Windows Firewall with Advanced Security
          configuration settings. Alternatively, you can configure and assign
          local IPsec policies. Active Directory–based connection security
          rules are stored in Active Directory, and a copy of the current
          policy is maintained in a cache in the local registry. Local
          connection security rules are stored in the local system
          registry.
To establish trusted communications, IPsec uses mutual
          authentication, and it supports the following authentication methods
          through AuthIP, Microsoft’s extension to Internet Key Exchange
          (IKE):
	Interactive user Kerberos 5 credentials or interactive
              user NTLMv2 credentials

	User x.509 certificates

	Computer SSL certificates

	NAP health certificates

	Anonymous authentication (optional
              authentication)

	Preshared key



If AuthIP is not available, plain IKE is also supported by
          IPsec. The Windows implementation of IPsec is based on IPsec
          Requests for Comments (RFCs). The Windows IPsec architecture
          includes Windows Firewall with Advanced Security, the legacy IPsec
          Policy Agent, the IKE and Authenticated Internet Protocol (AuthIP)
          protocols, and an IPsec WFP callout driver, which are described in
          the following list:
	Windows Firewall with Advanced
                Security. In addition to the filtering functionality described
                earlier, the Windows Firewall service is also responsible for
                providing the security and policy configuration settings for
                IPsec, which can be configured through Group Policy either
                locally or on an Active Directory domain.

	Legacy IPsec Policy
                Agent. The legacy IPsec Policy Agent runs as a service. In the
                Services snap-in in the Microsoft Management Console (MMC),
                the IPsec Policy Agent appears in the list of computer
                services under the name IPsec Policy Agent. The IPsec Policy
                Agent obtains the legacy IPsec policy from an Active Directory
                domain or the local registry and then passes IP address
                filters to the IPsec driver and authentication and security
                settings to IKE. These policies are honored to enable
                compatibility with older versions of Windows, which implement
                IPsec management through Active Directory.

	IKE and
                AuthIP. IKE is a protocol that supports the authentication and
                key negotiation services required by IPsec. For outgoing
                traffic, IKE waits for requests to negotiate security
                associations (SAs) from the IPsec driver, negotiates the SAs,
                and then sends the SA settings back to the IPsec driver. For
                incoming traffic, IKE receives a negotiation request directly
                from the remote peer, and all other traffic from the peer is
                dropped until the SAs have been successfully negotiated. SAs
                are a combination of mutually agreeable IPsec policy settings
                and keys that defines the security services, mechanisms, and
                keys that are used to help secure communications between IPsec
                peers. Each SA is a one-way or simplex connection that secures
                the traffic it carries. IKE negotiates main mode SAs and quick
                mode SAs when requested by the IPsec driver. The IKE main mode
                (or ISAKMP) SA protects the IKE negotiation. The quick mode
                (or IPsec) SAs protect application traffic. AuthIP is a
                proprietary extension to IKE supported by Windows Vista and
                later, while Windows 7 and Windows Server 2008 R2 also add
                support for IKEv2, an equivalent standardized extension. It
                adds a secondary authentication mechanism to increase security
                and simplify maintenance and configuration of IPsec.

	IPsec WFP callout
                driver. The IPsec WFP callout driver is a device driver
                (%SystemRoot%\System32\Drivers\Fwpkclnt.sys) that is bound to
                WFP and processes packets that pass through the TCP/IP driver.
                The IPsec driver monitors and secures outbound unicast IP
                traffic, and it monitors, decrypts, and validates inbound
                unicast IP packets. WFP receives filters from the IPsec Policy
                Agent and invokes the callout, which then permits, blocks, or
                secures packets as required. To secure traffic, the IPsecI
                driver uses active SA settings, or it requests that new SAs be
                created.



You can use the Windows Firewall with Advanced
          Security (%SystemRoot%\System32\Wf.msc) snap-in that is available in
          MMC to create and manage connection security rules by using the New
          Connection Security Rule Wizard, shown in Figure 7-37. This snap-in can
          be used to create, modify, and store local connection security rules
          or Active Directory–based connection security rules, and to modify
          connection security rules on remote computers. Alternatively, you
          can use the Netsh utility with the netsh advfirewall
          consec command to manage connection security rules. After
          IPsec-secured communication is established, you can monitor IPsec
          information for local computers and for remote computers by using
          the Windows Firewall with Advanced Security snap-in or the Netsh
          utility with the netsh advfirewall monitor
          command.
[image: New Connection Security Rule Wizard]

Figure 7-37. New Connection Security Rule Wizard




NDIS Drivers



When a protocol driver wants to read or write messages formatted
      in its protocol’s format from or to the network, the driver must do so
      using a network adapter. Expecting protocol drivers to understand the
      nuances of every network adapter on the market (proprietary network
      adapters number in the thousands) is not reasonable, so network adapter
      vendors provide device drivers that can take network messages and
      transmit them via the vendors’ proprietary hardware. In 1989, Microsoft
      and 3Com jointly developed the Network Driver Interface Specification
      (NDIS), which lets protocol drivers communicate with network adapter
      drivers in a device-independent manner. Network adapter drivers that
      conform to NDIS are called NDIS drivers or
      NDIS miniport drivers. The version of NDIS that
      ships with Windows 7 and Windows Server 2008 R2 is NDIS 6.20.
The NDIS library (%SystemRoot%\System32\Drivers\Ndis.sys)
      implements the boundary that exists between network transports, such as
      the TCP/IP driver, and adapter drivers. The NDIS library is a helper library that NDIS driver clients use to format
      commands they send to NDIS drivers. NDIS drivers interface with the
      library to receive requests and send back responses. Figure 7-38 shows the relationship between various
      NDIS-related components.
[image: NDIS components]

