

 [image: Windows® Internals, Sixth Edition, Part 1]

 Windows® Internals, Sixth Edition, Part
 1

Mark E. Russinovich

David A. Solomon

Alex Ionescu

Published by Microsoft Press

To our parents, who guided and inspired us to follow our
 dreams

Special Upgrade Offer

If you purchased this ebook directly from oreilly.com, you have the following benefits:
	DRM-free ebooks—use your ebooks across devices without restrictions or limitations

	Multiple formats—use on your laptop, tablet, or phone

	Lifetime access, with free updates

	Dropbox syncing—your files, anywhere

If you purchased this ebook from another retailer, you can upgrade your ebook to take advantage of all these benefits for just $4.99. Click here to access your ebook upgrade.
Please note that upgrade offers are not available from sample content.

Introduction

Windows Internals, Sixth Edition is intended
 for advanced computer professionals (both developers and system
 administrators) who want to understand how the core components of the
 Microsoft Windows 7 and Windows Server 2008 R2 operating systems work
 internally. With this knowledge, developers can better comprehend the
 rationale behind design choices when building applications specific to the
 Windows platform. Such knowledge can also help developers debug complex
 problems. System administrators can benefit from this information as well,
 because understanding how the operating system works “under the covers”
 facilitates understanding the performance behavior of the system and makes
 troubleshooting system problems much easier when things go wrong. After
 reading this book, you should have a better understanding of how Windows
 works and why it behaves as it does.

Structure of the Book

For the first time, Windows Internals has
 been divided into two parts. Updating the book for each release of
 Windows takes considerable time so producing it in two parts allows us
 to publish the first part earlier.
This book, Part 1, begins with two chapters that define key
 concepts, introduce the tools used in the book, and describe the overall
 system architecture and components. The next two chapters present key
 underlying system and management mechanisms. Part 1 wraps up by covering
 three core components of the operating system: processes, threads, and
 jobs; security; and networking.
Part 2, which is available separately, covers the remaining core
 subsystems: I/O, storage, memory management, the cache manager, and file
 systems. Part 2 concludes with a description of the startup and shutdown
 processes and a description of crash-dump analysis.

History of the Book

This is the sixth edition of a book that was originally called
 Inside Windows NT (Microsoft Press, 1992), written
 by Helen Custer (prior to the initial release of Microsoft Windows NT
 3.1). Inside Windows NT was the first book ever
 published about Windows NT and provided key insights into the
 architecture and design of the system. Inside Windows NT,
 Second Edition (Microsoft Press, 1998) was written by David
 Solomon. It updated the original book to cover Windows NT 4.0 and had a
 greatly increased level of technical depth.
Inside Windows 2000, Third Edition (Microsoft
 Press, 2000) was authored by David Solomon and Mark Russinovich. It
 added many new topics, such as startup and shutdown, service internals,
 registry internals, file-system drivers, and networking. It also covered
 kernel changes in Windows 2000, such as the Windows Driver Model (WDM),
 Plug and Play, power management, Windows Management Instrumentation
 (WMI), encryption, the job object, and Terminal Services.
 Windows Internals, Fourth Edition was the Windows
 XP and Windows Server 2003 update and added more content focused on
 helping IT professionals make use of their knowledge of Windows
 internals, such as using key tools from Windows Sysinternals
 (www.microsoft.com/technet/sysinternals)
 and analyzing crash dumps. Windows Internals, Fifth
 Edition was the update for Windows Vista and Windows Server
 2008. New content included the image loader, user-mode debugging
 facility, and Hyper-V.

Sixth Edition Changes

This latest edition has been updated to cover the kernel changes
 made in Windows 7 and Windows Server 2008 R2. Hands-on experiments have
 been updated to reflect changes in tools.

Hands-on Experiments

Even without access to the Windows source code, you can glean much
 about Windows internals from tools such as the kernel debugger and tools
 from Sysinternals and Winsider Seminars & Solutions. When a tool can
 be used to expose or demonstrate some aspect of the internal behavior of
 Windows, the steps for trying the tool yourself are listed in
 “EXPERIMENT” boxes. These appear throughout the book, and we encourage
 you to try these as you’re reading—seeing visible proof of how Windows
 works internally will make much more of an impression on you than just
 reading about it will.

Topics Not Covered

Windows is a large and complex operating system. This book doesn’t
 cover everything relevant to Windows internals but instead focuses on
 the base system components. For example, this book doesn’t describe
 COM+, the Windows distributed object-oriented programming
 infrastructure, or the Microsoft .NET Framework, the foundation of
 managed code applications.
Because this is an internals book and not a user, programming, or
 system administration book, it doesn’t describe how to use, program, or
 configure Windows.

A Warning and a Caveat

Because this book describes undocumented behavior of the internal
 architecture and the operation of the Windows operating system (such as
 internal kernel structures and functions), this content is subject to
 change between releases. (External interfaces, such as the Windows API,
 are not subject to incompatible changes.)
By “subject to change,” we don’t necessarily mean that details
 described in this book will change between releases, but you can’t count
 on them not changing. Any software that uses these undocumented
 interfaces might not work on future releases of Windows. Even worse,
 software that runs in kernel mode (such as device drivers) and uses
 these undocumented interfaces might experience a system crash when
 running on a newer release of Windows.

Acknowledgments

First, thanks to Jamie Hanrahan and Brian Catlin of Azius, LLC for
 joining us on this project—the book would not have been finished without
 their help. They did the bulk of the updates on the Chapter 6 and Chapter 7 chapters
 and contributed to the update of the Chapter 4 and Chapter 5 chapters. Azius
 provides Windows-internals and device-driver training. See
 www.azius.com for more
 information.
We want to recognize Alex Ionescu, who for this edition is a full
 coauthor. This is a reflection of Alex’s extensive work on the fifth
 edition, as well as his continuing work on this edition.
Thanks to Eric Traut and Jon DeVaan for continuing to allow David
 Solomon access to the Windows source code for his work on this book as
 well as continued development of his Windows Internals courses.
Three key reviewers were not acknowledged for their review and
 contributions to the fifth edition: Arun Kishan, Landy Wang, and Aaron
 Margosis—thanks again to them! And thanks again to Arun and Landy for
 their detailed review and helpful input for this edition.
This book wouldn’t contain the depth of technical detail or the
 level of accuracy it has without the review, input, and support of key
 members of the Microsoft Windows development team. Therefore, we want to
 thank the following people, who provided technical review and input to
 the book:
	Greg Cottingham

	Joe Hamburg

	Jeff Lambert

	Pavel Lebedynskiy

	Joseph East

	Adi Oltean

	Alexey Pakhunov

	Valerie See

For the Chapter 7 chapter, a special thanks to
 Gianluigi Nusca and Tom Jolly, who really went beyond the call of duty:
 Gianluigi for his extraordinary help with the BranchCache material and
 the amount of suggestions (and many paragraphs of material he wrote),
 and Tom Jolly not only for his own review and suggestions (which were
 excellent), but for getting many other developers to assist with the
 review. Here are all those who reviewed and contributed to the Chapter 7 chapter:
	Roopesh Battepati

	Molly Brown

	Greg Cottingham

	Dotan Elharrar

	Eric Hanson

	Tom Jolly

	Manoj Kadam

	Greg Kramer

	David Kruse

	Jeff Lambert

	Darene Lewis

	Dan Lovinger

	Gianluigi Nusca

	Amos Ortal

	Ivan Pashov

	Ganesh Prasad

	Paul Swan

	Shiva Kumar Thangapandi

Amos Ortal and Dotan Elharrar were extremely helpful on NAP, and
 Shiva Kumar Thangapandi helped extensively with EAP.
The detailed checking Christophe Nasarre, overall technical
 reviewer, performed contributed greatly to the technical accuracy and
 consistency in the book.
We would like to again thank Ilfak Guilfanov of Hex-Rays
 (www.hex-rays.com) for
 the IDA Pro Advanced and Hex-Rays licenses they granted to Alex Ionescu
 so that he could speed up his reverse engineering of the Windows
 kernel.
Finally, the authors would like to thank the great staff at
 Microsoft Press who have been behind turning this book into a reality.
 Devon Musgrave served double duty as acquisitions editor and
 developmental editor, while Carol Dillingham oversaw the title as its
 project editor. Editorial and production manager Steve Sagman, copy
 editor Roger LeBlanc, proofreader Audrey Marr, and indexer Christina
 Yeager also contributed to the quality of this book.
Last but not least, thanks to Ben Ryan, publisher of Microsoft
 Press, who continues to believe in the importance of providing this
 level of detail about Windows to their readers!

Errata & Book Support

We’ve made every effort to ensure the accuracy of this book. Any
 errors that have been reported since this book was published are listed
 on our Microsoft Press site at oreilly.com:
http://go.microsoft.com/FWLink/?Linkid=245675
If you find an error that is not already listed, you can report it
 to us through the same page.
If you need additional support, email Microsoft Press Book Support
 at mspinput@microsoft.com.
Please note that product support for Microsoft software is not
 offered through the addresses above.

We Want to Hear from You

At Microsoft Press, your satisfaction is our top priority, and
 your feedback our most valuable asset. Please tell us what you think of
 this book at:
	http://www.microsoft.com/learning/booksurvey

The survey is short, and we read every one of your comments and
 ideas. Thanks in advance for your input!

Stay in Touch

Let’s keep the conversation going! We’re on Twitter:
 http://twitter.com/MicrosoftPress.

Chapter 1. Concepts and Tools

In this chapter, we’ll introduce the key Microsoft Windows
 operating system concepts and terms we’ll be using throughout this book,
 such as the Windows API, processes, threads, virtual memory, kernel mode
 and user mode, objects, handles, security, and the registry. We’ll also
 introduce the tools that you can use to explore Windows internals, such as
 the kernel debugger, the Performance Monitor, and key tools from Windows
 Sysinternals (www.microsoft.com/technet/sysinternals).
 In addition, we’ll explain how you can use the Windows Driver Kit (WDK)
 and the Windows Software Development Kit (SDK) as resources for finding
 further information on Windows internals.
Be sure that you understand everything in this chapter—the remainder
 of the book is written assuming that you do.

Windows Operating System Versions

This book covers the most recent version of the Microsoft Windows
 client and server operating systems: Windows 7 (32-bit and 64-bit
 versions) and Windows Server 2008 R2 (64-bit version only). Unless
 specifically stated, the text applies to all versions. As background
 information, Table 1-1 lists
 the Windows product names, their internal version number, and their
 release date.
Table 1-1. Windows Operating System Releases
	Product Name
	Internal Version
 Number
	Release Date

	Windows NT 3.1
	3.1
	July 1993

	Windows NT 3.5
	3.5
	September 1994

	Windows NT 3.51
	3.51
	May 1995

	Windows NT 4.0
	4.0
	July 1996

	Windows 2000
	5.0
	December 1999

	Windows XP
	5.1
	August 2001

	Windows Server 2003
	5.2
	March 2003

	Windows Vista
	6.0 (Build 6000)
	January 2007

	Windows Server 2008
	6.0 (Build 6001)
	March 2008

	Windows 7
	6.1 (Build 7600)
	October 2009

	Windows Server 2008 R2
	6.1 (Build 7600)
	October 2009

Note
The “7” in the “Windows 7” product name does not refer
 to the internal version number, but is rather a generational index. In
 fact, to minimize application compatibility issues, the version number
 for Windows 7 is actually 6.1, as shown in Table 1-1. This allows
 applications checking for the major version number to continue
 behaving on Windows 7 as they did on Windows Vista. In fact, Windows 7
 and Server 2008 R2 have identical version/build numbers because they
 were built from the same Windows code base.

Foundation Concepts and Terms

In the course of this book, we’ll be referring to some structures
 and concepts that might be unfamiliar to some readers. In this section,
 we’ll define the terms we’ll be using throughout. You should become
 familiar with them before proceeding to subsequent chapters.
Windows API

The Windows application programming interface (API) is the
 user-mode system programming interface to the Windows operating system
 family. Prior to the introduction of 64-bit versions of Windows, the
 programming interface to the 32-bit versions of the Windows operating
 systems was called the Win32 API to distinguish
 it from the original 16-bit Windows API, which was the programming
 interface to the original 16-bit versions of Windows. In this book,
 the term Windows API refers to both the 32-bit
 and 64-bit programming interfaces to Windows.
Note
The Windows API is described in the Windows Software
 Development Kit (SDK) documentation. (See the section Windows Software Development Kit later in this
 chapter.) This documentation is available for free viewing online at
 www.msdn.microsoft.com.
 It is also included with all subscription levels to the Microsoft
 Developer Network (MSDN), Microsoft’s support program for
 developers. For more information, see www.msdn.microsoft.com.
 An excellent description of how to program the Windows base API is
 in the book Windows via C/C++, Fifth Edition by
 Jeffrey Richter and Christophe Nasarre (Microsoft Press,
 2007).

The Windows API consists of thousands of callable functions,
 which are divided into the following major categories:
	Base Services

	Component Services

	User Interface Services

	Graphics and Multimedia Services

	Messaging and Collaboration

	Networking

	Web Services

This book focuses on the internals of the key base services,
 such as processes and threads, memory management, I/O, and
 security.
What About .NET?
The Microsoft .NET Framework consists of a library of classes
 called the Framework Class Library (FCL) and a Common Language
 Runtime (CLR) that provides a managed code execution environment
 with features such as just-in-time compilation, type verification,
 garbage collection, and code access security. By offering these
 features, the CLR provides a development environment that improves
 programmer productivity and reduces common programming errors. For
 an excellent description of the .NET Framework and its core
 architecture, see CLR via C#, Third Edition by
 Jeffrey Richter (Microsoft Press, 2010).
The CLR is implemented as a classic COM server whose code
 resides in a standard user-mode Windows DLL. In fact, all components
 of the .NET Framework are implemented as standard user-mode Windows
 DLLs layered over unmanaged Windows API functions. (None of the .NET
 Framework runs in kernel mode.) Figure 1-1 illustrates
 the relationship between these components:
[image: Relationship between .NET Framework components]

Figure 1-1. Relationship between .NET Framework components

History of the Win32 API
Interestingly, Win32 wasn’t slated to be the original
 programming interface to what was then called Windows NT. Because
 the Windows NT project started as a replacement for OS/2 version 2,
 the primary programming interface was the 32-bit OS/2 Presentation
 Manager API. A year into the project, however, Microsoft Windows 3.0
 hit the market and took off. As a result, Microsoft changed
 direction and made Windows NT the future replacement for the Windows
 family of products as opposed to the replacement for OS/2. It was at
 this juncture that the need to specify the Windows API arose—before
 this, in Windows 3.0, the API existed only as a 16-bit
 interface.
Although the Windows API would introduce many new functions
 that hadn’t been available on Windows 3.1, Microsoft decided to make
 the new API compatible with the 16-bit Windows API function names,
 semantics, and use of data types whenever possible to ease the
 burden of porting existing 16-bit Windows applications to Windows
 NT. This explains why many function names and interfaces might seem
 inconsistent: –this was required to ensure that the then new Windows
 API was compatible with the old 16-bit Windows API.

Services, Functions, and Routines

Several terms in the Windows user and programming documentation
 have different meanings in different contexts. For example, the word
 service can refer to a callable routine in the
 operating system, a device driver, or a server process. The following
 list describes what certain terms mean in this book:
	Windows API
 functions. Documented, callable subroutines in the Windows API.
 Examples include CreateProcess,
 CreateFile, and
 GetMessage.

	Native system services (or system
 calls). The undocumented, underlying services in the operating
 system that are callable from user mode. For example,
 NtCreateUserProcess is the internal system
 service the Windows CreateProcess function
 calls to create a new process. For a definition of
 system calls, see the section System Service Dispatching in Chapter 3.

	Kernel support functions (or
 routines). Subroutines inside the Windows operating system that can
 be called only from kernel mode (defined later in this chapter).
 For example, ExAllocatePoolWithTag is the
 routine that device drivers call to allocate memory from the
 Windows system heaps (called pools).

	Windows
 services. Processes started by the Windows service control manager.
 For example, the Task Scheduler service runs in a user-mode
 process that supports the at command (which
 is similar to the UNIX commands
 at or cron). (Note:
 although the registry defines Windows device drivers as
 “services,” they are not referred to as such in this
 book.)

	DLLs (dynamic-link
 libraries). A set of callable subroutines linked together as a binary
 file that can be dynamically loaded by applications that use the
 subroutines. Examples include Msvcrt.dll (the C run-time
 library) and Kernel32.dll (one of the Windows API subsystem
 libraries). Windows user-mode components and applications use
 DLLs extensively. The advantage DLLs provide over static
 libraries is that applications can share DLLs, and Windows
 ensures that there is only one in-memory copy of a DLL’s code
 among the applications that are referencing it. Note that
 nonexecutable .NET assemblies are compiled as DLLs but without
 any exported subroutines. Instead, the CLR parses compiled
 metadata to access the corresponding types and members.

Processes, Threads, and Jobs

Although programs and processes appear similar on the surface,
 they are fundamentally different. A program is a
 static sequence of instructions, whereas a
 process is a container for a set of resources
 used when executing the instance of the program. At the highest level
 of abstraction, a Windows process comprises the following:
	A private virtual address space, which
 is a set of virtual memory addresses that the process can
 use

	An executable program, which defines initial code and data
 and is mapped into the process’ virtual address space

	A list of open handles to various system resources—such as
 semaphores, communication ports, and files—that are accessible to
 all threads in the process

	A security context called an access
 token that identifies the user, security groups,
 privileges, User Account Control (UAC) virtualization state,
 session, and limited user account state associated with the
 process

	A unique identifier called a process ID
 (internally part of an identifier called a client
 ID)

	At least one thread of execution (although an “empty”
 process is possible, it is not useful)

Each process also points to its parent or creator process. If
 the parent no longer exists, this information is not updated.
 Therefore, it is possible for a process to refer to a nonexistent
 parent. This is not a problem, because nothing relies on this
 information being kept current. In the case of ProcessExplorer, the
 start time of the parent process is taken into account to avoid
 attaching a child process based on a reused process ID. The following
 experiment illustrates this behavior.
EXPERIMENT: Viewing the Process Tree
One unique attribute about a process that most tools
 don’t display is the parent or creator process ID. You can retrieve
 this value with the Performance Monitor (or programmatically) by
 querying the Creating Process ID. The Tlist.exe tool (in the
 Debugging Tools for Windows) can show the process tree by using the
 /t switch. Here’s an example of output from
 tlist /t:
C:\>tlist /t
System Process (0)
System (4)
 smss.exe (224)
csrss.exe (384)
csrss.exe (444)
 conhost.exe (3076) OleMainThreadWndName
winlogon.exe (496)
wininit.exe (504)
 services.exe (580)
 svchost.exe (696)
 svchost.exe (796)
 svchost.exe (912)
 svchost.exe (948)
 svchost.exe (988)
 svchost.exe (244)
 WUDFHost.exe (1008)
 dwm.exe (2912) DWM Notification Window
 btwdins.exe (268)
 svchost.exe (1104)
 svchost.exe (1192)
 svchost.exe (1368)
 svchost.exe (1400)
 spoolsv.exe (1560)
 svchost.exe (1860)
 svchost.exe (1936)
 svchost.exe (1124)
 svchost.exe (1440)
 svchost.exe (2276)
 taskhost.exe (2816) Task Host Window
 svchost.exe (892)
 lsass.exe (588)
 lsm.exe (596)
explorer.exe (2968) Program Manager
 cmd.exe (1832) Administrator: C:\Windows\system32\cmd.exe - "c:\tlist.exe" /t
 tlist.exe (2448)
The list indents each process to show its parent/child
 relationship. Processes whose parents aren’t alive are
 left-justified (as is Explorer.exe in the preceding example) because
 even if a grandparent process exists, there’s no way to find that
 relationship. Windows maintains only the creator process ID, not a
 link back to the creator of the creator, and so forth.
To demonstrate the fact that Windows doesn’t keep
 track of more than just the parent process ID, follow these
 steps:
	Open a Command Prompt window.

	Type title Parent (to
 change the window title to Parent).

	Type start cmd (which
 starts a second command prompt).

	Type title Child in the
 second command prompt.

	Bring up Task Manager.

	Type mspaint (which
 runs Microsoft Paint) in the second command prompt.

	Go back to the second command prompt and type exit. (Notice that Paint
 remains.)

	Switch to Task Manager.

	Click on the Applications tab.

	Right-click on the Parent task, and select Go To
 Process.

	Right-click on this cmd.exe process, and select End
 Process Tree.

	Click End Process Tree in the Task Manager confirmation
 message box.

The first command prompt window will disappear, but you should
 still see the Paint window because it was the grandchild of the
 command prompt process you terminated; and because the intermediate
 process (the parent of Paint) was terminated, there was no link
 between the parent and the grandchild.

A number of tools for viewing (and modifying) processes and
 process information are available. The following experiments
 illustrate the various views of process information you can obtain
 with some of these tools. While many of these tools are included
 within Windows itself and within the Debugging Tools for Windows and
 the Windows SDK, others are stand-alone tools from Sysinternals. Many
 of these tools show overlapping subsets of the core process and thread
 information, sometimes identified by different names.
Probably the most widely used tool to examine process activity
 is Task Manager. (Because there is no such thing as a “task” in the
 Windows kernel, the name of this tool, Task Manager, is a bit odd.)
 The following experiment shows the difference between what Task
 Manager lists as applications and processes.
EXPERIMENT: Viewing Process Information with Task
 Manager
The built-in Windows Task Manager provides a quick
 list of the processes on the system. You can start Task Manager in
 one of four ways: (1) press Ctrl+Shift+Esc, (2) right-click on the
 taskbar and click Start Task Manager, (3) press Ctrl+Alt+Delete and
 click the Start Task Manager button, or (4) start the executable
 Taskmgr.exe. Once Task Manager has started, click on the Processes
 tab to see the list of processes. Notice that processes are
 identified by the name of the image of which they are an instance.
 Unlike some objects in Windows, processes can’t be given global
 names. To display additional details, choose Select Columns from the
 View menu and select additional columns to be added, as shown
 here:
[image: image with no caption]

Although the Task Manager Processes tab shows a list of
 processes, what the Applications tab displays isn’t as obvious. The
 Applications tab lists the top-level visible windows on all the
 desktops in the interactive window station you are connected to. (By
 default, there is only one interactive desktop—an application can
 create more by using the Windows CreateDesktop
 function, as is done by the Sysinternals Desktops tool.) The Status
 column indicates whether or not the thread that owns the window is
 in a window message wait state. “Running” means the thread is
 waiting for windowing input; “Not Responding” means the thread isn’t
 waiting for windowing input (for example, the thread might be
 running or waiting for I/O or some Windows synchronization
 object).
[image: image with no caption]

On the Applications tab, you can match a task to the
 process that owns the thread that owns the task window by
 right-clicking on the task name and choosing Go To Process as shown
 in the previous tlist experiment.

Process Explorer, from Sysinternals, shows more details about
 processes and threads than any other available tool, which is why you
 will see it used in a number of experiments throughout the book. The
 following are some of the unique things that Process Explorer shows or
 enables:
	Process security token (such as lists of groups and
 privileges and the virtualization state)

	Highlighting to show changes in the process and thread
 list

	List of services inside service-hosting processes, including
 the display name and description

	Processes that are part of a job and job details

	Processes hosting .NET applications and .NET-specific
 details (such as the list of AppDomains, loaded assemblies, and
 CLR performance counters)

	Start time for processes and threads

	Complete list of memory-mapped files (not just DLLs)

	Ability to suspend a process or a thread

	Ability to kill an individual thread

	Easy identification of which processes were
 consuming the most CPU time over a period of time (The Performance
 Monitor can display process CPU utilization for a given set of
 processes, but it won’t automatically show processes created after
 the performance monitoring session has started—only a manual trace
 in binary output format can do that.)

Process Explorer also provides easy access to information in one
 place, such as:
	Process tree (with the ability to collapse parts of the
 tree)

	Open handles in a process (including unnamed handles)

	List of DLLs (and memory-mapped files) in a process

	Thread activity within a process

	User-mode and kernel-mode thread stacks (including the
 mapping of addresses to names using the Dbghelp.dll that comes
 with the Debugging Tools for Windows)

	More accurate CPU percentage using the thread cycle count
 (an even better representation of precise CPU activity, as
 explained in Chapter 5)

	Integrity level

	Memory manager details such as peak commit charge and kernel
 memory paged and nonpaged pool limits (other tools show only
 current size)

An introductory experiment using Process Explorer
 follows.
EXPERIMENT: Viewing Process Details with Process
 Explorer
Download the latest version of Process Explorer from
 Sysinternals and run it. The first time you run it and go to the the
 Threads tab of a process’ property page, you will receive a message
 that symbols are not currently configured. If properly configured,
 Process Explorer can access symbol information to display the
 symbolic name of the thread start function and functions on a
 thread’s call stack (available by double-clicking on a process and
 clicking on the Threads tab). This is useful for identifying what
 threads are doing within a process. To access symbols, you must have
 the Debugging Tools for Windows installed (described later in this
 chapter). Then click on Options, choose Configure Symbols, and fill
 in the path to the Dbghelp.dll in the Debugging Tools folder and a
 valid symbol path. For example, on a 64-bit system this
 configuration is correct:
[image: image with no caption]

In the preceding example, the on-demand symbol server
 is being used to access symbols and a copy of the symbol files is
 being stored on the local machine in the c:\symbols folder. For more
 information on configuring the use of the symbol server, see
 http://msdn.microsoft.com/en-us/windows/hardware/hh852360.aspx.
When Process Explorer starts, it shows by default the process
 tree view. It has an optional lower pane that can show open handles
 or mapped DLLs and memory-mapped files. (These are explored in Chapter 3 in Part 1 and Chapter 10, “Memory
 Management” in Part 2.) It also shows tooltips for several kinds of
 hosting processes:
	The services inside a service-hosting process
 (Svchost.exe) if you hover your mouse over the name

	The COM object tasks inside a Taskeng.exe process (started
 by the Task Scheduler)

	The target of a Rundll32.exe process (used for things such
 as Control Panel items)

	The COM object being hosted inside a Dllhost.exe
 process

	Internet Explorer tab processes

	Console host processes

[image: image with no caption]

Here are a few steps to walk you through some basic
 capabilities of Process Explorer:
	Notice that processes hosting services are highlighted by
 default in pink. Your own processes are highlighted in blue.
 (These colors can be configured.)

	Hover your mouse pointer over the image name for
 processes, and notice the full path displayed by the tooltip. As
 noted earlier, certain types of processes have additional
 details in the tooltip.

	Click on View, Select Columns from the Process Image tab,
 and add the image path.

	Sort by clicking on the process column, and notice the
 tree view disappears. (You can either display tree view or sort
 by any of the columns shown.) Click again to sort from Z to A.
 Then click again, and the display returns to tree view.

	Deselect View, Show Processes From All Users to show only
 your processes.

	Go to Options, Difference Highlight Duration, and change
 the value to 5 seconds. Then launch a new process (anything),
 and notice the new process highlighted in green for 5 seconds.
 Exit this new process, and notice the process is highlighted in
 red for 5 seconds before disappearing from the display. This can
 be useful to see processes being created and exiting on your
 system.

	Finally, double-click on a process and explore the various
 tabs available from the process properties display. (These will
 be referenced in various experiments throughout the book where
 the information being shown is being explained.)

A thread is the entity within a process
 that Windows schedules for execution. Without it, the process’ program
 can’t run. A thread includes the following essential
 components:
	The contents of a set of CPU registers representing the
 state of the processor.

	Two stacks—one for the thread to use while executing in
 kernel mode and one for executing in user mode.

	A private storage area called thread-local
 storage (TLS) for use by subsystems, run-time
 libraries, and DLLs.

	A unique identifier called a thread ID
 (part of an internal structure called a client
 ID—process IDs and thread IDs are generated out of the
 same namespace, so they never overlap).

	Threads sometimes have their own security context, or token,
 that is often used by multithreaded server applications that
 impersonate the security context of the clients that they
 serve.

The volatile registers, stacks, and private storage area are
 called the thread’s context. Because this
 information is different for each machine architecture that Windows
 runs on, this structure, by necessity, is architecture-specific. The
 Windows GetThreadContext function provides access
 to this architecture-specific information (called the CONTEXT
 block).
Note
The threads of a 32-bit application running on a
 64-bit version of Windows will contain both 32-bit and 64-bit
 contexts, which Wow64 will use to switch the application from
 running in 32-bit to 64-bit mode when required. These threads will
 have two user stacks and two CONTEXT blocks, and the usual Windows
 API functions will return the 64-bit context instead. The
 Wow64GetThreadContext function, however, will
 return the 32-bit context. See Chapter 3
 for more information on Wow64.

Fibers and User-Mode Scheduler Threads
Because switching execution from one thread to another
 involves the kernel scheduler, it can be an expensive operation,
 especially if two threads are often switching between each other.
 Windows implements two mechanisms for reducing this cost:
 fibers and user-mode
 scheduling (UMS).
Fibers allow an application to schedule its own “threads” of
 execution rather than rely on the priority-based scheduling
 mechanism built into Windows. Fibers are often called “lightweight”
 threads, and in terms of scheduling, they’re invisible to the kernel
 because they’re implemented in user mode in Kernel32.dll. To use
 fibers, a call is first made to the Windows
 ConvertThreadToFiber function. This function
 converts the thread to a running fiber. Afterward, the newly
 converted fiber can create additional fibers with the
 CreateFiber function. (Each fiber can have its
 own set of fibers.) Unlike a thread, however, a fiber doesn’t begin
 execution until it’s manually selected through a call to the
 SwitchToFiber function. The new fiber runs
 until it exits or until it calls SwitchToFiber,
 again selecting another fiber to run. For more information, see the
 Windows SDK documentation on fiber functions.
UMS threads, which are available only for 64-bit applications
 on 64-bit versions of Windows, provide the same basic advantages as
 fibers, without many of the disadvantages. UMS threads have their
 own kernel thread state and are therefore visible to the kernel,
 which allows multiple UMS threads to issue blocking system calls,
 share and contend on resources, and have per-thread state. However,
 as long as two or more UMS threads only need to perform work in user
 mode, they can periodically switch execution contexts (by yielding
 from one thread to another) without involving the scheduler: the
 context switch is done in user mode. From the kernel’s perspective,
 the same kernel thread is still running and nothing has changed.
 When a UMS thread performs an operation that requires entering the
 kernel (such as a system call), it switches to its dedicated
 kernel-mode thread (called a directed context
 switch).

Although threads have their own execution context, every thread
 within a process shares the process’ virtual address space (in
 addition to the rest of the resources belonging to the process),
 meaning that all the threads in a process have full read-write access
 to the process virtual address space. Threads cannot accidentally
 reference the address space of another process, however, unless the
 other process makes available part of its private address space as a
 shared memory section (called a file mapping object in the
 Windows API) or unless one process has the right to open another
 process to use cross-process memory functions such as
 ReadProcessMemory and
 WriteProcessMemory.
In addition to a private address space and one or more threads,
 each process has a security context and a list of open handles to
 kernel objects such as files, shared memory sections, or one of the
 synchronization objects such as mutexes, events, or semaphores, as
 illustrated in Figure 1-2.
[image: A process and its resources]

Figure 1-2. A process and its resources

Each process’ security context is stored in an object called an
 access token. The process access token contains
 the security identification and credentials for the process. By
 default, threads don’t have their own access token, but they can
 obtain one, thus allowing individual threads to impersonate the
 security context of another process—including processes on a remote
 Windows system—without affecting other threads in the process. (See
 Chapter 6, for more details on process and
 thread security.)
The virtual address descriptors (VADs) are
 data structures that the memory manager uses to keep track of the
 virtual addresses the process is using. These data structures are
 described in more depth in Chapter 10 in Part 2.
Windows provides an extension to the process model called a
 job. A job object’s main function is to allow
 groups of processes to be managed and manipulated as a unit. A job
 object allows control of certain attributes and provides limits for
 the process or processes associated with the job. It also records
 basic accounting information for all processes associated with the job
 and for all processes that were associated with the job but have since
 terminated. In some ways, the job object compensates for the lack of a
 structured process tree in Windows—yet in many ways it is more
 powerful than a UNIX-style process tree.
You’ll find out much more about the internal structure of jobs,
 processes, and threads; the mechanics of process and thread creation;
 and the thread-scheduling algorithms in Chapter 5.

Virtual Memory

Windows implements a virtual memory system based on a
 flat (linear) address space that provides each process with the
 illusion of having its own large, private address space. Virtual
 memory provides a logical view of memory that might not correspond to
 its physical layout. At run time, the memory manager, with assistance
 from hardware, translates, or maps, the virtual
 addresses into physical addresses, where the data is actually stored.
 By controlling the protection and mapping, the operating system can
 ensure that individual processes don’t bump into one another or
 overwrite operating system data. Figure 1-3 illustrates
 three virtually contiguous pages mapped to three discontiguous pages
 in physical memory.
[image: Mapping virtual memory to physical memory]

Figure 1-3. Mapping virtual memory to physical memory

Because most systems have much less physical memory than the
 total virtual memory in use by the running processes, the memory
 manager transfers, or pages, some of the memory
 contents to disk. Paging data to disk frees physical memory so that it
 can be used for other processes or for the operating system itself.
 When a thread accesses a virtual address that has been paged to disk,
 the virtual memory manager loads the information back into memory from
 disk. Applications don’t have to be altered in any way to take
 advantage of paging because hardware support enables the memory
 manager to page without the knowledge or assistance of processes or
 threads.
The size of the virtual address space varies for each hardware
 platform. On 32-bit x86 systems, the total virtual address space has a
 theoretical maximum of 4 GB. By default, Windows allocates half this
 address space (the lower half of the 4-GB virtual address space, from
 0x00000000 through 0x7FFFFFFF) to processes for their unique private
 storage and uses the other half (the upper half, addresses 0x80000000
 through 0xFFFFFFFF) for its own protected operating system memory
 utilization. The mappings of the lower half change to reflect the
 virtual address space of the currently executing process, but the
 mappings of the upper half always consist of the operating system’s
 virtual memory. Windows supports boot-time options (the
 increaseuserva qualifier in the Boot
 Configuration Database, described in Chapter 13, “Startup and
 Shutdown,” in Part 2) that give processes running specially marked
 programs (the large address space aware flag must be set in the header
 of the executable image) the ability to use up to 3 GB of private
 address space (leaving 1 GB for the operating system). This option allows applications such
 as database servers to keep larger portions of a database in the
 process address space, thus reducing the need to map subset views of
 the database. Figure 1-4 shows the two
 typical virtual address space layouts supported by 32-bit Windows.
 (The increaseuserva option allows anywhere from 2
 to 3 GB to be used by marked applications.)
[image: Typical address space layouts for 32-bit Windows]

Figure 1-4. Typical address space layouts for 32-bit Windows

Although 3 GB is better than 2 GB, it’s still not enough virtual
 address space to map very large (multigigabyte) databases. To address
 this need on 32-bit systems, Windows provides a mechanism called
 Address Windowing Extension (AWE), which allows a
 32-bit application to allocate up to 64 GB of physical memory and then
 map views, or windows, into its 2-GB virtual address space. Although
 using AWE puts the burden of managing mappings of virtual to physical
 memory on the programmer, it does address the need of being able to
 directly access more physical memory than can be mapped at any one
 time in a 32-bit process address space.
64-bit Windows provides a much larger address space for
 processes: 7152 GB on IA-64 systems and 8192 GB on x64 systems. Figure 1-5 shows a
 simplified view of the 64-bit system address space layouts. (For a
 detailed description, see Chapter 10 in Part 2.) Note that these sizes
 do not represent the architectural limits for these platforms.
 Sixty-four bits of address space is over 17 billion GB, but current
 64-bit hardware limits this to smaller values. And Windows
 implementation limits in the current versions of 64-bit Windows
 further reduce this to 8192 GB (8 TB).
[image: Address space layouts for 64-bit Windows]

Figure 1-5. Address space layouts for 64-bit Windows

Details of the implementation of the memory manager, including
 how address translation works and how Windows manages physical memory,
 are described in Chapter 10 in Part 2.

Kernel Mode vs. User Mode

To protect user applications from accessing and/or
 modifying critical operating system data, Windows uses two processor
 access modes (even if the processor on which Windows is running
 supports more than two): user mode and
 kernel mode. User application code runs in user
 mode, whereas operating system code (such as system services and
 device drivers) runs in kernel mode. Kernel mode
 refers to a mode of execution in a processor that grants access to all
 system memory and all CPU instructions. By providing the operating
 system software with a higher privilege level than the application
 software has, the processor provides a necessary foundation for
 operating system designers to ensure that a misbehaving application
 can’t disrupt the stability of the system as a whole.
Note
The architectures of the x86 and x64 processors define four
 privilege levels (or rings) to protect system code and data from
 being overwritten either inadvertently or maliciously by code of
 lesser privilege. Windows uses privilege level 0 (or ring 0) for
 kernel mode and privilege level 3 (or ring 3) for user mode. The
 reason Windows uses only two levels is that some hardware
 architectures that were supported in the past (such as Compaq Alpha
 and Silicon Graphics MIPS) implemented only two privilege
 levels.

Although each Windows process has its own private memory space,
 the kernel-mode operating system and device driver code share a single
 virtual address space. Each page in virtual memory is tagged to
 indicate what access mode the processor must be in to read and/or
 write the page. Pages in system space can be accessed only from kernel
 mode, whereas all pages in the user address space are accessible from
 user mode. Read-only pages (such as those that contain static data)
 are not writable from any mode. Additionally, on processors that
 support no-execute memory protection, Windows marks pages containing
 data as nonexecutable, thus preventing inadvertent or malicious code
 execution in data areas.
32-bit Windows doesn’t provide any protection to private
 read/write system memory being used by components running in kernel
 mode. In other words, once in kernel mode, operating system and device
 driver code has complete access to system space memory and can bypass
 Windows security to access objects. Because the bulk of the Windows
 operating system code runs in kernel mode, it is vital that components
 that run in kernel mode be carefully designed and tested to ensure
 that they don’t violate system security or cause system
 instability.
This lack of protection also emphasizes the need to take care
 when loading a third-party device driver, because once in kernel mode
 the software has complete access to all operating system data. This
 weakness was one of the reasons behind the driver-signing mechanism
 introduced in Windows, which warns (and, if configured as such,
 blocks) the user if an attempt is made to add an unsigned Plug and
 Play driver. (See Chapter 8, “I/O System,” in Part 2 for more
 information on driver signing.) Also, a mechanism called Driver
 Verifier helps device driver writers to find bugs (such as buffer
 overruns or memory leaks) that can cause security or reliability
 issues. Driver Verifier is explained in Chapter 10 in Part 2.
On 64-bit versions of Windows, the Kernel Mode Code Signing
 (KMCS) policy dictates that any 64-bit device drivers (not just Plug
 and Play) must be signed with a cryptographic key assigned by
 one of the major code certification authorities. The
 user cannot explicitly force the installation of an unsigned driver,
 even as an administrator, but, as a one-time exception, this
 restriction can be disabled manually at boot time by pressing F8 and
 choosing the advanced boot option Disable Driver Signature
 Enforcement. This causes a watermark on the desktop wallpaper and
 certain digital rights management (DRM) features to be
 disabled.
As you’ll see in Chapter 2, user
 applications switch from user mode to kernel mode when they make a
 system service call. For example, a Windows
 ReadFile function eventually needs to call the
 internal Windows routine that actually handles reading data from a
 file. That routine, because it accesses internal system data
 structures, must run in kernel mode. The transition from user mode to
 kernel mode is accomplished by the use of a special processor
 instruction that causes the processor to switch to kernel mode and
 enter the system service dispatching code in the kernel which calls
 the appropriate internal function in Ntoskrnl.exe or Win32k.sys.
 Before returning control to the user thread, the processor mode is
 switched back to user mode. In this way, the operating system protects
 itself and its data from perusal and modification by user
 processes.
Note
A transition from user mode to kernel mode (and back) does
 not affect thread scheduling per se—a mode
 transition is not a context switch. Further
 details on system service dispatching are included in Chapter 3.

Thus, it’s normal for a user thread to spend part of its time
 executing in user mode and part in kernel mode. In fact, because the
 bulk of the graphics and windowing system also runs in kernel mode,
 graphics-intensive applications spend more of their time in kernel
 mode than in user mode. An easy way to test this is to run a
 graphics-intensive application such as Microsoft Paint or Microsoft
 Chess Titans and watch the time split between user mode and kernel
 mode using one of the performance counters listed in Table 1-2. More advanced
 applications can use newer technologies such as Direct2D and
 compositing, which perform bulk computations in user mode and send
 only the raw surface data to the kernel, reducing the time spent
 transitioning between user and kernel modes.
Table 1-2. Mode-Related Performance Counters
	Object: Counter
	Function

	Processor: % Privileged
 Time
	Percentage of time that an
 individual CPU (or all CPUs) has run in kernel mode during a
 specified interval

	Processor: % User
 Time
	Percentage of time that an
 individual CPU (or all CPUs) has run in user mode during a
 specified interval

	Process: % Privileged
 Time
	Percentage of time that the threads
 in a process have run in kernel mode during a specified
 interval

	Process: % User Time
	Percentage of time that the threads
 in a process have run in user mode during a specified
 interval

	Thread: % Privileged
 Time
	Percentage of time that a thread has
 run in kernel mode during a specified interval

	Thread: % User Time
	Percentage of time that a thread has
 run in user mode during a specified interval

EXPERIMENT: Kernel Mode vs. User Mode
You can use the Performance Monitor to see how much
 time your system spends executing in kernel mode vs. in user mode.
 Follow these steps:
	Run the Performance Monitor by opening the Start menu and
 selecting All Programs /Administrative Tools/Performance
 Monitor. Select the Performance Monitor node under
 Performance/Monitoring Tools on the left-side tree.

	Click the Add button (+) on the toolbar.

	Expand the Processor counter section, click the %
 Privileged Time counter and, while holding down the Ctrl key,
 click the % User Time counter.

	Click Add, and then click OK.

	Open a command prompt, and do a directory scan of your C
 drive over the network by typing dir
 \\%computername%\c$ /s.
[image: image with no caption]

	When you’re finished, just close the tool.

You can also quickly see this by using Task Manager.
 Just click the Performance tab, and then select Show Kernel Times
 from the View menu. The CPU usage bar will show total CPU usage in
 green and kernel-mode time in red.
To see how the Performance Monitor itself uses kernel time and
 user time, run it again, but add the individual Process counters %
 User Time and % Privileged Time for every process in the
 system:
	If it’s not already running, run the Performance Monitor
 again. (If it is already running, start with a blank display by
 right-clicking in the graph area and selecting Remove All
 Counters.)

	Click the Add button (+) on the toolbar.

	In the available counters area, expand the Process
 section.

	Select the % Privileged Time and % User Time
 counters.

	Select a few processes in the Instance box (such as mmc,
 csrss, and Idle).

	Click Add, and then click OK.

	Move the mouse rapidly back and forth.

	Press Ctrl+H to turn on highlighting mode. This highlights
 the currently selected counter in black.

	Scroll through the counters at the bottom of the display
 to identify the processes whose threads were running when you
 moved the mouse, and note whether they were running in user mode
 or kernel mode.