Figure 7-38. NDIS components

Instead of merely providing the NDIS boundary helper routines, the
      NDIS library provides NDIS drivers with an entire execution environment.
      NDIS drivers do not follow the standard Windows device driver I/O model,
      and they cannot function without the encapsulation the NDIS library
      gives them. This insulation layer wraps NDIS drivers so thoroughly that
      NDIS drivers don’t accept and process IRPs. Rather, protocol drivers
      such as TCP/IP call a function in the NDIS library,
      NdisAllocateNetBufferList, and pass the packets to
      an NDIS miniport by calling an NDIS library function
      (NdisSendNetBufferLists). Additionally, to make
      development simpler, all components of the Windows Next Generation
      TCP/IP stack make use of the NET_BUFFER_LIST structure, including TCP/IP
      and WSK, which streamlines communications with NDIS.
NDIS includes the following features:
	NDIS drivers can report whether or not their network medium is
          active, which allows Windows to display a network
          connected/disconnected icon on the taskbar. This feature also allows
          protocols and other applications to be aware of this state and react
          accordingly. The TCP/IP transport, for example, uses this
          information to determine when it should reevaluate addressing
          information it receives from DHCP.

	NDIS drivers can be paused and resumed, which enables
          run-time reconfiguration, such as adding or removing an NDIS
          Lightweight Filter driver. A lightweight filter replaces most
          instances of NDIS intermediate drivers used prior to NDIS version 6.
          (Intermediate drivers are still supported in NDIS 6, but their
          complexity makes them suitable for only a small class of problems.)
          Lightweight filter drivers are covered in more detail in the
          upcoming sections.

	TCP/IP offloading, including task and chimney offloading. Task
          offloading allows a network interface card to implement some or all
          of the TCP/IP protocol stack, providing a substantial increase in
          network performance. NDIS includes support for IPsec Task Offload
          Version 2, which includes support for additional cryptography suites
          used in IPsec, such as AES, as well as IPv6 support. Chimney
          offloading provides a direct connection (the so-called
          chimney) between network applications and the
          network card hardware, enabling greater offloading and connection
          state management to be implemented by the network card. These
          offloading operations can improve system performance by relieving
          the CPU from the tasks.

	Receive-side scaling enables systems with multiple processors
          to perform packet receive operations based on the most efficient use
          of available target processors. NDIS supports the receive-side
          scaling (RSS) interface at the hardware level and targets interrupts
          and DPCs to the appropriate processors.

	Wake-on-LAN allows a wake-on-LAN-capable network adapter to
          bring the system out of a suspended power state. Events that can
          trigger the network adapter to signal the system include media
          connections (such as plugging a network cable into the adapter), the
          receipt of protocol-specific patterns registered by a protocol (the
          TCP/IP transport asks to be woken for Address Resolution Protocol
          [ARP] requests), and, for Ethernet adapters, the receipt of a
          magic packet (a network packet that contains 16
          contiguous copies of the adapter’s Ethernet address).

	Header-data split allows compatible network cards to improve
          network performance by splitting the data and header part of an
          Ethernet frame into different buffers and subsequently combining the
          buffers into smaller regions of memory than if the buffers were
          combined. This allows more efficient memory usage as well as better
          caching because multiple headers can fit in a single page.

	Connection-oriented NDIS (CoNDIS) allows NDIS drivers to
          manage connection-oriented media (typically, a WAN), such as ISDN or
          PPP devices. (CoNDIS is described in more detail shortly.)



The interfaces that the NDIS library provides for NDIS drivers to
      interface with network adapter hardware are available via functions that
      translate directly to corresponding functions in the HAL.
EXPERIMENT: Listing the Loaded NDIS Miniports
The Ndiskd kernel debugger extension library includes
        the !miniports and !miniport
        commands, which let you list the loaded miniports using a kernel
        debugger and, given the address of a miniport block (a data structure
        Windows uses to track miniports), see detailed information about the
        miniport driver. The following example shows the
        !miniports and !miniport
        commands being used to list all the miniports and then specifics about
        the miniport responsible for interfacing the system to a PCI Ethernet
        adapter. (Note that WAN miniport drivers work with dial-up
        connections.)
lkd> .load ndiskd
Loaded ndiskd extension DLL


lkd> !miniports
NDIS Driver verifier level: 0
NDIS Failed allocations   : 0
Miniport Driver Block: 86880d78, Version 0.0
  Miniport: 868cf0e8, NetLuidIndex: 1, IfIndex: 9, RAS Async Adapter
Miniport Driver Block: 84c3be60, Version 4.0
  Miniport: 84c3c0e8, NetLuidIndex: 3, IfIndex: 15, VMware Virtual Ethernet Adapter
Miniport Driver Block: 84c29240, Version 0.0
  Miniport: 84c2b438, NetLuidIndex: 0, IfIndex: 2, WAN Miniport (SSTP)
...
lkd> !miniport 84bcc0e8

 Miniport 84bcc0e8 : Broadcom NetXtreme 57xx Gigabit Controller, v6.0

    AdapterContext : 85f6b000
    Flags          : 0c452218
                     BUS_MASTER, 64BIT_DMA, IGNORE_TOKEN_RING_ERRORS
                     DESERIALIZED, RESOURCES_AVAILABLE, SUPPORTS_MEDIA_SENSE
                     DOES_NOT_DO_LOOPBACK, SG_DMA,
                     NOT_MEDIA_CONNECTED,
    PnPFlags       : 00610021
                     PM_SUPPORTED, DEVICE_POWER_ENABLED, RECEIVED_START
                     HARDWARE_DEVICE, NDIS_WDM_DRIVER,
    MiniportState        : STATE_RUNNING
    IfIndex                  : 10
    Ndis5MiniportInNdis6Mode : 0
    InternalResetCount    : 0000
    MiniportResetCount    : 0000
    References            : 5
    UserModeOpenReferences: 0
    PnPDeviceState        : PNP_DEVICE_STARTED
    CurrentDevicePowerState : PowerDeviceD0
    Bus PM capabilities
    DeviceD1:        0
    DeviceD2:        0
    WakeFromD0:        0
    WakeFromD1:        0
    WakeFromD2:        0
    WakeFromD3:        1

    SystemState        DeviceState
    PowerSystemUnspecified    PowerDeviceUnspecified
    S0            D0
    S1            PowerDeviceUnspecified
    S2            PowerDeviceUnspecified
    S3            D3
    S4            D3
    S5            D3
    SystemWake: S5
        DeviceWake: D3

    WakeupMethods Enabled 2:
        WAKE_UP_PATTERN_MATCH
    WakeUpCapabilities:
    MinMagicPacketWakeUp: 4
    MinPatternWakeUp: 4
    MinLinkChangeWakeUp: 0
    Current PnP and PM Settings:          : 00000030
                     DISABLE_WAKE_UP, DISABLE_WAKE_ON_RECONNECT,
    Translated Allocated Resources:
        Memory: ecef0000, Length: 10000
        Interrupt Level: 9, Vector: a8
    MediaType      : 802.3
    DeviceObject   : 84bcc030, PhysDO : 848fd6b0  Next DO: 848fc7b0
    MapRegisters   : 00000000
    FirstPendingPkt: 00000000
    DriverVerifyFlags  : 00000000
    Miniport Interrupt : 85f72000
    Miniport version 6.0
    Miniport Filter List:
    Miniport Open Block Queue:
      8669bad0: Protocol 86699530 = NDISUIO, ProtocolBindingContext 8669be88, v6.0
      86690008: Protocol 86691008 = VMNETBRIDGE, ProtocolBindingContext 866919b8, v5.0
      84f81c50: Protocol 849fb918 = TCPIP6, ProtocolBindingContext 84f7b930, v6.1
      84f7b230: Protocol 849f43c8 = TCPIP, ProtocolBindingContext 84f7b5e8, v6.1
The Flags field for the miniport that was
        examined indicates that the miniport supports 64-bit direct memory
        access operation (64BIT_DMA), that the media is currently not active
        (NOT_MEDIA_CONNECTED), and that it can dynamically detect whether the
        media is connected or disconnected (SUPPORTS_MEDIA_SENSE). Also listed
        are the adapter’s system-to-device power-state mappings and the bus
        resources that the Plug and Play manager assigned to the adapter. (See
        the section “The Power Manager” in Chapter 8 in Part 2 for more
        information on power-state mappings.)

Variations on the NDIS Miniport



The NDIS model also supports hybrid network transport
        NDIS drivers, called NDIS intermediate drivers.
        These drivers lie between transport drivers and NDIS miniport drivers.
        To an NDIS miniport driver, an NDIS intermediate driver looks like a
        transport driver; to a transport driver, an NDIS intermediate driver
        looks like an NDIS miniport driver. NDIS intermediate drivers can see
        all network traffic taking place on a system because the drivers lie
        between protocol drivers and network drivers. Software that provides
        fault-tolerant and load-balancing options for network adapters, such
        as Microsoft’s Network Load Balancing Provider, are based on NDIS
        intermediate drivers. Finally, the NDIS model also implements
        lightweight filter drivers (LWF), which are
        similar to intermediate drivers but specifically designed for
        filtering network traffic. LWFs support dynamic insertion and removal
        while the protocol stack is running. Filter drivers have the ability
        to filter all communications to and from the underlying miniport
        adapter. They also have the ability to select specify types of
        filtering (packet data or control messages) and to be bypassed for
        those that they are not interested in.

Connection-Oriented NDIS



Support for connection-oriented network hardware (for example,
        PPP) is native in Windows, which makes connection management and
        establishment standard in the Windows network architecture.
        Connection-oriented NDIS drivers use many of the same APIs that
        standard NDIS drivers use; however, connection-oriented NDIS drivers
        send packets through established network connections rather than
        placing them on the network medium.
In addition to miniport support for connection-oriented media,
        NDIS includes definitions for drivers that work to support a
        connection-oriented miniport driver:
	Call managers are NDIS drivers that provide call setup and
            teardown services for connection-oriented clients (described
            shortly). A call manager uses a connection-oriented miniport to
            exchange signaling messages with network switches or another
            connection-oriented network medium. A call manager supports one or
            more signaling protocols. A call manager is implemented as a
            network protocol driver.

	An integrated miniport call manager (MCM) is a
            connection-oriented miniport driver that also provides call
            manager services to connection-oriented clients. An MCM is
            essentially an NDIS miniport driver with a built-in call
            manager.

	A connection-oriented client uses the call setup and
            teardown services of a call manager or MCM and the send and
            receive services of a connection-oriented NDIS miniport driver. A
            connection-oriented client can provide its own protocol services
            to higher levels in the network stack, or it can implement an
            emulation layer that interfaces connectionless legacy protocols
            and connection-oriented media.