You should see the Performance Monitor process (by looking in
 the Instance column for the mmc process) kernel-mode
 and user-mode time go up when you move the
 mouse because it is executing application code in user mode and
 calling Windows functions that run in kernel mode. You’ll also
 notice kernel-mode thread activity in a process named csrss when you
 move the mouse. This activity occurs because the Windows subsystem’s
 kernel-mode raw input thread, which handles keyboard and mouse
 input, is attached to this process. (See Chapter 2 for more information about system
 threads.) Finally, the process named Idle that you see spending
 nearly 100 percent of its time in kernel mode isn’t really a
 process—it’s a fake process used to account for idle CPU cycles. As
 you can observe from the mode in which the threads in the Idle
 process run, when Windows has nothing to do, it does it in kernel
 mode.

Terminal Services and Multiple Sessions

Terminal Services refers to the support in Windows for multiple
 interactive user sessions on a single system. With Windows Terminal
 Services, a remote user can establish a session on another machine,
 log in, and run applications on the server. The server transmits the
 graphical user interface to the client (as well as other configurable resources such as
 audio and clipboard), and the client transmits the user’s input back
 to the server. (Similar to the X Window System, Windows permits
 running individual applications on a server system with the display
 remoted to the client instead of remoting the entire desktop.)
The first session is considered the services session, or session
 zero, and contains system service hosting processes (explained in
 further detail in Chapter 4). The first
 login session at the physical console of the machine is session one,
 and additional sessions can be created through the use of the remote
 desktop connection program (Mstsc.exe) or through the use of fast user
 switching (described later).
Windows client editions permits a single remote user to connect
 to the machine, but if someone is logged in at the console, the
 workstation is locked (that is, someone can be using the system either
 locally or remotely, but not at the same time). Windows editions that
 include Windows Media Center allow one interactive session and up to
 four Windows Media Center Extender sessions.
Windows server systems support two simultaneous remote
 connections (to facilitate remote management—for example, use of
 management tools that require being logged in to the machine being
 managed) and more than two remote sessions if it’s appropriately
 licensed and configured as a terminal server.
All Windows client editions support multiple sessions created
 locally through a feature called fast user
 switching that can be used one at a time. When a user
 chooses to disconnect her session instead of log off (for example, by
 clicking Start and choosing Switch User from the Shutdown submenu or
 by holding down the Windows key and pressing L and then clicking the
 Switch User button), the current session (that is, the processes
 running in that session and all the sessionwide data structures that
 describe the session) remains active in the system and the system
 returns to the main logon screen. If a new user logs in, a new session
 is created.
For applications that want to be aware of running in a terminal
 server session, there are a set of Windows APIs for programmatically
 detecting that as well as for controlling various aspects of Terminal
 Services. (See the Windows SDK and the Remote Desktop Services API for
 details.)
Chapter 2 describes briefly how
 sessions are created and has some experiments showing how to view
 session information with various tools, including the kernel debugger.
 The Object Manager section in Chapter 3 describes how the system namespace for
 objects is instantiated on a per-session basis and how applications
 that need to be aware of other instances of themselves on the same
 system can accomplish that. Finally, Chapter 10 in Part 2 covers how
 the memory manager sets up and manages sessionwide data.

Objects and Handles

In the Windows operating system, a kernel
 object is a single, run-time instance of a
 statically defined object type. An object type
 comprises a system-defined data type, functions that operate on
 instances of the data type, and a set of object attributes. If you
 write Windows applications, you might encounter process, thread, file,
 and event objects, to name just a few examples. These objects are
 based on lower-level objects that Windows creates and manages. In
 Windows, a process is an instance of the process object type, a file
 is an instance of the file object type, and so on.
An object attribute is a field of data in
 an object that partially defines the object’s state. An object of type
 process, for example, would have attributes that
 include the process ID, a base scheduling priority, and a pointer to
 an access token object. Object methods, the means
 for manipulating objects, usually read or change the object
 attributes. For example, the open method for a
 process would accept a process identifier as input and return a
 pointer to the object as output.
Note
Although there is a parameter named
 ObjectAttributes that a caller supplies when
 creating an object using the kernel object manager APIs, that
 parameter shouldn’t be confused with the more general meaning of the
 term as used in this book.

The most fundamental difference between an object and an
 ordinary data structure is that the internal structure of an object is
 opaque. You must call an object service to get data out of an object
 or to put data into it. You can’t directly read or change data inside
 an object. This difference separates the underlying implementation of
 the object from code that merely uses it, a technique that allows
 object implementations to be changed easily over time.
Objects, through the help of a kernel component called the
 object manager, provide a convenient means for
 accomplishing the following four important operating system
 tasks:
	Providing human-readable names for system resources

	Sharing resources and data among processes

	Protecting resources from unauthorized access

	Reference tracking, which allows the system to know when an
 object is no longer in use so that it can be automatically
 deallocated

Not all data structures in the Windows operating system are
 objects. Only data that needs to be shared, protected, named, or made
 visible to user-mode programs (via system services) is placed in
 objects. Structures used by only one component of the operating system
 to implement internal functions are not objects. Objects and handles
 (references to an instance of an object) are discussed in more detail
 in Chapter 3.

Security

Windows was designed from the start to be secure and to meet the
 requirements of various formal government and industry security
 ratings, such as the Common Criteria for Information Technology
 Security Evaluation (CCITSE) specification. Achieving a
 government-approved security rating allows an operating system to
 compete in that arena. Of course, many of these capabilities are
 advantageous features for any multiuser system.
The core security capabilities of Windows include discretionary
 (need-to-know) and mandatory integrity protection for all shareable
 system objects (such as files, directories, processes, threads, and
 so forth), security auditing (for accountability of
 subjects, or users and the actions they initiate), user authentication
 at logon, and the prevention of one user from accessing uninitialized
 resources (such as free memory or disk space) that another user has
 deallocated.
Windows has three forms of access control over objects. The
 first form—discretionary access control—is the protection mechanism
 that most people think of when they think of operating system
 security. It’s the method by which owners of objects (such as files or
 printers) grant or deny access to others. When users log in, they are
 given a set of security credentials, or a security context. When they
 attempt to access objects, their security context is compared to the
 access control list on the object they are trying to access to
 determine whether they have permission to perform the requested
 operation.
Privileged access control is necessary for those times when
 discretionary access control isn’t enough. It’s a method of ensuring
 that someone can get to protected objects if the owner isn’t
 available. For example, if an employee leaves a company, the
 administrator needs a way to gain access to files that might have been
 accessible only to that employee. In that case, under Windows, the
 administrator can take ownership of the file so that he can manage its
 rights as necessary.
Finally, mandatory integrity control is required when an
 additional level of security control is required to protect objects
 that are being accessed from within the same user account. It’s used
 both to isolate Protected Mode Internet Explorer from a user’s
 configuration and to protect objects created by an elevated
 administrator account from access by a nonelevated administrator
 account. (See Chapter 6 for more information
 on User Account Control—UAC.)
Security pervades the interface of the Windows API. The Windows
 subsystem implements object-based security in the same way the
 operating system does; the Windows subsystem protects shared Windows
 objects from unauthorized access by placing Windows security
 descriptors on them. The first time an application tries to access a
 shared object, the Windows subsystem verifies the application’s right
 to do so. If the security check succeeds, the Windows subsystem allows
 the application to proceed.
For a comprehensive description of Windows security, see Chapter 6.

Registry

If you’ve worked at all with Windows operating systems, you’ve
 probably heard about or looked at the registry. You can’t talk much
 about Windows internals without referring to the registry because it’s
 the system database that contains the information required to boot and
 configure the system, systemwide software settings that control the
 operation of Windows, the security database, and per-user
 configuration settings (such as which screen saver to use).
In addition, the registry is a window into in-memory volatile
 data, such as the current hardware state of the system (what device
 drivers are loaded, the resources they are using, and so on) as well
 as the Windows performance counters. The performance counters, which
 aren’t actually “in” the registry, are accessed through the registry
 functions. See Chapter 4 for more on
 how performance counter information is accessed from the
 registry.
Although many Windows users and administrators will
 never need to look directly into the registry (because you can view or
 change most configuration settings with standard administrative
 utilities), it is still a useful source of Windows internals
 information because it contains many settings that affect system
 performance and behavior. (If you decide to directly change registry
 settings, you must exercise extreme caution; any changes might
 adversely affect system performance or, worse, cause the system to
 fail to boot successfully.) You’ll find references to individual
 registry keys throughout this book as they pertain to the component
 being described. Most registry keys referred to in this book are under
 the systemwide configuration, HKEY_LOCAL_MACHINE, which we’ll
 abbreviate throughout as HKLM.
For further information on the registry and its internal
 structure, see Chapter 4.

Unicode

Windows differs from most other operating systems in that most
 internal text strings are stored and processed as 16-bit-wide Unicode
 characters. Unicode is an international character set standard that
 defines unique 16-bit values for most of the world’s known character
 sets.
Because many applications deal with 8-bit (single-byte) ANSI
 character strings, many Windows functions that accept string
 parameters have two entry points: a Unicode (wide, 16-bit) version and
 an ANSI (narrow, 8-bit) version. If you call the narrow version of a
 Windows function, there is a slight performance impact as input string
 parameters are converted to Unicode before being processed by the
 system and output parameters are converted from Unicode to ANSI before
 being returned to the application. Thus, if you have an older service
 or piece of code that you need to run on Windows but this code is
 written using ANSI character text strings, Windows will convert the
 ANSI characters into Unicode for its own use. However, Windows never
 converts the data inside files—it’s up to the
 application to decide whether to store data as Unicode or as
 ANSI.
Regardless of language, all versions of Windows contain the same
 functions. Instead of having separate language versions, Windows has a
 single worldwide binary so that a single installation can support
 multiple languages (by adding various language packs). Applications
 can also take advantage of Windows functions that allow single
 worldwide application binaries that can support multiple
 languages.
For more information about Unicode, see www.unicode.org as
 well as the programming documentation in the MSDN Library.

Digging into Windows Internals

Although much of the information in this book is based on reading
 the Windows source code and talking to the developers, you don’t have to
 take everything on faith. Many details about the
 internals of Windows can be exposed and demonstrated by using a variety
 of available tools, such as those that come with Windows and the Windows
 debugging tools. These tool packages are briefly described later in this
 section.
To encourage your exploration of Windows internals, we’ve
 included “Experiment” sidebars throughout the book that describe steps
 you can take to examine a particular aspect of Windows internal
 behavior. (You already saw a few of these sections earlier in this
 chapter.) We encourage you to try these experiments so that you can see
 in action many of the internals topics described in this book.
Table 1-3 shows a
 list of the principal tools used in this book and where they come
 from.
Table 1-3. Tools for Viewing Windows Internals
	Tool
	Image Name
	Origin

	Startup Programs Viewer
	AUTORUNS
	Sysinternals

	Access Check
	ACCESSCHK
	Sysinternals

	Dependency Walker
	DEPENDS
	www.dependencywalker.com

	Global Flags
	GFLAGS
	Debugging tools

	Handle Viewer
	HANDLE
	Sysinternals

	Kernel debuggers
	WINDBG, KD
	Debugging tools, Windows
 SDK

	Object Viewer
	WINOBJ
	Sysinternals

	Performance Monitor
	PERFMON.MSC
	Windows built-in tool

	Pool Monitor
	POOLMON
	Windows Driver Kit

	Process Explorer
	PROCEXP
	Sysinternals

	Process Monitor
	PROCMON
	Sysinternals

	Task (Process) List
	TLIST
	Debugging tools

	Task Manager
	TASKMGR
	Windows built-in tool

Performance Monitor

We’ll refer to the Performance Monitor found in the
 Administrative Tools folder on the Start menu (or via Control Panel)
 throughout this book; specifically, we’ll focus on the Performance
 Monitor and Resource Monitor. The Performance Monitor has three
 functions: system monitoring, viewing performance counter logs, and
 setting alerts (by using data collector sets, which also contain
 performance counter logs and trace and configuration data). For
 simplicity, when we refer to the Performance Monitor, we are referring
 to the System Monitor function within the tool.
The Performance Monitor provides more information about how your
 system is operating than any other single utility. It includes
 hundreds of base and extensible counters for various objects. For each
 major topic described in this book, a table of the relevant Windows
 performance counters is included.
The Performance Monitor contains a brief description for each
 counter. To see the descriptions, select a counter in the Add Counters
 window and select the Show Description check box.
Although all the low-level system monitoring we’ll do in
 this book can be done with the Performance Monitor, Windows also
 includes a Resource Monitor utility (accessible from the start menu or
 from the Task Manager Performance tab) that shows four primary system
 resources: CPU, Disk, Network, and Memory. In their basic states,
 these resources are displayed with the same level of information that
 you would find in Task Manager. However, they also provide sections
 that can be expanded for more information.
When expanded, the CPU tab displays information about
 per-process CPU usage, just like Task Manager. However, it adds a
 column for average CPU usage, which can give you a better idea of
 which processes are most active. The CPU tab also includes a separate
 display of services and their associated CPU usage and average. Each
 service hosting process is identified by the service group it is
 hosting. As with Process Explorer, selecting a process (by clicking
 its associated check box) will display a list of named handles opened
 by the process, as well as a list of modules (such as DLLs) that are
 loaded in the process address space. The Search Handles box can also
 be used to search for which processes have opened a handle to a given
 named resource.
The Memory section displays much of the same information that
 one can obtain with Task Manager, but it is organized for the entire
 system. A physical memory bar graph displays the current organization
 of physical memory into either hardware reserved, in use, modified,
 standby, and free memory. See Chapter 10 in Part 2 for the exact
 meaning of these terms.
The Disk section, on the other hand, displays per-file
 information for I/Os in a way that makes it easy to identify the most
 accessed, written to, or read from files on the system. These results
 can be further filtered down by process.
The Networking section displays the active network connections
 and which processes own them, as well as how much data is going
 through them. This information makes it possible to see background
 network activity that might be hard to detect otherwise. In addition,
 the TCP connections that are active on the system are shown, organized
 by process, with data such as the remote and local port and address,
 and packet latency. Finally, a list of listening ports is displayed by
 process, allowing an administrator to see which services (or
 applications) are currently waiting for connections on a given port.
 The protocol and firewall policy for each port and process is also
 shown.
Note that all of the Windows performance counters are accessible
 programmatically. The section HKEY_PERFORMANCE_DATA in Chapter 4 has a brief description of the
 components involved in retrieving performance counters through the
 Windows API.

Kernel Debugging

Kernel debugging means examining internal kernel data structures
 and/or stepping through functions in the kernel. It is a useful way to
 investigate Windows internals because you can display internal system
 information not available through any other tools and get a clearer
 idea of code flows within the kernel.
Before describing the various ways you can debug the
 kernel, let’s examine a set of files that you’ll need in order to
 perform any type of kernel debugging.
Symbols for Kernel Debugging

Symbol files contain the names of functions and variables and
 the layout and format of data structures. They are generated by the
 linker and used by debuggers to reference and display these names
 during a debug session. This information is not usually stored in
 the binary image because it is not needed to execute the code. This
 means that binaries are smaller and faster. However, this means that
 when debugging, you must make sure that the debugger can access the
 symbol files that are associated with the images you are referencing
 during a debugging session.
To use any of the kernel debugging tools to examine internal
 Windows kernel data structures (such as the process list, thread
 blocks, loaded driver list, memory usage information, and so on),
 you must have the correct symbol files for at least the kernel
 image, Ntoskrnl.exe. (The section Architecture Overview in Chapter 2 explains more about this file.)
 Symbol table files must match the version of the image they were
 taken from. For example, if you install a Windows Service Pack or
 hot fix that updates the kernel, you must obtain the matching,
 updated symbol files.
While it is possible to download and install symbols for
 various versions of Windows, updated symbols for hot fixes are not
 always available. The easiest solution to obtain the correct version
 of symbols for debugging is to use the Microsoft on-demand symbol
 server by using a special syntax for the symbol path that you
 specify in the debugger. For example, the following symbol path
 causes the debugging tools to load required symbols from the
 Internet symbol server and keep a local copy in the c:\symbols
 folder:
srv*c:\symbols*http://msdl.microsoft.com/download/symbols
For detailed instructions on how to use the symbol server, see
 the debugging tools help file or the Web page http://msdn.microsoft.com/en-us/windows/hardware/gg462988.aspx.

Debugging Tools for Windows

The Debugging Tools for Windows package contains advanced
 debugging tools used in this book to explore Windows internals. The
 latest version is included as part of the Windows Software
 Development Kit (SDK). These tools can be used to debug user-mode
 processes as well as the kernel. (See the following sidebar.)
Note
The Debugging Tools for Windows are updated frequently and
 released independently of Windows operating system versions, so
 check often for new versions.

User-Mode Debugging
The debugging tools can also be used to attach to a
 user-mode process and examine and/or change process memory. There
 are two options when attaching to a process:
	Invasive. Unless specified otherwise, when you attach to a
 running process, the DebugActiveProcess Windows function is
 used to establish a connection between the debugger and the
 debugee. This permits examining and/or changing process
 memory, setting breakpoints, and performing other debugging
 functions. Windows allows you to stop debugging without
 killing the target process, as long as the debugger is
 detached, not killed.

	Noninvasive. With this option, the debugger simply opens the
 process with the OpenProcess function.
 It does not attach to the process as a debugger. This allows
 you to examine and/or change memory in the target process,
 but you cannot set breakpoints.

You can also open user-mode process dump files with the
 debugging tools. User-mode dump files are explained in Chapter 3 in the section on exception
 dispatching.

There are two debuggers that can be used for kernel debugging:
 a command-line version (Kd.exe) and a graphical user interface (GUI)
 version (Windbg.exe). Both provide the same set of commands, so
 which one you choose is a matter of personal preference. You can
 perform three types of kernel debugging with these tools:
	Open a crash dump file created as a result of a Windows
 system crash. (See Chapter 14, “Crash Dump Analysis,” in Part 2
 for more information on kernel crash dumps.)

	Connect to a live, running system and examine the system
 state (or set breakpoints if you’re debugging device driver
 code). This operation requires two computers—a target and a
 host. The target is the system being debugged, and the host is
 the system running the debugger. The target system can be
 connected to the host via a null modem cable, an IEEE 1394
 cable, or a USB 2.0 debugging cable. The target system must be
 booted in debugging mode (either by pressing F8 during the boot
 process and selecting Debugging Mode or by configuring the
 system to boot in debugging mode using Bcdedit or Msconfig.exe).
 You can also connect through a named pipe, which is useful when
 debugging through a virtual machine product such as Hyper-V,
 Virtual PC, or VMWare, by exposing the guest operating system’s
 serial port as a named pipe device.

	Windows systems also allow you to connect to the local
 system and examine the system state. This is called
 local kernel debugging. To initiate local
 kernel debugging with WinDbg, open the File menu, choose Kernel
 Debug, click on the Local tab, and then click OK. The target
 system must be booted in debugging mode. An example output
 screen is shown in Figure 1-6.
 Some kernel debugger commands do not work when used in local
 kernel debugging mode (such as creating a memory dump with the
 .dump command—however, this can be done with LiveKd, described
 later in this section).

[image: Local kernel debugging]

Figure 1-6. Local kernel debugging

Once connected in kernel debugging mode, you can use
 one of the many debugger extension commands
 (commands that begin with “!”) to display the contents of internal
 data structures such as threads, processes, I/O request packets, and
 memory management information. Throughout this book, the relevant
 kernel debugger commands and output are included as they apply to
 each topic being discussed. An excellent companion reference is the
 Debugger.chm help file, contained in the WinDbg installation folder,
 which documents all the kernel debugger functionality and
 extensions. In addition, the dt (display type)
 command can format over 1000 kernel structures because the kernel
 symbol files for Windows contain type information that the debugger
 can use to format structures.
EXPERIMENT: Displaying Type Information for Kernel
 Structures
To display the list of kernel structures whose type
 information is included in the kernel symbols, type dt nt!_* in the kernel debugger. A sample
 partial output is shown here:
lkd> dt nt!_*
 nt!_LIST_ENTRY
 nt!_LIST_ENTRY
 nt!_IMAGE_NT_HEADERS
 nt!_IMAGE_FILE_HEADER
 nt!_IMAGE_OPTIONAL_HEADER
 nt!_IMAGE_NT_HEADERS
 nt!_LARGE_INTEGER
You can also use the dt command to
 search for specific structures by using its wildcard lookup
 capability. For example, if you were looking for the structure
 name for an interrupt object, type dt
 nt!_*interrupt*:
lkd> dt nt!_*interrupt*
 nt!_KINTERRUPT
 nt!_KINTERRUPT_MODE
 nt!_KINTERRUPT_POLARITY
 nt!_UNEXPECTED_INTERRUPT
Then you can use dt to format a
 specific structure as shown next:
lkd> dt nt!_kinterrupt
nt!_KINTERRUPT
 +0x000 Type : Int2B
 +0x002 Size : Int2B
 +0x008 InterruptListEntry : _LIST_ENTRY
 +0x018 ServiceRoutine : Ptr64 unsigned char
 +0x020 MessageServiceRoutine : Ptr64 unsigned char
 +0x028 MessageIndex : Uint4B
 +0x030 ServiceContext : Ptr64 Void
 +0x038 SpinLock : Uint8B
 +0x040 TickCount : Uint4B
 +0x048 ActualLock : Ptr64 Uint8B
 +0x050 DispatchAddress : Ptr64 void
 +0x058 Vector : Uint4B
 +0x05c Irql : UChar
 +0x05d SynchronizeIrql : UChar
 +0x05e FloatingSave : UChar
 +0x05f Connected : UChar
 +0x060 Number : Uint4B
 +0x064 ShareVector : UChar
 +0x065 Pad : [3] Char
 +0x068 Mode : _KINTERRUPT_MODE
 +0x06c Polarity : _KINTERRUPT_POLARITY
 +0x070 ServiceCount : Uint4B
 +0x074 DispatchCount : Uint4B
 +0x078 Rsvd1 : Uint8B
 +0x080 TrapFrame : Ptr64 _KTRAP_FRAME
 +0x088 Reserved : Ptr64 Void
 +0x090 DispatchCode : [4] Uint4B
Note that dt does not show
 substructures (structures within structures) by default. To
 recurse through substructures, use the –r
 switch. For example, using this switch to display the kernel
 interrupt object shows the format of the _LIST_ENTRY structure
 stored at the InterruptListEntry
 field:
lkd> dt nt!_kinterrupt -r
nt!_KINTERRUPT
 +0x000 Type : Int2B
 +0x002 Size : Int2B
 +0x008 InterruptListEntry : _LIST_ENTRY
 +0x000 Flink : Ptr64 _LIST_ENTRY
 +0x000 Flink : Ptr64 _LIST_ENTRY
 +0x008 Blink : Ptr64 _LIST_ENTRY
 +0x008 Blink : Ptr64 _LIST_ENTRY
 +0x000 Flink : Ptr64 _LIST_ENTRY
 +0x008 Blink : Ptr64 _LIST_ENTRY

The Debugging Tools for Windows help file also
 explains how to set up and use the kernel debuggers. Additional
 details on using the kernel debuggers that are aimed primarily at
 device driver writers can be found in the Windows Driver Kit
 documentation.

LiveKd Tool

LiveKd is a free tool from Sysinternals that allows you to use
 the standard Microsoft kernel debuggers just described to examine
 the running system without booting the system in debugging mode.
 This approach might be useful when kernel-level troubleshooting is
 required on a machine that wasn’t booted in debugging mode—certain
 issues might be hard to reproduce reliably, so a reboot with the
 debug option enabled might not readily exhibit
 the error.
You run LiveKd just as you would WinDbg or Kd. LiveKd passes
 any command-line options you specify to the debugger you select. By
 default, LiveKd runs the command-line kernel debugger (Kd). To have
 it run WinDbg, specify the –w switch. To see
 the help files for LiveKd switches, specify the
 –? switch.
LiveKd presents a simulated crash dump file to the debugger,
 so you can perform any operations in LiveKd that are supported on a
 crash dump. Because LiveKd is relying on physical memory to back the
 simulated dump, the kernel debugger might run into situations in
 which data structures are in the middle of being changed by the
 system and are inconsistent. Each time the debugger is launched, it
 starts with a fresh view of the system state. If you want to refresh
 the snapshot, quit the debugger (with the q
 command), and LiveKd will ask you whether you want to start it
 again. If the debugger enters a loop in printing output, press
 Ctrl+C to interrupt the output and quit. If it hangs, press
 Ctrl+Break, which will terminate the debugger process. LiveKd will
 then ask you whether you want to run the debugger again.

Windows Software Development Kit

The Windows Software Development Kit (SDK) is available as part
 of the MSDN subscription program or can be downloaded for free from
 msdn.microsoft.com.
 Besides the Debugging Tools, it contains the documentation, C header
 files, and libraries necessary to compile and link Windows
 applications. (Although Microsoft Visual C++ comes with a copy of
 these header files, the versions contained in the Windows SDK always
 match the latest version of the Windows operating systems, whereas the
 version that comes with Visual C++ might be an older version that was
 current when Visual C++ was released.) From an internals perspective,
 items of interest in the Windows SDK include the Windows API header
 files (\Program Files\Microsoft SDKs\Windows\v7.0A\Include). A few of
 these tools are also shipped as sample source code in both the Windows
 SDK and the MSDN Library.

Windows Driver Kit

The Windows Driver Kit (WDK) is also available through the MSDN
 subscription program, and just like the Windows SDK, it is available
 for free download. The Windows Driver Kit documentation is included in
 the MSDN Library.
Although the WDK is aimed at device driver developers,
 it is an abundant source of Windows internals information. For
 example, while Chapter 8 in Part 2 describes the I/O system
 architecture, driver model, and basic device driver data structures,
 it does not describe the individual kernel support functions in
 detail. The WDK documentation contains a comprehensive description of
 all the Windows kernel support functions and mechanisms used by device
 drivers in both a tutorial and reference form.
Besides including the documentation, the WDK contains header
 files (in particular, ntddk.h, ntifs.h, and wdm.h) that define key
 internal data structures and constants as well as interfaces to many
 internal system routines. These files are useful when exploring
 Windows internal data structures with the kernel debugger because
 although the general layout and content of these structures are shown
 in this book, detailed field-level descriptions (such as size and data
 types) are not. A number of these data structures (such as object
 dispatcher headers, wait blocks, events, mutants, semaphores, and so
 on) are, however, fully described in the WDK.
So if you want to dig into the I/O system and driver model
 beyond what is presented in this book, read the WDK documentation
 (especially the Kernel-Mode Driver Architecture Design Guide and
 Reference manuals). You might also find useful Programming
 the Microsoft Windows Driver Model, Second Edition by
 Walter Oney (Microsoft Press, 2002) and Developing Drivers
 with the Windows Driver Foundation by Penny Orwick and Guy
 Smith (Microsoft Press, 2007).

Sysinternals Tools

Many experiments in this book use freeware tools that you can
 download from Sysinternals. Mark Russinovich, coauthor of this book,
 wrote most of these tools. The most popular tools include Process
 Explorer and Process Monitor. Note that many of these utilities
 involve the installation and execution of kernel-mode device drivers
 and thus require (elevated) administrator privileges, though they can
 run with limited functionality and output in a standard (or
 nonelevated) user account.
Since the Sysinternals tools are updated frequently, it is best
 to make sure you have the latest version. To be notified of tool
 updates, you can follow the Sysinternals Site Blog (which has an RSS
 feed).
For a description of all the tools, a description of how to use
 them, and case studies of problems solved, see Windows
 Sysinternals Administrator’s Reference (Microsoft Press,
 2011) by Mark Russinovich and Aaron Margosis.
For questions and discussions on the tools, use the Sysinternals
 Forums.

Conclusion

In this chapter, you’ve been introduced to the key Windows
 technical concepts and terms that will be used throughout the book.
 You’ve also had a glimpse of the many useful tools available for digging
 into Windows internals. Now we’re ready to begin our exploration of the
 internal design of the system, beginning with an overall view of the
 system architecture and its key components.

Chapter 2. System Architecture

Now that we’ve covered the terms, concepts, and tools you
 need to be familiar with, we’re ready to start our exploration of the
 internal design goals and structure of the Microsoft Windows operating
 system. This chapter explains the overall architecture of the system—the
 key components, how they interact with each other, and the context in
 which they run. To provide a framework for understanding the internals of
 Windows, let’s first review the requirements and goals that shaped the
 original design and specification of the system.

Requirements and Design Goals

The following requirements drove the specification of Windows NT
 back in 1989:
	Provide a true 32-bit, preemptive, reentrant, virtual memory
 operating system

	Run on multiple hardware architectures and platforms

	Run and scale well on symmetric multiprocessing systems

	Be a great distributed computing platform, both as a network
 client and as a server

	Run most existing 16-bit MS-DOS and Microsoft Windows 3.1
 applications

	Meet government requirements for POSIX 1003.1
 compliance

	Meet government and industry requirements for operating system
 security

	Be easily adaptable to the global market by supporting
 Unicode

To guide the thousands of decisions that had to be made to create
 a system that met these requirements, the Windows NT design team adopted
 the following design goals at the beginning of the project:
	Extensibility. The code must be written to comfortably grow and change as
 market requirements change.

	Portability. The system must be able to run on multiple hardware
 architectures and must be able to move with relative ease to new
 ones as market demands dictate.

	Reliability and
 robustness. The system should protect itself from both internal
 malfunction and external tampering. Applications should not be
 able to harm the operating system or other applications.

	Compatibility. Although Windows NT should extend existing technology, its
 user interface and APIs should be compatible with older versions
 of Windows and with MS-DOS. It should also interoperate well with
 other systems, such as UNIX, OS/2, and NetWare.

	Performance. Within the constraints of the other design goals, the system
 should be as fast and responsive as possible on each hardware
 platform.

As we explore the details of the internal structure and operation
 of Windows, you’ll see how these original design goals and market
 requirements were woven successfully into the construction of the
 system. But before we start that exploration, let’s examine the overall
 design model for Windows and compare it with other modern operating
 systems.

Operating System Model

In most multiuser operating systems, applications are separated
 from the operating system itself—the operating system kernel code runs
 in a privileged processor mode (referred to as kernel
 mode in this book), with access to system data and to the
 hardware; application code runs in a nonprivileged processor mode
 (called user mode), with a limited set of
 interfaces available, limited access to system data, and no direct
 access to hardware. When a user-mode program calls a system service, the
 processor executes a special instruction that switches the calling
 thread to kernel mode. When the system service completes, the operating
 system switches the thread context back to user mode and allows the
 caller to continue.
Windows is similar to most UNIX systems in that it’s a monolithic
 operating system in the sense that the bulk of the operating system and
 device driver code shares the same kernel-mode protected memory space.
 This means that any operating system component or device driver can
 potentially corrupt data being used by other operating system
 components. However, Windows does implement some kernel protection
 mechanisms, such as PatchGuard and Kernel Mode Code Signing (both
 described in Chapter 3), which help in the
 mitigation and prevention of issues related to the shared kernel-mode
 address space.
All these operating system components are, of course, fully
 protected from errant applications because applications don’t have
 direct access to the code and data of the privileged part of the
 operating system (although they can quickly call other kernel services).
 This protection is one of the reasons that Windows has the reputation
 for being both robust and stable as an application server and as a
 workstation platform, yet fast and nimble from the perspective of core
 operating system services, such as virtual memory management, file I/O,
 networking, and file and print sharing.
The kernel-mode components of Windows also embody basic
 object-oriented design principles. For example, in general they don’t
 reach into one another’s data structures to access information
 maintained by individual components. Instead, they use formal interfaces
 to pass parameters and access and/or modify data structures.
Despite its pervasive use of objects to represent shared system
 resources, Windows is not an object-oriented system in the strict sense.
 Most of the operating system code is written in C for portability. The C
 programming language doesn’t directly support object-oriented constructs
 such as dynamic binding of data types, polymorphic functions, or class
 inheritance. Therefore, the C-based implementation of objects in Windows
 borrows from, but doesn’t depend on, features of particular
 object-oriented languages.

Architecture Overview

With this brief overview of the design goals and packaging of
 Windows, let’s take a look at the key system components that make up its
 architecture. A simplified version of this architecture is shown in
 Figure 2-1. Keep in mind that
 this diagram is basic—it doesn’t show everything. (For example, the
 networking components and the various types of device driver layering
 are not shown.)
[image: Simplified Windows architecture]

Figure 2-1. Simplified Windows architecture

In Figure 2-1, first
 notice the line dividing the user-mode and kernel-mode parts of the
 Windows operating system. The boxes above the line represent user-mode
 processes, and the components below the line are kernel-mode operating
 system services. As mentioned in Chapter 1,
 user-mode threads execute in a protected process address space (although
 while they are executing in kernel mode, they have access to system
 space). Thus, system support processes, service processes, user
 applications, and environment subsystems each have their own private
 process address space.
The four basic types of user-mode processes are described
 as follows:
	Fixed (or hardwired) system support
 processes, such as the logon process and the Session
 Manager, that are not Windows services. (That is, they are not
 started by the service control manager. Chapter 4, describes services in
 detail.)

	Service processes that host Windows
 services, such as the Task Scheduler and Print Spooler services.
 Services generally have the requirement that they run independently
 of user logons. Many Windows server applications, such as Microsoft
 SQL Server and Microsoft Exchange Server, also include components
 that run as services.

	User applications, which can be one of
 the following types: Windows 32-bit or 64-bit, Windows 3.1 16-bit,
 MS-DOS 16-bit, or POSIX 32-bit or 64-bit. Note that 16-bit
 applications can be run only on 32-bit Windows.

	Environment subsystem server processes,
 which implement part of the support for the operating system
 environment, or personality, presented to the
 user and programmer. Windows NT originally shipped with three
 environment subsystems: Windows, POSIX, and OS/2. However, the POSIX
 and OS/2 subsystems last shipped with Windows 2000. The Ultimate and
 Enterprise editions of Windows client as well as all of the server
 versions include support for an enhanced POSIX subsystem called
 Subsystem for Unix-based Applications (SUA).

In Figure 2-1, notice the
 “Subsystem DLLs” box below the “Service processes” and “User
 applications” boxes. Under Windows, user applications don’t call the
 native Windows operating system services directly; rather, they go
 through one or more subsystem dynamic-link
 libraries (DLLs). The role of the subsystem DLLs is to
 translate a documented function into the appropriate internal (and
 generally undocumented) native system service calls. This translation
 might or might not involve sending a message to the environment
 subsystem process that is serving the user application.
The kernel-mode components of Windows include the
 following:
	The Windows executive contains the base
 operating system services, such as memory management, process and
 thread management, security, I/O, networking, and interprocess
 communication.

	The Windows kernel consists of low-level
 operating system functions, such as thread scheduling, interrupt and
 exception dispatching, and multiprocessor synchronization. It also
 provides a set of routines and basic objects that the rest of the
 executive uses to implement higher-level constructs.

	Device drivers include both hardware
 device drivers, which translate user I/O function calls into
 specific hardware device I/O requests, as well as nonhardware device
 drivers such as file system and network drivers.

	The hardware abstraction layer (HAL) is a
 layer of code that isolates the kernel, the device drivers, and the
 rest of the Windows executive from platform-specific hardware
 differences (such as differences between motherboards).

	The windowing and graphics system
 implements the graphical user interface (GUI) functions (better
 known as the Windows USER and GDI functions), such as dealing with
 windows, user interface controls, and drawing.

Table 2-1 lists the file names
 of the core Windows operating system components. (You’ll need to know
 these file names because we’ll be referring to some system files by
 name.) Each of these components is covered in greater detail both later
 in this chapter and in the chapters that follow.
Table 2-1. Core Windows System Files
	File Name
	Components

	Ntoskrnl.exe
	Executive and kernel

	Ntkrnlpa.exe (32-bit systems
 only)
	Executive and kernel, with support for
 Physical Address Extension (PAE), which allows 32-bit systems to
 address up to 64 GB of physical memory and to mark memory as
 nonexecutable (see the section “No Execute Page Prevention” in
 Chapter 10, “Memory Management,” in Part 2)

	Hal.dll
	Hardware abstraction
 layer

	Win32k.sys
	Kernel-mode part of the Windows
 subsystem

	Ntdll.dll
	Internal support functions and system
 service dispatch stubs to executive functions

	Kernel32.dll, Advapi32.dll,
 User32.dll, Gdi32.dll
	Core Windows subsystem
 DLLs

Before we dig into the details of these system components, though,
 let’s examine some basics about the Windows kernel design, starting with
 how Windows achieves portability across multiple hardware
 architectures.
Portability

Windows was designed to run on a variety of hardware
 architectures. The initial release of Windows NT supported the x86 and
 MIPS architectures. Support for the Digital Equipment Corporation
 (which was bought by Compaq, which later merged with Hewlett-Packard)
 Alpha AXP was added shortly thereafter. (Although Alpha AXP was a
 64-bit processor, Windows NT ran in 32-bit mode. During the
 development of Windows 2000, a native 64-bit version was running on
 Alpha AXP, but this was never released.) Support for a fourth
 processor architecture, the Motorola PowerPC, was added in Windows NT
 3.51. Because of changing market demands, however, support for the
 MIPS and PowerPC architectures was dropped before development began on
 Windows 2000. Later, Compaq withdrew support for the Alpha AXP
 architecture, resulting in Windows 2000 being supported only on the
 x86 architecture. Windows XP and Windows Server 2003 added support for
 three 64-bit processor families: the Intel Itanium IA-64 family, the
 AMD64 family, and the Intel 64-bit Extension Technology (EM64T) for
 x86 (which is compatible with the AMD64 architecture, although there
 are slight differences in instructions supported). The latter two
 processor families are called 64-bit extended
 systems and in this book are referred to as
 x64. (How Windows runs 32-bit applications on
 64-bit Windows is explained in Chapter 3.)
Windows achieves portability across hardware
 architectures and platforms in two primary ways:
	Windows has a layered design, with low-level portions of the
 system that are processor-architecture-specific or
 platform-specific isolated into separate modules so that upper
 layers of the system can be shielded from the differences between
 architectures and among hardware platforms. The two key components
 that provide operating system portability are the kernel
 (contained in Ntoskrnl.exe) and the hardware abstraction layer (or
 HAL, contained in Hal.dll). Both these components are described in
 more detail later in this chapter. Functions that are
 architecture-specific (such as thread context switching and trap
 dispatching) are implemented in the kernel. Functions that can
 differ among systems within the same architecture (for example,
 different motherboards) are implemented in the HAL. The only other
 component with a significant amount of architecture-specific code
 is the memory manager, but even that is a small amount compared to
 the system as a whole.

	The vast majority of Windows is written in C, with some
 portions in C++. Assembly language is used only for those parts of
 the operating system that need to communicate directly with system
 hardware (such as the interrupt trap handler) or that are
 extremely performance-sensitive (such as context switching).
 Assembly language code exists not only in the kernel and the HAL
 but also in a few other places within the core operating system
 (such as the routines that implement interlocked instructions as
 well as one module in the local procedure call facility), in the
 kernel-mode part of the Windows subsystem, and even in some
 user-mode libraries, such as the process startup code in Ntdll.dll
 (a system library explained later in this chapter).

Symmetric Multiprocessing

Multitasking is the operating system
 technique for sharing a single processor among multiple threads of
 execution. When a computer has more than one processor, however, it
 can execute multiple threads simultaneously. Thus, whereas a
 multitasking operating system only appears to execute multiple threads
 at the same time, a multiprocessing operating system actually does it,
 executing one thread on each of its processors.
As mentioned at the beginning of this chapter, one of the key
 design goals for Windows was that it had to run well on multiprocessor
 computer systems. Windows is a symmetric
 multiprocessing (SMP) operating system. There is no master
 processor—the operating system as well as user threads can be
 scheduled to run on any processor. Also, all the processors share just
 one memory space. This model contrasts with asymmetric
 multiprocessing (ASMP), in which the operating system
 typically selects one processor to execute operating system kernel
 code while other processors run only user code. The differences in the
 two multiprocessing models are illustrated in Figure 2-2.
Windows also supports three modern types of multiprocessor
 systems: multicore, Hyper-Threading enabled, and NUMA (non-uniform
 memory architecture). These are briefly mentioned in the following
 paragraphs. (For a complete, detailed description of the scheduling
 support for these systems, see the thread scheduling section in Chapter 5.)
[image: Symmetric vs. asymmetric multiprocessing]

Figure 2-2. Symmetric vs. asymmetric multiprocessing

Hyper-Threading is a technology
 introduced by Intel that provides two logical processors for each
 physical core. Each logical processor has its own CPU state, but the
 execution engine and onboard cache are shared. This permits one
 logical CPU to make progress while the other logical CPU is stalled
 (such as after a cache miss or branch misprediction). The scheduling
 algorithms are enhanced to make optimal use of Hyper-Threading-enabled
 machines, such as by scheduling threads on an idle physical processor
 versus choosing an idle logical processor on a physical processor
 whose other logical processors are busy. For more details on thread
 scheduling, see Chapter 5.
In NUMA systems, processors are grouped in smaller units called
 nodes. Each node has its own processors and
 memory and is connected to the larger system through a cache-coherent
 interconnect bus. Windows on a NUMA system still runs as an SMP
 system, in that all processors have access to all memory—it’s just
 that node-local memory is faster to reference than memory attached to
 other nodes. The system attempts to improve performance by scheduling
 threads on processors that are in the same node as the memory being
 used. It attempts to satisfy memory-allocation requests from within
 the node, but it will allocate memory from other nodes if
 necessary.
Naturally, Windows also natively supports multicore
 systems—because these systems have real physical cores (simply on the
 same package), the original SMP code in Windows treats them as
 discrete processors, except for certain accounting and identification
 tasks (such as licensing, described shortly) that distinguish between
 cores on the same processor and cores on different sockets.
Windows was not originally designed with a specific
 processor number limit in mind, other than the licensing policies that
 differentiate the various Windows editions. However, for convenience
 and efficiency, Windows does keep track of processors (total number,
 idle, busy, and other such details) in a bitmask (sometimes called an
 affinity mask) that is the same number of bits as
 the native data type of the machine (32-bit or 64-bit), which allows
 the processor to manipulate bits directly within a register. Due to
 this fact, Windows systems were originally limited to the number of
 CPUs in a native word, because the affinity mask couldn’t arbitrarily
 be increased. To maintain compatibility, as well as support larger
 processor systems, Windows implements a higher-order construct called
 a processor group. The processor group is a set
 of processors that can all be defined by a single affinity bitmask,
 and the kernel as well as the applications can choose which group they
 refer to during affinity updates. Compatible applications can query
 the number of supported groups (currently limited to 4) and then
 enumerate the bitmask for each group. Meanwhile, legacy applications
 continue to function by seeing only their current group. More
 information on how exactly Windows assigns processors to groups (which
 is also related to NUMA) is detailed in Chapter 5.
As mentioned, the actual number of supported
 licensed processors depends on the edition of
 Windows being used. (See Table 2-2 later in this
 chapter.) This number is stored in the system license policy file
 (\Windows\ServiceProfiles\NetworkService\AppData\Roaming\Microsoft\SoftwareProtectionPlatform\tokens.dat)
 as a policy value called “Kernel-RegisteredProcessors.” (Keep in mind
 that tampering with that data is a violation of the software license,
 and modifying licensing policies to allow the use of more processors
 involves more than just changing this value.)