Figure 7-39
        shows the relationships between these components.
[image: Connection-oriented NDIS drivers]

Figure 7-39. Connection-oriented NDIS drivers

EXPERIMENT: Using Network Monitor to Capture Network
          Packets
Microsoft provides a tool named Network Monitor that lets you
          capture packets that flow through one or more NDIS miniport drivers
          on your system by installing an NDIS lightweight filter driver
          (Netmon). You can obtain the latest version of Network Monitor by
          going to http://www.microsoft.com/download/en/details.aspx?id=4865.
          Don’t forget to download the NetMon protocol parsers from
          http://nmparsers.codeplex.com/; otherwise,
          you won’t be able to decode the Microsoft protocols. When you first
          start Network Monitor, you’ll see a window similar to the one shown
          in Figure 7-40.
[image: Network monitor]

Figure 7-40. Network monitor

In the Select Networks pane, Network Monitor lets you
          select which network connection you want to monitor. After selecting
          one or more, start the capture environment by clicking the New
          Capture button on the toolbar. You can now initiate monitoring by
          clicking the Start button on the toolbar. Perform operations that
          generate network activity on the connection you’re monitoring (such
          as browsing to a website), and after you see that Network Monitor
          has captured packets, stop monitoring by clicking the Stop button.
          In the Frame Summary pane, you will see all the raw network traffic
          during the capture period. The Network Conversations pane displays
          network traffic isolated by process, whenever possible. By clicking
          on the Iexplore.exe process in this example, Network Monitor shows
          only the relevant frames in the Frame Summary view, as shown in
          Figure 7-41.
[image: Capturing packets with Network Monitor]

Figure 7-41. Capturing packets with Network Monitor

The window shows the HTTP packets that Network Monitor
          captured as the Microsoft website was accessed through Internet
          Explorer. If you click on a frame, Network Monitor displays a view
          of the packet that breaks it apart to show various layered
          application and protocol headers in the Frame Details pane, as shown
          in the previous screen shot.
Network Monitor also includes a number of other features, such
          as capture triggers and filters, that make it a powerful tool for
          troubleshooting network problems. You can also add parsers for other
          protocols, as well as view and modify their source code. Network
          Monitor parsers are hosted on CodePlex (http://nmparsers.codeplex.com), the
          Microsoft open source project site.


Remote NDIS



Prior to the development of Remote NDIS, a vendor that developed
        a USB network device had to provide a driver that interfaced with NDIS
        as a miniport driver as well as interfacing with a USB WDM bus driver,
        as shown in Figure 7-42.
[image: NDIS miniport driver for a USB network device]

Figure 7-42. NDIS miniport driver for a USB network device

Remote NDIS is a specification for network devices on USB. The
        specification eliminates the need for a hardware vendor to write an
        NDIS miniport driver by defining messages and the mechanism by which
        the messages are transmitted over USB. Remote NDIS messages mirror the
        NDIS interface and include messages for initializing and resetting a
        device, transmitting and receiving packets, setting and querying
        device parameters, and indicating media link status.
The Remote NDIS architecture, in Figure 7-43, relies on a
        Microsoft-supplied NDIS miniport driver,
        %SystemRoot%\System32\Drivers\Rndismp.sys, that translates NDIS
        commands and forwards them to a USB device. The architecture allows
        for a single NDIS miniport driver to be used for all Remote NDIS
        devices on USB.
[image: Remote NDIS architecture for USB network devices]

Figure 7-43. Remote NDIS architecture for USB network devices

Currently, USB is the only bus supported by RNDIS on
        Windows.

QoS



If no special measures are taken, IP network traffic is
        delivered on a first-come, first-served basis. Applications have no
        control over the priority of their messages, and they can experience
        bursty network behavior, where they occasionally
        obtain high throughput and low latencies but otherwise receive poor
        network performance. While this level of service is acceptable in most
        situations (such as transferring files or browsing the Web), an
        increasing number of network applications demand more consistent
        service levels, or Quality of Service (QoS)
        guarantees. Video conferencing, media streaming, and enterprise
        resource planning (ERP) are examples of applications that require
        consistent network performance. QoS allows an application to specify
        minimum bandwidth and maximum latencies, which can be satisfied only
        if every networking software and hardware component between a sender
        and a receiver supports QoS standards such as IEEE 802.1P, an industry
        standard that specifies the format of QoS packets and how OSI layer 2
        devices (switches and network adapters) respond to them.
Windows supports QoS through a policy-based
        QoS implementation that takes full advantage of the Next
        Generation TCP/IP network stack, WFP, and NDIS lightweight filter
        drivers. The implementation allows for managing or prioritizing
        bandwidth use based on different conditions, such as the application,
        the source or destination IP address, the protocol being used, and the
        source or destination ports. Network administrators typically apply
        QoS settings to a logon session or a computer with Active
        Directory–based Group Policy, but they can be applied locally as
        well.
Policy-based QoS provides two methods through which bandwidth
        can be managed. The first uses a special field in the IP header called
        the Differentiated Services Code Point (DSCP). Routers that support
        DSCP read the value and separate packets into specific priority
        queues. The QoS architecture in Windows can mark outgoing packets with
        the appropriate DSCP field so that network devices can provide
        differentiated levels of service. The other bandwidth management
        method is the ability to simply throttle outgoing traffic based on the
        conditions outlined earlier, where the QoS components limit bandwidth
        to a specified rate.
The Windows QoS implementation consists of several components,
        as shown in Figure 7-44. First,
        the QoS Client Side Extension (%SystemRoot%\System32\Gptext.dll)
        notifies the Group Policy client and the QoS Inspection Module that
        QoS settings have changed. Next, the QoS Inspection Module (Enterprise
        Quality of Service, eQoS), which is a WFP packet-inspection component
        implemented in the TCP/IP driver that reacts to policy changes,
        retrieves the updated policy and works with the transport layer and
        QoS Packet Scheduler to mark traffic that matches the policy. Finally,
        the QoS Packet Scheduler, or Pacer
        (%SystemRoot%\System32\Drivers\Pacer.sys), provides the NDIS
        lightweight filter functionality, such as throttling and setting the
        DSCP value, to control packet scheduling based on the QoS policies.
        Pacer also provides the GQoS (Generic QoS) and TC (Traffic Control)
        API support for legacy Windows applications that used these
        mechanisms.
In addition to the systemwide, policy-based QoS support provided
        by the QoS architecture, Windows enables specific classes of
        socket-based applications to have individual and specific control of
        QoS behavior through an API called the Quality Windows Audio/Video
        Experience, or qWAVE. Network-based multimedia applications, such as Voice
        over IP (VoIP), can use the qWAVE API to query information on
        real-time network bandwidth and adapt to changing network conditions,
        as well as to prioritize packets to efficiently use the available
        bandwidth. qWAVE also takes advantage of the topology protocols
        described earlier to dynamically determine if the current network
        devices will support the required bandwidth for a video stream, for
        example. It can notify applications of diminishing bandwidth, at which
        point the multimedia application is expected to reduce the stream
        quality, for example.
[image: Policy-based QoS architecture]

Figure 7-44. Policy-based QoS architecture

qWAVE is implemented in the QoS2
        (%SystemRoot%\System32\Qwave.dll) API library and provides four main
        components:
	Admission control, which determines, when a new network
            multimedia stream is started, if the current network can support
            the sustained bandwidth requested.

	Caching, which allows the detailed admission control checks
            to be bypassed if similar usage patterns occurred in the past and
            the calculation result was already cached.

	Monitoring and probing, which keep track of available
            bandwidth and notify applications during low-bandwidth or
            high-latency situations.

	Traffic tagging and shaping, which uses the 802.11p and DSCP
            technologies mentioned earlier to tag packets with the appropriate
            priority to ensure timely delivery.



Figure 7-45 shows the general
        overview of the qWAVE architecture:
[image: qWAVE architecture]

Figure 7-45. qWAVE architecture



Binding



The final piece in the Windows networking architecture puzzle is
      the way in which the components at the various layers—networking API
      layer, transport driver layer, NDIS driver layer—locate one another. The
      name of the process that connects the layers is
      binding. You’ve witnessed binding taking place if
      you’ve changed your network configuration by adding or removing a
      component using the Network Connections folder.
When you install a networking component, you must supply an INF
      file for the component. (INF files are described in Chapter 8 in Part
      2.) This file includes directions that setup API routines must follow to
      install and configure the component, including binding dependencies or
      binding relationships. A developer can specify binding dependencies for
      a proprietary component so that the Service Control Manager (the Service
      Control Manager is described in Chapter 4) will not only load the component in
      the correct order but will load the component only if other dependent
      components are present on the system. Binding relationships, which the
      bind engine determines with the aid of additional information in a
      component’s INF file, establish connections between components at the
      various layers. The connections specify which components a network
      component on one layer can use on the layer beneath it.
For example, the Workstation service (redirector) automatically
      binds to the TCP/IP protocol. The order of the binding, which you can
      examine on the Adapters And Bindings tab in the Advanced Settings dialog
      box (shown in Figure 7-46), determines the
      priority of the binding. (See the section Multiple Redirector Support earlier in this chapter for
      instructions on how to launch the Advanced Settings dialog box.) When
      the redirector receives a request to access a remote file, it submits
      the request to both protocol drivers simultaneously. When the response
      comes, the redirector waits until it has also received responses from any higher-priority
      protocol drivers. Only then will the redirector return the result to the
      caller. Thus, it can be advantageous to reorder bindings so that
      bindings of high priority are also the most performance efficient or
      applicable to most of the computers in your network. You can also
      manually remove bindings with the Advanced Settings dialog box.
[image: Editing bindings with the Advanced Settings dialog box]

Figure 7-46. Editing bindings with the Advanced Settings dialog box

The Bind value, in the Linkage subkey of a
      network component’s registry configuration key, stores binding
      information for that component. For example, if you examine
      HKLM\SYSTEM\CurrentControlSet\Services\LanmanWorkstation\Linkage\Bind,
      you’ll see the binding information for the Workstation service.

Layered Network Services



Windows includes network services that build on the APIs and
      components we’ve presented in this chapter. Describing the capabilities
      and detailed internal implementation of all these services is outside
      the scope of this book, but this section provides a brief overview of
      remote access, Active Directory, Network Load Balancing, and Distributed
      File System (DFS), including DFS Replication (DFSR).
Remote Access



Remote access, which is available with Windows Server with the
        Routing and Remote Access service, allows remote access clients to
        connect to remote access servers and access network resources such as
        files, printers, and network services as if the client were physically
        connected to the remote access server’s network. Windows provides two
        types of remote access:
	Dial-up remote access is used by clients that connect to a
            remote access server via a telephone or other telecommunications
            infrastructure. The telecommunications medium is used to create a
            temporary physical or virtual connection between the client and
            the server.

	Virtual private network (VPN) remote access lets a
            VPN client establish a virtual point-to-point connection to the
            server over an IP network such as the Internet. Windows also
            supports the Secure Socket Transmission Protocol (SSTP), which is
            a newer tunneling protocol for VPN connections that has the
            ability to pass through most firewalls and routers that block PPTP
            or L2TP/IPsec traffic. It does so by packaging PPP data over the
            SSL channel of the HTTPS protocol. Because the latter operates on
            port 443 and is usually part of typical Web browsing behavior, it
            is much more likely to be available than traditional VPN tunneling
            protocols.