Scalability

One of the key issues with multiprocessor systems is
 scalability. To run correctly on an SMP system,
 operating system code must adhere to strict guidelines and rules.
 Resource contention and other performance issues are more complicated
 in multiprocessing systems than in uniprocessor systems and must be
 accounted for in the system’s design. Windows incorporates several
 features that are crucial to its success as a multiprocessor operating
 system:
	The ability to run operating system code on any available
 processor and on multiple processors at the same time

	Multiple threads of execution within a single process, each
 of which can execute simultaneously on different processors

	Fine-grained synchronization within the kernel (such as
 spinlocks, queued spinlocks, and pushlocks, described in Chapter 3) as well as within device drivers
 and server processes, which allows more components to run
 concurrently on multiple processors

	Programming mechanisms such as I/O completion ports
 (described in Chapter 8, “I/O System,” in Part 2) that facilitate
 the efficient implementation of multithreaded server processes
 that can scale well on multiprocessor systems

The scalability of the Windows kernel has evolved over
 time. For example, Windows Server 2003 introduced per-CPU scheduling
 queues, which permit thread scheduling decisions to occur in parallel
 on multiple processors. Windows 7 and Windows Server 2008 R2
 eliminated global locking on the scheduling database. This step-wise
 improvement of the granularity of locking has also occurred in other
 areas, such as the memory manager. Further details on multiprocessor
 synchronization can be found in Chapter 3.

Differences Between Client and Server Versions

Windows ships in both client and server retail packages. As of
 this writing, there are six client versions of Windows 7: Windows 7
 Home Basic, Windows 7 Home Premium, Windows 7 Professional, Windows 7
 Ultimate, Windows 7 Enterprise, and Windows 7 Starter.
There are seven different versions of Windows Server 2008 R2:
 Windows Server 2008 R2 Foundation, Windows Server 2008 R2 Standard,
 Windows Server 2008 R2 Enterprise, Windows Server 2008 R2 Datacenter,
 Windows Web Server 2008 R2, Windows HPC Server 2008 R2, and Windows
 Server 2008 R2 for Itanium-Based Systems (which is the last release of
 Windows to support the Intel Itanium processor).
Additionally, there are “N” versions of the client that do not
 include Windows Media Player. Finally, the Standard, Enterprise, and
 Datacenter editions of Windows Server 2008 R2 also include “with
 Hyper-V” editions, which include Hyper-V. (Hyper-V virtualization is
 discussed in Chapter 3.)
These versions differ by
	The number of processors supported (in terms of sockets, not
 cores or threads)

	The amount of physical memory supported (actually highest
 physical address usable for RAM—see Chapter 10 in Part 2 for more
 information on physical memory limits)

	The number of concurrent network connections supported (For
 example, a maximum of 10 concurrent connections are allowed to the
 file and print services in the client version.)

	Support for Media Center

	Support for Multi-Touch, Aero, and Desktop
 Compositing

	Support for features such as BitLocker, VHD Booting,
 AppLocker, Windows XP Compatibility Mode, and more than 100 other
 configurable licensing policy values

	Layered services that come with Windows Server editions that
 don’t come with the client editions (for example, directory
 services and clustering)

Table 2-2
 lists the differences in memory and processor support for Windows 7
 and Windows Server 2008 R2. For a detailed comparison chart of the
 different editions of Windows Server 2008 R2, see www.microsoft.com/windowsserver2008/en/us/r2-compare-specs.aspx.
Table 2-2. Differences Between Windows 7 and Windows Server 2008
 R2
	 	Number of Sockets Supported (32-Bit
 Edition)
	Physical Memory Supported (32-Bit
 Edition)
	Number of Sockets Supported
 (64-Bit Edition)
	Physical Memory Supported
 (Itanium Editions)
	Physical Memory Supported (x64
 Editions)

	Windows 7 Starter
	1
	2 GB
	Not available
	Not available
	2 GB

	Windows 7 Home Basic
	1
	4 GB
	1
	Not available
	8 GB

	Windows 7 Home
 Premium
	1
	4 GB
	1
	Not available
	16 GB

	Windows 7
 Professional
	2
	4 GB
	2
	Not available
	192 GB

	Windows 7 Enterprise
	2
	4 GB
	2
	Not available
	192 GB

	Windows 7 Ultimate
	2
	4 GB
	2
	Not available
	192 GB

	Windows Server 2008 R2
 Foundation
	Not available
	Not available
	1
	Not available
	8 GB

	Windows Web Server 2008
 R2
	Not available
	Not available
	4
	Not available
	32 GB

	Windows Server 2008 R2
 Standard
	Not available
	Not available
	4
	Not available
	32 GB

	Windows HPC Server 2008
 R2
	Not available
	Not available
	4
	Not available
	128 GB

	Windows Server 2008 R2
 Enterprise
	Not available
	Not available
	8
	Not available
	2048 GB

	Windows Server 2008 R2
 Datacenter
	Not available
	Not available
	64
	Not available
	2048 GB

	Windows Server 2008 R2 for
 Itanium-Based Systems
	Not available
	Not available
	64
	2048 GB
	Not available

Although there are several client and server retail packages of
 the Windows operating system, they share a common set of core system
 files, including the kernel image, Ntoskrnl.exe (and the PAE version,
 Ntkrnlpa.exe); the HAL libraries; the device drivers; and the base
 system utilities and DLLs. These files are identical for all editions
 of Windows 7 and Windows Server 2008 R2.
With so many different editions of Windows and each having the
 same kernel image, how does the system know which edition is booted?
 By querying the registry values ProductType and ProductSuite under the
 HKLM\SYSTEM\CurrentControlSet\Control\ProductOptions key. ProductType
 is used to distinguish whether the system is a client system or a
 server system (of any flavor). These values are loaded into the
 registry based on the licensing policy file described earlier. The
 valid values are listed in Table 2-3. This can be queried from the
 user-mode GetVersionEx function or from a device
 driver using the kernel-mode support function
 RtlGetVersion.
Table 2-3. ProductType Registry Values
	Edition of Windows
	Value of ProductType

	Windows client
	WinNT

	Windows server (domain
 controller)
	LanmanNT

	Windows server (server
 only)
	ServerNT

A different registry value, ProductPolicy, contains a cached
 copy of the data inside the tokens.dat file, which differentiates
 between the editions of Windows and the features that they
 enable.
If user programs need to determine which edition of Windows is
 running, they can call the Windows
 VerifyVersionInfo function, documented in the
 Windows Software Development Kit (SDK). Device drivers can call the
 kernel-mode function RtlVerifyVersionInfo,
 documented in the WDK.
So if the core files are essentially the same for the client and
 server versions, how do the systems differ in operation? In short,
 server systems are optimized by default for system throughput as
 high-performance application servers, whereas the client version
 (although it has server capabilities) is optimized for response time
 for interactive desktop use. For example, based on the product type,
 several resource allocation decisions are made differently at system
 boot time, such as the size and number of operating system heaps (or
 pools), the number of internal system worker threads, and the size of
 the system data cache. Also, run-time policy decisions, such as the
 way the memory manager trades off system and process memory demands,
 differ between the server and client editions. Even some thread
 scheduling details have different default behavior in the two families
 (the default length of the time slice, or thread
 quantum—see Chapter 5 for details).
 Where there are significant operational differences in the two
 products, these are highlighted in the pertinent chapters throughout
 the rest of this book. Unless otherwise noted, everything in this book
 applies to both the client and server versions.
EXPERIMENT: Determining Features Enabled by Licensing
 Policy
As mentioned earlier, Windows supports more than 100 different
 features that can be enabled through the software licensing
 mechanism. These policy settings determine the various differences
 not only between a client and server installation, but also between
 each edition (or SKU) of the operating system, such as BitLocker
 support (available on Windows server as well as the Ultimate and
 Enterprise editions of Windows client). You can use the SlPolicy
 tool available from Winsider Seminars & Solutions
 (www.winsiderss.com/tools/slpolicy.htm)
 to display these policy values on your machine.
Policy settings are organized by a
 facility, which represents the owner module for
 which the policy applies. You can display a list of all facilities
 on your system by running Slpolicy.exe with the
 –f switch:
C:\>SlPolicy.exe -f
SlPolicy v1.05 - Show Software Licensing Policies
Copyright (C) 2008-2011 Winsider Seminars & Solutions Inc.
www.winsiderss.com

Software Licensing Facilities:

Kernel
Licensing and Activation
Core
DWM
SMB
IIS
.
.
.
You can then add the name of any facility after the switch to
 display the policy value for that facility. For example, to look at
 the limitations on CPUs and available memory, use the Kernel
 facility. Here’s the expected output on a machine running Windows 7
 Ultimate:
C:\>SlPolicy.exe -f Kernel

SlPolicy v1.05 - Show Software Licensing Policies
Copyright (C) 2008-2011 Winsider Seminars & Solutions Inc.
www.winsiderss.com

Kernel

Processor Limit: 2
Maximum Memory Allowed (x86): 4096
Maximum Memory Allowed (x64): 196608
Maximum Memory Allowed (IA64): 196608
Maximum Physical Page: 4096
Addition of Physical Memory Allowed: No
Addition of Physical Memory Allowed, if virtualized: Yes
Product Information: 1
Dynamic Partitioning Supported: No
Virtual Dynamic Partitioning Supported: No
Memory Mirroring Supported: No
Native VHD Boot Supported: Yes
Bad Memory List Persistance Supported: No
Number of MUI Languages Allowed: 1000
List of Allowed Languages: EMPTY
List of Disallowed Languages: EMPTY
MUI Language SKU:
Expiration Date: 0

Checked Build

There is a special debug version of Windows called the
 checked build (available only with an MSDN
 Operating Systems subscription). It is a recompilation of the Windows
 source code with a compile-time flag defined called “DBG” (to cause
 compile-time, conditional debugging and tracing code to be included).
 Also, to make it easier to understand the machine code, the
 post-processing of the Windows binaries to optimize code layout for
 faster execution is not performed. (See the section “Debugging
 Performance-Optimized Code” in the Debugging Tools for Windows help
 file.)
The checked build is provided primarily to aid device driver
 developers because it performs more stringent error checking on
 kernel-mode functions called by device drivers or other system code.
 For example, if a driver (or some other piece of kernel-mode code)
 makes an invalid call to a system function that is checking parameters
 (such as acquiring a spinlock at the wrong interrupt level), the
 system will stop execution when the problem is detected rather than
 allow some data structure to be corrupted and the system to possibly
 crash at a later time.
EXPERIMENT: Determining If You Are Running the Checked
 Build
There is no built-in tool to display whether you are running
 the checked build or the retail build (called the free
 build). However, this information is available through
 the “Debug” property of the Windows Management Instrumentation (WMI)
 Win32_OperatingSystem class. The following sample Microsoft Visual
 Basic script displays this property:
strComputer = "."
Set objWMIService = GetObject("winmgmts:" _
 & "{impersonationLevel=impersonate}!\\" & strComputer & "\root\cimv2")
Set colOperatingSystems = objWMIService.ExecQuery _
 ("SELECT * FROM Win32_OperatingSystem")
For Each objOperatingSystem in colOperatingSystems
 Wscript.Echo "Caption: " & objOperatingSystem.Caption
 Wscript.Echo "Debug: " & objOperatingSystem.Debug
 Wscript.Echo "Version: " & objOperatingSystem.Version
Next
To try this, type in the preceding script and save it as file.
 The following is the output from running the script:
C:\>cscript osversion.vbs
Microsoft (R) Windows Script Host Version 5.8
Copyright (C) Microsoft Corporation. All rights reserved.

Caption: Microsoft Windows Server 2008 R2 Enterprise
Debug: False
Version: 6.1.7600
This system is not running the checked build, because the
 Debug flag shown here says False.

Much of the additional code in the checked-build binaries is a
 result of using the ASSERT and/or NT_ASSERT macros, which are defined
 in the WDK header file Wdm.h and documented in the WDK documentation.
 These macros test a condition (such as the validity of a data
 structure or parameter), and if the expression evaluates to FALSE, the macros
 call the kernel-mode function RtlAssert, which
 calls DbgPrintEx to send the text of the debug
 message to a debug message buffer. If a kernel debugger is attached,
 this message is displayed automatically followed by a prompt asking
 the user what to do about the assertion failure (breakpoint, ignore,
 terminate process, or terminate thread). If the system wasn’t booted
 with the kernel debugger (using the debug option
 in the Boot Configuration Database—BCD) and no kernel debugger is
 currently attached, failure of an ASSERT test will bugcheck the
 system. For a list of ASSERT checks made by some of the kernel support
 routines, see the section “Checked Build ASSERTs” in the WDK
 documentation.
The checked build is also useful for system administrators
 because of the additional detailed informational tracing that can be
 enabled for certain components. (For detailed instructions, see the
 Microsoft Knowledge Base Article number 314743, titled
 HOWTO: Enable Verbose Debug Tracing in Various Drivers and
 Subsystems.) This information output is sent to an internal
 debug message buffer using the DbgPrintEx
 function referred to earlier. To view the debug messages, you can
 either attach a kernel debugger to the target system (which requires
 booting the target system in debugging mode), use the
 !dbgprint command while performing local kernel
 debugging, or use the Dbgview.exe tool from Sysinternals
 (www.microsoft.com/technet/sysinternals).
You don’t have to install the entire checked build to take
 advantage of the debug version of the operating system. You can just
 copy the checked version of the kernel image (Ntoskrnl.exe) and the
 appropriate HAL (Hal.dll) to a normal retail installation. The
 advantage of this approach is that device drivers and other kernel
 code get the rigorous checking of the checked build without having to
 run the slower debug versions of all components in the system. For
 detailed instructions on how to do this, see the section “Installing
 Just the Checked Operating System and HAL” in the WDK
 documentation.
Finally, the checked build can also be useful for testing
 user-mode code only because the timing of the system is different.
 (This is because of the additional checking taking place within the
 kernel and the fact that the components are compiled without
 optimizations.) Often, multithreaded synchronization bugs are related
 to specific timing conditions. By running your tests on a system
 running the checked build (or at least the checked kernel and HAL),
 the fact that the timing of the whole system is different might cause
 latent timing bugs to surface that do not occur on a normal retail
 system.

Key System Components

Now that we’ve looked at the high-level architecture of Windows,
 let’s delve deeper into the internal structure and the role each key
 operating system component plays. Figure 2-3 is a more detailed and complete
 diagram of the core Windows system architecture and components than was
 shown earlier in the chapter (in Figure 2-1). Note that it still does
 not show all components (networking in particular, which is explained in
 Chapter 7.
The following sections elaborate on each major element of this
 diagram. Chapter 3 explains the primary
 control mechanisms the system uses (such as the object manager,
 interrupts, and so forth). Chapter 13, “Startup and Shutdown,” in Part 2
 describes the process of starting and shutting down Windows, and Chapter 4
 details management mechanisms such as the registry, service processes,
 and Windows Management Instrumentation. Other chapters explore in even
 more detail the internal structure and operation of key areas such as
 processes and threads, memory management, security, the I/O manager,
 storage management, the cache manager, the Windows file system (NTFS),
 and networking.
[image: Windows architecture]

Figure 2-3. Windows architecture

Environment Subsystems and Subsystem DLLs

The role of an environment subsystem is to expose some
 subset of the base Windows executive system services to application
 programs. Each subsystem can provide access to different subsets of
 the native services in Windows. That means that some things can be
 done from an application built on one subsystem that can’t be done by
 an application built on another subsystem. For example, a Windows
 application can’t use the SUA fork
 function.
Each executable image (.exe) is bound to one and only one
 subsystem. When an image is run, the process creation code examines
 the subsystem type code in the image header so that it can notify the
 proper subsystem of the new process. This type code is specified with
 the /SUBSYSTEM qualifier of the link command in
 Microsoft Visual C++.
As mentioned earlier, user applications don’t call Windows
 system services directly. Instead, they go through one or more
 subsystem DLLs. These libraries export the documented interface that
 the programs linked to that subsystem can call. For example, the
 Windows subsystem DLLs (such as Kernel32.dll, Advapi32.dll,
 User32.dll, and Gdi32.dll) implement the Windows API functions. The
 SUA subsystem DLL (Psxdll.dll) implements the SUA API
 functions.
EXPERIMENT: Viewing the Image Subsystem Type
You can see the image subsystem type by using the Dependency
 Walker tool (Depends.exe) (available at www.dependencywalker.com).
 For example, notice the image types for two different Windows
 images, Notepad.exe (the simple text editor) and Cmd.exe (the
 Windows command prompt):
[image: image with no caption]

[image: image with no caption]

This shows that Notepad is a GUI program, while Cmd is a
 console, or character-based, program. And although this implies
 there are two different subsystems for GUI and character-based
 programs, there is just one Windows subsystem, and GUI programs can
 have consoles, just like console programs can display GUIs.

When an application calls a function in a subsystem DLL,
 one of three things can occur:
	The function is entirely implemented in user mode inside the
 subsystem DLL. In other words, no message is sent to the
 environment subsystem process, and no Windows executive system
 services are called. The function is performed in user mode, and
 the results are returned to the caller. Examples of such functions
 include GetCurrentProcess (which always
 returns –1, a value that is defined to refer to the current
 process in all process-related functions) and
 GetCurrentProcessId. (The process ID doesn’t
 change for a running process, so this ID is retrieved from a
 cached location, thus avoiding the need to call into the
 kernel.)

	The function requires one or more calls to the Windows
 executive. For example, the Windows ReadFile
 and WriteFile functions involve calling the
 underlying internal (and undocumented) Windows I/O system services
 NtReadFile and
 NtWriteFile, respectively.

	The function requires some work to be done in the
 environment subsystem process. (The environment subsystem
 processes, running in user mode, are responsible for maintaining
 the state of the client applications running under their control.)
 In this case, a client/server request is made to the environment
 subsystem via a message sent to the subsystem to perform some
 operation. The subsystem DLL then waits for a reply before
 returning to the caller.

Some functions can be a combination of the second and third
 items just listed, such as the Windows
 CreateProcess and
 CreateThread functions.
Subsystem Startup

Subsystems are started by the Session Manager (Smss.exe)
 process. The subsystem startup information is stored under the
 registry key HKLM\SYSTEM\CurrentControlSet\Control\Session
 Manager\SubSystems. Figure 2-4 shows the
 values under this key.
[image: Registry Editor showing Windows startup information]

Figure 2-4. Registry Editor showing Windows startup information

The Required value lists the subsystems
 that load when the system boots. The value has two strings: Windows
 and Debug. The Windows value contains the file specification of the
 Windows subsystem, Csrss.exe, which stands for Client/Server
 Run-Time Subsystem. Debug is blank (because
 it’s used for internal testing) and therefore does nothing. The
 Optional value indicates that the SUA subsystem will be started on demand. The registry
 value Kmode contains the file name of the
 kernel-mode portion of the Windows subsystem, Win32k.sys (explained
 later in this chapter).
Let’s take a closer look at each of the environment
 subsystems.

Windows Subsystem

Although Windows was designed to support multiple, independent
 environment subsystems, from a practical perspective, having each
 subsystem implement all the code to handle windowing and display I/O
 would result in a large amount of duplication of system functions
 that, ultimately, would negatively affect both system size and
 performance. Because Windows was the primary subsystem, the Windows
 designers decided to locate these basic functions there and have the
 other subsystems call on the Windows subsystem to perform display
 I/O. Thus, the SUA subsystem calls services in the Windows subsystem
 to perform display I/O.
As a result of this design decision, the Windows subsystem is
 a required component for any Windows system, even on server systems
 with no interactive users logged in. Because of this, the process is
 marked as a critical process (which means if for any reason it
 exits, the system crashes).
The Windows subsystem consists of the following major
 components:
	For each session, an instance of the environment subsystem
 process (Csrss.exe) loads three DLLs (Basesrv.dll, Winsrv.dll,
 and Csrsrv.dll) that contain support for the following:
	Creating and deleting processes and threads

	Portions of the support for 16-bit virtual DOS machine
 (VDM) processes (32-bit Windows only)

	Side-by-Side (SxS)/Fusion and manifest support

	Other miscellaneous functions—such as
 GetTempFile,
 DefineDosDevice,
 ExitWindowsEx, and several natural
 language support functions

	A kernel-mode device driver (Win32k.sys) that contains the
 following:
	The window manager, which controls window displays;
 manages screen output; collects input from keyboard, mouse,
 and other devices; and passes user messages to
 applications.

	The Graphics Device Interface (GDI), which is a
 library of functions for graphics output devices. It
 includes functions for line, text, and figure drawing and
 for graphics manipulation.

	Wrappers for DirectX support that is implemented in
 another kernel driver (Dxgkrnl.sys).

	The console host process (Conhost.exe), which provides
 support for console (character cell) applications.

	Subsystem DLLs (such as Kernel32.dll, Advapi32.dll,
 User32.dll, and Gdi32.dll) that translate documented Windows API
 functions into the appropriate and mostly undocumented
 kernel-mode system service calls in Ntoskrnl.exe and
 Win32k.sys.

	Graphics device drivers for hardware-dependent
 graphics display drivers, printer drivers, and video miniport
 drivers.

Note
As part of a refactoring effort in the Windows architecture
 called MinWin, the subsystem DLLs are now generally composed of
 specific libraries that implement API Sets,
 which are then linked together into the subsystem DLL and resolved
 using a special redirection scheme. More information on this
 refactoring is available in Chapter 5 in the Image Loader section.

Applications call the standard USER functions to create user
 interface controls, such as windows and buttons, on the display. The
 window manager communicates these requests to the GDI, which passes
 them to the graphics device drivers, where they are formatted for
 the display device. A display driver is paired with a video miniport
 driver to complete video display support.
The GDI provides a set of standard two-dimensional functions
 that let applications communicate with graphics devices without
 knowing anything about the devices. GDI functions mediate between
 applications and graphics devices such as display drivers and
 printer drivers. The GDI interprets application requests for graphic
 output and sends the requests to graphics display drivers. It also
 provides a standard interface for applications to use varying
 graphics output devices. This interface enables application code to
 be independent of the hardware devices and their drivers. The GDI
 tailors its messages to the capabilities of the device, often
 dividing the request into manageable parts. For example, some
 devices can understand directions to draw an ellipse; others require
 the GDI to interpret the command as a series of pixels placed at
 certain coordinates. For more information about the graphics and
 video driver architecture, see the “Design Guide” section of the
 “Display (Adapters and Monitors)” chapter in the Windows Driver
 Kit.
Because much of the subsystem—in particular, display I/O
 functionality—runs in kernel mode, only a few Windows functions
 result in sending a message to the Windows subsystem process:
 process and thread creation and termination, network drive letter
 mapping, and creation of temporary files. In general, a running
 Windows application won’t be causing many, if any, context switches
 to the Windows subsystem process.
Console Window Host
In the original Windows subsystem design, the subsystem
 process (Csrss.exe) was responsible for the managing of console
 windows and each console application (such as Cmd.exe, the command
 prompt) communicated with Csrss. Windows now uses a separate
 process, the console window host (Conhost.exe), for each console
 window on the system. (A single console window can be shared by
 multiple console applications, such as when you launch a command
 prompt from the command prompt. By default, the second command
 prompt shares the console window of the first.)
Whenever a console application registers itself with
 the Csrss instance running in the current session, Csrss creates a
 new instance of Conhost using the client process’ security token
 instead of Csrss’ System token. It then maps a shared memory
 section that is used to allow all Conhosts to share part of their
 memory with Csrss for efficient buffer handling (because these
 threads do not live within Csrss anymore) and creates a named
 Asynchronous Local Procedure Call (ALPC) port in the \RPC Control
 object directory. (For more information on ALPC, see Chapter 3.) The name of the port is of the
 format console-PID-lpc-handle, where
 PID is the process ID of the Conhost process.
 It then registers its PID with the kernel process structure
 associated with the user application, which can then query this
 information to open the newly created ALPC port. This process also
 creates a mapping of a shared section memory object between the
 command-line application and its Conhost so that the two can share
 data. Finally, a wait event is created in the session 0
 BaseNamedObjects directory (named
 ConsoleEvent-PID) so that the command-line
 application and the Conhost can notify each other of new buffer
 data. The following figure shows a Conhost process with handles
 open to its ALPC port and event.
[image: image with no caption]

Because the Conhost is running with the user’s credentials
 (which also implies the user’s privilege level), as well as in a
 process associated with the console application itself, the User
 Interface Privilege Isolation (UIPI, described in Chapter 6) security mechanism covers console
 processes. In addition, CPU-bound console applications can be
 identified with their supporting console host process (which a
 user can kill if needed). As a side effect, because Conhost
 processes now run outside the special enclave of the Csrss
 subsystem, console applications (whose windows are actually owned
 by Conhost) can be fully themed, load third-party DLLs, and run
 with full windowing capabilities.

Subsystem for Unix-based Applications

The Subsystem for UNIX-based Applications (SUA)
 enables compiling and running custom UNIX-based applications on a
 computer running Windows Server or the Enterprise or Ultimate
 editions of Windows client. SUA provides nearly 2000 UNIX functions
 and 300 UNIX-like tools and utilities. (See http://technet.microsoft.com/en-us/library/cc771470.aspx
 for more information on SUA.) For more information on how Windows
 handles running SUA applications, see the section Flow of CreateProcess in Chapter 5.
Original POSIX Subsystem
POSIX, an acronym loosely defined as “a portable operating
 system interface based on UNIX,” refers to a collection of
 international standards for UNIX-style operating system
 interfaces. The POSIX standards encourage vendors implementing
 UNIX-style interfaces to make them compatible so that programmers
 can move their applications easily from one system to
 another.
Windows initially implemented only one of the many POSIX
 standards, POSIX.1, formally known as ISO/IEC 9945-1:1990 or IEEE
 POSIX standard 1003.1-1990. This standard was included primarily
 to meet U.S. government procurement requirements set in the
 mid-to-late 1980s that mandated POSIX.1 compliance as specified in
 Federal Information Processing Standard (FIPS) 151-2, developed by
 the National Institute of Standards and Technology. Windows NT
 3.5, 3.51, and 4 were formally tested and certified according to
 FIPS 151-2.
Because POSIX.1 compliance was a mandatory goal for Windows,
 the operating system was designed to ensure that the required base
 system support was present to allow for the implementation of a
 POSIX.1 subsystem (such as the fork function,
 which is implemented in the Windows executive, and the support for
 hard file links in the Windows file system).

Ntdll.dll

Ntdll.dll is a special system support library primarily for the
 use of subsystem DLLs. It contains two types of functions:
	System service dispatch stubs to Windows executive system
 services

	Internal support functions used by subsystems, subsystem
 DLLs, and other native images

The first group of functions provides the interface to the
 Windows executive system services that can be called from user mode.
 There are more than 400 such functions, such as
 NtCreateFile, NtSetEvent,
 and so on. As noted earlier, most of the capabilities of these
 functions are accessible through the Windows API. (A number are not,
 however, and are for use only within the operating system.)
For each of these functions, Ntdll contains an entry
 point with the same name. The code inside the function contains the
 architecture-specific instruction that causes a transition into kernel
 mode to invoke the system service dispatcher (explained in more detail
 in Chapter 3), which, after verifying some
 parameters, calls the actual kernel-mode system service that contains
 the real code inside Ntoskrnl.exe.
Ntdll also contains many support functions, such as the image
 loader (functions that start with Ldr), the heap
 manager, and Windows subsystem process communication functions
 (functions that start with Csr). Ntdll also
 includes general run-time library routines (functions that start with
 Rtl), support for user-mode debugging (functions
 that start with DbgUi), and Event Tracing for
 Windows (functions starting in Etw), and the
 user-mode asynchronous procedure call (APC) dispatcher and exception
 dispatcher. (APCs and exceptions are explained in Chapter 3.) Finally, you’ll find a small subset
 of the C Run-Time (CRT) routines in Ntdll, limited to those routines
 that are part of the string and standard libraries (such as
 memcpy, strcpy, itoa, and so on).

Executive

The Windows executive is the upper layer of Ntoskrnl.exe. (The
 kernel is the lower layer.) The executive includes the following types
 of functions:
	Functions that are exported and callable from user mode.
 These functions are called system services
 and are exported via Ntdll. Most of the services are accessible
 through the Windows API or the APIs of another environment
 subsystem. A few services, however, aren’t available through any
 documented subsystem function. (Examples include ALPC and various
 query functions such as
 NtQueryInformationProcess, specialized
 functions such as NtCreatePagingFile, and so
 on.)

	Device driver functions that are called through the use of
 the DeviceIoControl function. This provides a
 general interface from user mode to kernel mode to call functions
 in device drivers that are not associated with a read or
 write.

	Functions that can be called only from kernel mode that are
 exported and are documented in the WDK.

	Functions that are exported and callable from kernel mode
 but are not documented in the WDK (such as the functions called by
 the boot video driver, which start with
 Inbv).

	Functions that are defined as global symbols but are not
 exported. These include internal support functions called within
 Ntoskrnl, such as those that start with Iop
 (internal I/O manager support functions) or
 Mi (internal memory management support
 functions).

	Functions that are internal to a module that are not defined
 as global symbols.

The executive contains the following major components, each of
 which is covered in detail in a subsequent chapter of this
 book:
	The configuration manager (explained in
 Chapter 4) is responsible for
 implementing and managing the system registry.

	The process manager (explained
 in Chapter 5)
 creates and terminates processes and threads. The underlying
 support for processes and threads is implemented in the Windows
 kernel; the executive adds additional semantics and functions to
 these lower-level objects.

	The security reference monitor (or SRM,
 described in Chapter 6) enforces
 security policies on the local computer. It guards operating
 system resources, performing run-time object protection and
 auditing.

	The I/O manager (explained in Chapter 8
 in Part 2) implements device-independent I/O and is responsible
 for dispatching to the appropriate device drivers for further
 processing.

	The Plug and Play (PnP) manager
 (explained in Chapter 8 in Part 2) determines which drivers are
 required to support a particular device and loads those drivers.
 It retrieves the hardware resource requirements for each device
 during enumeration. Based on the resource requirements of each
 device, the PnP manager assigns the appropriate hardware resources
 such as I/O ports, IRQs, DMA channels, and memory locations. It is
 also responsible for sending proper event notification for device
 changes (addition or removal of a device) on the system.

	The power manager (explained in Chapter
 8 in Part 2) coordinates power events and generates power
 management I/O notifications to device drivers. When the system is
 idle, the power manager can be configured to reduce power
 consumption by putting the CPU to sleep. Changes in power
 consumption by individual devices are handled by device drivers
 but are coordinated by the power manager.

	The Windows Driver Model Windows Management
 Instrumentation routines (explained in Chapter 4) enable device drivers to
 publish performance and configuration information and receive
 commands from the user-mode WMI service. Consumers of WMI
 information can be on the local machine or remote across the
 network.

	The cache manager (explained in Chapter
 11, “Cache Manager,” in Part 2) improves the performance of
 file-based I/O by causing recently referenced disk data to reside
 in main memory for quick access (and by deferring disk writes by
 holding the updates in memory for a short time before sending them
 to the disk). As you’ll see, it does this by using the memory
 manager’s support for mapped files.

	The memory manager (explained in
 Chapter 10 in Part 2) implements virtual
 memory, a memory management scheme that provides a
 large, private address space for each process that can exceed
 available physical memory. The memory manager also provides the
 underlying support for the cache manager.

	The logical prefetcher and
 Superfetch (explained in Chapter 10 in Part
 2) accelerate system and process startup by optimizing the loading
 of data referenced during the startup of the system or a
 process.

In addition, the executive contains four main groups of
 support functions that are used by the executive components just
 listed. About a third of these support functions are documented in the
 WDK because device drivers also use them. These are the four
 categories of support functions:
	The object manager, which creates,
 manages, and deletes Windows executive objects and abstract data
 types that are used to represent operating system resources such
 as processes, threads, and the various synchronization objects.
 The object manager is explained in Chapter 3.

	The Advanced LPC facility (ALPC,
 explained in Chapter 3) passes messages
 between a client process and a server process on the same
 computer. Among other things, ALPC is used as a local transport
 for remote procedure call (RPC), an
 industry-standard communication facility for client and server
 processes across a network.

	A broad set of common run-time library
 functions, such as string processing, arithmetic operations, data
 type conversion, and security structure processing.

	Executive support routines, such as system memory allocation
 (paged and nonpaged pool), interlocked memory access, as well as
 three special types of synchronization objects: resources, fast
 mutexes, and pushlocks.

The executive also contains a variety of other infrastructure
 routines, some of which we will mention only briefly throughout the
 book:
	The kernel debugger library, which
 allows debugging of the kernel from a debugger supporting KD, a
 portable protocol supported over a variety of transports (such as
 USB and IEEE 1394) and implemented by WinDbg and the Kd.exe
 utilities.

	The user-mode debugging framework,
 which is responsible for sending events to the user-mode debugging
 API and allowing breakpoints and stepping through code to work, as
 well as for changing contexts of running threads.

	The kernel transaction manager, which
 provides a common, two-phase commit mechanism to resource
 managers, such as the transactional registry (TxR) and
 transactional NTFS (TxF).

	The hypervisor library, part of the
 Hyper-V stack in Windows Server 2008, provides kernel support for
 the virtual machine environment and optimizes certain parts of the
 code when the system knows it’s running in a client partition
 (virtual environment).

	The errata manager provides workarounds
 for nonstandard or noncompliant hardware devices.

	The Driver Verifier implements optional
 integrity checks of kernel-mode drivers and code.

	Event Tracing for Windows provides
 helper routines for systemwide event tracing for kernel-mode and
 user-mode components.

	The Windows diagnostic infrastructure
 enables intelligent tracing of system activity based on diagnostic
 scenarios.

	The Windows hardware error
 architecture support routines provide a common
 framework for reporting hardware errors.

	The file-system runtime library
 provides common support routines for file system drivers.

Kernel

The kernel consists of a set of functions in Ntoskrnl.exe that
 provides fundamental mechanisms (such as thread scheduling and
 synchronization services) used by the executive components, as well as
 low-level hardware architecture–dependent support (such as interrupt
 and exception dispatching) that is different on each processor
 architecture. The kernel code is written primarily in C, with assembly
 code reserved for those tasks that require access to specialized
 processor instructions and registers not easily accessible from
 C.
Like the various executive support functions mentioned in the
 preceding section, a number of functions in the kernel are documented
 in the WDK (and can be found by searching for functions beginning with
 Ke) because they are needed to implement device
 drivers.
Kernel Objects

The kernel provides a low-level base of well-defined,
 predictable operating system primitives and mechanisms that allow
 higher-level components of the executive to do what they need to do.
 The kernel separates itself from the rest of the executive by
 implementing operating system mechanisms and avoiding policy making.
 It leaves nearly all policy decisions to the executive, with the
 exception of thread scheduling and dispatching, which the kernel
 implements.
Outside the kernel, the executive represents threads and other
 shareable resources as objects. These objects require some policy
 overhead, such as object handles to manipulate them, security checks
 to protect them, and resource quotas to be deducted when they are
 created. This overhead is eliminated in the kernel, which implements
 a set of simpler objects, called kernel
 objects, that help the kernel control central processing
 and support the creation of executive objects. Most executive-level
 objects encapsulate one or more kernel objects, incorporating their
 kernel-defined attributes.
One set of kernel objects, called control
 objects, establishes semantics for controlling various
 operating system functions. This set includes the APC object, the
 deferred procedure call (DPC) object, and
 several objects the I/O manager uses, such as the interrupt
 object.
Another set of kernel objects, known as dispatcher
 objects, incorporates synchronization capabilities that
 alter or affect thread scheduling. The dispatcher objects include
 the kernel thread, mutex (called mutant
 internally), event, kernel event pair, semaphore, timer, and
 waitable timer. The executive uses kernel functions to create
 instances of kernel objects, to manipulate them, and to construct
 the more complex objects it provides to user mode. Objects are
 explained in more detail in Chapter 3,
 and processes and threads are described in Chapter 5.

Kernel Processor Control Region and Control Block (KPCR and
 KPRCB)

The kernel uses a data structure called the
 processor control region, or KPCR, to store
 processor-specific data. The KPCR contains basic information such as
 the processor’s interrupt dispatch table (IDT), task-state segment
 (TSS), and global descriptor table (GDT). It also includes the
 interrupt controller state, which it shares with other modules, such
 as the ACPI driver and the HAL. To provide easy access to the KPCR,
 the kernel stores a pointer to it in the fs
 register on 32-bit Windows and in the gs
 register on an x64 Windows system. On IA64 systems, the KPCR is
 always located at 0xe0000000ffff0000.
The KPCR also contains an embedded data structure called the
 kernel processor control block (KPRCB). Unlike
 the KPCR, which is documented for third-party drivers and other
 internal Windows kernel components, the KPRCB is a private structure
 used only by the kernel code in Ntoskrnl.exe. It contains scheduling
 information such as the current, next, and idle threads scheduled
 for execution on the processor; the dispatcher database for the
 processor (which includes the ready queues for each priority level);
 the DPC queue; CPU vendor and identifier information (model,
 stepping, speed, feature bits); CPU and NUMA topology (node
 information, cores per package, logical processors per core, and so
 on); cache sizes; time accounting information (such as the DPC and
 interrupt time); and more. The KPRCB also contains all the
 statistics for the processor, such as I/O statistics, cache manager
 statistics (see Chapter 11, “Cache Manager,” in Part 2 for a
 description of these), DPC statistics, and memory manager
 statistics. (See Chapter 10 in Part 2 for more information.)
 Finally, the KPRCB is sometimes used to store cache-aligned,
 per-processor structures to optimize memory access, especially on
 NUMA systems. For example, the nonpaged and paged-pool system
 look-aside lists are stored in the KPRCB.
EXPERIMENT: Viewing the KPCR and KPRCB
You can view the contents of the KPCR and KPRCB by using the
 !pcr and !prcb kernel
 debugger commands. If you don’t include flags, the debugger will
 display information for CPU 0 by default; otherwise, you can
 specify a CPU by adding its number after the command (for example,
 !pcr 2). The following example shows what the
 output of the !pcr and
 !prcb commands looks like. If the system had
 pending DPCs, those would also be shown.
lkd> !pcr
KPCR for Processor 0 at 81d09800:
 Major 1 Minor 1
 NtTib.ExceptionList: 9b31ca3c
 NtTib.StackBase: 00000000
 NtTib.StackLimit: 00000000
 NtTib.SubSystemTib: 80150000
 NtTib.Version: 1c47209e
 NtTib.UserPointer: 00000001
 NtTib.SelfTib: 7ffde000

 SelfPcr: 81d09800
 Prcb: 81d09920
 Irql: 00000002
 IRR: 00000000
 IDR: ffffffff

 InterruptMode: 00000000
 IDT: 82fb8400
 GDT: 82fb8000
 TSS: 80150000

 CurrentThread: 86d317e8
 NextThread: 00000000
 IdleThread: 81d0d640

 DpcQueue:

lkd> !prcb
PRCB for Processor 0 at 81d09920:
Current IRQL -- 0
Threads-- Current 86d317e8 Next 00000000
Idle 81d0d640
Number 0 SetMember 1
Interrupt Count -- 294ccce0
Times -- Dpc 0002a87f Interrupt 00010b87
 Kernel 026270a1 User 00140e5e
You can use the dt command to
 directly dump the _KPCR and _KPRCB data structures because both
 debugger commands give you the address of the structure (shown in
 bold for clarity in the previous output). For example, if you
 wanted to determine the speed of the processor, you could look at
 the MHz field with the following command:
lkd> dt nt!_KPRCB 81d09920 MHz

 +0x3c4 MHz : 0xbb4
lkd> ? bb4
Evaluate expression: 2996 = 00000bb4
On this machine, the processor was running at about 3
 GHz.

Hardware Support

The other major job of the kernel is to abstract or isolate
 the executive and device drivers from variations between the
 hardware architectures supported by Windows. This job includes
 handling variations in functions such as interrupt handling,
 exception dispatching, and multiprocessor synchronization.
Even for these hardware-related functions, the design of the
 kernel attempts to maximize the amount of common code. The kernel
 supports a set of interfaces that are portable and semantically
 identical across architectures. Most of the code that implements
 these portable interfaces is also identical across
 architectures.
Some of these interfaces are implemented differently on
 different architectures or are partially implemented with
 architecture-specific code. These architecturally independent
 interfaces can be called on any machine, and the semantics of the
 interface will be the same whether or not the code varies by
 architecture. Some kernel interfaces (such as spinlock routines,
 which are described in Chapter 3) are actually
 implemented in the HAL (described in the next section) because their
 implementation can vary for systems within the same architecture
 family.
The kernel also contains a small amount of code with
 x86-specific interfaces needed to support old MS-DOS programs. These
 x86 interfaces aren’t portable in the sense that they can’t be
 called on a machine based on any other architecture; they won’t be
 present. This x86-specific code, for example, supports calls to
 manipulate global descriptor tables (GDTs) and local descriptor
 tables (LDTs), which are hardware features of the x86.
Other examples of architecture-specific code in the kernel
 include the interfaces to provide translation buffer and CPU cache
 support. This support requires different code for the different
 architectures because of the way caches are implemented.
Another example is context switching. Although at a high level
 the same algorithm is used for thread selection and context
 switching (the context of the previous thread is saved, the context
 of the new thread is loaded, and the new thread is started), there
 are architectural differences among the implementations on different
 processors. Because the context is described by the processor state
 (registers and so on), what is saved and loaded varies depending on
 the architecture.

Hardware Abstraction Layer

As mentioned at the beginning of this chapter, one of the
 crucial elements of the Windows design is its portability across a
 variety of hardware platforms. The hardware abstraction layer (HAL) is
 a key part of making this portability possible. The HAL is a loadable
 kernel-mode module (Hal.dll) that provides the low-level interface to
 the hardware platform on which Windows is running. It hides
 hardware-dependent details such as I/O interfaces, interrupt
 controllers, and multiprocessor communication mechanisms—any functions
 that are both architecture-specific and machine-dependent.
So rather than access hardware directly, Windows internal
 components as well as user-written device drivers maintain portability
 by calling the HAL routines when they need platform-dependent
 information. For this reason, the HAL routines are documented in the
 WDK. To find out more about the HAL and its use by device drivers,
 refer to the WDK.
Although several HALs are included (as shown in Table 2-4), Windows has the ability to detect at
 boot-up time which HAL should be used, eliminating the problem that
 existed on earlier versions of Windows when attempting to boot a
 Windows installation on a different kind of system.
Table 2-4. List of x86 HALs
	HAL File Name
	Systems Supported

	Halacpi.dll
	Advanced Configuration and Power
 Interface (ACPI) PCs. Implies uniprocessor-only machine,
 without APIC support (the presence of either one would make
 the system use the HAL below instead).

	Halmacpi.dll
	Advanced Programmable Interrupt
 Controller (APIC) PCs with an ACPI. The existence of an APIC
 implies SMP support.

Note
On x64 machines, there is only one HAL image, called
 Hal.dll. This results from all x64 machines having the same
 motherboard configuration, because the processors require ACPI and
 APIC support. Therefore, there is no need to support machines
 without ACPI or with a standard PIC.

EXPERIMENT: Determining Which HAL You’re Running
You can determine which version of the HAL you’re running by
 using WinDbg and opening a local kernel debugging session. Be sure
 you have the symbols loaded by entering .reload, and then typing lm vm hal. For example, the following
 output is from a system running the ACPI HAL:
lkd> lm vm hal
start end module name
fffff800'0181b000 fffff800'01864000 hal (deferred)
 Loaded symbol image file: halmacpi.dll
 Image path: halmacpi.dll
 Image name: halmacpi.dll
 Timestamp: Mon Jul 13 21:27:36 2009 (4A5BDF08)
 CheckSum: 0004BD36
 ImageSize: 00049000
 File version: 6.1.7600.16385
 Product version: 6.1.7600.16385
 File flags: 0 (Mask 3F)
 File OS: 40004 NT Win32
 File type: 2.0 Dll
 File date: 00000000.00000000
 Translations: 0409.04b0
 CompanyName: Microsoft Corporation
 ProductName: Microsoft® Windows® Operating System
 InternalName: halmacpi.dll
 OriginalFilename: halmacpi.dll
 ProductVersion: 6.1.7600.16385
 FileVersion: 6.1.7600.16385 (win7_rtm.090713-1255)
 FileDescription: Hardware Abstraction Layer DLL
 LegalCopyright: © Microsoft Corporation. All rights reserved.

EXPERIMENT: Viewing NTOSKRNL and HAL Image
 Dependencies
You can view the relationship of the kernel and HAL images by
 examining their export and import tables using the Dependency Walker
 tool (Depends.exe). To examine an image in the Dependency Walker,
 select Open from the File menu to open the desired image
 file.
Here is a sample of output you can see by viewing the
 dependencies of Ntoskrnl using this tool:
[image: image with no caption]

Notice that Ntoskrnl is linked against the HAL, which is in
 turn linked against Ntoskrnl. (They both use functions in each
 other.) Ntoskrnl is also linked to the following binaries:
	Pshed.dll, the Platform-Specific Hardware Error Driver.
 PSHED provides an abstraction of the hardware error reporting
 facilities of the underlying platform by hiding the details of a
 platform’s error-handling mechanisms from the operating system
 and exposing a consistent interface to the Windows operating
 system.

	On 32-bit systems only, Bootvid.dll, the Boot Video
 Driver. Bootvid provides support for the VGA commands required
 to display boot text and the boot logo during startup. On x64
 systems, this library is built into the kernel to avoid
 conflicts with Kernel Patch Protection (KPP). (See Chapter 3 for more information on KPP and
 PatchGuard.)

	Kdcom.dll, the Kernel Debugger Protocol (KD)
 Communications Library.

	Ci.dll, the code integrity library. (See Chapter 3 for more information on code
 integrity.)

	Clfs.sys, the common logging file system driver, used by,
 among other things, the Kernel Transaction Manager (KTM). (See
 Chapter 3 for more information on the
 KTM.)

For a detailed description of the information displayed by
 this tool, see the Dependency Walker help file (Depends.hlp).

Device Drivers

Although device drivers are explained in detail in
 Chapter 8 in Part 2, this section provides a brief overview of the
 types of drivers and explains how to list the drivers installed and
 loaded on your system.
Device drivers are loadable kernel-mode modules (typically
 ending in .sys) that interface between the I/O manager and the
 relevant hardware. They run in kernel mode in one of three
 contexts:
	In the context of the user thread that initiated an I/O
 function

	In the context of a kernel-mode system thread

	As a result of an interrupt (and therefore not in the
 context of any particular process or thread—whichever process or
 thread was current when the interrupt occurred)

As stated in the preceding section, device drivers in Windows
 don’t manipulate hardware directly, but rather they call functions in
 the HAL to interface with the hardware. Drivers are typically written
 in C (sometimes C++) and therefore, with proper use of HAL routines,
 can be source-code portable across the CPU architectures supported by
 Windows and binary portable within an architecture family.
There are several types of device drivers:
	Hardware device drivers manipulate
 hardware (using the HAL) to write output to or retrieve input from
 a physical device or network. There are many types of hardware
 device drivers, such as bus drivers, human interface drivers, mass
 storage drivers, and so on.

	File system drivers are Windows drivers
 that accept file-oriented I/O requests and translate them into I/O
 requests bound for a particular device.

	File system filter drivers, such as
 those that perform disk mirroring and encryption, intercept I/Os,
 and perform some added-value processing before passing the I/O to
 the next layer.

	Network redirectors and servers are
 file system drivers that transmit file system I/O requests to a
 machine on the network and receive such requests,
 respectively.

	Protocol drivers implement a networking
 protocol such as TCP/IP, NetBEUI, and IPX/SPX.

	Kernel streaming filter drivers are
 chained together to perform signal processing on data streams,
 such as recording or displaying audio and video.

Because installing a device driver is the only way to add
 user-written kernel-mode code to the system, some programmers have
 written device drivers simply as a way to access internal operating
 system functions or data structures that are not accessible from user
 mode (but that are documented and supported in the WDK). For example,
 many of the utilities from Sysinternals combine a Windows GUI
 application and a device driver that is used to gather internal system
 state and call kernel-mode-only accessible functions not available
 from the user-mode Windows API.
Windows Driver Model (WDM)

Windows 2000 added support for Plug and Play, Power
 Options, and an extension to the Windows NT driver model called the
 Windows Driver Model (WDM). Windows 2000 and later can run legacy
 Windows NT 4 drivers, but because these don’t support Plug and Play
 and Power Options, systems running these drivers will have reduced
 capabilities in these two areas.
From the WDM perspective, there are three kinds of
 drivers:
	A bus driver services a bus
 controller, adapter, bridge, or any device that has child
 devices. Bus drivers are required drivers, and Microsoft
 generally provides them; each type of bus (such as PCI, PCMCIA,
 and USB) on a system has one bus driver. Third parties can write
 bus drivers to provide support for new buses, such as VMEbus,
 Multibus, and Futurebus.

	A function driver is the main device
 driver and provides the operational interface for its device. It
 is a required driver unless the device is used raw (an
 implementation in which I/O is done by the bus driver and any
 bus filter drivers, such as SCSI PassThru). A function driver is
 by definition the driver that knows the most about a particular
 device, and it is usually the only driver that accesses
 device-specific registers.

	A filter driver is used to add
 functionality to a device (or existing driver) or to modify I/O
 requests or responses from other drivers (and is often used to
 fix hardware that provides incorrect information about its
 hardware resource requirements). Filter drivers are optional and
 can exist in any number, placed above or below a function driver
 and above a bus driver. Usually, system original equipment
 manufacturers (OEMs) or independent hardware vendors (IHVs)
 supply filter drivers.

In the WDM driver environment, no single driver controls all
 aspects of a device: a bus driver is concerned with reporting the
 devices on its bus to the PnP manager, while a function driver
 manipulates the device.
In most cases, lower-level filter drivers modify the behavior
 of device hardware. For example, if a device reports to its bus
 driver that it requires 4 I/O ports when it actually requires 16 I/O
 ports, a lower-level, device-specific function filter driver could
 intercept the list of hardware resources reported by the bus driver
 to the PnP manager and update the count of I/O ports.
Upper-level filter drivers usually provide added-value
 features for a device. For example, an upper-level device filter
 driver for a keyboard can enforce additional security checks.
Interrupt processing is explained in Chapter 3. Further details about the I/O
 manager, WDM, Plug and Play, and Power Options are included in
 Chapter 8 in Part 2.

Windows Driver Foundation

The Windows Driver Foundation (WDF) simplifies Windows driver
 development by providing two frameworks: the Kernel-Mode Driver
 Framework (KMDF) and the User-Mode Driver Framework (UMDF).
 Developers can use KMDF to write drivers for Windows 2000 SP4 and
 later, while UMDF supports Windows XP and later.
KMDF provides a simple interface to WDM and hides its
 complexity from the driver writer without modifying the underlying
 bus/function/filter model. KMDF drivers respond to events that they
 can register and call into the KMDF library to perform work that
 isn’t specific to the hardware they are managing, such as generic
 power management or synchronization. (Previously, each driver had to
 implement this on its own.) In some cases, more than 200 lines of
 WDM code can be replaced by a single KMDF function call.
UMDF enables certain classes of drivers (mostly USB-based or
 other high-latency protocol buses)—such as those for video cameras,
 MP3 players, cell phones, PDAs, and printers—to be implemented as
 user-mode drivers. UMDF runs each user-mode driver in what is
 essentially a user-mode service, and it uses ALPC to communicate to
 a kernel-mode wrapper driver that provides actual access to
 hardware. If a UMDF driver crashes, the process dies and usually
 restarts, so the system doesn’t become unstable—the device simply
 becomes unavailable while the service hosting the driver restarts.
 Finally, UMDF drivers are written in C++ using COM-like classes and
 semantics, further lowering the bar for programmers to write device
 drivers.
EXPERIMENT: Viewing the Installed Device Drivers
You can list the installed drivers by running Msinfo32. (To
 launch this, click Start and then type Msinfo32 and then press Enter.) Under
 System Summary, expand Software Environment and open System
 Drivers. Here’s an example output of the list of installed
 drivers:
[image: image with no caption]

This window displays the list of device drivers defined in
 the registry, their type, and their state (Running or Stopped).
 Device drivers and Windows service processes are both defined in
 the same place: HKLM\SYSTEM\CurrentControlSet\Services. However,
 they are distinguished by a type code—for example, type
 1 is a kernel-mode device driver. (For a complete list
 of the information stored in the registry for device drivers, see
 Table 4-7 in Chapter 4.)
Alternatively, you can list the currently loaded device
 drivers by selecting the System process in Process Explorer and
 opening the DLL view.

Peering into Undocumented Interfaces
Examining the names of the exported or global
 symbols in key system images (such as Ntoskrnl.exe, Hal.dll, or
 Ntdll.dll) can be enlightening—you can get an idea of the kinds of
 things Windows can do versus what happens to be documented and
 supported today. Of course, just because you know the names of
 these functions doesn’t mean that you can or should call them—the
 interfaces are undocumented and are subject to change. We suggest
 that you look at these functions purely to gain more insight into
 the kinds of internal functions Windows performs, not to bypass
 supported interfaces.
For example, looking at the list of functions in Ntdll.dll
 gives you the list of all the system services that Windows
 provides to user-mode subsystem DLLs versus the subset that each
 subsystem exposes. Although many of these functions map clearly to
 documented and supported Windows functions, several are not
 exposed via the Windows API.
Conversely, it’s also interesting to examine the imports of
 Windows subsystem DLLs (such as Kernel32.dll or Advapi32.dll) and
 which functions they call in Ntdll.
Another interesting image to dump is Ntoskrnl.exe—although
 many of the exported routines that kernel-mode device drivers use
 are documented in the Windows Driver Kit, quite a few are not. You
 might also find it interesting to take a look at the import table
 for Ntoskrnl and the HAL; this table shows the list of functions
 in the HAL that Ntoskrnl uses and vice versa.
Table 2-5 lists most of the
 commonly used function name prefixes for the executive components.
 Each of these major executive components also uses a variation of
 the prefix to denote internal functions—either the first letter of
 the prefix followed by an i (for
 internal) or the full prefix followed by a
 p (for private). For
 example, Ki represents internal kernel
 functions, and Psp refers to internal process
 support functions.
Table 2-5. Commonly Used Prefixes
	Prefix
	Component

	Alpc
	Advanced Local Inter-Process
 Communication

	Cc
	Common Cache

	Cm
	Configuration
 manager

	Dbgk
	Debugging Framework for
 User-Mode

	Em
	Errata Manager

	Etw
	Event Tracing for
 Windows

	Ex
	Executive support
 routines

	FsRtl
	File system driver run-time
 library

	Hvl
	Hypervisor
 Library

	Io
	I/O manager

	Kd
	Kernel Debugger

	Ke
	Kernel

	Lsa
	Local Security
 Authority

	Mm
	Memory manager

	Nt
	NT system services (most of
 which are exported as Windows functions)

	Ob
	Object manager

	Pf
	Prefetcher

	Po
	Power manager

	Pp
	PnP manager

	Ps
	Process support

	Rtl
	Run-time library

	Se
	Security

	Sm
	Store Manager

	Tm
	Transaction
 Manager

	Vf
	Verifier

	Wdi
	Windows Diagnostic
 Infrastructure

	Whea
	Windows Hardware Error
 Architecture

	Wmi
	Windows Management
 Instrumentation

	Zw
	Mirror entry point for system
 services (beginning with Nt) that sets previous access
 mode to kernel, which eliminates parameter validation,
 because Nt system services validate parameters only if
 previous access mode is user

You can decipher the names of these exported functions more
 easily if you understand the naming convention for Windows system
 routines. The general format is
<Prefix><Operation><Object>
In this format, Prefix is the internal
 component that exports the routine, Operation
 tells what is being done to the object or resource, and
 Object identifies what is being operated
 on.
For example, ExAllocatePoolWithTag is
 the executive support routine to allocate from a paged or nonpaged
 pool. KeInitializeThread is the routine that
 allocates and sets up a kernel thread object.

System Processes

The following system processes appear on every Windows
 system. (Two of these—Idle and System—are not full processes because
 they are not running a user-mode executable.)
	Idle process (contains one thread per CPU to account for
 idle CPU time)

	System process (contains the majority of the kernel-mode
 system threads)

	Session manager (Smss.exe)

	Local session manager (Lsm.exe)

	Windows subsystem (Csrss.exe)

	Session 0 initialization (Wininit.exe)

	Logon process (Winlogon.exe)

	Service control manager (Services.exe) and the child service
 processes it creates (such as the system-supplied generic
 service-host process, Svchost.exe)

	Local security authentication server (Lsass.exe)

To understand the relationship of these processes, it is helpful
 to view the process “tree”—that is, the parent/child relationship
 between processes. Seeing which process created each process helps to
 understand where each process comes from. Figure 2-5 is a screen snapshot of the
 process tree viewed after taking a Process Monitor boot trace. Using
 Process Monitor allows you to see processes that have since exited
 (indicated by the muted icon).
[image: Initial system process tree]

Figure 2-5. Initial system process tree

The next sections explain the key system processes shown
 in Figure 2-5. Although these
 sections briefly indicate the order of process startup, Chapter 13 in
 Part 2 contains a detailed description of the steps involved in
 booting and starting Windows.
System Idle Process

The first process listed in Figure 2-5 is the system idle process.
 As we’ll explain in Chapter 5, processes are
 identified by their image name. However, this process (as well as
 the process named System) isn’t running a real user-mode image (in
 that there is no “System Idle Process.exe” in the \Windows
 directory). In addition, the name shown for this process differs
 from utility to utility (because of implementation details). Table 2-6 lists several
 of the names given to the Idle process (process ID 0). The Idle
 process is explained in detail in Chapter 5.
Table 2-6. Names for Process ID 0 in Various Utilities
	Utility
	Name for Process ID
 0

	Task Manager
	System Idle Process

	Process Status
 (Pstat.exe)
	Idle Process

	Process Explorer
 (Procexp.exe)
	System Idle Process

	Task List
 (Tasklist.exe)
	System Idle Process

	Tlist (Tlist.exe)
	System Process

Now let’s look at system threads and the purpose of each of
 the system processes that are running real images.

System Process and System Threads

The System process (process ID 4) is the home for a special
 kind of thread that runs only in kernel mode: a
 kernel-mode system thread. System threads have
 all the attributes and contexts of regular user-mode threads (such
 as a hardware context, priority, and so on) but are different in
 that they run only in kernel-mode executing code loaded in system
 space, whether that is in Ntoskrnl.exe or in any other loaded device
 driver. In addition, system threads don’t have a user process
 address space and hence must allocate any dynamic storage from
 operating system memory heaps, such as a paged or nonpaged
 pool.
System threads are created by the
 PsCreateSystemThread function (documented in
 the WDK), which can be called only from kernel mode. Windows, as
 well as various device drivers, create system threads during system
 initialization to perform operations that require thread context,
 such as issuing and waiting for I/Os or other objects or polling a
 device. For example, the memory manager uses system threads to
 implement such functions as writing dirty pages to the page file or
 mapped files, swapping processes in and out of memory, and so forth.
 The kernel creates a system thread called the balance set
 manager that wakes up once per second to possibly
 initiate various scheduling and memory management related events.
 The cache manager also uses system threads to implement both read-ahead and write-behind I/Os. The file server
 device driver (Srv2.sys) uses system threads to respond to network
 I/O requests for file data on disk partitions shared to the network.
 Even the floppy driver has a system thread to poll the floppy
 device. (Polling is more efficient in this case because an
 interrupt-driven floppy driver consumes a large amount of system
 resources.) Further information on specific system threads is
 included in the chapters in which the component is described.
By default, system threads are owned by the System process,
 but a device driver can create a system thread in any process. For
 example, the Windows subsystem device driver (Win32k.sys) creates a
 system thread inside the Canonical Display Driver (Cdd.dll) part of
 the Windows subsystem process (Csrss.exe) so that it can easily
 access data in the user-mode address space of that process.
When you’re troubleshooting or going through a system
 analysis, it’s useful to be able to map the execution of individual
 system threads back to the driver or even to the subroutine that
 contains the code. For example, on a heavily loaded file server, the
 System process will likely be consuming considerable CPU time. But
 the knowledge that when the System process is running that “some
 system thread” is running isn’t enough to determine which device
 driver or operating system component is running.
So if threads in the System process are running, first
 determine which ones are running (for example, with the Performance
 Monitor tool). Once you find the thread (or threads) that is
 running, look up in which driver the system thread began execution
 (which at least tells you which driver likely created the thread) or
 examine the call stack (or at least the current address) of the
 thread in question, which would indicate where the thread is
 currently executing.
Both of these techniques are illustrated in the following
 experiment.
EXPERIMENT: Mapping a System Thread to a Device
 Driver
In this experiment, we’ll see how to map CPU activity in the
 System process to the responsible system thread (and the driver it
 falls in) generating the activity. This is important because when
 the System process is running, you must go to the thread
 granularity to really understand what’s going on. For this
 experiment, we will generate system thread activity by generating
 file server activity on your machine. (The file server driver,
 Srv2.sys, creates system threads to handle inbound requests for
 file I/O. See Chapter 7 for more information
 on this component.)
	Open a command prompt.

	Do a directory listing of your entire C drive using a
 network path to access your C drive. For example, if your
 computer name is COMPUTER1, type dir
 \\computer1\c$ /s (The /s
 switch lists all subdirectories.)

	Run Process Explorer, and double-click on the System
 process.

	Click on the Threads tab.

	Sort by the CSwitch Delta (context switch delta) column.
 You should see one or more threads in Srv2.sys running, such
 as the following:
[image: image with no caption]

If you see a system thread running and you are not sure
 what the driver is, click the Module button, which will bring
 up the file properties. Clicking the Module button while
 highlighting the thread in the Srv2.sys previously shown
 results in the following display.
[image: image with no caption]

Session Manager (Smss)

The session manager (%SystemRoot%\System32\Smss.exe)
 is the first user-mode process created in the system. The
 kernel-mode system thread that performs the final phase of the
 initialization of the executive and kernel creates this
 process.
When Smss starts, it checks whether it is the first instance
 (the master Smss) or an instance of itself that the master Smss
 launched to create a session. (If command-line arguments are
 present, it is the latter.) By creating multiple instances of itself
 during boot-up and Terminal Services session creation, Smss can
 create multiple sessions at the same time (at maximum, four
 concurrent sessions, plus one more for each extra CPU beyond one).
 This ability enhances logon performance on Terminal Server systems
 where multiple users connect at the same time. Once a session
 finishes initializing, the copy of Smss terminates. As a result,
 only the initial Smss.exe process remains active. (For a description
 of Terminal Services, see the section Terminal Services and Multiple Sessions in Chapter 1.)
The master Smss performs the following one-time initialization
 steps:
	Marks the process and the initial thread as critical. (If
 a process or thread marked critical exits for any reason,
 Windows crashes. See Chapter 5 for more
 information.)

	Increases the process base priority to 11.

	If the system supports hot processor add, enables
 automatic processor affinity updates so that if new processors
 are added new sessions will take advantage of the new
 processors. (For more information about dynamic processor
 additions, see Chapter 5.)

	Creates named pipes and mailslots used for
 communication between Smss, Csrss, and Lsm (described in
 upcoming paragraphs).

	Creates ALPC port to receive commands.

	Creates systemwide environment variables as defined in
 HKLM\SYSTEM\CurrentControlSet\Control\Session
 Manager\Environment.

	Creates symbolic links for devices defined in
 HKLM\SYSTEM\CurrentControlSet\Control\Session Manager\DOS
 Devices under the \Global?? directory in the Object Manager
 namespace.

	Creates root \Sessions directory in the Object Manager
 namespace.

	Runs the programs in
 HKLM\SYSTEM\CurrentControlSet\Control\Session
 Manager\BootExecute. (The default is Autochk.exe, which performs
 a check disk.)

	Processes pending file renames as specified in
 HKLM\SYSTEM\CurrentControlSet\Control\Session
 Manager\PendingFileRenameOperations.

	Initializes paging file(s).

	Initializes the rest of the registry (HKLM Software, SAM,
 and Security hives).

	Runs the programs in
 HKLM\SYSTEM\CurrentControlSet\Control\Session
 Manager\SetupExecute.

	Opens known DLLs
 (HKLM\SYSTEM\CurrentControlSet\Control\Session
 Manager\KnownDLLs) and maps them as permanent sections (mapped
 files).

	Creates a thread to respond to session create
 requests.

	Creates the Smss to initialize session 0 (noninteractive
 session).

	Creates the Smss to initialize session 1 (interactive
 session).

Once these steps have been completed, Smss waits forever on
 the handle to the session 0 instance of Csrss.exe. Because Csrss is
 marked as a critical process (see Chapter 5), if Csrss
 exits, this wait will never complete because the system will
 crash.
A session startup instance of Smss does the following:
	Calls NtSetSystemInformation with a
 request to set up kernel-mode session data structures. This in
 turn calls the internal memory manager function
 MmSessionCreate, which sets up the session
 virtual address space that will contain the session paged pool
 and the per-session data structures allocated by the kernel-mode
 part of the Windows subsystem (Win32k.sys) and other
 session-space device drivers. (See Chapter 10 in Part 2 for more
 details.)

	Creates the subsystem process(es) for the session (by
 default, the Windows subsystem Csrss.exe).

	Creates an instance of Winlogon (interactive sessions) or
 Wininit (for session 0). See the upcoming paragraphs for more
 information on these two processes.

Then this intermediate Smss process exits (leaving the
 subsystem processes and Winlogon or Wininit as parent-less
 processes).

Windows Initialization Process (Wininit.exe)

The Wininit.exe process performs the following system
 initialization functions:
	Marks itself critical so that if it exits prematurely and
 the system is booted in debugging mode, it will break into the
 debugger (if not, the system will crash).

	Initializes the user-mode scheduling
 infrastructure.

	Creates the %windir%\temp folder.

	Creates a window station (Winsta0) and two desktops
 (Winlogon and Default) for processes to run on in session
 0.

	Creates Services.exe (Service Control Manager or SCM). See
 upcoming paragraphs for a brief description or Chapter 4 for more details.

	Starts Lsass.exe (Local Security Authentication Subsystem
 Server). See Chapter 6 for more
 information on Lsass.

	Starts Lsm.exe (Local Session Manager). See the upcoming
 Local Session Manager (Lsm.exe),
 section for a brief description.

	Waits forever for system shutdown.

Service Control Manager (SCM)

Recall from earlier in the chapter that “services” on Windows
 can refer either to a server process or to a device driver. This
 section deals with services that are user-mode processes. Services
 are like UNIX “daemon processes” or VMS “detached processes” in that
 they can be configured to start automatically at system boot time
 without requiring an interactive logon. They can also be started
 manually (such as by running the Services administrative tool or by
 calling the Windows StartService function).
 Typically, services do not interact with the logged-on user,
 although there are special conditions when this is possible. (See
 Chapter 4.)
The service control manager is a special system process
 running the image %SystemRoot%\System32\Services.exe that is
 responsible for starting, stopping, and interacting with service
 processes. Service programs are really just Windows images that call
 special Windows functions to interact with the service control
 manager to perform such actions as registering the service’s
 successful startup, responding to status requests, or pausing or
 shutting down the service. Services are defined in the registry
 under HKLM\SYSTEM\CurrentControlSet\Services.
Keep in mind that services have three names: the process name
 you see running on the system, the internal name in the registry,
 and the display name shown in the Services administrative tool. (Not
 all services have a display name—if a service doesn’t have a display
 name, the internal name is shown.) With Windows, services can also
 have a description field that further details what the service
 does.
To map a service process to the services contained in
 that process, use the tlist /s or
 tasklist /svc command. Note that there isn’t
 always one-to-one mapping between service processes and running
 services, however, because some services share a process with other
 services. In the registry, the type code indicates whether the
 service runs in its own process or shares a process with other
 services in the image.
A number of Windows components are implemented as services,
 such as the Print Spooler, Event Log, Task Scheduler, and various
 networking components. For more details on services, see Chapter 4.
EXPERIMENT: Listing Installed Services
To list the installed services, select Administrative Tools
 from Control Panel, and then select Services. You should see
 output like this:
[image: image with no caption]

To see the detailed properties about a service, right-click
 on a service and select Properties. For example, here are the
 properties for the Print Spooler service (highlighted in the
 previous screen shot):
[image: image with no caption]

Notice that the Path To Executable field identifies
 the program that contains this service. Remember that some
 services share a process with other services—mapping isn’t always
 one to one.

EXPERIMENT: Viewing Service Details Inside Service
 Processes
Process Explorer highlights processes hosting one service or
 more. (You can configure this by selecting the Configure Colors
 entry in the Options menu.) If you double-click on a
 service-hosting process, you will see a Services tab that lists
 the services inside the process, the name of the registry key that
 defines the service, the display name seen by the administrator,
 the description text for that service (if present), and for
 Svchost services, the path to the DLL that implements the service.
 For example, listing the services in a Svchost.exe process running
 under the System account looks like the following:
[image: image with no caption]

Local Session Manager (Lsm.exe)

The Local Session Manager (Lsm.exe) manages the state of
 terminal server sessions on the local machine. It sends requests to
 Smss through the ALPC port SmSsWinStationApiPort to start new
 sessions (for example, creating the Csrss and Winlogon processes)
 such as when a user selects Switch User from Explorer. Lsm also
 communicates with Winlogon and Csrss (using a local system RPC). It
 notifies Csrss of events such as connect, disconnect, terminate, and
 broadcast system message. It receives notification from Winlogon for
 the following events:
	Logon and logoff

	Shell start and termination

	Connect to a session

	Disconnect from a session

	Lock or unlock desktop

Winlogon, LogonUI, and Userinit

The Windows logon process (%SystemRoot%\System32\Winlogon.exe)
 handles interactive user logons and logoffs. Winlogon is notified of
 a user logon request when the secure attention
 sequence (SAS) keystroke combination is entered. The
 default SAS on Windows is the combination Ctrl+Alt+Delete. The
 reason for the SAS is to protect users from password-capture
 programs that simulate the logon process, because this keyboard
 sequence cannot be intercepted by a user-mode application.
The identification and authentication aspects of the logon
 process are implemented through DLLs called credential
 providers. The standard Windows credential providers
 implement the default Windows authentication interfaces: password
 and smartcard. However, developers can provide their own credential
 providers to implement other identification and authentication
 mechanisms in place of the standard Windows user name/password
 method (such as one based on a voice print or a biometric device
 such as a fingerprint reader). Because Winlogon is a critical system
 process on which the system depends, credential providers and the UI
 to display the logon dialog box run inside a child process of
 Winlogon called LogonUI. When Winlogon detects the SAS, it launches
 this process, which initializes the credential providers. Once the
 user enters her credentials or dismisses the logon interface, the
 LogonUI process terminates.
In addition, Winlogon can load additional network provider
 DLLs that need to perform secondary authentication. This capability
 allows multiple network providers to gather identification and
 authentication information all at one time during normal
 logon.
Once the user name and password have been captured, they are
 sent to the local security authentication server process
 (%SystemRoot%\System32\Lsass.exe, described in Chapter 6) to be authenticated. LSASS calls the
 appropriate authentication package (implemented as a DLL) to perform
 the actual verification, such as checking whether a password matches
 what is stored in the Active Directory or the SAM (the part of the
 registry that contains the definition of the local users and
 groups).
Upon a successful authentication, LSASS calls a function in
 the security reference monitor (for example,
 NtCreateToken) to generate an access token
 object that contains the user’s security profile. If User Account
 Control (UAC) is used and the user logging on is a member of the
 administrators group or has administrator privileges, LSASS will
 create a second, restricted version of the
 token. This access token is then used by Winlogon to create the
 initial process(es) in the user’s session. The initial process(es)
 are stored in the registry value Userinit under
 the registry key HKLM\SOFTWARE\Microsoft\Windows
 NT\CurrentVersion\Winlogon. (The default is Userinit.exe, but there
 can be more than one image in the list.)
Userinit performs some initialization of the user
 environment (such as running the login script and reestablishing
 network connections) and then looks in the registry at the
 Shell value (under the same Winlogon key
 referred to previously) and creates a process to run the
 system-defined shell (by default, Explorer.exe). Then Userinit
 exits. This is the reason Explorer.exe is shown with no parent—its
 parent has exited, and as explained in Chapter 1, tlist left-justifies processes
 whose parent isn’t running. (Another way of looking at it is that
 Explorer is the grandchild of Winlogon.)
Winlogon is active not only during user logon and logoff but
 also whenever it intercepts the SAS from the keyboard. For example,
 when you press Ctrl+Alt+Delete while logged on, the Windows Security
 screen comes up, providing the options to log off, start the Task
 Manager, lock the workstation, shut down the system, and so forth.
 Winlogon and LogonUI are the processes that handle this
 interaction.
For a complete description of the steps involved in the logon
 process, see the section “Smss, Csrss, and Wininit” in Chapter 13 in
 Part 2. For more details on security authentication, see Chapter 6. For details on the callable functions
 that interface with LSASS (the functions that start with
 Lsa), see the documentation in the Windows
 SDK.

Conclusion

In this chapter, we’ve taken a broad look at the overall system
 architecture of Windows. We’ve examined the key components of Windows
 and seen how they interrelate. In the next chapter, we’ll look in more
 detail at the core system mechanisms that these components are built on,
 such as the object manager and synchronization.

Chapter 3. System Mechanisms

The Windows operating system provides several base
 mechanisms that kernel-mode components such as the executive, the kernel,
 and device drivers use. This chapter explains the following system
 mechanisms and describes how they are used:
	Trap dispatching, including interrupts, deferred procedure calls
 (DPCs), asynchronous procedure calls (APCs), exception dispatching,
 and system service dispatching

	The executive object manager

	Synchronization, including spinlocks, kernel dispatcher objects,
 how waits are implemented, as well as user-mode-specific
 synchronization primitives that avoid trips to kernel mode (unlike
 typical dispatcher objects)

	System worker threads

	Miscellaneous mechanisms such as Windows global flags

	Advanced Local Procedure Calls (ALPCs)

	Kernel event tracing

	Wow64

	User-mode debugging

	The image loader

	Hypervisor (Hyper-V)

	Kernel Transaction Manager (KTM)

	Kernel Patch Protection (KPP)

	Code integrity

Trap Dispatching

Interrupts and exceptions are operating system conditions that
 divert the processor to code outside the normal flow of control. Either
 hardware or software can detect them. The term trap
 refers to a processor’s mechanism for capturing an executing thread when
 an exception or an interrupt occurs and transferring control to a fixed location in the
 operating system. In Windows, the processor transfers control to a
 trap handler, which is a function specific to a
 particular interrupt or exception. Figure 3-1 illustrates some of the conditions
 that activate trap handlers.
The kernel distinguishes between interrupts and exceptions in the
 following way. An interrupt is an asynchronous
 event (one that can occur at any time) that is unrelated to what the
 processor is executing. Interrupts are generated primarily by I/O
 devices, processor clocks, or timers, and they can be enabled (turned
 on) or disabled (turned off). An exception, in
 contrast, is a synchronous condition that usually results from the
 execution of a particular instruction. (Aborts, such as machine checks,
 is a type of processor exception that’s typically not associated with
 instruction execution.) Running a program a second time with the same
 data under the same conditions can reproduce exceptions. Examples of
 exceptions include memory-access violations, certain debugger
 instructions, and divide-by-zero errors. The kernel also regards system
 service calls as exceptions (although technically they’re system
 traps).
[image: Trap dispatching]

Figure 3-1. Trap dispatching

Either hardware or software can generate exceptions and
 interrupts. For example, a bus error exception is caused by a hardware
 problem, whereas a divide-by-zero exception is the result of a software
 bug. Likewise, an I/O device can generate an interrupt, or the kernel
 itself can issue a software interrupt (such as an APC or DPC, both of
 which are described later in this chapter).
When a hardware exception or interrupt is generated, the processor
 records enough machine state on the kernel stack of the thread that’s
 interrupted to return to that point in the control flow and continue
 execution as if nothing had happened. If the thread was executing in
 user mode, Windows switches to the thread’s kernel-mode stack. Windows then
 creates a trap frame on the kernel stack of the
 interrupted thread into which it stores the execution state of the
 thread. The trap frame is a subset of a thread’s complete context, and
 you can view its definition by typing dt
 nt!_ktrap_frame in the kernel debugger. (Thread context is
 described in Chapter 5.) The kernel
 handles software interrupts either as part of hardware interrupt
 handling or synchronously when a thread invokes kernel functions related
 to the software interrupt.
In most cases, the kernel installs front-end, trap-handling
 functions that perform general trap-handling tasks before and after
 transferring control to other functions that field the trap. For
 example, if the condition was a device interrupt, a kernel hardware
 interrupt trap handler transfers control to the interrupt
 service routine (ISR) that the device driver provided for the
 interrupting device. If the condition was caused by a call to a system
 service, the general system service trap handler transfers control to
 the specified system service function in the executive. The kernel also
 installs trap handlers for traps that it doesn’t expect to see or
 doesn’t handle. These trap handlers typically execute the system
 function KeBugCheckEx, which halts the computer
 when the kernel detects problematic or incorrect behavior that, if left
 unchecked, could result in data corruption. (For more information on bug
 checks, see Chapter 14, “Crash Dump Analysis,” in Part 2.) The following
 sections describe interrupt, exception, and system service dispatching
 in greater detail.
Interrupt Dispatching

Hardware-generated interrupts typically originate from I/O
 devices that must notify the processor when they need service.
 Interrupt-driven devices allow the operating system to get the maximum
 use out of the processor by overlapping central processing with I/O
 operations. A thread starts an I/O transfer to or from a device and
 then can execute other useful work while the device completes the
 transfer. When the device is finished, it interrupts the processor for
 service. Pointing devices, printers, keyboards, disk drives, and
 network cards are generally interrupt driven.
System software can also generate interrupts. For example, the
 kernel can issue a software interrupt to initiate thread dispatching
 and to asynchronously break into the execution of a thread. The kernel
 can also disable interrupts so that the processor isn’t interrupted,
 but it does so only infrequently—at critical moments while it’s
 programming an interrupt controller or dispatching an exception, for
 example.
The kernel installs interrupt trap handlers to respond to device
 interrupts. Interrupt trap handlers transfer control either to an
 external routine (the ISR) that handles the interrupt or to an
 internal kernel routine that responds to the interrupt. Device drivers
 supply ISRs to service device interrupts, and the kernel provides
 interrupt-handling routines for other types of interrupts.
In the following subsections, you’ll find out how the hardware
 notifies the processor of device interrupts, the types of interrupts
 the kernel supports, the way device drivers interact with the kernel
 (as a part of interrupt processing), and the software interrupts the
 kernel recognizes (plus the kernel objects that are used to implement
 them).
Hardware Interrupt Processing

On the hardware platforms supported by Windows,
 external I/O interrupts come into one of the lines on an interrupt
 controller. The controller, in turn, interrupts the processor on a
 single line. Once the processor is interrupted, it queries the
 controller to get the interrupt request (IRQ).
 The interrupt controller translates the IRQ to an interrupt number,
 uses this number as an index into a structure called the
 interrupt dispatch table (IDT), and transfers
 control to the appropriate interrupt dispatch routine. At system
 boot time, Windows fills in the IDT with pointers to the kernel
 routines that handle each interrupt and exception.
Windows maps hardware IRQs to interrupt numbers in the IDT,
 and the system also uses the IDT to configure trap handlers for
 exceptions. For example, the x86 and x64 exception number for a page
 fault (an exception that occurs when a thread attempts to access a
 page of virtual memory that isn’t defined or present) is 0xe (14).
 Thus, entry 0xe in the IDT points to the system’s page-fault
 handler. Although the architectures supported by Windows allow up to
 256 IDT entries, the number of IRQs a particular machine can support
 is determined by the design of the interrupt controller the machine
 uses.
EXPERIMENT: Viewing the IDT
You can view the contents of the IDT, including information
 on what trap handlers Windows has assigned to interrupts
 (including exceptions and IRQs), using the
 !idt kernel debugger command. The
 !idt command with no flags shows simplified
 output that includes only registered hardware interrupts (and, on
 64-bit machines, the processor trap handlers).
The following example shows what the output of the
 !idt command looks like:
lkd> !idt

Dumping IDT:

00: fffff80001a7ec40 nt!KiDivideErrorFault
01: fffff80001a7ed40 nt!KiDebugTrapOrFault
02: fffff80001a7ef00 nt!KiNmiInterrupt Stack = 0xFFFFF80001865000
03: fffff80001a7f280 nt!KiBreakpointTrap
04: fffff80001a7f380 nt!KiOverflowTrap
05: fffff80001a7f480 nt!KiBoundFault
06: fffff80001a7f580 nt!KiInvalidOpcodeFault
07: fffff80001a7f7c0 nt!KiNpxNotAvailableFault
08: fffff80001a7f880 nt!KiDoubleFaultAbort Stack = 0xFFFFF80001863000
09: fffff80001a7f940 nt!KiNpxSegmentOverrunAbort
0a: fffff80001a7fa00 nt!KiInvalidTssFault
0b: fffff80001a7fac0 nt!KiSegmentNotPresentFault
0c: fffff80001a7fc00 nt!KiStackFault
0d: fffff80001a7fd40 nt!KiGeneralProtectionFault
0e: fffff80001a7fe80 nt!KiPageFault
10: fffff80001a80240 nt!KiFloatingErrorFault
11: fffff80001a803c0 nt!KiAlignmentFault
12: fffff80001a804c0 nt!KiMcheckAbort Stack = 0xFFFFF80001867000
13: fffff80001a80840 nt!KiXmmException
1f: fffff80001a5ec10 nt!KiApcInterrupt
2c: fffff80001a80a00 nt!KiRaiseAssertion
2d: fffff80001a80b00 nt!KiDebugServiceTrap
2f: fffff80001acd590 nt!KiDpcInterrupt
37: fffff8000201c090 hal!PicSpuriousService37 (KINTERRUPT fffff8000201c000)
3f: fffff8000201c130 hal!PicSpuriousService37 (KINTERRUPT fffff8000201c0a0)
51: fffffa80045babd0 dxgkrnl!DpiFdoLineInterruptRoutine (KINTERRUPT fffffa80045bab40)
52: fffffa80029f1390 USBPORT!USBPORT_InterruptService (KINTERRUPT fffffa80029f1300)
62: fffffa80029f15d0 USBPORT!USBPORT_InterruptService (KINTERRUPT fffffa80029f1540)
 USBPORT!USBPORT_InterruptService (KINTERRUPT fffffa80029f1240)
72: fffffa80029f1e10 ataport!IdePortInterrupt (KINTERRUPT fffffa80029f1d80)
81: fffffa80045bae10 i8042prt!I8042KeyboardInterruptService (KINTERRUPT fffffa80045bad80)
82: fffffa80029f1ed0 ataport!IdePortInterrupt (KINTERRUPT fffffa80029f1e40)
90: fffffa80045bad50 Vid+0x7918 (KINTERRUPT fffffa80045bacc0)
91: fffffa80045baed0 i8042prt!I8042MouseInterruptService (KINTERRUPT fffffa80045bae40)
a0: fffffa80045bac90 vmbus!XPartPncIsr (KINTERRUPT fffffa80045bac00)
a2: fffffa80029f1210 sdbus!SdbusInterrupt (KINTERRUPT fffffa80029f1180)
 rimmpx64+0x9FFC (KINTERRUPT fffffa80029f10c0)
 rimspx64+0x7A14 (KINTERRUPT fffffa80029f1000)
 rixdpx64+0x9C50 (KINTERRUPT fffffa80045baf00)
a3: fffffa80029f1510 USBPORT!USBPORT_InterruptService (KINTERRUPT fffffa80029f1480)
 HDAudBus!HdaController::Isr (KINTERRUPT fffffa80029f1c00)
a8: fffffa80029f1bd0 NDIS!ndisMiniportMessageIsr (KINTERRUPT fffffa80029f1b40)
a9: fffffa80029f1b10 NDIS!ndisMiniportMessageIsr (KINTERRUPT fffffa80029f1a80)
aa: fffffa80029f1a50 NDIS!ndisMiniportMessageIsr (KINTERRUPT fffffa80029f19c0)
ab: fffffa80029f1990 NDIS!ndisMiniportMessageIsr (KINTERRUPT fffffa80029f1900)
ac: fffffa80029f18d0 NDIS!ndisMiniportMessageIsr (KINTERRUPT fffffa80029f1840)
ad: fffffa80029f1810 NDIS!ndisMiniportMessageIsr (KINTERRUPT fffffa80029f1780)
ae: fffffa80029f1750 NDIS!ndisMiniportMessageIsr (KINTERRUPT fffffa80029f16c0)
af: fffffa80029f1690 NDIS!ndisMiniportMessageIsr (KINTERRUPT fffffa80029f1600)
b0: fffffa80029f1d50 NDIS!ndisMiniportMessageIsr (KINTERRUPT fffffa80029f1cc0)
b1: fffffa80029f1f90 ACPI!ACPIInterruptServiceRoutine (KINTERRUPT fffffa80029f1f00)
b3: fffffa80029f1450 USBPORT!USBPORT_InterruptService (KINTERRUPT fffffa80029f13c0)
c1: fffff8000201c3b0 hal!HalpBroadcastCallService (KINTERRUPT fffff8000201c320)
d1: fffff8000201c450 hal!HalpHpetClockInterrupt (KINTERRUPT fffff8000201c3c0)
d2: fffff8000201c4f0 hal!HalpHpetRolloverInterrupt (KINTERRUPT fffff8000201c460)
df: fffff8000201c310 hal!HalpApicRebootService (KINTERRUPT fffff8000201c280)
e1: fffff80001a8e1f0 nt!KiIpiInterrupt
e2: fffff8000201c270 hal!HalpDeferredRecoveryService (KINTERRUPT fffff8000201c1e0)
e3: fffff8000201c1d0 hal!HalpLocalApicErrorService (KINTERRUPT fffff8000201c140)
fd: fffff8000201c590 hal!HalpProfileInterrupt (KINTERRUPT fffff8000201c500)
fe: fffff8000201c630 hal!HalpPerfInterrupt (KINTERRUPT fffff8000201c5a0)
On the system used to provide the output for this
 experiment, the keyboard device driver’s (I8042prt.sys) keyboard
 ISR is at interrupt number 0x81. You can also see that interrupt
 0xe corresponds to KiPageFault, as explained
 earlier.