Remote access differs from remote control solutions because
        remote access acts as a proxy connection to a Windows network, whereas
        remote control software executes applications on a server, presenting
        a user interface to the client.

Active Directory



Active Directory is the Windows implementation of Lightweight
        Directory Access Protocol (LDAP) directory services (RFC 4510).
        Fundamentally, Active Directory is a database that stores objects
        representing resources defined by applications in a Windows network.
        For example, the structure and membership of a Windows domain,
        including user accounts and password information, are stored in Active
        Directory.
Object classes and the attributes that define properties of
        objects are specified by a schema. The objects in
        the Active Directory are hierarchically arranged, much like the
        registry’s logical organization, where container objects can store
        other objects, including other container objects. (See Chapter 6 for more information on container
        objects.)
Active Directory supports a number of APIs that clients can use
        to access objects within an Active Directory database:
	The LDAP C API is a C language API that uses the LDAP
            networking protocol. Applications written in C or C++ can use this
            API directly, and applications written in other languages can
            access the APIs through translation layers.

	Active Directory Service Interfaces (ADSI) is a COM
            interface to Active Directory implemented on top of LDAP that
            abstracts the details of LDAP programming. ADSI supports multiple
            languages, including Microsoft Visual Basic, C, and Microsoft
            Visual C++. ADSI can also be used by Microsoft Windows Script Host
            (WSH) applications.

	Messaging API (MAPI) is supported for compatibility with
            Microsoft Exchange client and Outlook Address Book client
            applications.

	Security Account Manager (SAM) APIs are built on top of
            Active Directory to provide an interface to logon authentication
            packages such as MSV1_0 (%SystemRoot%\System32\Msv1_0.dll, which
            is used for legacy NT LAN Manager authentication) and Kerberos
            (%SystemRoot%\System32\Kdcsvc.dll).

	Windows NT 4 networking APIs (Net APIs) are used by Windows
            NT 4 clients to gain access to Active Directory through
            SAM.

	NTDS API is used to look up SIDs and GUIDs in an
            Active Directory implementation (via
            DsCrackNames mostly) as well as for its main
            purposes, Active Directory management and replication. Several
            third parties have written applications that monitor Active
            Directory from these APIs.



Active Directory is implemented as a database file that, by
        default, is named %SystemRoot%\Ntds\Ntds.dit and replicated across the
        domain controllers in a domain. The Active Directory directory
        service, which is a Windows service that executes in the Local
        Security Authority Subsystem (LSASS) process, manages the database,
        using DLLs that implement the on-disk structure of the database as
        well as provide transaction-based updates to protect the integrity of
        the database. The Active Directory database store is based on a
        version of the Extensible Storage Engine (ESE), also known as the JET
        Blue, database used by Microsoft Exchange Server 2007, Desktop Search,
        and Windows Mail. The ESE library (%SystemRoot%\System32\Esent.dll)
        provides routines for accessing the database, which are open for other
        applications to use as well. Figure 7-47 shows the Active Directory
        architecture.
[image: Active Directory architecture]

Figure 7-47. Active Directory architecture


Network Load Balancing



As stated earlier in the chapter, Network Load
        Balancing, which is included with server versions of Windows, is based
        on NDIS lightweight filter technology. Network Load Balancing allows
        for the creation of a cluster containing up to 32 computers, which are
        called cluster hosts in Network Load Balancing.
        The cluster can maintain multiple dedicated IP addresses and a single
        virtual IP address that is published for access by clients. Client
        requests go to all the computers in the cluster, but only one cluster
        host responds to the request. The Network Load Balancing NDIS drivers
        effectively partition the client space among available cluster hosts
        in a distributed manner. This way, each host handles its portion of
        incoming client requests, and every client request always gets handled
        by one and only one host. The cluster host that determines it should
        handle a client request allows the request to propagate up to the
        TCP/IP protocol driver and eventually a server application; the other
        cluster hosts don’t. If a cluster host fails, the rest of the cluster
        realizes that the cluster host is no longer a candidate for processing
        requests and redistributes the incoming client requests to the
        remaining cluster hosts. No new client requests are sent to the failed
        cluster host. Another cluster host can be added to the cluster as a
        replacement, and it will then seamlessly start handling client
        requests.
Network Load Balancing isn’t a general-purpose clustering
        solution because the server application that clients communicate with
        must have certain characteristics: the first is that it must be based
        on protocols supported by the Windows TCP/IP stack, and the second is
        that it must be able to handle client requests on any system in a
        Network Load Balancing cluster. This second requirement typically
        means that an application that must have access to shared state in
        order to service client requests must manage the shared state
        itself—Network Load Balancing doesn’t include services for
        automatically distributing shared state across cluster hosts.
        Applications that are ideally suited for Network Load Balancing
        include a web server that serves static content, Windows Media Server,
        and Terminal Services. Figure 7-48 shows an example of a
        Network Load Balancing operation.
[image: Network Load Balancing operation]