Each processor has a separate IDT so that different processors
 can run different ISRs, if appropriate. For example, in a
 multiprocessor system, each processor receives the clock interrupt,
 but only one processor updates the system clock in response to this
 interrupt. All the processors, however, use the interrupt to measure
 thread quantum and to initiate rescheduling when a thread’s quantum
 ends. Similarly, some system configurations might require
 that a particular processor handle certain device interrupts.

x86 Interrupt Controllers

Most x86 systems rely on either the i8259A Programmable
 Interrupt Controller (PIC) or a variant of the i82489 Advanced
 Programmable Interrupt Controller (APIC); today’s computers include
 an APIC. The PIC standard originates with the original IBM PC. The
 i8259A PIC works only with uniprocessor systems and has only eight
 interrupt lines. However, the IBM PC architecture defined the
 addition of a second PIC, called the slave,
 whose interrupts are multiplexed into one of the master PIC’s
 interrupt lines. This provides 15 total interrupts (seven on the
 master and eight on the slave, multiplexed through the master’s
 eighth interrupt line). APICs and Streamlined Advanced Programmable
 Interrupt Controllers (SAPICs, discussed shortly) work with
 multiprocessor systems and have 256 interrupt lines. Intel and other
 companies have defined the Multiprocessor Specification (MP
 Specification), a design standard for x86 multiprocessor systems
 that centers on the use of APIC. To provide compatibility with
 uniprocessor operating systems and boot code that starts a
 multiprocessor system in uniprocessor mode, APICs support a PIC
 compatibility mode with 15 interrupts and delivery of interrupts to
 only the primary processor. Figure 3-2
 depicts the APIC architecture.
The APIC actually consists of several components: an I/O APIC
 that receives interrupts from devices, local APICs that receive
 interrupts from the I/O APIC on the bus and that interrupt the CPU
 they are associated with, and an i8259A-compatible interrupt
 controller that translates APIC input into PIC-equivalent signals.
 Because there can be multiple I/O APICs on the system, motherboards
 typically have a piece of core logic that sits between them and the
 processors. This logic is responsible for implementing interrupt
 routing algorithms that both balance the device interrupt load
 across processors and attempt to take advantage of locality,
 delivering device interrupts to the same processor that has just
 fielded a previous interrupt of the same type. Software programs can
 reprogram the I/O APICs with a fixed routing algorithm that bypasses
 this piece of chipset logic. Windows does this by programming the
 APICs in an “interrupt one processor in the following set” routing
 mode.
[image: x86 APIC architecture]

Figure 3-2. x86 APIC architecture

x64 Interrupt Controllers

Because the x64 architecture is compatible with x86
 operating systems, x64 systems must provide the same interrupt
 controllers as the x86. A significant difference, however, is that
 the x64 versions of Windows will not run on systems that do not have
 an APIC because they use the APIC for interrupt control.

IA64 Interrupt Controllers

The IA64 architecture relies on the Streamlined Advanced
 Programmable Interrupt Controller (SAPIC), which is an evolution of
 the APIC. Even if load balancing and routing are present in the
 firmware, Windows does not take advantage of it; instead, it
 statically assigns interrupts to processors in a round-robin
 manner.
EXPERIMENT: Viewing the PIC and APIC
You can view the configuration of the PIC on a uniprocessor
 and the current local APIC on a multiprocessor by using the
 !pic and !apic kernel
 debugger commands, respectively. Here’s the output of the
 !pic command on a uniprocessor. (Note that
 the !pic command doesn’t work if your system
 is using an APIC HAL.)
lkd> !pic
----- IRQ Number ----- 00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F
Physically in service:
Physically masked: . . . Y . . Y Y . . Y . . Y . .
Physically requested:
Level Triggered: Y . . . Y . Y
Here’s the output of the !apic command
 on a system running with an APIC HAL. Note that during local
 kernel debugging, this command shows the APIC associated with the
 current processor—in other words, whichever processor the
 debugger’s thread happens to be running on as you enter the
 command. When looking at a crash dump or remote system, you can
 use the ~(tilde) command followed by the
 processor number to switch the processor of whose local APIC you
 want to see.
lkd> !apic
Apic @ fffe0000 ID:0 (50014) LogDesc:01000000 DestFmt:ffffffff TPR 20
TimeCnt: 00000000clk SpurVec:3f FaultVec:e3 error:0
Ipi Cmd: 01000000'0000002f Vec:2F FixedDel Ph:01000000 edg high
Timer..: 00000000'000300fd Vec:FD FixedDel Dest=Self edg high m
Linti0.: 00000000'0001003f Vec:3F FixedDel Dest=Self edg high m
Linti1.: 00000000'000004ff Vec:FF NMI Dest=Self edg high
TMR: 51-52, 62, A3, B1, B3
IRR:
ISR::
The various numbers following the Vec
 labels indicate the associated vector in the IDT with the given
 command. For example, in this output, interrupt number 0xFD is
 associated with the APIC Timer, and interrupt number 0xE3 handles
 APIC errors. Because this experiment was run on the same machine as the earlier
 !idt experiment, you can notice that 0xFD is
 the HAL’s Profiling Interrupt (which uses a timer for profile
 intervals), and 0xe3 is the HAL’s Local APIC Error Handler, as
 expected.
The following output is for the !ioapic
 command, which displays the configuration of the I/O APICs, the
 interrupt controller components connected to devices:
lkd> !ioapic
IoApic @ FEC00000 ID:0 (51) Arb:A951
Inti00.: 0000a951'0000a951 Vec:51 LowestDl Lg:0000a951 lvl low

Software Interrupt Request Levels (IRQLs)

Although interrupt controllers perform interrupt
 prioritization, Windows imposes its own interrupt priority scheme
 known as interrupt request levels (IRQLs). The
 kernel represents IRQLs internally as a number from 0 through 31 on
 x86 and from 0 to 15 on x64 and IA64, with higher numbers
 representing higher-priority interrupts. Although the kernel defines
 the standard set of IRQLs for software interrupts, the HAL maps
 hardware-interrupt numbers to the IRQLs. Figure 3-3 shows IRQLs
 defined for the x86 architecture, and Figure 3-4 shows IRQLs
 for the x64 and IA64 architectures.
[image: x86 interrupt request levels (IRQLs)]

Figure 3-3. x86 interrupt request levels (IRQLs)

Interrupts are serviced in priority order, and a
 higher-priority interrupt preempts the servicing of a lower-priority
 interrupt. When a high-priority interrupt occurs, the processor
 saves the interrupted thread’s state and invokes the trap
 dispatchers associated with the interrupt. The trap dispatcher
 raises the IRQL and calls the interrupt’s service routine.
 After the service routine executes, the interrupt dispatcher lowers
 the processor’s IRQL to where it was before the interrupt occurred
 and then loads the saved machine state. The interrupted thread
 resumes executing where it left off. When the kernel lowers the
 IRQL, lower-priority interrupts that were masked might materialize.
 If this happens, the kernel repeats the process to handle the new
 interrupts.
[image: x64 and IA64 interrupt request levels (IRQLs)]

Figure 3-4. x64 and IA64 interrupt request levels (IRQLs)

IRQL priority levels have a completely different meaning than
 thread-scheduling priorities (which are described in Chapter 5). A scheduling
 priority is an attribute of a thread, whereas an IRQL is an
 attribute of an interrupt source, such as a keyboard or a mouse. In
 addition, each processor has an IRQL setting that changes as
 operating system code executes.
Each processor’s IRQL setting determines which interrupts that
 processor can receive. IRQLs are also used to synchronize access to
 kernel-mode data structures. (You’ll find out more about
 synchronization later in this chapter.) As a kernel-mode thread
 runs, it raises or lowers the processor’s IRQL either directly by
 calling KeRaiseIrql and
 KeLowerIrql or, more commonly, indirectly via
 calls to functions that acquire kernel synchronization objects. As
 Figure 3-5 illustrates, interrupts from a
 source with an IRQL above the current level interrupt the processor,
 whereas interrupts from sources with IRQLs equal to or below the
 current level are masked until an executing
 thread lowers the IRQL.
Because accessing a PIC is a relatively slow operation, HALs
 that require accessing the I/O bus to change IRQLs, such as for PIC
 and 32-bit Advanced Configuration and Power Interface (ACPI)
 systems, implement a performance optimization, called lazy
 IRQL, that avoids PIC accesses. When the IRQL is raised,
 the HAL notes the new IRQL internally instead of changing the
 interrupt mask. If a lower-priority interrupt subsequently occurs,
 the HAL sets the interrupt mask to the settings appropriate for the
 first interrupt and does not quiesce the lower-priority interrupt
 until the IRQL is lowered (thus keeping the interrupt pending).
 Thus, if no lower-priority interrupts occur while the IRQL is
 raised, the HAL doesn’t need to modify the PIC.
[image: Masking interrupts]

Figure 3-5. Masking interrupts

A kernel-mode thread raises and lowers the IRQL of the
 processor on which it’s running, depending on what it’s trying to
 do. For example, when an interrupt occurs, the trap handler (or
 perhaps the processor) raises the processor’s IRQL to the assigned
 IRQL of the interrupt source. This elevation masks all interrupts at
 and below that IRQL (on that processor only), which ensures that the
 processor servicing the interrupt isn’t waylaid by an interrupt at
 the same level or a lower level. The masked interrupts are either
 handled by another processor or held back until the IRQL drops.
 Therefore, all components of the system, including the kernel and
 device drivers, attempt to keep the IRQL at
 passive level (sometimes called
 low level). They do this because device drivers
 can respond to hardware interrupts in a timelier manner if the IRQL
 isn’t kept unnecessarily elevated for long periods.
Note
An exception to the rule that raising the IRQL blocks
 interrupts of that level and lower relates to APC-level
 interrupts. If a thread raises the IRQL to APC level and then is
 rescheduled because of a dispatch/DPC-level interrupt, the system
 might deliver an APC-level interrupt to the newly scheduled
 thread. Thus, APC level can be considered a thread-local rather
 than processor-wide IRQL.

EXPERIMENT: Viewing the IRQL
You can view a processor’s saved IRQL with the
 !irql debugger command. The saved IRQL
 represents the IRQL at the time just before the break-in to the
 debugger, which raises the IRQL to a static, meaningless
 value:
kd> !irql
Debugger saved IRQL for processor 0x0 -- 0 (LOW_LEVEL)
Note that the IRQL value is saved in two locations.
 The first, which represents the current IRQL, is the processor
 control region (PCR), while its extension, the processor region
 control block (PRCB), contains the saved IRQL in the
 DebuggerSaveIrql field. The PCR and PRCB
 contain information about the state of each processor in the
 system, such as the current IRQL, a pointer to the hardware IDT,
 the currently running thread, and the next thread selected to run.
 The kernel and the HAL use this information to perform
 architecture-specific and machine-specific actions. Portions of
 the PCR and PRCB structures are defined publicly in the Windows
 Driver Kit (WDK) header file Ntddk.h.
You can view the contents of the current processor’s PCR
 with the kernel debugger by using the !pcr
 command. To view the PCR of a specific processor, add the
 processor’s number after the command, separated with a
 space:
lkd> !pcr 0
KPCR for Processor 0 at fffff80001bfad00:
 Major 1 Minor 1
 NtTib.ExceptionList: fffff80001853000
 NtTib.StackBase: fffff80001854080
 NtTib.StackLimit: 000000000026ea28
 NtTib.SubSystemTib: fffff80001bfad00
 NtTib.Version: 0000000001bfae80
 NtTib.UserPointer: fffff80001bfb4f0
 NtTib.SelfTib: 000007fffffdb000

 SelfPcr: 0000000000000000
 Prcb: fffff80001bfae80
 Irql: 0000000000000000
 IRR: 0000000000000000
 IDR: 0000000000000000
 InterruptMode: 0000000000000000
 IDT: 0000000000000000
 GDT: 0000000000000000
 TSS: 0000000000000000

 CurrentThread: fffff80001c08c40
 NextThread: 0000000000000000
 IdleThread: fffff80001c08c40

 DpcQueue:
Because changing a processor’s IRQL has such a significant
 effect on system operation, the change can be made only in kernel
 mode—user-mode threads can’t change the processor’s IRQL. This
 means that a processor’s IRQL is always at passive level when it’s
 executing user-mode code. Only when the processor is executing
 kernel-mode code can the IRQL be higher.
Each interrupt level has a specific purpose. For example,
 the kernel issues an interprocessor interrupt
 (IPI) to request that another processor perform an action, such as
 dispatching a particular thread for execution or updating its
 translation look-aside buffer (TLB) cache. The system clock
 generates an interrupt at regular intervals, and the kernel
 responds by updating the clock and measuring thread execution
 time. If a hardware platform supports two clocks, the kernel
 adds another clock interrupt level to measure
 performance. The HAL provides a number of interrupt levels for use
 by interrupt-driven devices; the exact number varies with the
 processor and system configuration. The kernel uses software
 interrupts (described later in this chapter) to initiate thread
 scheduling and to asynchronously break into a thread’s
 execution.
Mapping Interrupts to
 IRQLs
IRQL levels aren’t the same as the interrupt requests (IRQs)
 defined by interrupt controllers—the architectures on which
 Windows runs don’t implement the concept of IRQLs in hardware. So
 how does Windows determine what IRQL to assign to an interrupt?
 The answer lies in the HAL. In Windows, a type of device driver
 called a bus driver determines the presence
 of devices on its bus (PCI, USB, and so on) and what interrupts
 can be assigned to a device. The bus driver reports this
 information to the Plug and Play manager, which decides, after
 taking into account the acceptable interrupt assignments for all
 other devices, which interrupt will be assigned to each device.
 Then it calls a Plug and Play interrupt arbiter, which maps
 interrupts to IRQLs. (The root arbiter is used on non-ACPI
 systems, while the ACPI HAL has its own arbiter on ACPI-compatible
 systems.)
The algorithm for assignment differs for the various HALs
 that Windows includes. On ACPI systems (including x86, x64, and
 IA64), the HAL computes the IRQL for a given interrupt by dividing
 the interrupt vector assigned to the IRQ by 16. As for selecting
 an interrupt vector for the IRQ, this depends on the type of
 interrupt controller present on the system. On today’s APIC
 systems, this number is generated in a round-robin fashion, so
 there is no computable way to figure out the IRQ based on the
 interrupt vector or the IRQL. However, an experiment later in this
 section shows how the debugger can query this information from the
 interrupt arbiter.
Predefined IRQLs
Let’s take a closer look at the use of the predefined IRQLs,
 starting from the highest level shown in Figure 3-4:
	The kernel uses high level only
 when it’s halting the system in
 KeBugCheckEx and masking out all
 interrupts.

	Power fail level originated in the
 original Windows NT design documents, which specified the
 behavior of system power failure code, but this IRQL has never
 been used.

	Interprocessor interrupt level is
 used to request another processor to perform an action, such
 as updating the processor’s TLB cache, system shutdown, or
 system crash.

	Clock level is used for the
 system’s clock, which the kernel uses to track the time of day
 as well as to measure and allot CPU time to threads.

	The system’s real-time clock (or another source, such as
 the local APIC timer) uses profile level
 when kernel profiling (a performance-measurement mechanism) is
 enabled. When kernel profiling is active, the kernel’s
 profiling trap handler records the address of the code
 that was executing when the interrupt occurred.
 A table of address samples is constructed over time that tools
 can extract and analyze. You can obtain Kernrate, a kernel
 profiling tool that you can use to configure and view
 profiling-generated statistics, from the Windows Driver Kit
 (WDK). See the Kernrate experiment for more information on
 using this tool.

	The synchronization IRQL is
 internally used by the dispatcher and scheduler code to
 protect access to global thread scheduling and
 wait/synchronization code. It is typically defined as the
 highest level right after the device IRQLs.

	The device IRQLs are used to
 prioritize device interrupts. (See the previous section for
 how hardware interrupt levels are mapped to IRQLs.)

	The corrected machine check
 interrupt level is used to signal the operating
 system after a serious but corrected hardware condition or
 error that was reported by the CPU or firmware through the
 Machine Check Error (MCE)
 interface.

	DPC/dispatch-level and
 APC-level interrupts are software
 interrupts that the kernel and device drivers generate. (DPCs
 and APCs are explained in more detail later in this
 chapter.)

	The lowest IRQL, passive level,
 isn’t really an interrupt level at all; it’s the setting at
 which normal thread execution takes place and all interrupts
 are allowed to occur.

EXPERIMENT: Using Kernel Profiler (Kernrate) to Profile
 Execution
You can use the Kernel Profiler tool (Kernrate) to enable
 the system-profiling timer, collect samples of the code that is
 executing when the timer fires, and display a summary showing the
 frequency distribution across image files and functions. It can be
 used to track CPU usage consumed by individual processes and/or
 time spent in kernel mode independent of processes (for example,
 interrupt service routines). Kernel profiling is useful when you
 want to obtain a breakdown of where the system is spending
 time.
In its simplest form, Kernrate samples where time has been
 spent in each kernel module (for example, Ntoskrnl, drivers, and
 so on). For example, after installing the Windows Driver Kit, try
 performing the following steps:
	Open a command prompt.

	Type cd
 C:\WinDDK\7600.16385.1\tools\other (the path to
 your installation of the Windows 7/Server 2008R2 WDK).

	Type dir. (You will
 see directories for each platform.)

	Run the image that matches your platform (with no
 arguments or switches). For example,
 i386\kernrate.exe is the image for an x86
 system.

	While Kernrate is running, perform some other activity
 on the system. For example, run Windows Media Player and play
 some music, run a graphics-intensive game, or perform network
 activity such as doing a directory listing of a remote network
 share.

	Press Ctrl+C to stop Kernrate. This causes Kernrate to
 display the statistics from the sampling period.

In the following sample output from Kernrate, Windows Media
 Player was running, playing a recorded movie from disk:
C:\WinDDK\7600.16385.1\tools\Other\i386>kernrate.exe

 /==============================\
< KERNRATE LOG >
 \==============================/
Date: 2011/03/09 Time: 16:44:24
Machine Name: TEST-LAPTOP
Number of Processors: 2
PROCESSOR_ARCHITECTURE: x86
PROCESSOR_LEVEL: 6
PROCESSOR_REVISION: 0f06
Physical Memory: 3310 MB
Pagefile Total: 7285 MB
Virtual Total: 2047 MB
PageFile1: \??\C:\pagefile.sys, 4100MB
OS Version: 6.1 Build 7601 Service-Pack: 1.0
WinDir: C:\Windows

Kernrate Executable Location: C:\WINDDK\7600.16385.1\TOOLS\OTHER\I386

Kernrate User-Specified Command Line:
kernrate.exe

Kernel Profile (PID = 0): Source= Time,
Using Kernrate Default Rate of 25000 events/hit
Starting to collect profile data

***> Press ctrl-c to finish collecting profile data
===> Finished Collecting Data, Starting to Process Results

------------Overall Summary:--------------

P0 K 0:00:00.000 (0.0%) U 0:00:00.234 (4.7%) I 0:00:04.789 (95.3%)
DPC 0:00:00.000 (0.0%) Interrupt 0:00:00.000 (0.0%)
 Interrupts= 9254, Interrupt Rate= 1842/sec.

P1 K 0:00:00.031 (0.6%) U 0:00:00.140 (2.8%) I 0:00:04.851 (96.6%)
DPC 0:00:00.000 (0.0%) Interrupt 0:00:00.000 (0.0%)
 Interrupts= 7051, Interrupt Rate= 1404/sec.

TOTAL K 0:00:00.031 (0.3%) U 0:00:00.374 (3.7%) I 0:00:09.640 (96.0%)
DPC 0:00:00.000 (0.0%) Interrupt 0:00:00.000 (0.0%)
 Total Interrupts= 16305, Total Interrupt Rate= 3246/sec.

Total Profile Time = 5023 msec

 BytesStart BytesStop BytesDiff.
 Available Physical Memory , 1716359168, 1716195328, -163840
 Available Pagefile(s) , 5973733376, 5972783104, -950272
 Available Virtual , 2122145792, 2122145792, 0
 Available Extended Virtual , 0, 0, 0
 Committed Memory Bytes , 1665404928, 1666355200, 950272
 Non Paged Pool Usage Bytes , 66211840, 66211840, 0
 Paged Pool Usage Bytes , 189083648, 189087744, 4096
 Paged Pool Available Bytes , 150593536, 150593536, 0
 Free System PTEs , 37322, 37322, 0

 Total Avg. Rate
 Context Switches , 30152, 6003/sec.
 System Calls , 110807, 22059/sec.
 Page Faults , 226, 45/sec.
 I/O Read Operations , 730, 145/sec.
 I/O Write Operations , 1038, 207/sec.
 I/O Other Operations , 858, 171/sec.
 I/O Read Bytes , 2013850, 2759/ I/O
 I/O Write Bytes , 28212, 27/ I/O
 I/O Other Bytes , 19902, 23/ I/O

Results for Kernel Mode:

OutputResults: KernelModuleCount = 167
Percentage in the following table is based on the Total Hits for the Kernel

Time 3814 hits, 25000 events per hit --------
Module Hits msec %Total Events/Sec
NTKRNLPA 3768 5036 98 % 18705321
NVLDDMKM 12 5036 0 % 59571
HAL 12 5036 0 % 59571
WIN32K 10 5037 0 % 49632
DXGKRNL 9 5036 0 % 44678
NETW4V32 2 5036 0 % 9928
FLTMGR 1 5036 0 % 4964

================================= END OF RUN ==================================
============================== NORMAL END OF RUN ==============================
The overall summary shows that the system spent 0.3 percent
 of the time in kernel mode, 3.7 percent in user mode, 96.0 percent
 idle, 0.0 percent at DPC level, and 0.0 percent at interrupt
 level. The module with the highest hit rate was Ntkrnlpa.exe, the
 kernel for machines with Physical Address Extension (PAE) or NX
 support. The module with the second highest hit rate was
 nvlddmkm.sys, the driver for the video card on the machine used
 for the test. This makes sense because the major activity going on
 in the system was Windows Media Player sending video I/O to the
 video driver.
If you have symbols available, you can zoom in on
 individual modules and see the time spent by function name. For
 example, profiling the system while rapidly dragging a window
 around the screen resulted in the following (partial)
 output:
 C:\WinDDK\7600.16385.1\tools\Other\i386>kernrate.exe -z ntkrnlpa -z win32k
 /==============================\
< KERNRATE LOG >
 \==============================/
Date: 2011/03/09 Time: 16:49:56

Time 4191 hits, 25000 events per hit --------
Module Hits msec %Total Events/Sec
NTKRNLPA 3623 5695 86 % 15904302
WIN32K 303 5696 7 % 1329880
INTELPPM 141 5696 3 % 618855
HAL 61 5695 1 % 267778
CDD 30 5696 0 % 131671
NVLDDMKM 13 5696 0 % 57057

----- Zoomed module WIN32K.SYS (Bucket size = 16 bytes, Rounding Down) --------
Module Hits msec %Total Events/Sec
BltLnkReadPat 34 5696 10 % 149227
memmove 21 5696 6 % 92169
vSrcTranCopyS8D32 17 5696 5 % 74613
memcpy 12 5696 3 % 52668
RGNOBJ::bMerge 10 5696 3 % 43890
HANDLELOCK::vLockHandle 8 5696 2 % 35112

----- Zoomed module NTKRNLPA.EXE (Bucket size = 16 bytes, Rounding Down) --------
Module Hits msec %Total Events/Sec
KiIdleLoop 3288 5695 87 % 14433713
READ_REGISTER_USHORT 95 5695 2 % 417032
READ_REGISTER_ULONG 93 5695 2 % 408252
RtlFillMemoryUlong 31 5695 0 % 136084
KiFastCallEntry 18 5695 0 % 79016
The module with the second hit rate was Win32k.sys, the
 windowing system driver. Also high on the list were the video
 driver and Cdd.dll, a global video driver used for the
 3D-accelerated Aero desktop theme. These results make sense
 because the main activity in the system was drawing on the screen.
 Note that in the zoomed display for Win32k.sys, the functions with
 the highest hits are related to merging, copying, and moving bits,
 the main GDI operations for painting a window dragged on the
 screen.
One important restriction on code running at DPC/dispatch
 level or above is that it can’t wait for an object if doing so
 necessitates the scheduler to select another thread to execute,
 which is an illegal operation because the scheduler relies on
 DPC-level software interrupts to schedule threads. Another
 restriction is that only nonpaged memory can be accessed at IRQL
 DPC/dispatch level or higher.
This rule is actually a side effect of the first restriction
 because attempting to access memory that isn’t resident results in
 a page fault. When a page fault occurs, the memory manager
 initiates a disk I/O and then needs to wait for the file system
 driver to read the page in from disk. This wait would, in turn, require the scheduler to
 perform a context switch (perhaps to the idle thread if no user
 thread is waiting to run), thus violating the rule that the
 scheduler can’t be invoked (because the IRQL is still DPC/dispatch
 level or higher at the time of the disk read). A further problem
 results in the fact that I/O completion typically occurs at
 APC_LEVEL, so even in cases where a wait wouldn’t be required, the
 I/O would never complete because the completion APC would not get
 a chance to run.
If either of these two restrictions is violated, the system
 crashes with an IRQL_NOT_LESS_OR_EQUAL or a
 DRIVER_IRQL_NOT_LESS_OR_EQUAL crash code. (See Chapter 14 in Part
 2 for a thorough discussion of system crashes.) Violating these
 restrictions is a common bug in device drivers. The Windows Driver
 Verifier (explained in the section “Driver Verifier” in Chapter
 10, “Memory Management,” in Part 2) has an option you can set to
 assist in finding this particular type of bug.
Interrupt Objects
The kernel provides a portable mechanism—a kernel control
 object called an interrupt object—that allows
 device drivers to register ISRs for their devices. An interrupt
 object contains all the information the kernel needs to associate
 a device ISR with a particular level of interrupt, including the
 address of the ISR, the IRQL at which the device interrupts, and
 the entry in the kernel’s interrupt dispatch table (IDT) with
 which the ISR should be associated. When an interrupt object is
 initialized, a few instructions of assembly language code, called
 the dispatch code, are copied from an
 interrupt-handling template,
 KiInterruptTemplate, and stored in the
 object. When an interrupt occurs, this code is executed.
This interrupt-object resident code calls the real interrupt
 dispatcher, which is typically either the kernel’s
 KiInterruptDispatch or
 KiChainedDispatch routine, passing it a
 pointer to the interrupt object.
 KiInterruptDispatch is the routine used for
 interrupt vectors for which only one interrupt object is
 registered, and KiChainedDispatch is for
 vectors shared among multiple interrupt objects. The interrupt
 object contains information that this second dispatcher routine
 needs to locate and properly call the ISR the device driver
 provides.
The interrupt object also stores the IRQL associated with
 the interrupt so that KiInterruptDispatch or
 KiChainedDispatch can raise the IRQL to the
 correct level before calling the ISR and then lower the IRQL after
 the ISR has returned. This two-step process is required because
 there’s no way to pass a pointer to the interrupt object (or any
 other argument for that matter) on the initial dispatch because
 the initial dispatch is done by hardware. On a multiprocessor
 system, the kernel allocates and initializes an interrupt object
 for each CPU, enabling the local APIC on that CPU to accept the
 particular interrupt.

On x64 Windows systems, the kernel optimizes interrupt
 dispatch by using specific routines that save processor cycles by
 omitting functionality that isn’t needed, such as
 KiInterruptDispatchNoLock, which is used for
 interrupts that do not have an associated kernel-managed spinlock
 (typically used by drivers that want to synchronize with their
 ISRs), and KiInterruptDispatchNoEOI, which is
 used for interrupts that have programmed the APIC in
 “Auto-End-of-Interrupt”
 (Auto-EOI) mode—because the interrupt controller will send the EOI signal
 automatically, the kernel does not need to the extra code to do
 perform the EOI itself. Finally, for the performance/profiling
 interrupt specifically, the
 KiInterruptDispatchLBControl handler is used,
 which supports the Last Branch Control MSR
 available on modern CPUs. This register enables the kernel to
 track/save the branch instruction when tracing; during an interrupt,
 this information would be lost because it’s not stored in the normal
 thread register context, so special code must be added to preserve
 it. The HAL’s performance and profiling interrupts use this
 functionality, for example, while the other HAL interrupt routines
 take advantage of the “no-lock” dispatch code, because the HAL does
 not require the kernel to synchronize with its ISR.
Another kernel interrupt handler is
 KiFloatingDispatch, which is used for
 interrupts that require saving the floating-point state. Unlike
 kernel-mode code, which typically is not allowed to use
 floating-point (MMX, SSE, 3DNow!) operations because these registers
 won’t be saved across context switches, ISRs might need to use these
 registers (such as the video card ISR performing a quick drawing
 operation). When connecting an interrupt, drivers can set the
 FloatingSave argument to
 TRUE, requesting that the kernel use the
 floating-point dispatch routine, which will save the floating
 registers. (However, this greatly increases interrupt latency.) Note
 that this is supported only on 32-bit systems.
Figure 3-6 shows
 typical interrupt control flow for interrupts associated with
 interrupt objects.
[image: Typical interrupt control flow]

Figure 3-6. Typical interrupt control flow

EXPERIMENT: Examining Interrupt Internals
Using the kernel debugger, you can view details of
 an interrupt object, including its IRQL, ISR address, and custom
 interrupt-dispatching code. First, execute the
 !idt command and locate the entry that
 includes a reference to
 I8042KeyboardInterruptService, the ISR
 routine for the PS/2 keyboard device:
81: fffffa80045bae10 i8042prt!I8042KeyboardInterruptService (KINTERRUPT
fffffa80045bad80)
To view the contents of the interrupt object associated with
 the interrupt, execute dt nt!_kinterrupt with
 the address following KINTERRUPT:
lkd> dt nt!_KINTERRUPT fffffa80045bad80
 +0x000 Type : 22
 +0x002 Size : 160
 +0x008 InterruptListEntry : _LIST_ENTRY [0x00000000'00000000 - 0x0]
 +0x018 ServiceRoutine : 0xfffff880'0356ca04 unsigned char
 i8042prt!I8042KeyboardInterruptService+0
 +0x020 MessageServiceRoutine : (null)
 +0x028 MessageIndex : 0
 +0x030 ServiceContext : 0xfffffa80'02c839f0
 +0x038 SpinLock : 0
 +0x040 TickCount : 0
 +0x048 ActualLock : 0xfffffa80'02c83b50 -> 0
 +0x050 DispatchAddress : 0xfffff800'01a7db90 void nt!KiInterruptDispatch+0
 +0x058 Vector : 0x81
 +0x05c Irql : 0x8 ''
 +0x05d SynchronizeIrql : 0x9 ''
 +0x05e FloatingSave : 0 ''
 +0x05f Connected : 0x1 ''
 +0x060 Number : 0
 +0x064 ShareVector : 0 ''
 +0x065 Pad : [3] ""
 +0x068 Mode : 1 (Latched)
 +0x06c Polarity : 0 (InterruptPolarityUnknown)
 +0x070 ServiceCount : 0
 +0x074 DispatchCount : 0
 +0x078 Rsvd1 : 0
 +0x080 TrapFrame : 0xfffff800'0185ab00 _KTRAP_FRAME
 +0x088 Reserved : (null)
 +0x090 DispatchCode : [4] 0x8d485550
In this example, the IRQL that Windows assigned to the
 interrupt is 8. Although there is no direct mapping between an
 interrupt vector and an IRQ, Windows does keep track of this
 translation when managing device resources through what are called
 arbiters. For each resource type, an arbiter
 maintains the relationship between virtual resource usage (such as
 an interrupt vector) and physical resources (such as an interrupt
 line). As such, you can query either the root IRQ arbiter (on
 systems without ACPI) or the ACPI IRQ arbiter and obtain this
 mapping. Use the !apciirqarb command to
 obtain information on the ACPI IRQ arbiter:
lkd> !acpiirqarb

Processor 0 (0, 0):
Device Object: 0000000000000000
Current IDT Allocation:
...
 0000000000000081 - 0000000000000081 D fffffa80029b4c20 (i8042prt)
A:0000000000000000 IRQ:0
...
If you don’t have an ACPI system, you can use
 !arbiter 4 (4 tells the
 debugger to display only IRQ arbiters):
lkd> !arbiter 4

DEVNODE fffffa80027c6d90 (HTREE\ROOT\0)
 Interrupt Arbiter "RootIRQ" at fffff80001c82500
 Allocated ranges:
 0000000000000081 - 0000000000000081 Owner fffffa80029b4c20 (i8042prt)
In both cases, you will be given the owner of the vector, in
 the type of a device object. You can then use
 the !devobj command to get information on the
 i8042prt device in this example (which corresponds to the PS/2
 driver):
lkd> !devobj fffffa80029b4c20
Device object (fffffa80029b4c20) is for:
 00000061 \Driver\ACPI DriverObject fffffa8002888e70
Current Irp 00000000 RefCount 1 Type 00000032 Flags 00003040
Dacl fffff9a100096a41 DevExt fffffa800299f740 DevObjExt fffffa80029b4d70 DevNode fffffa80029b54b0
The device object is associated to a device
 node, which stores all the device’s physical resources.
 You can now dump these resources with the
 !devnode command, and using the 6 flag to ask
 for resource information:
lkd> !devnode fffffa80029b54b0 6
DevNode 0xfffffa80029b54b0 for PDO 0xfffffa80029b4c20
 Parent 0xfffffa800299b390 Sibling 0xfffffa80029b5230 Child 0000000000
 InstancePath is "ACPI\PNP0303\4&17aa870d&0"
 ServiceName is "i8042prt"
...
 CmResourceList at 0xfffff8a00185bf40 Version 1.1 Interface 0xf Bus #0
 Entry 0 - Port (0x1) Device Exclusive (0x1)
 Flags (0x11) - PORT_MEMORY PORT_IO 16_BIT_DECODE
 Range starts at 0x60 for 0x1 bytes
 Entry 1 - Port (0x1) Device Exclusive (0x1)
 Flags (0x11) - PORT_MEMORY PORT_IO 16_BIT_DECODE
 Range starts at 0x64 for 0x1 bytes
 Entry 2 - Port (0x1) Device Exclusive (0x1)
 Flags (0x11) - PORT_MEMORY PORT_IO 16_BIT_DECODE
 Range starts at 0x62 for 0x1 bytes
 Entry 3 - Port (0x1) Device Exclusive (0x1)
 Flags (0x11) - PORT_MEMORY PORT_IO 16_BIT_DECODE
 Range starts at 0x66 for 0x1 bytes
 Entry 4 - Interrupt (0x2) Device Exclusive (0x1)
 Flags (0x01) - LATCHED
 Level 0x1, Vector 0x1, Group 0, Affinity 0xffffffff
The device node tells you that this device has a
 resource list with 4 entries, one of which is an interrupt entry
 corresponding to IRQ 1. (The level and vector numbers represent
 the IRQ vector, not the interrupt vector.) IRQ 1 is the
 traditional PC/AT IRQ number associated with the PS/2 keyboard
 device, so this is the expected value. (A USB keyboard would have
 a different interrupt.)
On ACPI systems, you can obtain this information in a
 slightly easier way by reading the extended output of the
 !acpiirqarb command introduced earlier. As
 part of its output, it displays the IRQ to IDT mapping
 table:
Interrupt Controller (Inputs: 0x0-0x17 Dev: 0000000000000000):
 (00)Cur:IDT-a1 Ref-1 edg hi Pos:IDT-00 Ref-0 edg hi
 (01)Cur:IDT-81 Ref-1 edg hi Pos:IDT-00 Ref-0 edg hi
 (02)Cur:IDT-00 Ref-0 edg hi Pos:IDT-00 Ref-0 edg hi
 (03)Cur:IDT-00 Ref-0 edg hi Pos:IDT-00 Ref-0 edg hi
 (04)Cur:IDT-00 Ref-0 edg hi Pos:IDT-00 Ref-0 edg hi
 (05)Cur:IDT-00 Ref-0 edg hi Pos:IDT-00 Ref-0 edg hi
 (06)Cur:IDT-00 Ref-0 edg hi Pos:IDT-00 Ref-0 edg hi
 (07)Cur:IDT-00 Ref-0 edg hi Pos:IDT-00 Ref-0 edg hi
 (08)Cur:IDT-71 Ref-1 edg hi Pos:IDT-00 Ref-0 edg hi
 (09)Cur:IDT-b1 Ref-1 lev hi Pos:IDT-00 Ref-0 edg hi
 (0a)Cur:IDT-00 Ref-0 edg hi Pos:IDT-00 Ref-0 edg hi
 (0b)Cur:IDT-00 Ref-0 edg hi Pos:IDT-00 Ref-0 edg hi
 (0c)Cur:IDT-91 Ref-1 edg hi Pos:IDT-00 Ref-0 edg hi
 (0d)Cur:IDT-61 Ref-1 edg hi Pos:IDT-00 Ref-0 edg hi
 (0e)Cur:IDT-82 Ref-1 edg hi Pos:IDT-00 Ref-0 edg hi
 (0f)Cur:IDT-72 Ref-1 edg hi Pos:IDT-00 Ref-0 edg hi
 (10)Cur:IDT-51 Ref-3 lev low Pos:IDT-00 Ref-0 edg hi
 (11)Cur:IDT-b2 Ref-1 lev low Pos:IDT-00 Ref-0 edg hi
 (12)Cur:IDT-a2 Ref-5 lev low Pos:IDT-00 Ref-0 edg hi
 (13)Cur:IDT-92 Ref-1 lev low Pos:IDT-00 Ref-0 edg hi
 (14)Cur:IDT-62 Ref-2 lev low Pos:IDT-00 Ref-0 edg hi
 (15)Cur:IDT-a3 Ref-2 lev low Pos:IDT-00 Ref-0 edg hi
 (16)Cur:IDT-b3 Ref-1 lev low Pos:IDT-00 Ref-0 edg hi
 (17)Cur:IDT-52 Ref-1 lev low Pos:IDT-00 Ref-0 edg hi
As expected, IRQ 1 is associated with IDT entry 0x81. For
 more information on device objects, resources, and other related
 concepts, see Chapter 8, “I/O System,” in Part 2.
The ISR’s address for the interrupt object is stored in the
 ServiceRoutine field (which is what
 !idt displays in its output), and the
 interrupt code that actually executes when an interrupt occurs is
 stored in the DispatchCode array at the end
 of the interrupt object. The interrupt code stored there is
 programmed to build the trap frame on the stack and then call the
 function stored in the DispatchAddress field
 (KiInterruptDispatch in the example), passing
 it a pointer to the interrupt object.

Windows and Real-Time Processing
Deadline requirements, either hard or soft,
 characterize real-time environments. Hard real-time systems (for
 example, a nuclear power plant control system) have deadlines the
 system must meet to avoid catastrophic failures, such as loss of
 equipment or life. Soft real-time systems (for example, a car’s
 fuel-economy optimization system) have deadlines the system can
 miss, but timeliness is still a desirable trait. In real-time
 systems, computers have sensor input devices and control output
 devices. The designer of a real-time computer system must know
 worst-case delays between the time an input device generates an
 interrupt and the time the device’s driver can control the output
 device to respond. This worst-case analysis must take into account
 the delays the operating system introduces as well as the delays
 the application and device drivers impose.
Because Windows doesn’t enable controlled prioritization of
 device IRQs and user-level applications execute only when a
 processor’s IRQL is at passive level, Windows isn’t typically
 suitable as a real-time operating system. The system’s devices and
 device drivers—not Windows—ultimately determine the worst-case
 delay. This factor becomes a problem when the real-time system’s
 designer uses off-the-shelf hardware. The designer can have
 difficulty determining how long every off-the-shelf device’s ISR
 or DPC might take in the worst case. Even after testing, the
 designer can’t guarantee that a special case in a live system
 won’t cause the system to miss an important deadline. Furthermore,
 the sum of all the delays a system’s DPCs and ISRs can introduce
 usually far exceeds the tolerance of a time-sensitive
 system.
Although many types of embedded systems (for example,
 printers and automotive computers) have real-time requirements,
 Windows Embedded Standard 7 doesn’t have real-time
 characteristics. It is simply a version of Windows 7 that makes it
 possible to produce small-footprint versions of Windows 7 suitable
 for running on devices with limited resources. For example, a
 device that has no networking capability would omit all the
 Windows 7 components related to networking, including network
 management tools and adapter and protocol stack device
 drivers.
Still, there are third-party vendors that supply real-time
 kernels for Windows. The approach these vendors take is to embed
 their real-time kernel in a custom HAL and to have Windows run as
 a task in the real-time operating system. The task running Windows
 serves as the user interface to the system and has a lower
 priority than the tasks responsible for managing the
 device.

Associating an ISR with a particular level of interrupt is
 called connecting an interrupt object, and
 dissociating an ISR from an IDT entry is called
 disconnecting an interrupt object. These
 operations, accomplished by calling the kernel functions
 IoConnectInterruptEx and
 IoDisconnectInterruptEx, allow a device driver
 to “turn on” an ISR when the driver is loaded into the system and to
 “turn off” the ISR if the driver is unloaded.
Using the interrupt object to register an ISR prevents
 device drivers from fiddling directly with interrupt hardware (which
 differs among processor architectures) and from needing to know any
 details about the IDT. This kernel feature aids in creating portable
 device drivers because it eliminates the need to code in assembly
 language or to reflect processor differences in device
 drivers.
Interrupt objects provide other benefits as well. By using the
 interrupt object, the kernel can synchronize the execution of the
 ISR with other parts of a device driver that might share data with
 the ISR. (See Chapter 8 in Part 2 for more information about how
 device drivers respond to interrupts.)
Furthermore, interrupt objects allow the kernel to easily call
 more than one ISR for any interrupt level. If multiple device
 drivers create interrupt objects and connect them to the same IDT
 entry, the interrupt dispatcher calls each routine when an interrupt
 occurs at the specified interrupt line. This capability allows the
 kernel to easily support daisy-chain
 configurations, in which several devices share the same interrupt
 line. The chain breaks when one of the ISRs claims ownership for the
 interrupt by returning a status to the interrupt dispatcher.
If multiple devices sharing the same interrupt require service
 at the same time, devices not acknowledged by their ISRs will
 interrupt the system again once the interrupt dispatcher has lowered
 the IRQL. Chaining is permitted only if all the device drivers
 wanting to use the same interrupt indicate to the kernel that they
 can share the interrupt; if they can’t, the Plug and Play manager
 reorganizes their interrupt assignments to ensure that it honors the
 sharing requirements of each. If the interrupt vector is shared, the
 interrupt object invokes KiChainedDispatch,
 which will invoke the ISRs of each registered interrupt object in
 turn until one of them claims the interrupt or all have been
 executed. In the earlier sample !idt output (in
 the EXPERIMENT: Viewing the IDT section), vector
 0xa2 is connected to several chained interrupt objects. On the
 system it was run on, it happens to correspond to an integrated
 7-in-1 media card reader, which is a combination of Secure Digital
 (SD), Compact Flash (CF), MultiMedia Card (MMC) and other types of
 readers, each having their individual interrupt. Because it’s
 packaged as one device by the same vendor, it makes sense that its
 interrupts share the same vector.
Line-Based vs. Message Signaled-Based Interrupts
Shared interrupts are often the cause of high interrupt
 latency and can also cause stability issues. They are typically
 undesirable and a side effect of the limited number of physical
 interrupt lines on a computer. For example, in the previous
 example of the 7-in-1 media card reader, a much better solution is
 for each device to have its own interrupt and for one driver to
 manage the different interrupts knowing which device they came
 from. However, consuming four IRQ lines for a single device
 quickly leads to IRQ line exhaustion. Additionally, PCI devices
 are each connected to only one IRQ line anyway, so the media card
 reader cannot use more than one IRQ in the first place.
Other problems with generating interrupts through an IRQ
 line is that incorrect management of the IRQ signal can lead to
 interrupt storms or other kinds of deadlocks on the machine,
 because the signal is driven “high” or “low” until the ISR
 acknowledges it. (Furthermore, the interrupt controller must
 typically receive an EOI signal as well.) If either of these does not happen due to a bug, the system
 can end up in an interrupt state forever, further interrupts could
 be masked away, or both. Finally, line-based interrupts provide
 poor scalability in multiprocessor environments. In many cases,
 the hardware has the final decision as to which processor will be
 interrupted out of the possible set that the Plug and Play manager
 selected for this interrupt, and there is little device drivers
 can do.
A solution to all these problems is a new interrupt
 mechanism first introduced in the PCI 2.2 standard called
 message-signaled interrupts (MSI). Although
 it remains an optional component of the standard that is seldom
 found in client machines, an increasing number of servers and
 workstations implement MSI support, which is fully supported by
 the all recent versions of Windows. In the MSI model, a device
 delivers a message to its driver by writing to a specific memory
 address. This action causes an interrupt, and Windows then calls
 the ISR with the message content (value) and the address where the
 message was delivered. A device can also deliver multiple messages
 (up to 32) to the memory address, delivering different payloads
 based on the event.
Because communication is based across a memory value, and
 because the content is delivered with the interrupt, the need for
 IRQ lines is removed (making the total system limit of MSIs equal
 to the number of interrupt vectors, not IRQ lines), as is the need
 for a driver ISR to query the device for data related to the
 interrupt, decreasing latency. Due to the large number of device
 interrupts available through this model, this effectively
 nullifies any benefit of sharing interrupts, decreasing latency
 further by directly delivering the interrupt data to the concerned
 ISR.
Finally, MSI-X, an extension to the MSI model, which is
 introduced in PCI 3.0, adds support for 32-bit messages (instead
 of 16-bit), a maximum of 2048 different messages (instead of just
 32), and more importantly, the ability to use a different address
 (which can be dynamically determined) for each of the MSI
 payloads. Using a different address allows the MSI payload to be
 written to a different physical address range that belongs to a
 different processor, or a different set of target processors,
 effectively enabling nonuniform memory access (NUMA)-aware
 interrupt delivery by sending the interrupt to the processor that
 initiated the related device request. This improves latency and
 scalability by monitoring both load and closest NUMA node during
 interrupt completion.

Interrupt Affinity and Priority
On systems that both support ACPI and contain an APIC,
 Windows enables driver developers and administrators to somewhat
 control the processor affinity (selecting the processor or group
 of processors that receives the interrupt) and affinity policy
 (selecting how processors will be chosen and which processors in a
 group will be chosen). Furthermore, it enables a primitive
 mechanism of interrupt prioritization based on IRQL
 selection. Affinity policy is defined according to Table 3-1, and it’s configurable through
 a registry value called InterruptPolicyValue in the Interrupt
 Management\Affinity Policy key under the device’s instance key in
 the registry. Because of this, it does not require any code to
 configure—an administrator can add this value to a given driver’s
 key to influence its behavior. Microsoft provides such a tool,
 called the Interrupt Affinity policy Tool, which can be downloaded
 from http://www.microsoft.com/whdc/system/sysperf/intpolicy.mspx.
Table 3-1. IRQ Affinity Policies
	Policy
	Meaning

	IrqPolicyMachineDefault
	The device does not require a
 particular affinity policy. Windows uses the default
 machine policy, which (for machines with less than eight
 logical processors) is to select any available processor
 on the machine.

	IrqPolicyAllCloseProcessors
	On a NUMA machine, the Plug and
 Play manager assigns the interrupt to all the processors
 that are close to the device (on the same node). On
 non-NUMA machines, this is the same as
 IrqPolicyAllProcessorsInMachine.

	IrqPolicyOneCloseProcessor
	On a NUMA machine, the Plug and
 Play manager assigns the interrupt to one processor that
 is close to the device (on the same node). On non-NUMA
 machines, the chosen processor will be any available on
 the system.

	IrqPolicyAllProcessorsInMachine
	The interrupt is processed by
 any available processor on the machine.

	IrqPolicySpecifiedProcessors
	The interrupt is processed only
 by one of the processors specified in the affinity mask
 under the AssignmentSetOverride registry
 value.

	IrqPolicySpreadMessagesAcrossAllProcessors
	Different message-signaled
 interrupts are distributed across an optimal set of
 eligible processors, keeping track of NUMA topology
 issues, if possible. This requires MSI-X support on the
 device and platform.

Other than setting this affinity policy, another registry
 value can also be used to set the interrupt’s priority, based on
 the values in Table 3-2.
Table 3-2. IRQ Priorities
	Priority
	Meaning

	IrqPriorityUndefined
	No particular priority is
 required by the device. It receives the default priority
 (IrqPriorityNormal).

	IrqPriorityLow
	The device can tolerate high
 latency and should receive a lower IRQL than
 usual.

	IrqPriorityNormal
	The device expects average
 latency. It receives the default IRQL associated with its
 interrupt vector.

	IrqPriorityHigh
	The device requires as little
 latency as possible. It receives an elevated IRQL beyond
 its normal assignment.

As discussed earlier, it is important to note that
 Windows is not a real-time operating system, and as such, these
 IRQ priorities are hints given to the system that control only the
 IRQL associated with the interrupt and provide no extra priority
 other than the Windows IRQL priority-scheme mechanism. Because the
 IRQ priority is also stored in the registry, administrators are
 free to set these values for drivers should there be a requirement
 of lower latency for a driver not taking advantage of this
 feature.

Software Interrupts

Although hardware generates most interrupts, the Windows
 kernel also generates software interrupts for a variety of tasks,
 including these:
	Initiating thread dispatching

	Non-time-critical interrupt processing

	Handling timer expiration

	Asynchronously executing a procedure in the context of a
 particular thread

	Supporting asynchronous I/O operations

These tasks are described in the following subsections.
Dispatch or Deferred Procedure Call (DPC)
 Interrupts

When a thread can no longer continue executing, perhaps
 because it has terminated or because it voluntarily enters a wait
 state, the kernel calls the dispatcher directly to effect an
 immediate context switch. Sometimes, however, the kernel detects
 that rescheduling should occur when it is deep within many layers
 of code. In this situation, the kernel requests dispatching but
 defers its occurrence until it completes its current activity.
 Using a DPC software interrupt is a convenient way to achieve this
 delay.
The kernel always raises the processor’s IRQL to
 DPC/dispatch level or above when it needs to synchronize access to
 shared kernel structures. This disables additional software
 interrupts and thread dispatching. When the kernel detects that
 dispatching should occur, it requests a DPC/dispatch-level
 interrupt; but because the IRQL is at or above that level, the
 processor holds the interrupt in check. When the kernel completes
 its current activity, it sees that it’s going to lower the IRQL
 below DPC/dispatch level and checks to see whether any dispatch
 interrupts are pending. If there are, the IRQL drops to
 DPC/dispatch level and the dispatch interrupts are processed.
 Activating the thread dispatcher by using a software interrupt is
 a way to defer dispatching until conditions are right. However,
 Windows uses software interrupts to defer other types of
 processing as well.
In addition to thread dispatching, the kernel also
 processes deferred procedure calls (DPCs) at this IRQL. A DPC is a
 function that performs a system task—a task that is less
 time-critical than the current one. The functions are called
 deferred because they might not execute
 immediately.
DPCs provide the operating system with the capability to
 generate an interrupt and execute a system function in kernel
 mode. The kernel uses DPCs to process timer expiration (and
 release threads waiting for the timers) and to reschedule the
 processor after a thread’s quantum expires. Device drivers use
 DPCs to process interrupts. To provide timely service for hardware
 interrupts, Windows—with the cooperation of device
 drivers—attempts to keep the IRQL below device IRQL levels. One
 way that this goal is achieved is for device driver ISRs to
 perform the minimal work necessary to acknowledge their device,
 save volatile interrupt state, and defer data transfer or other
 less time-critical interrupt processing activity for execution in
 a DPC at DPC/dispatch IRQL. (See Chapter 8 in Part 2 for more
 information on DPCs and the I/O system.)
A DPC is represented by a DPC object, a
 kernel control object that is not visible to user-mode programs
 but is visible to device drivers and other system code. The most
 important piece of information the DPC object contains is the
 address of the system function that the kernel will call when it
 processes the DPC interrupt. DPC routines that are waiting to
 execute are stored in kernel-managed queues, one per processor,
 called DPC queues. To request a DPC, system
 code calls the kernel to initialize a DPC object and then places
 it in a DPC queue.
By default, the kernel places DPC objects at the end of the
 DPC queue of the processor on which the DPC was requested
 (typically the processor on which the ISR executed). A device
 driver can override this behavior, however, by specifying a DPC
 priority (low, medium, medium-high, or high, where medium is the
 default) and by targeting the DPC at a particular processor. A DPC
 aimed at a specific CPU is known as a targeted
 DPC. If the DPC has a high priority, the kernel inserts
 the DPC object at the front of the queue; otherwise, it is placed
 at the end of the queue for all other priorities.
When the processor’s IRQL is about to drop from an IRQL of
 DPC/dispatch level or higher to a lower IRQL (APC or passive
 level), the kernel processes DPCs. Windows ensures that the IRQL
 remains at DPC/dispatch level and pulls DPC objects off the
 current processor’s queue until the queue is empty (that is, the
 kernel “drains” the queue), calling each DPC function in turn.
 Only when the queue is empty will the kernel let the IRQL drop
 below DPC/dispatch level and let regular thread execution
 continue. DPC processing is depicted in Figure 3-7.
DPC priorities can affect system behavior another way. The
 kernel usually initiates DPC queue draining with a
 DPC/dispatch-level interrupt. The kernel generates such an
 interrupt only if the DPC is directed at the current processor
 (the one on which the ISR executes) and the DPC has a priority
 higher than low. If the DPC has a low priority, the kernel
 requests the interrupt only if the number of outstanding DPC
 requests for the processor rises above a threshold or if the
 number of DPCs requested on the processor within a time window is
 low.
[image: Delivering a DPC]

Figure 3-7. Delivering a DPC

If a DPC is targeted at a CPU different from the one
 on which the ISR is running and the DPC’s priority is either high
 or medium-high, the kernel immediately signals the target CPU (by
 sending it a dispatch IPI) to drain its DPC queue, but only as
 long as the target processor is idle. If the priority is medium or
 low, the number of DPCs queued on the target processor must exceed
 a threshold for the kernel to trigger a DPC/dispatch interrupt.
 The system idle thread also drains the DPC queue for the processor
 it runs on. Although DPC targeting and priority levels are
 flexible, device drivers rarely need to change the default
 behavior of their DPC objects. Table 3-3 summarizes the
 situations that initiate DPC queue draining. Medium-high and high
 appear and are, in fact, equal priorities when looking at the
 generation rules. The difference comes from their insertion in the
 list, with high interrupts being at the head and medium-high
 interrupts at the tail.
Table 3-3. DPC Interrupt Generation Rules
	DPC Priority
	DPC Targeted at ISR’s
 Processor
	DPC Targeted at Another
 Processor

	Low
	DPC queue length exceeds maximum
 DPC queue length, or DPC request rate is less than minimum
 DPC request rate
	DPC queue length exceeds maximum
 DPC queue length, or system is idle

	Medium
	Always
	DPC queue length exceeds maximum
 DPC queue length, or system is idle

	Medium-High
	Always
	Target processor is
 idle

	High
	Always
	Target processor is
 idle

Because user-mode threads execute at low IRQL, the
 chances are good that a DPC will interrupt the execution of an
 ordinary user’s thread. DPC routines execute without regard to
 what thread is running, meaning that when a DPC routine runs, it
 can’t assume what process address space is currently mapped. DPC
 routines can call kernel functions, but they can’t call system
 services, generate page faults, or create or wait for dispatcher
 objects (explained later in this chapter). They can, however,
 access nonpaged system memory addresses, because system address
 space is always mapped regardless of what the current process
 is.
DPCs are provided primarily for device drivers, but the
 kernel uses them too. The kernel most frequently uses a DPC to
 handle quantum expiration. At every tick of the system clock, an
 interrupt occurs at clock IRQL. The clock interrupt
 handler (running at clock IRQL) updates the system time
 and then decrements a counter that tracks how long the current
 thread has run. When the counter reaches 0, the thread’s time
 quantum has expired and the kernel might need to reschedule the
 processor, a lower-priority task that should be done at
 DPC/dispatch IRQL. The clock interrupt handler queues a DPC to
 initiate thread dispatching and then finishes its work and lowers
 the processor’s IRQL. Because the DPC interrupt has a lower
 priority than do device interrupts, any pending device interrupts
 that surface before the clock interrupt completes are handled
 before the DPC interrupt occurs.
Because DPCs execute regardless of whichever thread is
 currently running on the system (much like interrupts), they are a
 primary cause for perceived system unresponsiveness of client
 systems or workstation workloads because even the highest-priority
 thread will be interrupted by a pending DPC. Some DPCs run long
 enough that users might perceive video or sound lagging, and even
 abnormal mouse or keyboard latencies, so for the benefit of
 drivers with long-running DPCs, Windows supports
 threaded DPCs.
Threaded DPCs, as their name implies, function by executing
 the DPC routine at passive level on a real-time priority (priority
 31) thread. This allows the DPC to preempt most user-mode threads
 (because most application threads don’t run at real-time priority
 ranges), but it allows other interrupts, nonthreaded DPCs, APCs,
 and higher-priority threads to preempt the routine.
The threaded DPC mechanism is enabled by default, but you
 can disable it by adding a DWORD value
 HKEY_LOCAL_MACHINE\System\CurrentControlSet\Control\Session
 Manager\kernel\ThreadDpcEnable and setting it to 0. Because
 threaded DPCs can be disabled, driver developers who make use of
 threaded DPCs must write their routines following the same rules
 as for nonthreaded DPC routines and cannot access paged memory,
 perform dispatcher waits, or make assumptions about the IRQL level
 at which they are executing. In addition, they must not use the
 KeAcquire/ReleaseSpinLockAtDpcLevel APIs
 because the functions assume the CPU is at dispatch level.
 Instead, threaded DPCs must use
 KeAcquire/ReleaseSpinLockForDpc, which
 performs the appropriate action after checking the current
 IRQL.
EXPERIMENT: Monitoring Interrupt and DPC Activity
You can use Process Explorer to monitor interrupt
 and DPC activity by opening the System Information dialog and
 switching to the CPU tab, where it lists the number of
 interrupts and DPCs executed each time Process Explorer
 refreshes the display (1 second by default):
[image: image with no caption]

[image: image with no caption]

You can also trace the execution of specific interrupt
 service routines and deferred procedure calls with the built-in
 event tracing support (described later in this chapter):
	Start capturing events by opening an elevated command
 prompt, navigating to the Microsoft Windows Performance
 Toolkit directory (typically in c:\Program Files) and typing
 the following command (make sure no other program is
 capturing events, such as Process Explorer or Process
 Monitor, or this will fail with an error):
xperf –on PROC_THREAD+LOADER+DPC+INTERRUPT

	Stop capturing events by typing the following:
xperf –d dpcisr.etl

	Generate reports for the event capture by typing
 this:
xperf dpcisr.etl
tracerpt \kernel.etl –report dpcisr.html –f html
This will generate a web page called
 dpcisr.html.

	Open report.html, and expand the DPC/ISR subsection.
 Expand the DPC/ISR Breakdown area, and you will see
 summaries of the time spent in ISRs and DPCs by each driver.
 For example:
[image: image with no caption]

Running an ln command in the kernel
 debugger on the address of each event record shows the name of
 the function that executed the DPC or ISR:
lkd> ln 0x806321C7
(806321c7) ndis!ndisInterruptDpc

lkd> ln 0x820AED3F
(820aed3f) nt!IopTimerDispatch

lkd> ln 0x82051312
(82051312) nt!PpmPerfIdleDpc
The first is a DPC queued by a network card NDIS miniport
 driver. The second is a DPC for a generic I/O timer expiration.
 The third address is the address of a DPC for an idle
 performance operation.

Other than using it to get an HTML report, you can
 use the Xperf Viewer to show a detailed overview of all DPC and
 ISR events by right-clicking on the DPC and/or ISR CPU Usage
 graphs in the main Xperf window and choosing Summary Table. You
 will be able to see a per-driver view of each DPC and ISR in
 detail, along with its duration and count, just as shown in the
 following graphic:
[image: image with no caption]

Asynchronous Procedure Call Interrupts

Asynchronous procedure calls (APCs) provide a way for user
 programs and system code to execute in the context of a particular
 user thread (and hence a particular process address space).
 Because APCs are queued to execute in the context of a particular
 thread and run at an IRQL less than DPC/dispatch level, they don’t
 operate under the same restrictions as a DPC. An APC routine can
 acquire resources (objects), wait for object handles, incur page
 faults, and call system services.
APCs are described by a kernel control object, called an
 APC object. APCs waiting to execute reside in
 a kernel-managed APC queue. Unlike the DPC
 queue, which is systemwide, the APC queue is thread-specific—each
 thread has its own APC queue. When asked to queue an APC, the
 kernel inserts it into the queue belonging to the thread that will
 execute the APC routine. The kernel, in turn, requests a software
 interrupt at APC level, and when the thread eventually begins
 running, it executes the APC.
There are two kinds of APCs: kernel mode and user mode.
 Kernel-mode APCs don’t require permission from a target thread to
 run in that thread’s context, while user-mode APCs do. Kernel-mode
 APCs interrupt a thread and execute a procedure without the
 thread’s intervention or consent. There are also two types of
 kernel-mode APCs: normal and special. Special APCs execute at APC
 level and allow the APC routine to modify some of the APC
 parameters. Normal APCs execute at passive level and receive the
 modified parameters from the special APC routine (or the original
 parameters if they weren’t modified).
Both normal and special APCs can be disabled by
 raising the IRQL to APC level or by calling
 KeEnterGuardedRegion.
 KeEnterGuardedRegion disables APC delivery by
 setting the SpecialApcDisable field in the
 calling thread’s KTHREAD structure (described further in Chapter 5). A thread
 can disable normal APCs only by calling
 KeEnterCriticalRegion, which sets the
 KernelApcDisable field in the thread’s
 KTHREAD structure. Table 3-4
 summarizes the APC insertion and delivery behavior for each type
 of APC.
The executive uses kernel-mode APCs to perform operating
 system work that must be completed within the address space (in
 the context) of a particular thread. It can use special
 kernel-mode APCs to direct a thread to stop executing an
 interruptible system service, for example, or to record the
 results of an asynchronous I/O operation in a thread’s address
 space. Environment subsystems use special kernel-mode APCs to make
 a thread suspend or terminate itself or to get or set its
 user-mode execution context. The Subsystem for UNIX Applications
 uses kernel-mode APCs to emulate the delivery of UNIX signals to
 Subsystem for UNIX Application processes.
Another important use of kernel-mode APCs is related to
 thread suspension and termination. Because these operations can be
 initiated from arbitrary threads and directed to other arbitrary
 threads, the kernel uses an APC to query the thread context as
 well as to terminate the thread. Device drivers often block APCs
 or enter a critical or guarded region to prevent these operations
 from occurring while they are holding a lock; otherwise, the lock
 might never be released, and the system would hang.
Table 3-4. APC Insertion and Delivery
	APC Type
	Insertion
 Behavior
	Delivery Behavior

	Special (kernel)
	Inserted at the tail of the
 kernel-mode APC list
	Delivered at APC level as soon
 as IRQL drops and the thread is not in a guarded region.
 It is given pointers to arguments specified when inserting
 the APC.

	Normal (kernel)
	Inserted right after the last
 special APC (at the head of all other normal
 APCs)
	Delivered at PASSIVE_LEVEL after
 the associated special APC was executed. It is given
 arguments returned by the associated special APC (which
 can be the original arguments used during insertion or new
 ones).

	Normal (user)
	Inserted at the tail of the
 user-mode APC list
	Delivered at PASSIVE_LEVEL as
 soon as IRQL drops, the thread is not in a critical (or
 guarded) region, and the thread is in an alerted state. It
 is given arguments returned by the associated special APC
 (which can be the original arguments used during insertion
 or new ones).

	Normal (user) Thread Exit
 (PsExitSpecialApc)
	Inserted at the head of the
 user-mode APC list
	Delivered at PASSIVE_LEVEL on
 return to user mode, if the thread is doing an alerted
 user-mode wait. It is given arguments returned by the
 thread-termination special APC.

Device drivers also use kernel-mode APCs. For example, if an
 I/O operation is initiated and a thread goes into a wait state,
 another thread in another process can be scheduled to run. When
 the device finishes transferring data, the I/O system must somehow
 get back into the context of the thread that initiated the I/O so
 that it can copy the results of the I/O operation to the buffer in
 the address space of the process containing that thread. The I/O
 system uses a special kernel-mode APC to perform this action,
 unless the application used the
 SetFileIoOverlappedRange API or I/O
 completion ports—in which case, the buffer will either be
 global in memory or copied only after the thread pulls a
 completion item from the port. (The use of APCs in the I/O system
 is discussed in more detail in Chapter 8 in Part 2.)
Several Windows APIs—such as
 ReadFileEx, WriteFileEx,
 and QueueUserAPC—use user-mode APCs. For
 example, the ReadFileEx and
 WriteFileEx functions allow the caller to
 specify a completion routine to be called when the I/O operation
 finishes. The I/O completion is implemented by queuing an APC to
 the thread that issued the I/O. However, the callback to the
 completion routine doesn’t necessarily take place when the APC is
 queued because user-mode APCs are delivered to a thread only when
 it’s in an alertable wait state. A thread can
 enter a wait state either by waiting for an object handle and
 specifying that its wait is alertable (with the Windows
 WaitForMultipleObjectsEx function) or by
 testing directly whether it has a pending APC (using
 SleepEx). In both cases, if a user-mode APC
 is pending, the kernel interrupts (alerts) the thread, transfers
 control to the APC routine, and resumes the thread’s execution
 when the APC routine completes. Unlike kernel-mode APCs, which can
 execute at APC level, user-mode APCs execute at passive
 level.
APC delivery can reorder the wait queues—the lists of which
 threads are waiting for what, and in what order they are waiting.
 (Wait resolution is described in the section Low-IRQL Synchronization, later in this chapter.) If
 the thread is in a wait state when an APC is delivered, after the
 APC routine completes, the wait is reissued or re-executed. If the
 wait still isn’t resolved, the thread returns to the wait state,
 but now it will be at the end of the list of objects it’s waiting
 for. For example, because APCs are used to suspend a thread from
 execution, if the thread is waiting for any objects, its wait is
 removed until the thread is resumed, after which that thread will
 be at the end of the list of threads waiting to access the objects
 it was waiting for. A thread performing an alertable kernel-mode
 wait will also be woken up during thread termination, allowing
 such a thread to check whether it woke up as a result of
 termination or for a different reason.

Timer Processing

The system’s clock interval timer is probably the most important
 device on a Windows machine, as evidenced by its high IRQL value
 (CLOCK_LEVEL) and due to the critical nature of the work it is
 responsible for. Without this interrupt, Windows would lose track of
 time, causing erroneous results in calculations of uptime and clock
 time—and worse, causing timers not to expire anymore and threads never
 to lose their quantum anymore. Windows would also not be a preemptive
 operating system, and unless the current running thread yielded the
 CPU, critical background tasks and scheduling could never occur on a
 given processor.
Windows programs the system clock to fire at the most
 appropriate interval for the machine, and subsequently allows drivers,
 applications, and administrators to modify the clock interval for
 their needs. Typically, the system clock is maintained either by the
 PIT (Programmable Interrupt Timer) chip that is present on all
 computers since the PC/AT, or the RTC (Real Time Clock). The PIT works
 on a crystal that is tuned at one-third the NTSC color carrier
 frequency (because it was originally used for TV-Out on the first CGA
 video cards), and the HAL uses various achievable multiples to reach
 millisecond-unit intervals, starting at 1 ms all the way up to 15 ms.
 The RTC, on the other hand, runs at 32.768 KHz, which, by being a
 power of two, is easily configured to run at various intervals that
 are also powers of two. On today’s machines, the APIC
 Multiprocessor HAL configures the RTC to fire every 15.6 milliseconds,
 which corresponds to about 64 times a second.
Some types of Windows applications require very fast response
 times, such as multimedia applications. In fact, some multimedia tasks
 require rates as low as 1 ms. For this reason, Windows implements APIs
 and mechanisms that enable lowering the interval of the system’s clock
 interrupt, which results in more clock interrupts (at least on
 processor 0). Note that this increases the resolution of all timers in
 the system, potentially causing other timers to expire more
 frequently.
Windows tries its best to restore the clock timer back to its
 original value whenever it can. Each time a process requests a clock
 interval change, Windows increases an internal reference count and
 associates it with the process. Similarly, drivers (which can also
 change the clock rate) get added to the global reference count. When
 all drivers have restored the clock and all processes that modified
 the clock either have exited or restored it, Windows restores the
 clock to its default value (or, barring that, to the next highest
 value that’s been required by a process or driver).
EXPERIMENT: Identifying High-Frequency Timers
Due to the problems that high-frequency timers can cause,
 Windows uses Event Tracing for Windows (ETW) to trace all processes
 and drivers that request a change in the system’s clock interval,
 displaying the time of the occurrence and the requested interval.
 The current interval is also shown. This data is of great use to
 both developers and system administrators in identifying the causes
 of poor battery performance on otherwise healthy systems, and to
 decrease overall power consumption on large systems as well. To
 obtain it, simply run powercfg
 /energy and you should obtain an HTML file called
 energy-report.html similar to the one shown
 here:
[image: image with no caption]

Scroll down to the section on Platform Timer
 Resolution, and you will be shown all the applications that have
 modified the timer resolution and are still active, along with the
 call stacks that caused this call. Timer resolutions are shown in
 hundreds of nanoseconds, so a period of 20,000 corresponds to 2 ms.
 In the sample shown, two applications—namely, Microsoft PowerPoint
 and the UltraVNC remote desktop server—each requested a higher
 resolution.
You can also use the debugger to obtain this information. For
 each process, the EPROCESS structure contains a number of fields,
 shown next, that help identify changes in timer resolution:
+0x4a8 TimerResolutionLink : _LIST_ENTRY [0xfffffa80'05218fd8 - 0xfffffa80'059cd508]
+0x4b8 RequestedTimerResolution : 0
+0x4bc ActiveThreadsHighWatermark : 0x1d
+0x4c0 SmallestTimerResolution : 0x2710
+0x4c8 TimerResolutionStackRecord : 0xfffff8a0'0476ecd0 _PO_DIAG_STACK_RECORD
Note that the debugger shows you an additional piece of
 information: the smallest timer resolution that was ever requested
 by a given process. In this example, the process shown corresponds
 to PowerPoint 2010, which typically requests a lower timer
 resolution during slide-shows, but not during slide editing mode.
 The EPROCESS fields of PowerPoint, shown in the preceding code,
 prove this, and the stack could be parsed by dumping the
 PO_DIAG_STACK_RECORD structure.
Finally, the TimerResolutionLink field
 connects all processes that have made changes to timer resolution,
 through the ExpTimerResolutionListHead doubly
 linked list. Parsing this list with the !list
 debugger command can reveal all processes on the system that have,
 or had, made changes to the timer resolution, when the
 powercfg command is unavailable or information
 on past processes is required:
lkd> !list "-e -x \"dt nt!_EPROCESS @$extret-@@(#FIELD_OFFSET(nt!_EPROCESS,
TimerResolutionLink))
ImageFileName SmallestTimerResolution RequestedTimerResolution\"
nt!ExpTimerResolutionListHead"

dt nt!_EPROCESS @$extret-@@(#FIELD_OFFSET(nt!_EPROCESS, TimerResolutionLink))
ImageFileName
SmallestTimerResolution RequestedTimerResolution
 +0x2e0 ImageFileName : [15] "audiodg.exe"
 +0x4b8 RequestedTimerResolution : 0
 +0x4c0 SmallestTimerResolution : 0x2710

dt nt!_EPROCESS @$extret-@@(#FIELD_OFFSET(nt!_EPROCESS, TimerResolutionLink))
ImageFileName
SmallestTimerResolution RequestedTimerResolution
 +0x2e0 ImageFileName : [15] "chrome.exe"
 +0x4b8 RequestedTimerResolution : 0
 +0x4c0 SmallestTimerResolution : 0x2710

dt nt!_EPROCESS @$extret-@@(#FIELD_OFFSET(nt!_EPROCESS, TimerResolutionLink))
ImageFileName
SmallestTimerResolution RequestedTimerResolution
 +0x2e0 ImageFileName : [15] "calc.exe"
 +0x4b8 RequestedTimerResolution : 0
 +0x4c0 SmallestTimerResolution : 0x2710

dt nt!_EPROCESS @$extret-@@(#FIELD_OFFSET(nt!_EPROCESS, TimerResolutionLink))
ImageFileName
SmallestTimerResolution RequestedTimerResolution
 +0x2e0 ImageFileName : [15] "devenv.exe"
 +0x4b8 RequestedTimerResolution : 0
 +0x4c0 SmallestTimerResolution : 0x2710

dt nt!_EPROCESS @$extret-@@(#FIELD_OFFSET(nt!_EPROCESS, TimerResolutionLink))
ImageFileName
SmallestTimerResolution RequestedTimerResolution
 +0x2e0 ImageFileName : [15] "POWERPNT.EXE"
 +0x4b8 RequestedTimerResolution : 0
 +0x4c0 SmallestTimerResolution : 0x2710

dt nt!_EPROCESS @$extret-@@(#FIELD_OFFSET(nt!_EPROCESS, TimerResolutionLink))
ImageFileName
SmallestTimerResolution RequestedTimerResolution
 +0x2e0 ImageFileName : [15] "winvnc.exe"
 +0x4b8 RequestedTimerResolution : 0x2710
 +0x4c0 SmallestTimerResolution : 0x2710

Timer Expiration

As we said, one of the main tasks of the ISR
 associated with the interrupt that the RTC or PIT will generate is
 to keep track of system time, which is mainly done by the
 KeUpdateSystemTime routine. Its second job is
 to keep track of logical run time, such as process/thread execution
 times and the system tick time, which is the
 underlying number used by APIs such as
 GetTickCount that developers use to time
 operations in their applications. This part of the work is performed
 by KeUpdateRunTime. Before doing any of that
 work, however, KeUpdateRunTime checks whether
 any timers have expired.
Windows timers can be either absolute
 timers, which implies a distinct expiration time in the future, or
 relative timers, which contain a negative
 expiration value used as a positive offset from the current time
 during timer insertion. Internally, all timers are converted to an
 absolute expiration time, although the system keeps track of whether
 or not this is the “true” absolute time or a converted relative
 time. This difference is important in certain scenarios, such as
 Daylight Saving Time (or even manual clock changes). An absolute
 timer would still fire at “8PM” if the user moved the clock from 1PM
 to 7PM, but a relative timer—say, one set to expire “in two
 hours”—would not feel the effect of the clock change because two
 hours haven’t really elapsed. During system time-change events such
 as these, the kernel reprograms the absolute time associated with
 relative timers to match the new settings.
Because the clock fires at known interval multiples, the
 bottom bits of the current system time will be at one of 64 known
 positions (on an APIC HAL). Windows uses that fact to organize all
 driver and application timers into linked lists based on an array
 where each entry corresponds to a possible multiple of the system
 time. This table, called the timer table, is
 located in the PRCB, which enables each processor to perform its own independent timer
 expiration without needing to acquire a global lock, as shown in
 Figure 3-8. Later, you
 will see what determines which logical processor’s timer table a
 timer is inserted on. Because each processor has its own timer
 table, each processor also does its own timer expiration work. As
 each processor gets initialized, the table is filled with absolute
 timers with an infinite expiration time, to avoid any incoherent
 state. Each multiple of the system time that a timer can be
 associated with is called the hand, and it’s
 stored in the timer object’s dispatcher header. Therefore, to
 determine if a clock has expired, it is only necessary to check if
 there are any timers on the linked list associated with the current
 hand.
[image: Example of per-processor timer lists]

Figure 3-8. Example of per-processor timer lists

Although updating counters and checking a linked list are fast
 operations, going through every timer and expiring it is a
 potentially costly operation—keep in mind that all this work is
 currently being performed at CLOCK_LEVEL, an exceptionally elevated
 IRQL. Similarly to how a driver ISR queues a DPC to defer work, the
 clock ISR requests a DPC software interrupt, setting a flag in the
 PRCB so that the DPC draining mechanism knows timers need
 expiration. Likewise, when updating process/thread runtime, if the
 clock ISR determines that a thread has expired its quantum, it also
 queues a DPC software interrupt and sets a different PRCB flag.
 These flags are per-PRCB because each processor normally does its
 own processing of run-time updates, because each processor is
 running a different thread and has different tasks associated with
 it. Table 3-5 displays the
 various fields used in timer expiration and processing.
Once the IRQL eventually drops down back to DISPATCH_LEVEL, as
 part of DPC processing, these two flags will be picked up.
Table 3-5. Timer Processing KPRCB Fields
	KPRCB Field
	Type
	Description

	ReadySummary
	Bitmask (32 bits)
	Bitmask of priority levels that
 have one or more ready threads

	DeferredReadyListHead
	Singly linked list
	Single list head for the deferred
 ready queue

	DispatcherReadyListHead
	Array of 32 list
 entries
	List heads for the 32 ready
 queues

Chapter 5
 covers the actions related to thread scheduling and quantum
 expiration. Here we will take a look at the timer expiration work.
 Because the timers are linked together by hand, the expiration code
 (executed by the DPC associated with the PRCB in the
 TimerExpiryDpc field) parses this list from
 head to tail. (At insertion time, the timers nearest to the clock
 interval multiple will be first, followed by timers closer and
 closer to the next interval, but still within this hand.) There are
 two primary tasks to expiring a timer:
	The timer is treated as a dispatcher synchronization
 object (threads are waiting on the timer as part of a timeout or
 directly as part of a wait). The wait-testing and
 wait-satisfaction algorithms will be run on the timer. This work
 is described in a later section on synchronization in this
 chapter. This is how user-mode applications, and some drivers,
 make use of timers.

	The timer is treated as a control object associated with a
 DPC callback routine that executes when the timer expires. This
 method is reserved only for drivers and enables very low latency
 response to timer expiration. (The wait/dispatcher method
 requires all the extra logic of wait signaling.) Additionally,
 because timer expiration itself executes at DISPATCH_LEVEL,
 where DPCs also run, it is perfectly suited as a timer
 callback.

As each processor wakes up to handle the clock interval timer
 to perform system-time and run-time processing, it therefore also
 processes timer expirations after a slight latency/delay in which
 the IRQL drops from CLOCK_LEVEL to DISPATCH_LEVEL. Figure 3-9 shows this behavior on two
 processors—the solid arrows indicate the clock interrupt firing,
 while the dotted arrows indicate any timer expiration processing
 that might occur if the processor had associated timers.
[image: Timer expiration]

Figure 3-9. Timer expiration

Processor Selection

A critical determination that must be made when a
 timer is inserted is to pick the appropriate table to use—in other
 words, the most optimal processor choice. If the timer has no DPC
 associated with it, the kernel scans all processors in the current
 processor’s group that have not been parked. (For more information
 on Core Parking, see Chapter 5.) If the
 current processor is parked, it picks the next processor in the
 group; otherwise, the current processor is used. On the other hand,
 if the timer does have an associated DPC, the insertion code simply
 looks at the target processor associated with the DPC and selects
 that processor’s timer table.
In the case where the driver developer did not specify a
 target processor for the DPC, the kernel must make the choice.
 Because driver developers typically expect the DPC to execute on the
 same processor as the one the driver code was running on at
 insertion time, the kernel typically chooses CPU 0, since CPU 0 is
 the timekeeping processor that will always be active to pick up
 clock interrupts (more on this later). However, on server systems,
 the kernel picks a processor, just as it normally does when there is
 no DPC, by using the same checks just described.
This behavior is intended to improve performance and
 scalablity on server systems that make use of Hyper-V, although it
 can improve performance on any heavily loaded system. As system
 timers pile up—because most drivers do not affinitize their DPCs—CPU
 0 becomes more and more congested with the execution of timer
 expiration code, which increases latency and can even cause heavy
 delays or missed DPCs. Additionally, the timer expiration can start
 competing with the DPC timer typically associated with driver
 interrupt processing, such as network packet code, causing
 systemwide slowdowns. This process is exacerbated in a Hyper-V
 scenario, where CPU 0 must process the timers and DPCs associated
 with potentially numerous virtual machines, each with their own
 timers and associated devices.
By spreading the timers across processors, as shown in Figure 3-10, each processor’s
 timer-expiration load is fully distributed among unparked logical
 processors. The timer object stores its associated processor number
 in the dispatcher header on 32-bit systems and in the object itself
 on 64-bit systems.
Note
This behavior is controlled by the kernel variable
 KiDistributeTimers, which is initialized
 based on a registry key whose value is different between a server
 and client installation. By modifying, or creating, the value
 DistributeTimers under
 HKLM\SYSTEM\CurrentControlSet\Control\Session Manager\kernel, this
 behavior can be configured differently from its SKU-based
 default.

[image: Timer queuing behaviors]

Figure 3-10. Timer queuing behaviors

EXPERIMENT: Listing System Timers
You can use the kernel debugger to dump all the
 current registered timers on the system, as well as information on
 the DPC associated with each timer (if any). See the following
 output for a sample:
[lkd> !timer
Dump system timers

Interrupt time: 61876995 000003df [4/ 5/2010 18:58:09.189]

List Timer Interrupt Low/High Fire Time DPC/thread
PROCESSOR 0 (nt!_KTIMER_TABLE fffff80001bfd080)
 5 fffffa8003099810 627684ac 000003df [4/ 5/2010 18:58:10.756]
NDIS!ndisMTimerObjectDpc (DPC @ fffffa8003099850)
13 fffffa8003027278 272dde78 000004cf [4/ 6/2010 23:34:30.510] NDIS!ndisMWakeUpDpcX
(DPC @ fffffa80030272b8)
 fffffa8003029278 272e0588 000004cf [4/ 6/2010 23:34:30.511] NDIS!ndisMWakeUpDpcX
(DPC @ fffffa80030292b8)
 fffffa8003025278 272e0588 000004cf [4/ 6/2010 23:34:30.511] NDIS!ndisMWakeUpDpcX
(DPC @ fffffa80030252b8)
 fffffa8003023278 272e2c99 000004cf [4/ 6/2010 23:34:30.512] NDIS!ndisMWakeUpDpcX
(DPC @ fffffa80030232b8)
 16 fffffa8006096c20 6c1613a6 000003df [4/ 5/2010 18:58:26.901] thread
fffffa8006096b60
 19 fffff80001c85c40 64f9aeb5 000003df [4/ 5/2010 18:58:14.971]
nt!CmpLazyFlushDpcRoutine (DPC @ fffff80001c85c00)
31 fffffa8002c43660 P dc527b9b 000003e8 [4/ 5/2010 20:06:00.673]
intelppm!LongCapTraceDpc (DPC @ fffffa8002c436a0)
 40 fffff80001c86f60 62ca1080 000003df [4/ 5/2010 18:58:11.304] nt!CcScanDpc (DPC @
fffff80001c86f20)
 fffff88004039710 62ca1080 000003df [4/ 5/2010 18:58:11.304]
luafv!ScavengerTimerRoutine (DPC @ fffff88004039750)
...
252 fffffa800458ed50 62619a91 000003df [4/ 5/2010 18:58:10.619] netbt!TimerExpiry (DPC
@ fffffa800458ed10)
 fffffa8004599b60 fe2fc6ce 000003e0 [4/ 5/2010 19:09:41.514] netbt!TimerExpiry (DPC
@ fffffa8004599b20)
PROCESSOR 1 (nt!_KTIMER_TABLE fffff880009ba380)
 0 fffffa8004ec9700 626be121 000003df [4/ 5/2010 18:58:10.686] thread
fffffa80027f3060
 fffff80001c84dd0 P 70b3f446 000003df [4/ 5/2010 18:58:34.647]
nt!IopIrpStackProfilerTimer (DPC @ fffff80001c84e10)
11 fffffa8005c26cd0 62859842 000003df [4/ 5/2010 18:58:10.855] afd!AfdTimeoutPoll (DPC
@ fffffa8005c26c90)
 fffffa8002ce8160 6e6c45f4 000003df [4/ 5/2010 18:58:30.822] thread
fffffa80053c2b60
 fffffa8004fdb3d0 77f0c2cb 000003df [4/ 5/2010 18:58:46.789] thread
fffffa8004f4bb60
 13 fffffa8005051c20 60713a93 800003df [NEVER] thread
fffffa8005051b60
 15 fffffa8005ede120 77f9fb8c 000003df [4/ 5/2010 18:58:46.850] thread
fffffa8005ede060
 20 fffffa8004f40ef0 629a3748 000003df [4/ 5/2010 18:58:10.990] thread
fffffa8004f4bb60
 22 fffffa8005195120 6500ec7a 000003df [4/ 5/2010 18:58:15.019] thread
fffffa8005195060
 28 fffffa8004760e20 62ad4e07 000003df [4/ 5/2010 18:58:11.115] btaudio (DPC @
fffffa8004760e60)+12d10
 31 fffffa8002c40660 P dc527b9b 000003e8 [4/ 5/2010 20:06:00.673]
intelppm!LongCapTraceDpc (DPC @ fffffa8002c406a0)
 ...
232 fffff80001c85040 P 62317a00 000003df [4/ 5/2010 18:58:10.304] nt!IopTimerDispatch
(DPC @ fffff80001c85080)
 fffff80001c26fc0 P 6493d400 000003df [4/ 5/2010 18:58:14.304]
nt!EtwpAdjustBuffersDpcRoutine (DPC @ fffff80001c26f80)
235 fffffa80047471a8 6238ba5c 000003df [4/ 5/2010 18:58:10.351] stwrt64 (DPC @
fffffa80047471e8)+67d4
242 fffff880023ae480 11228580 000003e1 [4/ 5/2010 19:10:13.304] dfsc!DfscTimerDispatch
(DPC @ fffff880023ae4c0)
245 fffff800020156b8 P 72fb2569 000003df [4/ 5/2010 18:58:38.469]
hal!HalpCmcDeferredRoutine (DPC @ fffff800020156f8)
248 fffffa80029ee460 P 62578455 000003df [4/ 5/2010 18:58:10.553]
ataport!IdePortTickHandler (DPC @ fffffa80029ee4a0)
 fffffa8002776460 P 62578455 000003df [4/ 5/2010 18:58:10.553]
ataport!IdePortTickHandler (DPC @ fffffa80027764a0)
 fffff88001678500 fe2f836f 000003e0 [4/ 5/2010 19:09:41.512] cng!seedFileDpcRoutine
(DPC @ fffff880016784c0)
 fffff80001c25b80 885e52b3 0064a048 [12/31/2099 23:00:00.008]
nt!ExpCenturyDpcRoutine (DPC @ fffff80001c25bc0)

Total Timers: 254, Maximum List: 8
In this example, there are multiple driver-associated
 timers, due to expire shortly, associated with the Ndis.sys and
 Afd.sys drivers (both related to networking), as well as audio,
 Bluetooth, and ATA/IDE drivers. There are also background
 housekeeping timers due to expire, such as those related to power
 management, ETW, registry flushing, and Users Account Control
 (UAC) virtualization. Additionally, there are a dozen or so timers
 that don’t have any DPC associated with them—this likely indicates
 user-mode or kernel-mode timers that are used for wait dispatching. You can use
 !thread on the thread pointers to verify
 this. Finally, three interesting timers that are always present on
 a Windows system are the timer that checks for Daylight Savings
 Time time-zone changes, the timer that checks for the arrival of
 the upcoming year, and the timer that checks for entry into the
 next century. One can easily locate them based on their typically
 distant expiration time, unless this experiment is performed on
 the eve of one of these events.