Figure 7-48. Network Load Balancing operation


Network Access Protection



One of the most difficult challenges that network
        administrators face is ensuring that systems that connect to their
        private networks are up to date and meet the organization’s health
        policy requirements. A health policy contains the specific
        requirements that a system must meet, such as the minimum required
        system hotfixes, or a minimum antivirus signature version. Enforcing
        these requirements is even more difficult when the systems, such as
        home computers or laptops, are not under the network administrator’s
        control. Attackers often create malware that targets out-of-date
        software, so users who do not keep their systems up to date with the
        most recent operating system updates or antivirus signatures risk
        exposing the organization’s private network assets to attacks and
        viruses.
Network Access Protection (NAP) provides a mechanism that helps
        network administrators enforce compliance with health requirement
        policies for all systems that require network access. Systems that do
        not meet the required health policies are isolated from the network
        and are placed in quarantine. While in quarantine, the noncompliant
        system’s network connectivity is severely limited, and it can only see
        the remediation servers from which it can receive the necessary
        updates to bring it back into compliance. This ensures that only
        systems that comply with the health policy requirements are allowed to
        access the organization’s network. NAP is not designed to protect a
        network from malicious users; it is designed to help administrators
        maintain the health of the systems on the network, which in turn helps
        maintain the network’s overall integrity. NAP is a multivendor system,
        with clients running on other operating systems, such as Mac OS X and
        Linux, and several third-party System Health Agents, System Health
        Validators, and Enforcement Clients.
An exhaustive description of NAP is beyond the scope of
        this book; however, Figure 7-49
        and Figure 7-50 illustrate the
        various components that implement NAP on client and server systems. A
        detailed description of NAP can be found at http://technet.microsoft.com/en-us/network/bb545879.aspx.
[image: NAP client-side architecture]

Figure 7-49. NAP client-side architecture

In brief, the components of NAP on the client include the
        following:
	System Health Agent
              (SHA). Monitors one or more aspects of a client’s health, and
              provides one or more Statements of Health (SoH) to the local
              system’s NAP Agent. For example, an antivirus SHA might examine
              the version numbers of the antivirus engine and virus signature
              file, and place that information in its SoH. A SHA can be
              matched to a remediation server so that a noncompliant system
              will know how to become compliant. For example, a SHA for
              checking antivirus signatures could be matched to a server that
              contains the latest antivirus signature file and the antivirus
              application package. Some SHAs do not need to be matched with a
              remediation server. For example, a SHA might just report local
              system settings that a System Health Validator (SHV) running on
              the NAP server SHV can use to determine whether the system’s
              firewall is enabled. Windows XP Service Pack 3 and later provide
              a SHA (%SystemRoot%\System32\Mssha.dll) that monitors the
              settings of the Windows Action Center (SHA-WAC). This SHA is
              typically referred to as the Windows SHA, or WSH. To write a
              SHA, look at the
              INapSystemHealthAgentBinding2,
              INapSystemHealthAgentCallback, and
              INapSystemHealthAgentRequest APIs. The SHA is dependent upon the System Health
              Validator (SHV), and it is expected that the author of a SHA
              also provide a SHV.
Note
SHA vendors should understand that the evaluation process
              can happen before the system has an IP address (for example,
              using 802.1x), so the SHA cannot look for data outside the
              client system. In addition, the IP address can change at any
              point in time (for example, if NAP causes the client to move to
              the quarantine VLAN), so the SHA should not cache sockets or
              make any assumptions about its IP address.


	NAP Agent. %SystemRoot%\System32\qagentRT.dll (quarantine agent
              service runtime). Runs on each client computer, collects the SoH
              from each SHA, and relays that information to the NAP Server.
              The NAP Agent communicates with the NAP Server running on the
              Network Policy Server using the Microsoft Statement of Health
              protocol [MS-SoH].

	Enforcement Client
              (EC). Responsible for communicating with an Enforcement Point
              when trying to connect to a network, and for enforcing machine
              compliance with NAP policies. An Enforcement Point is a server
              or network access device that can be used with NAP to require
              the evaluation of a NAP client’s health state and provide
              restricted network access or communication. If the machine’s
              health is not compliant, the NAP EC indicates the restricted
              status to the NAP Agent. Windows provides ECs for IPsec
              (%SystemRoot%\System32\NapIPsec.dll), 802.1X and VPN
              EAP-authenticated connections
              (%SystemRoot%\System32\Eapqec.dll), DHCP
              (%SystemRoot%\System32\Dhcpqec.dll), and a Remote Desktop
              gateway (%SystemRoot%\System32\Tsgqec.dll). To write an EC, look
              at the INapEnforcementClientBinding,
              INapEnforcementClientCallback, and
              INapEnforcementClientConnection2
              APIs.
Note
The name “enforcement client” can be somewhat confusing.
              The name refers to its role as a client of a network enforcement
              point, so it is more about how a client system accesses a
              network (although access control is generally part of its
              function).

The following diagram shows the NAP components on a server.
            On the server side, the entire mechanism is an add-on to the
            Network Policy Server (NPS) Server (part of the IAS service). In
            general, the health requests arrive at the NPS as an addition to
            RADIUS requests sent to the NPS by the enforcement point. The
            servers, the NPS then passes the Statement of Health (SoH) to the
            health validation layer, which passes the SoH to the appropriate
            SHV.
From the NPS perspective, the requests are coming from
            RADIUS clients (for example, 802.1x network switch, VPN server,
            DHCP server, and so on) in RADIUS UDP packets. Or it allows
            private ALPC calls. (Instead of going through UDP, the ALPC is
            used by the other Windows Server roles—for example, DHCP server—to simplify
            the programming model.) The RADIUS specification (RFC 2865)
            provides for a maximum packet size of 4096, which has a
            significant impact on the amount of data that a SHA can
            send.
The client IPsec EC talks to a Health Registration Authority
            (HRA) server over HTTP. The HRA is an IIS ISAPI filter, which
            passes the SoH to the NPS (using the ALPC interface) and is
            responsible for issuing the certificates (when the machine is
            identified as qualified for a certificate). The HRA server list
            can be configured using DNS, by adding HRA server records and
            configuring the client to get the list from DNS. Third parties can
            implement a RADIUS client to talk to the NPS over UDP.
[image: NAP server-side architecture]

Figure 7-50. NAP server-side architecture


	System Health Validator
              (SHV). Evaluates a SoH received from the corresponding SHA on a
              client and determines whether the client is in compliance with
              the organization’s health policy by checking with a Health
              Requirements Server (HRS). For example, an antivirus HRS might
              specify the minimum antivirus engine version and virus signature
              file version.
Note
The presence of a Health Requirements Server is an
              implementation detail; an SHV can perform all the necessary work
              on its own.