Intelligent Timer Tick Distribution

Figure 3-11,
 which shows processors handling the clock ISR and expiring timers,
 reveals that processor 1 wakes up a number of times (the solid
 arrows) even when there are no associated expiring timers (the
 dotted arrows). Although that behavior is required as long as
 processor 1 is running (to update the thread/process run times and
 scheduling state), what if processor 1 is idle (and has no expiring
 timers). Does it still need to handle the clock interrupt? Because
 the only other work required that was referenced earlier is to
 update the overall system time/clock ticks, it’s sufficient to
 designate merely one processor as the time-keeping processor (in
 this case, processor 0) and allow other processors to remain in
 their sleep state; if they wake, any time-related adjustments can be
 performed by resynchronizing with processor 0.
Windows does, in fact, make this realization (internally
 called intelligent timer tick distribution),
 and Figure 3-11
 shows the processor states under the scenario where processor 1 is
 sleeping (unlike earlier, when we assumed it was running code). As
 you can see, processor 1 wakes up only 5 times to handle its
 expiring timers, creating a much larger gap (sleeping period). The
 kernel uses a variable KiPendingTimer, which
 contains an array of affinity mask structures that indicate which
 logical processors need to receive a clock interval for the given
 timer hand (clock-tick interval). It can then appropriately program
 the interrupt controller, as well as determine to which processors
 it will send an IPI to initiate timer processing.
[image: Intelligent timer tick distribution applied to processor 1]

Figure 3-11. Intelligent timer tick distribution applied to processor
 1

Leaving as large a gap as possible is important due to
 the way power management works in processors: as the processor
 detects that the work load is going lower and lower, it decreases
 its power consumption (P states), until it finally reaches an idle
 state. The processor then has the ability to selectively turn off
 parts of itself and enter deeper and deeper idle/sleep states, such
 as turning off caches. However, if the processor has to wake again,
 it will consume energy and take time to power up; for this reason,
 processor designers will risk entering these lower idle/sleep states
 (C states) only if the time spent in a given state outweighs the
 time and energy it takes to enter and exit the state. Obviously, it
 makes no sense to spend 10 ms to enter a sleep state that will last
 only 1 ms. By preventing clock interrupts from waking sleeping
 processors unless needed (due to timers), they can enter deeper
 C-states and stay there longer.

Timer Coalescing

Although minimizing clock interrupts to sleeping processors
 during periods of no timer expiration gives a big boost to longer
 C-state intervals, with a timer granularity of 15 ms, many timers
 likely will be queued at any given hand and expiring often, even if
 just on processor 0. Reducing the amount of software
 timer-expiration work would both help to decrease latency (by
 requiring less work at DISPATCH_LEVEL) as well as allow other
 processors to stay in their sleep states even longer (because we’ve
 established that the processors wake up only to handle expiring
 timers, fewer timer expirations result in longer sleep times). In
 truth, it is not just the amount of expiring timers that really
 affects sleep state (it does affect latency), but the periodicity of
 these timer expirations—six timers all expiring at the same hand is
 a better option than six timers expiring at six different hands.
 Therefore, to fully optimize idle-time duration, the kernel needs to
 employ a coalescing mechanism to combine
 separate timer hands into an individual hand with multiple
 expirations.
Timer coalescing works on the assumption that most drivers and
 user-mode applications do not particularly care about the exact
 firing period of their timers (except in the case of multimedia
 applications, for example). This “don’t care” region actually grows
 as the original timer period grows—an application waking up every 30
 seconds probably doesn’t mind waking up every 31 or 29 seconds
 instead, while a driver polling every second could probably poll
 every second plus or minus 50 ms without too many problems. The
 important guarantee most periodic timers depend on is that their
 firing period remains constant within a certain range—for example,
 when a timer has been changed to fire every second plus 50 ms, it
 continues to fire within that range forever, not sometimes at every
 two seconds and other times at half a second. Even so, not all
 timers are ready to be coalesced into coarser granularities, so
 Windows enables this mechanism only for timers that have marked
 themselves as coalescable, either through the
 KeSetCoalescableTimer kernel API or through its
 user-mode counterpart,
 SetWaitableTimerEx.
With these APIs, driver and application developers are free to
 provide the kernel with the maximum tolerance
 (or tolerably delay) that their timer will endure, which is defined
 as the maximum amount of time past the requested period at which the
 timer will still function correctly. (In the previous example, the
 1-second timer had a tolerance of 50 milliseconds.) The recommended
 minimum tolerance is 32 ms, which corresponds to about twice the
 15.6-ms clock tick—any smaller value wouldn’t really result in any
 coalescing, because the expiring timer could not be moved even from
 one clock tick to the next. Regardless of the tolerance that is
 specified, Windows aligns the timer to one of four
 preferred coalescing intervals: 1 second, 250
 ms, 100 ms, or 50 ms.
When a tolerable delay is set for a periodic timer,
 Windows uses a process called shifting, which
 causes the timer to drift between periods until it gets aligned to
 the most optimal multiple of the period interval within the
 preferred coalescing interval associated with the specified
 tolerance (which is then encoded in the dispatcher header). For
 absolute timers, the list of preferred coalescing intervals is
 scanned, and a preferred expiration time is generated based on the
 closest acceptable coalescing interval to the maximum tolerance the
 caller specified. This behavior means that absolute timers are
 always pushed out as far as possible past their real expiration
 point, which spreads out timers as far as possible and creates
 longer sleep times on the processors.
Now with timer coalescing, refer back to Figure 3-11 and assume all
 the timers specified tolerances and are thus coalescable. In one
 scenario, Windows could decide to coalesce the timers as shown in
 Figure 3-12. Notice that now,
 processor 1 receives a total of only three clock interrupts,
 significantly increasing the periods of idle sleep, thus achieving a
 lower C-state. Furthermore, there is less work to do for some of the
 clock interrupts on processor 0, possibly removing the latency of
 requiring a drop to DISPATCH_LEVEL at each clock interrupt.
[image: Timer coalescing]

Figure 3-12. Timer coalescing

Exception Dispatching

In contrast to interrupts, which can occur at any time,
 exceptions are conditions that result directly from the execution of
 the program that is running. Windows uses a facility known as
 structured exception handling, which allows
 applications to gain control when exceptions occur. The application
 can then fix the condition and return to the place the exception
 occurred, unwind the stack (thus terminating execution of the
 subroutine that raised the exception), or declare back to the system
 that the exception isn’t recognized and the system should continue
 searching for an exception handler that might process the exception.
 This section assumes you’re familiar with the basic concepts behind
 Windows structured exception handling—if you’re not, you should read
 the overview in the Windows API reference documentation in the Windows
 SDK or Chapters 23 through 25 in Jeffrey Richter and Christophe
 Nasarre’s book Windows via C/C++ (Microsoft
 Press, 2007) before proceeding. Keep in mind that although exception
 handling is made accessible through language extensions (for example,
 the __try construct in Microsoft Visual C++), it
 is a system mechanism and hence isn’t language specific.
On the x86 and x64 processors, all exceptions have
 predefined interrupt numbers that directly correspond to the entry in
 the IDT that points to the trap handler for a particular exception.
 Table 3-6 shows
 x86-defined exceptions and their assigned interrupt numbers. Because
 the first entries of the IDT are used for exceptions, hardware
 interrupts are assigned entries later in the table, as mentioned
 earlier.
All exceptions, except those simple enough to be resolved by the
 trap handler, are serviced by a kernel module called the
 exception dispatcher. The exception dispatcher’s
 job is to find an exception handler that can dispose of the exception.
 Examples of architecture-independent exceptions that the kernel
 defines include memory-access violations, integer divide-by-zero,
 integer overflow, floating-point exceptions, and debugger breakpoints.
 For a complete list of architecture-independent exceptions, consult
 the Windows SDK reference documentation.
Table 3-6. x86 Exceptions and Their Interrupt Numbers
	Interrupt Number
	Exception

	0
	Divide Error

	1
	Debug (Single Step)

	2
	Non-Maskable Interrupt
 (NMI)

	3
	Breakpoint

	4
	Overflow

	5
	Bounds Check

	6
	Invalid Opcode

	7
	NPX Not Available

	8
	Double Fault

	9
	NPX Segment Overrun

	10
	Invalid Task State Segment
 (TSS)

	11
	Segment Not Present

	12
	Stack Fault

	13
	General Protection

	14
	Page Fault

	15
	Intel Reserved

	16
	Floating Point

	17
	Alignment Check

	18
	Machine Check

	19
	SIMD Floating Point

The kernel traps and handles some of these exceptions
 transparently to user programs. For example, encountering a breakpoint
 while executing a program being debugged generates an exception, which
 the kernel handles by calling the debugger. The kernel handles certain
 other exceptions by returning an unsuccessful status code to the
 caller.
A few exceptions are allowed to filter back, untouched,
 to user mode. For example, certain types of memory-access violations
 or an arithmetic overflow generate an exception that the operating
 system doesn’t handle. 32-bit applications can establish
 frame-based exception handlers to deal with these
 exceptions. The term frame-based refers to an
 exception handler’s association with a particular procedure
 activation. When a procedure is invoked, a stack
 frame representing that activation of the procedure is
 pushed onto the stack. A stack frame can have one or more exception
 handlers associated with it, each of which protects a particular block
 of code in the source program. When an exception occurs, the kernel
 searches for an exception handler associated with the current stack
 frame. If none exists, the kernel searches for an exception handler
 associated with the previous stack frame, and so on, until it finds a
 frame-based exception handler. If no exception handler is found, the
 kernel calls its own default exception handlers.
For 64-bit applications, structured exception handling does not
 use frame-based handlers. Instead, a table of handlers for each
 function is built into the image during compilation. The kernel looks
 for handlers associated with each function and generally follows the
 same algorithm we described for 32-bit code.
Structured exception handling is heavily used within the kernel
 itself so that it can safely verify whether pointers from user mode
 can be safely accessed for read or write access. Drivers can make use
 of this same technique when dealing with pointers sent during I/O
 control codes (IOCTLs).
Another mechanism of exception handling is called
 vectored exception handling. This method can be
 used only by user-mode applications. You can find more information
 about it in the Windows SDK or the MSDN Library.
When an exception occurs, whether it is explicitly raised by
 software or implicitly raised by hardware, a chain of events begins in
 the kernel. The CPU hardware transfers control to the kernel trap
 handler, which creates a trap frame (as it does when an interrupt
 occurs). The trap frame allows the system to resume where it left off
 if the exception is resolved. The trap handler also creates an
 exception record that contains the reason for the exception and other
 pertinent information.
If the exception occurred in kernel mode, the exception
 dispatcher simply calls a routine to locate a frame-based exception
 handler that will handle the exception. Because unhandled kernel-mode
 exceptions are considered fatal operating system errors, you can
 assume that the dispatcher always finds an exception handler. Some
 traps, however, do not lead into an exception handler because the
 kernel always assumes such errors to be fatal—these are errors that
 could have been caused only by severe bugs in the internal kernel code
 or by major inconsistencies in driver code (that could have occurred
 only through deliberate, low-level system modifications that drivers
 should not be responsible for). Such fatal errors will result in a bug
 check with the UNEXPECTED_KERNEL_MODE_TRAP code.
If the exception occurred in user mode, the exception dispatcher
 does something more elaborate. As you’ll see in Chapter 5, the Windows
 subsystem has a debugger port (this is actually a debugger object,
 which will be discussed later) and an exception port to receive
 notification of user-mode exceptions in Windows processes. (In this
 case, by “port” we mean an LPC port object, which will be discussed
 later in this chapter.) The kernel uses these ports in its default
 exception handling, as illustrated in Figure 3-13.
Debugger breakpoints are common sources of exceptions.
 Therefore, the first action the exception dispatcher takes is to see
 whether the process that incurred the exception has an associated
 debugger process. If it does, the exception dispatcher sends a
 debugger object message to the debug object
 associated with the process (which internally the system refers to as
 a “port” for compatibility with programs that might rely on behavior
 in Windows 2000, which used an LPC port instead of a debug
 object).
[image: Dispatching an exception]

Figure 3-13. Dispatching an exception

If the process has no debugger process attached or if the
 debugger doesn’t handle the exception, the exception dispatcher
 switches into user mode, copies the trap frame to the user stack
 formatted as a CONTEXT data structure (documented in the Windows SDK),
 and calls a routine to find a structured or vectored exception
 handler. If none is found or if none handles the exception, the
 exception dispatcher switches back into kernel mode and calls the
 debugger again to allow the user to do more debugging. (This is called
 the second-chance notification.)
If the debugger isn’t running and no user-mode exception
 handlers are found, the kernel sends a message to the exception port
 associated with the thread’s process. This exception port, if one
 exists, was registered by the environment subsystem that controls this
 thread. The exception port gives the environment subsystem, which
 presumably is listening at the port, the opportunity to translate the
 exception into an environment-specific signal or exception. For
 example, when Subsystem for UNIX Applications gets a message from the
 kernel that one of its threads generated an exception, Subsystem for
 UNIX Applications sends a UNIX-style signal to the thread that caused
 the exception. However, if the kernel progresses this far in
 processing the exception and the subsystem doesn’t handle the exception, the kernel sends a message to a
 systemwide error port that Csrss (Client/Server
 Run-Time Subsystem) uses for Windows Error Reporting (WER)—which will
 be discussed shortly—and executes a default exception handler that
 simply terminates the process whose thread caused the
 exception.
Unhandled Exceptions

All Windows threads have an exception handler that processes
 unhandled exceptions. This exception handler is declared in the
 internal Windows start-of-thread function. The
 start-of-thread function runs when a user creates a process or any
 additional threads. It calls the environment-supplied thread start
 routine specified in the initial thread context structure, which in
 turn calls the user-supplied thread start routine specified in the
 CreateThread call.
EXPERIMENT: Viewing the Real User Start Address for Windows
 Threads
The fact that each Windows thread begins execution in a
 system-supplied function (and not the user-supplied function)
 explains why the start address for thread 0 is the same for every
 Windows process in the system (and why the start addresses for
 secondary threads are also the same). To see the user-supplied
 function address, use Process Explorer or the kernel
 debugger.
Because most threads in Windows processes start at one of
 the system-supplied wrapper functions, Process Explorer, when
 displaying the start address of threads in a process, skips the
 initial call frame that represents the wrapper function and
 instead shows the second frame on the stack. For example, notice
 the thread start address of a process running Notepad.exe:
[image: image with no caption]

Process Explorer does display the complete call
 hierarchy when it displays the call stack. Notice the following
 results when the Stack button is clicked:
[image: image with no caption]

Line 18 in the preceding screen shot is the first frame on
 the stack—the start of the internal thread wrapper. The second
 frame (line 17) is the environment subsystem’s thread wrapper—in
 this case, kernel32, because you are dealing with a Windows
 subsystem application. The third frame (line 16) is the main entry
 point into Notepad.exe.

The generic code for the internal thread start functions is
 shown here:
VOID RtlUserThreadStart(VOID)
{
 LPVOID lpStartAddr = (R/E)AX; // Located in the initial thread context structure
 LPVOID lpvThreadParam = (R/E)BX; // Located in the initial thread context structure
 LPVOID lpWin32StartAddr;

 lpWin32StartAddr = Kernel32ThreadInitThunkFunction ? Kernel32ThreadInitThunkFunction :
lpStartAddr;
 __try
 {
 DWORD dwThreadExitCode = lpWin32StartAddr(lpvThreadParam);
 RtlExitUserThread(dwThreadExitCode);
 }
 __except(RtlpGetExceptionFilter(GetExceptionInformation()))
 {
 NtTerminateProcess(NtCurrentProcess(), GetExceptionCode());
 }
}
VOID Win32StartOfProcess(
 LPTHREAD_START_ROUTINE lpStartAddr,
 LPVOID lpvThreadParam)
{
 lpStartAddr(lpvThreadParam);
}
Notice that the Windows unhandled exception filter is
 called if the thread has an exception that it doesn’t handle. The
 purpose of this function is to provide the system-defined behavior
 for what to do when an exception is not handled, which is to launch
 the WerFault.exe process. However, in a default configuration the
 Windows Error Reporting service, described next, will handle the
 exception and this unhandled exception filter never executes.
WerFault.exe checks the contents of the
 HKLM\SOFTWARE\Microsoft\Windows NT\CurrentVersion\AeDebug registry
 key and makes sure that the process isn’t on the exclusion list.
 There are two important values in the key: Auto
 and Debugger. Auto tells
 the unhandled exception filter whether to automatically run the
 debugger or ask the user what to do. Installing development tools,
 such as Microsoft Visual Studio, changes this value to
 0 if it is already set. (If the value was not
 set, 0 is the default option.) The
 Debugger value is a string that points to the
 path of the debugger executable to run in the case of an unhandled
 exception, and WerFault passes the process ID
 of the crashing process and an event name to signal when the
 debugger has started as command-line arguments when it starts the
 debugger.

Windows Error Reporting

Windows Error Reporting (WER) is a sophisticated mechanism
 that automates the submission of both user-mode process crashes as
 well as kernel-mode system crashes. (For a description of how this
 applies to system crashes, see Chapter 14 in Part 2.)
Windows Error Reporting can be configured by going to Control
 Panel, choosing Action Center, Change Action Center settings, and
 then Problem Reporting Settings.
When an unhandled exception is caught by the unhandled
 exception filter (described in the previous section), it builds
 context information (such as the current value of the registers and
 stack) and opens an ALPC port connection to the WER service. This
 service begins to analyze the crashed program’s state and performs
 the appropriate actions to notify the user. As described previously,
 in most cases this means launching the WerFault.exe program, which
 executes with the current user’s credentials and, unless the system
 is configured not to, displays a message box informing the user of
 the crash. On systems where a debugger is installed, an additional
 option to debug the process is shown, as you can see in Figure 3-14. When you click the
 Debug button, the debugger (registered in the Debugger string value
 described earlier in the AeDebug key) will be
 launched so that it can attach to the crashing process.
[image: Windows Error Reporting dialog box]

Figure 3-14. Windows Error Reporting dialog box

On default configured systems, an error report (a
 minidump and an XML file with various details, such as the DLL
 version numbers loaded in the process) is sent to Microsoft’s online
 crash analysis server. Eventually, as the service is notified of a
 solution for a problem, it will display a tooltip to the user
 informing her of steps that should be taken to solve the problem. An
 entry will also be displayed in the Action Center. Furthermore, the
 Reliability Monitor will also show all instances of application and
 system crashes.
Note
WER will actively (visually) inform the user of a crashed
 application only if the application has at least one
 visible/interactive window; otherwise, the crash will be logged,
 but the user will have to manually visit the Action Center to view
 it. This behavior attempts to avoid user confusion by not
 displaying a WER dialog box about an invisible crashed process the
 user might not be aware of, such as a background service.

In environments where systems are not connected to the
 Internet or where the administrator wants to control which error
 reports are submitted to Microsoft, the destination for the error
 report can be configured to be an internal file server. Microsoft
 System Center Desktop Error Monitoring understands the directory
 structure created by Windows Error Reporting and provides the
 administrator with the option to take selective error reports and
 submit them to Microsoft.
If all the operations we’ve described had to occur within the
 crashing thread’s context—that is, as part of the unhandled
 exception filter that was initially set up—these complex steps would
 sometimes become impossible for a badly damaged thread to perform,
 and the unhandled exception filter itself would crash. This “silent
 process death” would be impossible to log, making it hard to debug
 and also resulting in invisible crashes in cases where no user was
 present on the machine. To avoid such issues, Windows’ WER mechanism
 performs this work externally from the crashed thread if the
 unhandled exception filter itself crashes, which allows any kind of
 process or thread crash to be logged and for the user to be
 notified.
WER contains many customizable settings that can be configured
 by the user through the Group Policy editor or by manually making
 changes to the registry. Table 3-7
 lists the WER registry configuration options, their use, and
 possible values. These values are located under the
 HKLM\SOFTWARE\Microsoft\Windows\Windows Error Reporting subkey for
 computer configuration and in the equivalent path under
 HKEY_CURRENT_USER for per-user configuration.
Table 3-7. WER Registry Settings
	Setting
	Meaning
	Values

	ConfigureArchive
	Contents of archived
 data
	1 for parameters, 2 for all
 data

	Consent\DefaultConsent
	What kind of data should require
 consent
	1 for any data, 2 for parameters
 only, 3 for parameters and safe data, 4 for all
 data.

	Consent\DefaultOverrideBehavior
	Whether the
 DefaultConsent overrides WER plug-in
 consent values
	1 to enable
 override

	Consent\PluginName
	Consent value for a specific WER
 plug-in
	Same as
 DefaultConsent

	CorporateWERDirectory
	Directory for a corporate WER
 store
	String containing the
 path

	CorporateWERPortNumber
	Port to use for a corporate WER
 store
	Port number

	CorporateWERServer
	Name to use for a corporate WER
 store
	String containing the
 name

	CorporateWERUseAuthentication
	Use Windows Integrated
 Authentication for corporate WER store
	1 to enable built-in
 authentication

	CorporateWERUseSSL
	Use Secure Sockets Layer (SSL) for
 corporate WER store
	1 to enable SSL

	DebugApplications
	List of applications that require
 the user to choose between Debug and Continue
	1 to require the user to
 choose

	DisableArchive
	Whether the archive is
 enabled
	1 to disable
 archive

	Disabled
	Whether WER is
 disabled
	1 to disable WER

	DisableQueue
	Determines whether reports are to
 be queued
	1 to disable queue

	DontShowUI
	Disables or enables the WER
 UI
	1 to disable UI

	DontSendAdditionalData
	Prevents additional crash data
 from being sent
	1 not to send

	ExcludedApplications\AppName
	List of applications excluded from
 WER
	String containing the application
 list

	ForceQueue
	Whether reports should be sent to
 the user queue
	1 to send reports to the
 queue

	LocalDumps\DumpFolder
	Path at which to store the dump
 files
	String containing the
 path

	LocalDumps\DumpCount
	Maximum number of dump files in
 the path
	Count

	LocalDumps\DumpType
	Type of dump to generate during a
 crash
	0 for a custom dump, 1 for a
 minidump, 2 for a full dump

	LocalDumps\CustomDumpFlags
	For custom dumps, specifies custom
 options
	Values defined in MINIDUMP_TYPE
 (see Chapter 13, “Startup and Shutdown,” in Part 2 for more
 information)

	LoggingDisabled
	Enables or disables
 logging
	1 to disable
 logging

	MaxArchiveCount
	Maximum size of the archive (in
 files)
	Value between
 1–5000

	MaxQueueCount
	Maximum size of the
 queue
	Value between 1–500

	QueuePesterInterval
	Days between requests to have the
 user check for solutions
	Number of days

Note
The values listed under LocalDumps can
 also be configured per application by adding the application name
 in the subkey path between LocalDumps and the
 relevant value. However, they cannot be configured per user; they
 exist only in the HKLM path.

As discussed, the WER service uses an ALPC port for
 communicating with crashed processes. This mechanism uses a
 systemwide error port that the WER service registers through
 NtSetInformationProcess (which uses
 DbgkRegisterErrorPort). As a result, all
 Windows processes now have an error port that is actually an ALPC
 port object registered by the WER service. The kernel, which is
 first notified of an exception, uses this port to send a message to
 the WER service, which then analyzes the crashing process. This
 means that even in severe cases of thread state damage, WER will
 still be able to receive notifications and launch WerFault.exe to
 display a user interface instead of having to do this work within
 the crashing thread itself. Additionally, WER will be able to
 generate a crash dump for the process, and a message will be written
 to the Event Log. This solves all the problems of silent process
 death: users are notified, debugging can occur, and service
 administrators can see the crash event.

System Service Dispatching

As Figure 3-1 illustrated, the
 kernel’s trap handlers dispatch interrupts, exceptions, and system
 service calls. In the preceding sections, you saw how interrupt and
 exception handling work; in this section, you’ll learn about system
 services. A system service dispatch is triggered as a result of
 executing an instruction assigned to system service dispatching. The
 instruction that Windows uses for system service dispatching depends
 on the processor on which it’s executing.
System Service Dispatching

On x86 processors prior to the Pentium II, Windows uses the
 int 0x2e instruction (46 decimal), which
 results in a trap. Windows fills in entry 46 in the IDT to point to
 the system service dispatcher. (Refer to Table 3-3.) The trap causes the
 executing thread to transition into kernel mode and enter the system
 service dispatcher. A numeric argument passed in the EAX processor
 register indicates the system service number being requested. The
 EDX register points to the list of parameters the caller passes to
 the system service. To return to user mode, the system service
 dispatcher uses the iret (interrupt return
 instruction).
On x86 Pentium II processors and higher, Windows uses
 the sysenter instruction, which Intel defined
 specifically for fast system service dispatches. To support the
 instruction, Windows stores at boot time the address of the kernel’s
 system service dispatcher routine in a machine-specific
 register (MSR) associated with the instruction. The
 execution of the instruction causes the change to kernel mode and
 execution of the system service dispatcher. The system service
 number is passed in the EAX processor register, and the EDX register
 points to the list of caller arguments. To return to user mode, the
 system service dispatcher usually executes the
 sysexit instruction. (In some cases, like when
 the single-step flag is enabled on the processor, the system service
 dispatcher uses the iret instead because
 sysexit does not allow returning to user-mode
 with a different EFLAGS register, which is needed if
 sysenter was executed while the trap
 flag was set as a result of a user-mode debugger tracing
 or stepping over a system call.)
Note
Because certain older applications might have been hardcoded
 to use the int 0x2e instruction to manually
 perform a system call (an unsupported operation), 32-bit Windows
 keeps this mechanism usable even on systems that support the
 sysenter instruction by still having the
 handler registered.

On the x64 architecture, Windows uses the
 syscall instruction, passing the system call
 number in the EAX register, the first four parameters in registers,
 and any parameters beyond those four on the stack.
On the IA64 architecture, Windows uses the
 epc (Enter Privileged Mode) instruction. The
 first eight system call arguments are passed in registers, and the
 rest are passed on the stack.
EXPERIMENT: Locating the System Service Dispatcher
As mentioned, 32-bit system calls occur through an
 interrupt, which means that the handler needs to be registered in
 the IDT or through a special sysenter
 instruction that uses an MSR to store the handler address at boot
 time. On certain 32-bit AMD systems, Windows uses the
 syscall instruction instead, which is similar
 to the 64-bit syscall instruction. Here’s how
 you can locate the appropriate routine for either method:
	To see the handler on 32-bit systems for the interrupt
 2E version of the system call dispatcher, type !idt 2e in the kernel
 debugger.
lkd> !idt 2e

Dumping IDT:

2e: 8208c8ee nt!KiSystemService

	To see the handler for the sysenter
 version, use the rdmsr debugger command
 to read from the MSR register 0x176, which stores the
 handler:
lkd> rdmsr 176
msr[176] = 00000000'8208c9c0
lkd> ln 00000000'8208c9c0
(8208c9c0) nt!KiFastCallEntry
If you have a 64-bit machine, you can look at
 the 64-bit service call dispatcher by repeating this step, but
 using the 0xC0000082 MSR instead, which is used by the
 syscall version for 64-bit code. You will
 see it corresponds to
 nt!KiSystemCall64:
lkd> rdmsr c0000082
msr[c0000082] = fffff800'01a71ec0
lkd> ln fffff800'01a71ec0
(fffff800'01a71ec0) nt!KiSystemCall64

	You can disassemble the
 KiSystemService or
 KiSystemCall64 routine with the
 u command. On a 32-bit system, you’ll
 eventually notice the following instructions:
nt!KiSystemService+0x7b:
8208c969 897d04 mov dword ptr [ebp+4],edi
8208c96c fb sti
8208c96d e9dd000000 jmp nt!KiFastCallEntry+0x8f (8208ca4f)

Because the actual system call dispatching operations are
 common regardless of the mechanism used to reach the handler, the
 older interrupt-based handler simply calls into the middle of the
 newer sysenter-based handler to perform the
 same generic tasks. The only parts of the handlers that are
 different are related to the generation of the trap frame and the
 setup of certain registers.

At boot time, 32-bit Windows detects the type of processor on
 which it’s executing and sets up the appropriate system call code to
 use by storing a pointer to the correct code in the
 SharedUserData structure. The system service
 code for NtReadFile in user mode looks like
 this:
0:000> u ntdll!NtReadFile
ntdll!ZwReadFile:
77020074 b802010000 mov eax,102h
77020079 ba0003fe7f mov edx,offset SharedUserData!SystemCallStub (7ffe0300)
7702007e ff12 call dword ptr [edx]
77020080 c22400 ret 24h
77020083 90 nop
The system service number is 0x102 (258 in decimal), and the
 call instruction executes the system service
 dispatch code set up by the kernel, whose pointer is at address
 0x7ffe0300. (This corresponds to the
 SystemCallStub member of the KUSER_SHARED_DATA
 structure, which starts at 0x7FFE0000.) Because the following output
 was taken from an Intel Core 2 Duo, it contains a pointer to
 sysenter:
0:000> dd SharedUserData!SystemCallStub l 1
7ffe0300 77020f30
0:000> u 77020f30
ntdll!KiFastSystemCall:
77020f30 8bd4 mov edx,esp
77020f32 0f34 sysenter
Because 64-bit systems have only one mechanism for
 performing system calls, the system service entry points in
 Ntdll.dll use the syscall instruction directly,
 as shown here:
ntdll!NtReadFile:
00000000'77f9fc60 4c8bd1 mov r10,rcx
00000000'77f9fc63 b810200000 mov eax,0x102
00000000'77f9fc68 0f05 syscall
00000000'77f9fc6a c3 ret

Kernel-Mode System Service Dispatching
As Figure 3-15 illustrates,
 the kernel uses the system call number to locate the system service
 information in the system service dispatch
 table. On 32-bit systems, this table is similar to the
 interrupt dispatch table described earlier in the chapter except
 that each entry contains a pointer to a system service rather than
 to an interrupt-handling routine. On 64-bit systems, the table is
 implemented slightly differently—instead of containing pointers to
 the system service, it contains offsets relative to the table
 itself. This addressing mechanism is more suited to the x64
 application binary interface (ABI) and instruction-encoding
 format.
Note
System service numbers can change between service
 packs—Microsoft occasionally adds or removes system services, and
 the system service numbers are generated automatically as part of
 a kernel compile.

[image: System service exceptions]

Figure 3-15. System service exceptions

The system service dispatcher,
 KiSystemService, copies the caller’s arguments
 from the thread’s user-mode stack to its kernel-mode stack (so that
 the user can’t change the arguments as the kernel is accessing them)
 and then executes the system service. The kernel knows how many
 stack bytes require copying by using a second table, called the
 argument table, which is a byte array (instead
 of a pointer array like the dispatch table), each entry describing
 the number of bytes to copy. On 64-bit systems, Windows actually
 encodes this information within the service table itself through a
 process called system call table compaction. If
 the arguments passed to a system service point to buffers in
 user space, these buffers must be probed for
 accessibility before kernel-mode code can copy data to or from them.
 This probing is performed only if the previous
 mode of the thread is set to user mode. The
 previous mode is a value (kernel or user) that
 the kernel saves in the thread whenever it executes a trap handler
 and identifies the privilege level of the incoming exception, trap,
 or system call. As an optimization, if a system call comes from a
 driver or the kernel itself, the probing and capturing of parameters
 is skipped, and all parameters are assumed to be pointing to valid
 kernel-mode buffers (also, access to kernel-mode data is
 allowed).
Because kernel-mode code can also make system calls, let’s
 look at the way these are done. Because the code for each system
 call is in kernel mode and the caller is already in kernel mode, you
 can see that there shouldn’t be a need for an interrupt or
 sysenter operation: the CPU is already at the
 right privilege level, and drivers, as well as the kernel, should
 only be able to directly call the function required. In the
 executive’s case, this is actually what happens: the kernel has
 access to all its own routines and can simply call them just like
 standard routines. Externally, however, drivers can access these
 system calls only if they have been exported just like other
 standard kernel-mode APIs. In fact, quite a few of the system calls
 are exported. Drivers, however, are not supposed to access system
 calls this way. Instead, drivers must use the
 Zw versions of these calls—that is, instead of
 NtCreateFile, they must use
 ZwCreateFile. These Zw
 versions must also be manually exported by the kernel, and only a
 handful are, but they are fully documented and supported.
The Zw versions are officially available
 only for drivers because of the previous mode
 concept discussed earlier. Because this value is updated only each
 time the kernel builds a trap frame, its value won’t actually change
 across a simple API call—no trap frame is being generated. By
 calling a function such as NtCreateFile
 directly, the kernel preserves the previous
 mode value that indicates that it is user mode, detects
 that the address passed is a kernel-mode address, and fails the
 call, correctly asserting that user-mode applications should not
 pass kernel-mode pointers. However, this is not actually what
 happens, so how can the kernel be aware of the correct
 previous mode? The answer lies in the
 Zw calls.
These exported APIs are not actually simple aliases or
 wrappers around the Nt versions. Instead, they
 are “trampolines” to the appropriate Nt system
 call, which use the same system call-dispatching mechanism. Instead
 of generating an interrupt or a sysenter, which
 would be slow and/or unsupported, they build a fake interrupt stack
 (the stack that the CPU would generate after an interrupt) and call
 the KiSystemService routine directly,
 essentially emulating the CPU interrupt. The handler executes the
 same operations as if this call came from user mode, except it
 detects the actual privilege level this call came from and set the
 previous mode to kernel. Now
 NtCreateFile sees that the call came from the
 kernel and does not fail anymore. Here’s what the kernel-mode
 trampolines look like on both 32-bit and 64-bit systems. The system
 call number is highlighted in bold.
lkd> u nt!ZwReadFile
nt!ZwReadFile:
8207f118 b802010000 mov eax,102h
8207f11d 8d542404 lea edx,[esp+4]
8207f121 9c pushfd
8207f122 6a08 push 8
8207f124 e8c5d70000 call nt!KiSystemService (8208c8ee)
8207f129 c22400 ret 24h
lkd> uf nt!ZwReadFile
nt!ZwReadFile:
fffff800'01a7a520 488bc4 mov rax,rsp
fffff800'01a7a523 fa cli
fffff800'01a7a524 4883ec10 sub rsp,10h
fffff800'01a7a528 50 push rax
fffff800'01a7a529 9c pushfq
fffff800'01a7a52a 6a10 push 10h
fffff800'01a7a52c 488d05bd310000 lea rax,[nt!KiServiceLinkage (fffff800'01a7d6f0)]
fffff800'01a7a533 50 push rax
fffff800'01a7a534 b803000000 mov eax,3
fffff800'01a7a539 e902690000 jmp nt!KiServiceInternal (fffff800'01a80e40)
As you’ll see in Chapter 5, Windows has
 two system service tables, and third-party drivers cannot extend the
 tables or insert new ones to add their own service calls. On 32-bit
 and IA64 versions of Windows, the system service dispatcher locates
 the tables via a pointer in the thread kernel structure, and on x64
 versions it finds them via their global addresses. The system
 service dispatcher determines which table contains the requested
 service by interpreting a 2-bit field in the 32-bit system service
 number as a table index. The low 12 bits of the system service
 number serve as the index into the table specified by the table
 index. The fields are shown in Figure 3-16.
[image: System service number to system service translation]

Figure 3-16. System service number to system service translation

Service Descriptor Tables

A primary default array table,
 KeServiceDescriptorTable, defines the core
 executive system services implemented in Ntosrknl.exe. The other
 table array, KeServiceDescriptorTableShadow,
 includes the Windows USER and GDI services implemented in the
 kernel-mode part of the Windows subsystem, Win32k.sys. On 32-bit and
 IA64 versions of Windows, the first time a Windows thread calls a
 Windows USER or GDI service, the address of the thread’s system
 service table is changed to point to a table that includes the
 Windows USER and GDI services. The
 KeAddSystemServiceTable function allows
 Win32k.sys to add a system service table.
The system service dispatch instructions for Windows executive
 services exist in the system library Ntdll.dll. Subsystem DLLs call
 functions in Ntdll to implement their documented functions. The
 exception is Windows USER and GDI functions, for which the system
 service dispatch instructions are implemented in User32.dll and
 Gdi32.dll—Ntdll.dll is not involved. These two cases are shown in
 Figure 3-17.
As shown in Figure 3-17, the Windows
 WriteFile function in Kernel32.dll imports and
 calls the WriteFile function in
 API-MS-Win-Core-File-L1-1-0.dll, one of the MinWin redirection DLLs
 (see the next section for more information on API redirection),
 which in turn calls the WriteFile function in
 KernelBase.dll, where the actual implementation lies. After some
 subsystem-specific parameter checks, it then calls the
 NtWriteFile function in Ntdll.dll, which in
 turn executes the appropriate instruction to cause a system service
 trap, passing the system service number representing
 NtWriteFile. The system service dispatcher
 (function KiSystemService in Ntoskrnl.exe) then
 calls the real NtWriteFile to process the I/O
 request. For Windows USER and GDI functions, the system service
 dispatch calls functions in the loadable kernel-mode part of the
 Windows subsystem, Win32k.sys.
[image: System service dispatching]

Figure 3-17. System service dispatching

EXPERIMENT: Mapping System Call Numbers to Functions and
 Arguments
You can duplicate the same lookup performed by the
 kernel when dealing with a system call ID to figure out which
 function is responsible for handling it and how many arguments it
 takes
	The KeServiceDescriptorTable and
 KeServiceDescriptorTableShadow tables
 both point to the same array of pointers (or offsets, on
 64-bit) for kernel system calls, called
 KiServiceTable, and the same array of
 stack bytes, called KiArgumentTable. On a
 32-bit system, you can use the kernel debugger command
 dds to dump the data along with symbolic
 information. The debugger attempts to match each pointer with
 a symbol. Here’s a partial output:
lkd> dds KiServiceTable
820807d0 821be2e5 nt!NtAcceptConnectPort
820807d4 820659a6 nt!NtAccessCheck
820807d8 8224a953 nt!NtAccessCheckAndAuditAlarm
820807dc 820659dd nt!NtAccessCheckByType
820807e0 8224a992 nt!NtAccessCheckByTypeAndAuditAlarm
820807e4 82065a18 nt!NtAccessCheckByTypeResultList
820807e8 8224a9db nt!NtAccessCheckByTypeResultListAndAuditAlarm
820807ec 8224aa24 nt!NtAccessCheckByTypeResultListAndAuditAlarmByHandle
820807f0 822892af nt!NtAddAtom

	As described earlier, 64-bit Windows organizes the
 system call table differently and uses relative pointers (an
 offset) to system calls instead of the absolute addresses used
 by 32-bit Windows. The base of the pointer is the
 KiServiceTable itself, so you’ll have to
 dump the data in its raw format with the
 dq command. Here’s an example of output
 from a 64-bit system:
lkd> dq nt!KiServiceTable
fffff800'01a73b00 02f6f000'04106900 031a0105'fff72d00

	Instead of dumping the entire table, you can also look
 up a specific number. On 32-bit Windows, because each system
 call number is an index into the table and because each
 element is 4 bytes, you can use the following calculation:
 Handler = KiServiceTable + Number * 4.
 Let’s use the number 0x102, obtained during our description of
 the NtReadFile stub code in
 Ntdll.dll.
lkd> ln poi(KiServiceTable + 102 * 4)
(82193023) nt!NtReadFile
On 64-bit Windows, each offset can be mapped to each
 function with the ln command, by shifting
 right by 4 bits (used as described earlier) and adding the
 remaining value to the base of
 KiServiceTable itself, as shown
 here:
lkd> ln @@c++(((int*)@@(nt!KiServiceTable))[3] >> 4) + nt!KiServiceTable
(fffff800'01d9cb10) nt!NtReadFile | (fffff800'01d9d24c) nt!NtOpenFile
Exact matches:
 nt!NtReadFile = <no type information>

	Because drivers, including kernel-mode rootkits,
 are able to patch this table on 32-bit versions of Windows,
 which is something the operating system does not support, you
 can use dds to dump the entire table and
 look for any values outside the range of valid kernel
 addresses (dds will also make this clear
 by not being able to look up a symbol for the function). On
 64-bit Windows, Kernel Patch Protection monitors the system
 service tables and crashes the system when it detects
 modifications.

EXPERIMENT: Viewing System Service Activity
You can monitor system service activity by watching the
 System Calls/Sec performance counter in the System object. Run the
 Performance Monitor, click on Performance Monitor under Monitoring
 Tools, and click the Add button to add a counter to the chart.
 Select the System object, select the System Calls/Sec counter, and
 then click the Add button to add the counter to the chart.

Object Manager

As mentioned in Chapter 2, Windows
 implements an object model to provide consistent and secure access to
 the various internal services implemented in the executive. This section
 describes the Windows object manager, the executive
 component responsible for creating, deleting, protecting, and tracking
 objects. The object manager centralizes resource control operations that
 otherwise would be scattered throughout the operating system. It was
 designed to meet the goals listed on the next page.
EXPERIMENT: Exploring the Object Manager
Throughout this section, you’ll find experiments that show you
 how to peer into the object manager database. These experiments use
 the following tools, which you should become familiar with if you
 aren’t already:
	WinObj (available from Sysinternals) displays the internal
 object manager’s namespace and information about objects (such as
 the reference count, the number of open handles, security
 descriptors, and so forth).

	Process Explorer and Handle from Sysinternals, as well as
 Resource Monitor (introduced in Chapter 1) display the open handles for a
 process.

	The Openfiles /query command displays
 the open file handles for a process, but it requires a global flag
 to be set in order to operate.

	The kernel debugger !handle command
 displays the open handles for a process.

WinObj provides a way to traverse the namespace that the
 object manager maintains. (As we’ll explain later, not all objects
 have names.) Run WinObj, and examine the layout, shown next.
[image: image with no caption]

As noted previously, the Windows Openfiles
 /query command requires that a Windows global flag called
 maintain objects list be enabled. (See the Windows Global Flags section later in this chapter for
 more details about global flags.) If you type Openfiles /Local, it will tell you whether
 the flag is enabled. You can enable it with the Openfiles
 /Local ON command. In either case, you must reboot the
 system for the setting to take effect. Process Explorer, Handle, and
 Resource Monitor do not require object tracking to be turned on
 because they query all system handles and create a per-process object
 list.

The object manager was designed to meet the following
 goals:
	Provide a common, uniform mechanism for using system
 resources

	Isolate object protection to one location in the operating
 system to ensure uniform and consistent object access policy

	Provide a mechanism to charge processes for their use of
 objects so that limits can be placed on the usage of system
 resources

	Establish an object-naming scheme that can readily incorporate
 existing objects, such as the devices, files, and directories of a
 file system, or other independent collections of objects

	Support the requirements of various operating system
 environments, such as the ability of a process to inherit resources
 from a parent process (needed by Windows and Subsystem for
 UNIX Applications) and the ability to create
 case-sensitive file names (needed by Subsystem for UNIX
 Applications)

	Establish uniform rules for object retention (that is, for
 keeping an object available until all processes have finished using
 it)

	Provide the ability to isolate objects for a specific session
 to allow for both local and global objects in the namespace

Internally, Windows has three kinds of objects:
 executive objects, kernel
 objects, and GDI/User objects. Executive
 objects are objects implemented by various components of the executive
 (such as the process manager, memory manager, I/O subsystem, and so on).
 Kernel objects are a more primitive set of objects implemented by the
 Windows kernel. These objects are not visible to user-mode code but are
 created and used only within the executive. Kernel objects provide
 fundamental capabilities, such as synchronization, on which executive
 objects are built. Thus, many executive objects contain (encapsulate)
 one or more kernel objects, as shown in Figure 3-18.
[image: Executive objects that contain kernel objects]

Figure 3-18. Executive objects that contain kernel objects

Note
GDI/User objects, on the other hand, belong to the Windows
 subsystem (Win32k.sys) and do not interact with the kernel. For this
 reason, they are outside the scope of this book, but you can get more
 information on them from the Windows SDK.