The SHV uses this information to determine whether the SoH
            provided by the client SHA is in compliance with the health policy
            provided by the HRS. To write a SHV, look at the
            INapSystemHealthValidator and
            INapSystemHealthValidationRequest2 APIs. The
            SHV is dependent upon the System Health Agent (SHA), and it is
            expected that the author of a SHA also provide a SHV.



Not pictured in the diagram are one or more Remediation Servers,
        which allow a client to be brought into compliance (for example, a
        Windows Update server). The SHV is not connected to the Remediation
        Servers, but it is aware of their existence (configured
        administratively). It passes information about the servers to the
        client when the SoH indicates that the client is not compliant with
        the current policy requirements.
NAP client configuration is typically done in the Group Policy
        editor with the Enforcement Client snap-in, but it can also be
        performed using the NAP client configuration MMC snap-in
        (%SystemRoot%\System32\Napclcfg.msc) or the network shell
        (%SystemRoot%\System32\Netsh.exe), as shown in Figure 7-51, Figure 7-52, and Figure 7-53.
Note
Group Policy always takes precedence over other
          configurations, followed by the local configuration, and then by DNS
          auto-discovery.

[image: NAP Client configuration]

Figure 7-51. NAP Client configuration

[image: NAP Client configuration]

Figure 7-52. NAP Client configuration

[image: Configuring NAP using the network shell]

Figure 7-53. Configuring NAP using the network shell


Direct Access



In Windows 7 Ultimate and Enterprise editions, Microsoft
        added an always-on Virtual Private Network (VPN) capability known as
        DirectAccess (DA), which allows a remote client on the Internet access
        to a corporate domain-based network. A DA connection to a corporate
        network is created when the client system boots, and it lasts for as
        long as the client is running and connected to the Internet. If
        network problems cause the connection to be dropped, the connection
        will be automatically re-established when network connections permit.
        DA uses IPsec running over IPv6, which can be encapsulated in IPv4
        using a variety of mechanisms (described later) if the local system
        does not have end-to-end IPv6 connectivity to the private network.
        Remote systems can even use DA when they are behind a firewall,
        because DA can use HTTPS (TCP port 443) as a transport
        (IP-HTTPS).
Unlike traditional VPN products, remote systems using DA to
        access a corporate network are always visible and manageable—just as
        if the machine was directly plugged into the corporate network. The
        corporate IT department can manage remote systems by updating Group
        Policy settings or push software updates at any time the remote
        systems are attached to the Internet. The IT department can also
        specify which corporate network resources (applications, servers,
        subnets, and so on) can be accessed by a user or remote system that is
        connected using DA.
For enhanced security, Authentication Mechanism Assurance
        (described in Chapter 6) can be required on
        DA clients. This requires two-factor authentication (for example, a
        smart card or other hardware token) to log on or unlock a
        system.
As shown in Figure 7-54, there are many
        mechanisms available for connecting a DA client to a corporate
        network: IPv6, Intra-Site Automatic Tunnel Addressing Protocol
        (ISATAP), IPv4 encrypted with IPsec, 6to4 tunnel, or Teredo. In all
        cases, a connection is made between the remote client and a DA server.
        This server provides Denial of Service (DoS) protection by
        rate-limiting connection negotiation traffic used to connect to it,
        and it acts as an IPv6 tunnel gateway between the remote client and
        the corporate network. The DA server also functions as an IPv6-based
        IPsec security gateway, similar to a VPN server or VPN client access
        concentrator, to control access to the corporate network
A client typically has two IPv6 tunnels to the DA server: an
        infrastructure tunnel and an
        intranet tunnel. The infrastructure tunnel is for
        communicating with corporate infrastructure servers, such as a Domain
        Name System (DNS) server, and domain controllers. The infrastructure
        tunnel is created automatically when the client boots, and it does not
        require the user to be logged in. The intranet tunnel is established
        when a user logs in, and it carries network traffic for the
        user.
DA also works with NAP. In this case, a Health Registration
        Authority (HRA) server is placed outside the corporate firewall (often
        referred to as the DMZ, or DeMilitarized Zone). The client is
        configured with the name of the HRA (which can be resolved to an IP
        address using a public DNS server). When the client boots, it contacts
        the HRA and sends its Statement of Health. If the client is not
        healthy, it must access remediation servers, which are also in the
        DMZ. Once the client is healthy, it obtains a health certificate that
        can then be used with IPsec to connect to the DA server.
[image: Connecting a DA client to a corporate network]

Figure 7-54. Connecting a DA client to a corporate network



Conclusion



The Windows network architecture provides a flexible
      infrastructure for networking APIs, network protocol drivers, and
      network adapter drivers. The Windows networking architecture takes
      advantage of I/O layering to give networking support the extensibility
      to evolve as computer networking evolves. Similarly, new APIs can
      interface to existing Windows protocol drivers. Finally, the range of
      networking APIs implemented on Windows affords network application
      developers a range of possible implementations, each with different
      programming models and protocol support.
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