Details about the structure of kernel objects and how they are
 used to implement synchronization are given later in this chapter. The
 remainder of this section focuses on how the object manager works and on
 the structure of executive objects, handles, and handle tables and just
 briefly describes how objects are involved in implementing Windows
 security access checking; Chapter 6 thoroughly
 covers that topic.
Executive Objects

Each Windows environment subsystem projects to its
 applications a different image of the operating system. The executive
 objects and object services are primitives that the environment
 subsystems use to construct their own versions of objects and other
 resources.
Executive objects are typically created either by an environment
 subsystem on behalf of a user application or by various components of
 the operating system as part of their normal operation. For example,
 to create a file, a Windows application calls the Windows
 CreateFileW function, implemented in the Windows
 subsystem DLL Kernelbase.dll. After some validation and
 initialization, CreateFileW in turn calls the
 native Windows service NtCreateFile to create an
 executive file object.
The set of objects an environment subsystem supplies to its
 applications might be larger or smaller than the set the executive
 provides. The Windows subsystem uses executive objects to export its
 own set of objects, many of which correspond directly to executive
 objects. For example, the Windows mutexes and semaphores are directly
 based on executive objects (which, in turn, are based on corresponding
 kernel objects). In addition, the Windows subsystem supplies named
 pipes and mailslots, resources that are based on executive file
 objects. Some subsystems, such as Subsystem for UNIX Applications,
 don’t support objects as objects at all. Subsystem for UNIX
 Applications uses executive objects and services as the basis for
 presenting UNIX-style processes, pipes, and other resources to its
 applications.
Table 3-8
 lists the primary objects the executive provides and briefly describes
 what they represent. You can find further details on executive objects
 in the chapters that describe the related executive components (or in
 the case of executive objects directly exported to Windows, in the
 Windows API reference documentation). You can see the full list of
 object types by running Winobj with elevated rights and navigating to
 the ObjectTypes directory.
Note
The executive implements a total of 4242 object types. Many of
 these objects are for use only by the executive component that
 defines them and are not directly accessible by Windows APIs.
 Examples of these objects include Driver,
 Device, and
 EventPair.

Table 3-8. Executive Objects Exposed to the Windows API
	Object Type
	Represents

	Process
	The virtual address space and
 control information necessary for the execution of a set of
 thread objects.

	Thread
	An executable entity within a
 process.

	Job
	A collection of processes manageable
 as a single entity through the job.

	Section
	A region of shared memory (known as
 a file-mapping object in Windows).

	File
	An instance of an opened file or an
 I/O device.

	Token
	The security profile (security ID,
 user rights, and so on) of a process or a
 thread.

	Event
	An object with a persistent state
 (signaled or not signaled) that can be used for
 synchronization or notification.

	Semaphore
	A counter that provides a resource
 gate by allowing some maximum number of threads to access the
 resources protected by the semaphore.

	Mutex
	A synchronization mechanism used to
 serialize access to a resource.

	Timer
	A mechanism to notify a thread when
 a fixed period of time elapses.

	IoCompletion
	A method for threads to enqueue and
 dequeue notifications of the completion of I/O operations
 (known as an I/O completion port in the Windows
 API).

	Key
	A mechanism to refer to data in the
 registry. Although keys appear in the object manager
 namespace, they are managed by the configuration manager, in a
 way similar to that in which file objects are managed by file
 system drivers. Zero or more key values are associated with a
 key object; key values contain data about the
 key.

	Directory
	A virtual directory in the object
 manager’s namespace responsible for containing other objects
 or object directories.

	TpWorkerFactory
	A collection of threads assigned to
 perform a specific set of tasks. The kernel can manage the
 number of work items that will be performed on the queue, how
 many threads should be responsible for the work, and dynamic
 creation and termination of worker threads, respecting certain
 limits the caller can set. Windows exposes the worker factory
 object through thread
 pools.

	TmRm (Resource Manager), TmTx
 (Transaction), TmTm (Transaction Manager), TmEn
 (Enlistment)
	Objects used by the Kernel
 Transaction Manager (KTM) for various
 transactions and/or
 enlistments as part of a
 resource manager or transaction
 manager. Objects can be created through the
 CreateTransactionManager, CreateResourceManager,
 CreateTransaction, and
 CreateEnlistment APIs.

	WindowStation
	An object that contains a clipboard,
 a set of global atoms, and a group of Desktop
 objects.

	Desktop
	An object contained within a window
 station. A desktop has a logical display surface and contains
 windows, menus, and hooks.

	PowerRequest
	An object associated with a thread
 that executes, among other things, a call to
 SetThreadExecutionState to request a
 given power change, such as blocking sleeps (due to a movie
 being played, for example).

	EtwConsumer
	Represents a connected ETW real-time
 consumer that has registered with the
 StartTrace API (and can call
 ProcessTrace to receive the events on the
 object queue).

	EtwRegistration
	Represents the registration object
 associated with a user-mode (or kernel-mode) ETW provider that
 registered with the EventRegister
 API.

Note
Because Windows NT was originally supposed to support the OS/2
 operating system, the mutex had to be compatible with the existing
 design of OS/2 mutual-exclusion objects, a design that required that
 a thread be able to abandon the object, leaving it inaccessible.
 Because this behavior was considered unusual for such an object,
 another kernel object—the mutant—was created.
 Eventually, OS/2 support was dropped, and the object became used by
 the Windows 32 subsystem under the name mutex
 (but it is still called mutant
 internally).

Object Structure

As shown in Figure 3-19,
 each object has an object header and an object body. The object
 manager controls the object headers, and the owning executive
 components control the object bodies of the object types they create.
 Each object header also contains an index to a special object, called
 the type object, that contains information common
 to each instance of the object. Additionally, up to five optional
 subheaders exist: the name information header, the quota information
 header, the process information header, the handle information header,
 and the creator information header.
[image: Structure of an object]

Figure 3-19. Structure of an object

Object Headers and Bodies

The object manager uses the data stored in an object’s header
 to manage objects without regard to their type. Table 3-9 briefly describes the object
 header fields, and Table 3-10
 describes the fields found in the optional object subheaders.
Table 3-9. Object Header Fields
	Field
	Purpose

	Handle count
	Maintains a count of the number of
 currently opened handles to the object.

	Pointer count
	Maintains a count of the number of
 references to the object (including one reference for each
 handle). Kernel-mode components can reference an object by
 pointer without using a handle.

	Security descriptor
	Determines who can use the object
 and what they can do with it. Note that unnamed objects, by
 definition, cannot have security.

	Object type index
	Contains the index to a type
 object that contains attributes common to objects of this
 type. The table that stores all the type objects is
 ObTypeIndexTable.

	Subheader mask
	Bitmask describing which of the
 optional subheader structures described in Table 3-10 are present, except
 for the creator information subheader, which, if present,
 always precedes the object. The bitmask is converted to a
 negative offset by using the ObpInfoMaskToOffset table, with
 each subheader being associated with a 1-byte index that
 places it relative to the other subheaders
 present.

	Flags
	Characteristics and object
 attributes for the object. See Table 3-12 for a list of all the object
 flags.

	Lock
	Per-object lock used when
 modifying fields belonging to this object header or any of
 its subheaders.

In addition to the object header, which contains information
 that applies to any kind of object, the subheaders contain optional
 information regarding specific aspects of the object. Note that
 these structures are located at a variable offset from the start of
 the object header, the value of which depends on the number of
 subheaders associated with the main object header (except, as
 mentioned earlier, for creator information). For each subheader that
 is present, the InfoMask field is updated to
 reflect its existence. When the object manager checks for a given
 subheader, it checks if the corresponding bit is set in the
 InfoMask and then uses the remaining bits to
 select the correct offset into the
 ObpInfoMaskToOffset table, where it finds the
 offset of the subheader from the start of the object header.
These offsets exist for all possible combinations of subheader
 presence, but because the subheaders, if present, are always
 allocated in a fixed, constant order, a given header will have only
 as many possible locations as the maximum number of subheaders that
 precede it. For example, because the name information subheader is
 always allocated first, it has only one possible offset. On the
 other hand, the handle information subheader (which is allocated
 third) has three possible locations, because it might or might not
 have been allocated after the quota subheader, itself having
 possibly been allocated after the name information. Table 3-10 describes all the optional
 object subheaders and their location. In the case of creator
 information, a value in the object header flags determines whether
 the subheader is present. (See Table 3-12 for
 information about these flags.)
Table 3-10. Optional Object Subheaders
	Name
	Purpose
	Bit
	Location

	Creator information
	Links the object into a list for
 all the objects of the same type, and records the process
 that created the object, along with a back
 trace.
	0 (0x1)
	Object header -
 ObpInfoMaskToOffset[0])

	Name information
	Contains the object name,
 responsible for making an object visible to other processes
 for sharing, and a pointer to the object directory, which
 provides the hierarchical structure in which the object
 names are stored.
	1 (0x2)
	Object header -
 ObpInfoMaskToOffset -
 ObpInfoMaskToOffset[InfoMask &
 0x3]

	Handle information
	Contains a database of entries (or
 just a single entry) for a process that has an open handle
 to the object (along with a per-process handle
 count).
	2 (0x4)
	Object header -
 ObpInfoMaskToOffset[InfoMask &
 0x7]

	Quota information
	Lists the resource charges levied
 against a process when it opens a handle to the
 object.
	3 (0x8)
	Object header -
 ObpInfoMaskToOffset[InfoMask &
 0xF]

	Process information
	Contains a pointer to the owning
 process if this is an exclusive object. More information on
 exclusive objects follows later in the
 chapter.
	4 (0x10)
	Object header -
 ObpInfoMaskToOffset[InfoMask &
 0x1F]

Each of these subheaders is optional and is present
 only under certain conditions, either during system boot up or at
 object creation time. Table 3-11 describes each
 of these conditions.
Table 3-11. Conditions Required for Presence of Object
 Subheaders
	Name
	Condition

	Name information
	The object must have been created
 with a name.

	Quota information
	The object must not have been
 created by the initial (or idle) system
 process.

	Process information
	The object must have been created
 with the exclusive object flag. (See
 Table 3-12 for information about object
 flags.)

	Handle information
	The object type must have enabled
 the maintain handle count flag. File
 objects, ALPC objects, WindowStation objects, and Desktop
 objects have this flag set in their object type
 structure.

	Creator information
	The object type must have enabled
 the maintain type list flag. Driver
 objects have this flag set if the Driver Verifier is
 enabled. However, enabling the maintain object
 type list global flag (discussed earlier) will
 enable this for all objects, and Type
 objects always have the flag set.

Finally, a number of attributes and/or flags determine the
 behavior of the object during creation time or during certain
 operations. These flags are received by the object manager whenever
 any new object is being created, in a structure called the
 object attributes. This structure defines the
 object name, the root object directory where it should be inserted,
 the security descriptor for the object, and the object
 attribute flags. Table 3-12 lists
 the various flags that can be associated with an object.
Note
When an object is being created through an API in the
 Windows subsystem (such as CreateEvent or
 CreateFile), the caller does not specify any
 object attributes—the subsystem DLL performs the work behind the
 scenes. For this reason, all named objects created through Win32
 go in the BaseNamedObjects directory, either
 the global or per-session instance, because this is the root
 object directory that Kernelbase.dll specifies as part of the
 object attributes structure. More information on
 BaseNamedObjects and how it relates to the
 per-session namespace will follow later in this chapter.

Table 3-12. Object Flags
	Attributes Flag
	Header Flag
	Purpose

	OBJ_INHERIT
	Saved in the handle table
 entry
	Determines whether the handle to
 the object will be inherited by child processes, and whether
 a process can use DuplicateHandle to
 make a copy.

	OBJ_PERMANENT
	OB_FLAG_PERMANENT_OBJECT
	Defines object retention behavior
 related to reference counts, described later.

	OBJ_EXCLUSIVE
	OB_FLAG_EXCLUSIVE_OBJECT
	Specifies that the object can be
 used only by the process that created it.

	OBJ_CASE_INSENSITIVE
	Stored in the handle table
 entry
	Specifies that lookups for this
 object in the namespace should be case insensitive. It can
 be overridden by the case insensitive
 flag in the object type.

	OBJ_OPENIF
	Not stored, used at run
 time
	Specifies that a create operation
 for this object name should result in an open, if the object
 exists, instead of a failure.

	OBJ_OPENLINK
	Not stored, used at run
 time
	Specifies that the object manager
 should open a handle to the symbolic link, not the
 target.

	OBJ_KERNEL_HANDLE
	OB_FLAG_KERNEL_OBJECT
	Specifies that the handle to this
 object should be a kernel handle (more
 on this later).

	OBJ_FORCE_ACCESS_CHECK
	Not stored, used at run
 time
	Specifies that even if the object
 is being opened from kernel mode, full access checks should
 be performed.

	OBJ_KERNEL_EXCLUSIVE
	OB_FLAG_KERNEL_ONLY_ACCESS
	Disables any user-mode process
 from opening a handle to the object; used to protect the
 /Device/PhysicalMemory section
 object.

	N/A
	OF_FLAG_DEFAULT_SECURITY_QUOTA
	Specifies that the object’s
 security descriptor is using the default 2-KB
 quota.

	N/A
	OB_FLAG_SINGLE_HANDLE_ENTRY
	Specifies that the handle
 information subheader contains only a single entry and not a
 database.

	N/A
	OB_FLAG_NEW_OBJECT
	Specifies that the object has been
 created but not yet inserted into the object
 namespace.

	N/A
	OB_FLAG_DELETED_INLINE
	Specifies that the object is being
 deleted through the deferred deletion worker
 thread.

In addition to an object header, each object has an object
 body whose format and contents are unique to its object type; all
 objects of the same type share the same object body format. By
 creating an object type and supplying services for it, an executive
 component can control the manipulation of data in all object bodies
 of that type. Because the object header has a static and well-known
 size, the object manager can easily look up the object header for an
 object simply by subtracting the size of the header from the pointer
 of the object. As explained earlier, to access the subheaders, the
 object manager subtracts yet another well-known value from the
 pointer of the object header.
Because of the standardized object header and
 subheader structures, the object manager is able to provide a small
 set of generic services that can operate on the attributes stored in
 any object header and can be used on objects of any type (although
 some generic services don’t make sense for certain objects). These
 generic services, some of which the Windows subsystem makes
 available to Windows applications, are listed in Table 3-13.
Although these generic object services are supported for all
 object types, each object has its own create, open, and query
 services. For example, the I/O system implements a create file
 service for its file objects, and the process manager implements a
 create process service for its process objects.
Although a single create object service could have been
 implemented, such a routine would have been quite complicated,
 because the set of parameters required to initialize a file object,
 for example, differs markedly from that required to initialize a
 process object. Also, the object manager would have incurred
 additional processing overhead each time a thread called an object
 service to determine the type of object the handle referred to and
 to call the appropriate version of the service.
Table 3-13. Generic Object Services
	Service
	Purpose

	Close
	Closes a handle to an
 object

	Duplicate
	Shares an object by duplicating a
 handle and giving it to another process

	Make
 permanent/temporary
	Changes the retention of an object
 (described later)

	Query object
	Gets information about an object’s
 standard attributes

	Query security
	Gets an object’s security
 descriptor

	Set security
	Changes the protection on an
 object

	Wait for a single
 object
	Synchronizes a thread’s execution
 with one object

	Signal an object and wait for
 another
	Signals an object (such as an
 event), and synchronizes a thread’s execution with
 another

	Wait for multiple
 objects
	Synchronizes a thread’s execution
 with multiple objects

Type Objects

Object headers contain data that is common to all objects but
 that can take on different values for each instance of an object.
 For example, each object has a unique name and can have a unique
 security descriptor. However, objects also contain some data that
 remains constant for all objects of a particular type. For example,
 you can select from a set of access rights specific to a type of
 object when you open a handle to objects of that type. The executive
 supplies terminate and suspend access (among others) for thread
 objects and read, write, append, and delete access (among others)
 for file objects. Another example of an object-type-specific
 attribute is synchronization, which is described shortly.
To conserve memory, the object manager stores these static,
 object-type-specific attributes once when creating a new object
 type. It uses an object of its own, a type object, to record this
 data. As Figure 3-20
 illustrates, if the object-tracking debug flag (described in the
 Windows Global Flags section later in this chapter) is set, a type object
 also links together all objects of the same type (in this case, the
 process type), allowing the object manager to find and enumerate
 them, if necessary. This functionality takes advantage of the
 creator information subheader discussed previously.
[image: Process objects and the process type object]

Figure 3-20. Process objects and the process type object

EXPERIMENT: Viewing Object Headers and Type Objects
You can look at the process object type data structure in
 the kernel debugger by first identifying a process object with the
 !process command:
lkd> !process 0 0
**** NT ACTIVE PROCESS DUMP ****
PROCESS fffffa800279cae0
 SessionId: none Cid: 0004 Peb: 00000000 ParentCid: 0000
 DirBase: 00187000 ObjectTable: fffff8a000001920 HandleCount: 541.
 Image: System
Then execute the !object command with
 the process object address as the argument:
lkd> !object fffffa800279cae0
Object: fffffa800279cae0 Type: (fffffa8002755b60) Process
 ObjectHeader: fffffa800279cab0 (new version)
 HandleCount: 3 PointerCount: 172 3172
Notice that on 32-bit Windows, the object header starts 0x18
 (24 decimal) bytes prior to the start of the object body, and on
 64-bit Windows, it starts 0x30 (48 decimal) bytes prior—the size
 of the object header itself. You can view the object header with
 this command:
lkd> dt nt!_OBJECT_HEADER fffffa800279cab0
 +0x000 PointerCount : 172
 +0x008 HandleCount : 33
 +0x008 NextToFree : 0x000000000x00000000'00000003
 +0x010 Lock : _EX_PUSH_LOCK
 +0x018 TypeIndex : 0x7 ''
 +0x019 TraceFlags : 0 ''
 +0x01a InfoMask : 0 ''
 +0x01b Flags : 0x2 ''
 +0x020 ObjectCreateInfo : 0xfffff800'01c53a80 _OBJECT_CREATE_INFORMATION
 +0x020 QuotaBlockCharged : 0xfffff800'01c53a80
 +0x028 SecurityDescriptor : 0xfffff8a0'00004b29
 +0x030 Body : _QUAD
Now look at the object type data structure by obtaining its
 address from the ObTypeIndexTable table for
 the entry associated with the TypeIndex field
 of the object header data structure:
lkd> ?? ((nt!_OBJECT_TYPE**)@@(nt!ObTypeIndexTable))[((nt!_OBJECT_HEADER*)0xfffffa800279cab0)->TypeIndex]
struct _OBJECT_TYPE * 0xfffffa80'02755b60
 +0x000 TypeList : _LIST_ENTRY [0xfffffa80'02755b60 - 0xfffffa80'02755b60]
 +0x010 Name : _UNICODE_STRING "Process"
 +0x020 DefaultObject : (null)
 +0x028 Index : 0x70x7 ''
 +0x02c TotalNumberOfObjects : 0x380x38
 +0x030 TotalNumberOfHandles : 0x1320x132
 +0x034 HighWaterNumberOfObjects : 0x3d
 +0x038 HighWaterNumberOfHandles : 0x13c
 +0x040 TypeInfo : _OBJECT_TYPE_INITIALIZER
 +0x0b0 TypeLock : _EX_PUSH_LOCK
 +0x0b8 Key : 0x636f7250
 +0x0c0 CallbackList : _LIST_ENTRY [0xfffffa80'02755c20 - 0xfffffa80'02755c20]
The output shows that the object type structure includes the
 name of the object type, tracks the total number of active objects
 of that type, and tracks the peak number of handles and objects of
 that type. The CallbackList also keeps track
 of any object manager filtering callbacks that are associated with
 this object type. The TypeInfo field stores
 the pointer to the data structure that stores attributes common to
 all objects of the object type as well as pointers to the object
 type’s methods:
lkd> ?? ((nt!_OBJECT_TYPE*)0xfffffa8002755b60)->TypeInfo*)
 +0x000 Length : 0x70
 +0x002 ObjectTypeFlags : 0x4a 'J'
 +0x002 CaseInsensitive : 0y0
 +0x002 UnnamedObjectsOnly : 0y1
 +0x002 UseDefaultObject : 0y0
 +0x002 SecurityRequired : 0y1
 +0x002 MaintainHandleCount : 0y0
 +0x002 MaintainTypeList : 0y0
 +0x002 SupportsObjectCallbacks : 0y1
 +0x004 ObjectTypeCode : 0
 +0x008 InvalidAttributes : 0xb0
 +0x00c GenericMapping : _GENERIC_MAPPING
 +0x01c ValidAccessMask : 0x1fffff
 +0x020 RetainAccess : 0x101000
 +0x024 PoolType : 0 (NonPagedPool)
 +0x028 DefaultPagedPoolCharge : 0x1000
 +0x02c DefaultNonPagedPoolCharge : 0x528
 +0x030 DumpProcedure : (null)
 +0x038 OpenProcedure : 0xfffff800'01d98d58 long nt!PspProcessOpen+0
 +0x040 CloseProcedure : 0xfffff800'01d833c4 void nt!PspProcessClose+0
 +0x048 DeleteProcedure : 0xfffff800'01d83090 void nt!PspProcessDelete+0
 +0x050 ParseProcedure : (null)
 +0x058 SecurityProcedure : 0xfffff800'01d8bb50 long nt!SeDefaultObjectMethod+0
 +0x060 QueryNameProcedure : (null)
 +0x068 OkayToCloseProcedure : (null)

Type objects can’t be manipulated from user mode
 because the object manager supplies no services for them. However,
 some of the attributes they define are visible through certain
 native services and through Windows API routines. The information
 stored in the type initializers is described in Table 3-14.
Table 3-14. Type Initializer Fields
	Attribute
	Purpose

	Type name
	The name for objects of this type
 (“process,” “event,” “port,” and so on).

	Pool type
	Indicates whether objects of this
 type should be allocated from paged or nonpaged
 memory.

	Default quota
 charges
	Default paged and nonpaged pool
 values to charge to process quotas.

	Valid access mask
	The types of access a thread can
 request when opening a handle to an object of this type
 (“read,” “write,” “terminate,” “suspend,” and so
 on).

	Generic access rights
 mapping
	A mapping between the four generic
 access rights (read, write, execute, and all) to the
 type-specific access rights.

	Flags
	Indicate whether objects must
 never have names (such as process objects), whether their
 names are case-sensitive, whether they require a security
 descriptor, whether they support object-filtering callbacks,
 and whether a handle database (handle information subheader)
 and/or a type-list linkage (creator information subheader)
 should be maintained. The use default
 object flag also defines the behavior for the
 default object field shown later in
 this table.

	Object type code
	Used to describe the type of
 object this is (versus comparing with a well-known name
 value). File objects set this to 1,
 synchronization objects set this to 2,
 and thread objects set this to 4. This
 field is also used by ALPC to store handle attribute
 information associated with a message.

	Invalid attributes
	Specifies object attribute flags
 (shown earlier in Table 3-12) that are
 invalid for this object type.

	Default object
	Specifies the internal object
 manager event that should be used during waits for this
 object, if the object type creator requested one. Note that
 certain objects, such as File objects and ALPC port objects
 already contain their own embedded dispatcher object; in
 this case, this field is an offset into the object body. For
 example, the event inside the FILE_OBJECT structure is
 embedded in a field called
 Event.

	Methods
	One or more routines that the
 object manager calls automatically at certain points in an
 object’s lifetime.

Synchronization, one of the
 attributes visible to Windows applications, refers to a thread’s
 ability to synchronize its execution by waiting for an object to
 change from one state to another. A thread can synchronize with
 executive job, process, thread, file, event, semaphore, mutex, and
 timer objects. Other executive objects don’t support
 synchronization. An object’s ability to support synchronization is
 based on three possibilities:
	The executive object is a wrapper for a dispatcher object
 and contains a dispatcher header, a kernel structure that is
 covered in the section Low-IRQL Synchronization later in this
 chapter.

	The creator of the object type requested a
 default object, and the object manager
 provided one.

	The executive object has an embedded dispatcher object,
 such as an event somewhere inside the object body, and the
 object’s owner supplied its offset to the object manager when
 registering the object type (described in Table 3-14).

Object Methods

The last attribute in Table 3-14, methods, comprises a set of
 internal routines that are similar to C++ constructors and
 destructors—that is, routines that are automatically called when an
 object is created or destroyed. The object manager extends this idea
 by calling an object method in other situations as well, such as
 when someone opens or closes a handle to an object or when someone
 attempts to change the protection on an object. Some object types
 specify methods whereas others don’t, depending on how the object
 type is to be used.
When an executive component creates a new object type, it can
 register one or more methods with the object manager. Thereafter,
 the object manager calls the methods at well-defined points in the
 lifetime of objects of that type, usually when an object is created,
 deleted, or modified in some way. The methods that the object
 manager supports are listed in Table 3-15.
The reason for these object methods is to address the fact
 that, as you’ve seen, certain object operations are generic (close,
 duplicate, security, and so on). Fully generalizing these generic
 routines would have required the designers of the object manager to
 anticipate all object types. However, the routines to create an
 object type are exported by the kernel, enabling external kernel
 components to create their own object types. Although this
 functionality is not documented for driver developers, it is
 internally used by Win32k.sys to define WindowStation and Desktop
 objects. Through object-method extensibility, Win32k.sys defines its
 routines for handling operations such as create and query.
One exception to this rule is the
 security routine, which does, unless otherwise
 instructed, default to SeDefaultObjectMethod.
 This routine does not need to know the internal structure of the
 object because it deals only with the security descriptor for the
 object, and you’ve seen that the pointer to the security descriptor
 is stored in the generic object header, not inside the object body.
 However, if an object does require its own additional security
 checks, it can define a custom security routine. The other reason
 for having a generic security method is to avoid complexity, because
 most objects rely on the security reference monitor to manage their
 security.
Table 3-15. Object Methods
	Method
	When Method Is
 Called

	Open
	When an object handle is
 opened

	Close
	When an object handle is
 closed

	Delete
	Before the object manager deletes
 an object

	Query name
	When a thread requests the name of
 an object, such as a file, that exists in a secondary object
 namespace

	Parse
	When the object manager is
 searching for an object name that exists in a secondary
 object namespace

	Dump
	Not used

	Okay to close
	When the object manager is
 instructed to close a handle

	Security
	When a process reads or changes
 the protection of an object, such as a file, that exists in
 a secondary object namespace

The object manager calls the open method whenever it creates a
 handle to an object, which it does when an object is created or
 opened. The WindowStation and Desktop objects provide an open
 method; for example, the WindowStation object type requires an open
 method so that Win32k.sys can share a piece of memory with the
 process that serves as a desktop-related memory pool.
An example of the use of a close method occurs in the I/O
 system. The I/O manager registers a close method for the file object
 type, and the object manager calls the close method each time it
 closes a file object handle. This close method checks whether the
 process that is closing the file handle owns any outstanding locks
 on the file and, if so, removes them. Checking for file locks isn’t
 something the object manager itself can or should do.
The object manager calls a delete method, if one is
 registered, before it deletes a temporary object from memory. The
 memory manager, for example, registers a delete method for the
 section object type that frees the physical pages being used by the
 section. It also verifies that any internal data structures the
 memory manager has allocated for a section are deleted before the
 section object is deleted. Once again, the object manager can’t do
 this work because it knows nothing about the internal workings of
 the memory manager. Delete methods for other types of objects
 perform similar functions.
The parse method (and similarly, the query name method) allows
 the object manager to relinquish control of finding an object to a
 secondary object manager if it finds an object that exists outside
 the object manager namespace. When the object manager looks up an
 object name, it suspends its search when it encounters an object in
 the path that has an associated parse method. The object manager
 calls the parse method, passing to it the remainder of the object
 name it is looking for. There are two namespaces in Windows in
 addition to the object manager’s: the registry namespace, which the
 configuration manager implements, and the file system namespace,
 which the I/O manager implements with the aid of file system
 drivers. (See Chapter 4, for more
 information on the configuration manager and Chapter 8 in Part 2 for
 more details about the I/O manager and file system drivers.)
For example, when a process opens a handle to the
 object named \Device\HarddiskVolume1\docs\resume.doc, the object
 manager traverses its name tree until it reaches the device object
 named HarddiskVolume1. It sees that a parse
 method is associated with this object, and it calls the method,
 passing to it the rest of the object name it was searching for—in
 this case, the string docs\resume.doc. The
 parse method for device objects is an I/O routine because the I/O
 manager defines the device object type and registers a parse method
 for it. The I/O manager’s parse routine takes the name string and
 passes it to the appropriate file system, which finds the file on
 the disk and opens it.
The security method, which the I/O system also uses, is
 similar to the parse method. It is called whenever a thread tries to
 query or change the security information protecting a file. This
 information is different for files than for other objects because
 security information is stored in the file itself rather than in
 memory. The I/O system, therefore, must be called to find the
 security information and read or change it.
Finally, the okay-to-close method is used as an additional
 layer of protection around the malicious—or incorrect—closing of
 handles being used for system purposes. For example, each process
 has a handle to the Desktop object or objects on which its thread or
 threads have windows visible. Under the standard security model, it
 is possible for those threads to close their handles to their
 desktops because the process has full control of its own objects. In
 this scenario, the threads end up without a desktop associated with
 them—a violation of the windowing model. Win32k.sys registers an
 okay-to-close routine for the Desktop and WindowStation objects to
 prevent this behavior.

Object Handles and the Process Handle Table

When a process creates or opens an object by name, it receives
 a handle that represents its access to the
 object. Referring to an object by its handle is faster than using
 its name because the object manager can skip the name lookup and
 find the object directly. Processes can also acquire handles to
 objects by inheriting handles at process creation time (if the
 creator specifies the inherit handle flag on the
 CreateProcess call and the handle was marked as
 inheritable, either at the time it was created or afterward by using
 the Windows SetHandleInformation function) or
 by receiving a duplicated handle from another process. (See the
 Windows DuplicateHandle function.)
All user-mode processes must own a handle to an object before
 their threads can use the object. Using handles to manipulate system
 resources isn’t a new idea. C and Pascal (an older programming
 language similar to Delphi) run-time libraries, for example, return
 handles to opened files. Handles serve as indirect pointers to
 system resources; this indirection keeps application programs from
 fiddling directly with system data structures.
Object handles provide additional benefits. First, except for
 what they refer to, there is no difference between a file handle, an
 event handle, and a process handle. This similarity provides a
 consistent interface to reference objects, regardless of their type.
 Second, the object manager has the exclusive right to create handles
 and to locate an object that a handle refers to. This means that the
 object manager can scrutinize every user-mode action that affects an
 object to see whether the security profile of the caller allows the
 operation requested on the object in question.
Note
Executive components and device drivers can access
 objects directly because they are running in kernel mode and
 therefore have access to the object structures in system memory.
 However, they must declare their usage of the object by
 incrementing the reference count so that the object won’t be
 de-allocated while it’s still being used. (See the section Object Retention later in this chapter for more
 details.) To successfully make use of this object, however, device
 drivers need to know the internal structure definition of the
 object, and this is not provided for most objects. Instead, device
 drivers are encouraged to use the appropriate kernel APIs to
 modify or read information from the object. For example, although
 device drivers can get a pointer to the Process object (EPROCESS),
 the structure is opaque, and Ps* APIs must be
 used. For other objects, the type itself is opaque (such as most
 executive objects that wrap a dispatcher object—for example,
 events or mutexes). For these objects, drivers must use the same
 system calls that user-mode applications end up calling (such as
 ZwCreateEvent) and use handles instead of
 object pointers.

EXPERIMENT: Viewing Open Handles
Run Process Explorer, and make sure the lower pane is
 enabled and configured to show open handles. (Click on View, Lower
 Pane View, and then Handles). Then open a command prompt and view
 the handle table for the new Cmd.exe process. You should see an
 open file handle to the current directory. For example, assuming
 the current directory is C:\Users\Administrator, Process Explorer
 shows the following:
[image: image with no caption]

Now pause Process Explorer by pressing the space bar or
 clicking on View, Update Speed and choosing Pause. Then change the
 current directory with the cd command and
 press F5 to refresh the display. You will see in Process Explorer
 that the handle to the previous current directory is closed and a
 new handle is opened to the new current directory. The previous
 handle is highlighted in red and the new handle is highlighted in
 green.
Process Explorer’s differences-highlighting feature
 makes it easy to see changes in the handle table. For example, if
 a process is leaking handles, viewing the handle table with
 Process Explorer can quickly show what handle or handles are being
 opened but not closed. (Typically, you see a long list of handles
 to the same object.) This information can help the programmer find
 the handle leak.
Resource Monitor also shows open handles to named handles
 for the processes you select by checking the boxes next to their
 names. Here are the command prompt’s open handles:
[image: image with no caption]

You can also display the open handle table by using the
 command-line Handle tool from Sysinternals. For example, note the
 following partial output of Handle when examining the file object
 handles located in the handle table for a Cmd.exe process before
 and after changing the directory. By default, Handle filters out
 nonfile handles unless the –a switch is used,
 which displays all the handles in the process, similar to Process
 Explorer.
C:\>handle -p cmd.exe

Handle v3.46
Copyright (C) 1997-2011 Mark Russinovich
Sysinternals - www.sysinternals.com

--
cmd.exe pid: 5124 Alex-Laptop\Alex Ionescu
 3C: File (R-D) C:\Windows\System32\en-US\KernelBase.dll.mui
 44: File (RW-) C:\

C:\>cd windows

C:\Windows>handle -p cmd.exe

Handle v3.46
Copyright (C) 1997-2011 Mark Russinovich
Sysinternals - www.sysinternals.com

--
cmd.exe pid: 5124 Alex-Laptop\Alex Ionescu
 3C: File (R-D) C:\Windows\System32\en-US\KernelBase.dll.mui
 40: File (RW-) C:\Windows

An object handle is an index into
 a process-specific handle table, pointed to by
 the executive process (EPROCESS) block (described in Chapter 5). The first
 handle index is 4, the second 8, and so on. A process’ handle table
 contains pointers to all the objects that the process has opened a
 handle to. Handle tables are implemented as a three-level scheme,
 similar to the way that the x86 memory management unit implements
 virtual-to-physical address translation, giving a maximum of more
 than 16,000,000 handles per process. (See Chapter 10 in Part 2 for
 details about memory management in x86 systems.)
Note
With a three-table scheme, the top-level table can contain a
 page full of pointers to mid-level tables, allowing for well over
 half a billion handles. However, to maintain compatibility with
 Windows 2000’s handle scheme and inherent limitation of 16,777,216
 handles, the top-level table only contains up to a maximum of 32
 pointers to the mid-level tables, capping newer versions of
 Windows at the same limit.

Only the lowest-level handle table is allocated on process
 creation—the other levels are created as needed. The subhandle table
 consists of as many entries as will fit in a page minus one entry
 that is used for handle auditing. For example, for x86 systems a
 page is 4096 bytes, divided by the size of a handle table entry (8
 bytes), which is 512, minus 1, which is a total of 511 entries in
 the lowest-level handle table. The mid-level handle table contains a
 full page of pointers to subhandle tables, so the number of
 subhandle tables depends on the size of the page and the size of a
 pointer for the platform. Figure 3-21 describes the
 handle table layout on Windows.
[image: Windows process handle table architecture]

Figure 3-21. Windows process handle table architecture

EXPERIMENT: Creating the Maximum Number of Handles
The test program Testlimit from Sysinternals has an
 option to open handles to an object until it cannot open any more
 handles. You can use this to see how many handles can be created
 in a single process on your system. Because handle tables are
 allocated from paged pool, you might run out of paged pool before
 you hit the maximum number of handles that can be created in a
 single process. To see how many handles you can create on your
 system, follow these steps:
	Download the Testlimit executable file corresponding to
 the 32/64 bit Windows you need from http://live.sysinternals.com/WindowsInternals.

	Run Process Explorer, click View and then System
 Information, and then click on the Memory tab. Notice the
 current and maximum size of paged pool. (To display the
 maximum pool size values, Process Explorer must be configured
 properly to access the symbols for the kernel image,
 Ntoskrnl.exe.) Leave this system information display running
 so that you can see pool utilization when you run the
 Testlimit program.

	Open a command prompt.

	Run the Testlimit program with the
 –h switch (do this by typing testlimit –h). When Testlimit fails
 to open a new handle, it displays the total number of handles
 it was able to create. If the number is less than
 approximately 16 million, you are probably running out of
 paged pool before hitting the theoretical per-process handle
 limit.

	Close the Command Prompt window; doing this kills the
 Testlimit process, thus closing all the open handles.

As shown in Figure 3-22, on x86 systems, each
 handle entry consists of a structure with two 32-bit members: a
 pointer to the object (with flags), and the granted access mask. On
 64-bit systems, a handle table entry is 12 bytes long: a 64-bit
 pointer to the object header and a 32-bit access mask. (Access masks
 are described in Chapter 6.)
[image: Structure of a handle table entry]

Figure 3-22. Structure of a handle table entry

The first flag is a lock bit, indicating whether the
 entry is currently in use. The second flag is the inheritance
 designation—that is, it indicates whether processes created by this
 process will get a copy of this handle in their handle tables. As
 already noted, handle inheritance can be specified on handle
 creation or later with the SetHandleInformation
 function. The third flag indicates whether closing the object should
 generate an audit message. (This flag isn’t exposed to Windows—the
 object manager uses it internally.) Finally, the protect-from-close
 bit, stored in an unused portion of the access mask, indicates
 whether the caller is allowed to close this handle. (This flag can
 be set with the NtSetInformationObject system
 call.)
System components and device drivers often need to open
 handles to objects that user-mode applications shouldn’t have access
 to. This is done by creating handles in the kernel handle
 table (referenced internally with the name
 ObpKernelHandleTable). The handles in this
 table are accessible only from kernel mode and in any process
 context. This means that a kernel-mode function can reference the
 handle in any process context with no performance impact. The object
 manager recognizes references to handles from the kernel handle
 table when the high bit of the handle is set—that is, when
 references to kernel-handle-table handles have values greater than
 0x80000000. The kernel handle table also serves as the handle table
 for the System process, and all handles created by the System
 process (such as code running in system threads) are automatically
 marked as kernel handles because they live in the kernel handle
 table by definition.
EXPERIMENT: Viewing the Handle Table with the Kernel
 Debugger
The !handle command in the kernel
 debugger takes three arguments:
!handle <handle index> <flags> <processid>
The handle index identifies the handle entry in the handle
 table. (Zero means “display all handles.”) The first handle is
 index 4, the second 8, and so on. For example, typing !handle 4 will show the first handle for
 the current process.
The flags you can specify are a bitmask, where bit 0 means
 “display only the information in the handle entry,” bit 1 means
 “display free handles (not just used handles),” and bit 2 means
 “display information about the object that the handle refers to.”
 The following command displays full details about the handle table
 for process ID 0x62C:
lkd> !handle 0 7 62c
processor number 0, process 000000000000062c
Searching for Process with Cid == 62c
PROCESS fffffa80052a7060
 SessionId: 1 Cid: 062c Peb: 7fffffdb000 ParentCid: 0558
 DirBase: 7e401000 ObjectTable: fffff8a00381fc80 HandleCount: 111.
 Image: windbg.exe

Handle table at fffff8a0038fa000 with 113 Entries in use
0000: free handle, Entry address fffff8a0038fa000, Next Entry 00000000fffffffe
0004: Object: fffff8a005022b70 GrantedAccess: 00000003 Entry: fffff8a0038fa010
Object: fffff8a005022b70 Type: (fffffa8002778f30) Directory
 ObjectHeader: fffff8a005022b40fffff8a005022b40 (new version)
 HandleCount: 25 PointerCount: 63
 Directory Object: fffff8a000004980 Name: KnownDlls

0008: Object: fffffa8005226070 GrantedAccess: 00100020 Entry: fffff8a0038fa020
Object: fffffa8005226070 Type: (fffffa80027b3080) File
 ObjectHeader: fffffa8005226040fffffa8005226040 (new version)
 HandleCount: 1 PointerCount: 1
 Directory Object: 00000000 Name: \Program Files\Debugging Tools for Windows (x64)
{HarddiskVolume2}

EXPERIMENT: Searching for Open Files with the Kernel
 Debugger
Although you can use Process Explorer, Handle, and
 the OpenFiles.exe utility to search for open file handles, these
 tools are not available when looking at a crash dump or analyzing
 a system remotely. You can instead use the
 !devhandles command to search for handles
 opened to files on a specific volume. (See Chapter 8 in Part 2 for
 more information on devices, files, and volumes.)
	First you need to pick the drive letter you are
 interested in and obtain the pointer to its Device
 object. You can use the
 !object command as shown here:
1: kd> !object \Global??\C:
Object: fffff8a00016ea40 Type: (fffffa8000c38bb0) SymbolicLink
 ObjectHeader: fffff8a00016ea10 (new version)
 HandleCount: 0 PointerCount: 1
 Directory Object: fffff8a000008060 Name: C:
 Target String is '\Device\HarddiskVolume1'
 Drive Letter Index is 3 (C:)

	Next use the !object command to get
 the Device object of the target volume
 name:
1: kd> !object \Device\HarddiskVolume1
Object: fffffa8001bd3cd0 Type: (fffffa8000ca0750) Device

	Now you can use the pointer of the
 Device object with the
 !devhandles command. Each object shown
 points to a file:
!devhandles fffffa8001bd3cd0
Checking handle table for process 0xfffffa8000c819e0
Kernel handle table at fffff8a000001830 with 434 entries in use

PROCESS fffffa8000c819e0
 SessionId: none Cid: 0004 Peb: 00000000 ParentCid: 0000
 DirBase: 00187000 ObjectTable: fffff8a000001830 HandleCount: 434.
 Image: System

0048: Object: fffffa8001d4f2a0 GrantedAccess: 0013008b Entry: fffff8a000003120
Object: fffffa8001d4f2a0 Type: (fffffa8000ca0360) File
 ObjectHeader: fffffa8001d4f270 (new version)
 HandleCount: 1 PointerCount: 19
 Directory Object: 00000000 Name: \Windows\System32\LogFiles\WMI\
RtBackup\EtwRTEventLog-Application.etl {HarddiskVolume1}

Reserve Objects

Because objects represent anything from events to
 files to interprocess messages, the ability for applications and
 kernel code to create objects is essential to the normal and desired
 runtime behavior of any piece of Windows code. If an object
 allocation fails, this usually causes anywhere from loss of
 functionality (the process cannot open a file) to data loss or
 crashes (the process cannot allocate a synchronization object).
 Worse, in certain situations, the reporting of errors that led to
 object creation failure might themselves require new objects to be
 allocated. Windows implements two special reserve
 objects to deal with such situations: the User APC
 reserve object and the I/O Completion packet reserve object. Note
 that the reserve-object mechanism itself is fully extensible, and
 future versions of Windows might add other reserve object types—from
 a broad view, the reserve object is a mechanism enabling any
 kernel-mode data structure to be wrapped as an object (with an
 associated handle, name, and security) for later use.
As was discussed in the APC section earlier in this chapter,
 APCs are used for operations such as suspension, termination, and
 I/O completion, as well as communication between user-mode
 applications that want to provide asynchronous callbacks. When a
 user-mode application requests a User APC to be targeted to another
 thread, it uses the QueueUserApc API in
 Kernelbase.dll, which calls the
 NtQueueUserApcThread system call. In the
 kernel, this system call attempts to allocate a piece of paged pool
 in which to store the KAPC control object
 structure associated with an APC. In low-memory situations, this
 operation fails, preventing the delivery of the APC, which,
 depending on what the APC was used for, could cause loss of data or
 functionality.
To prevent this, the user-mode application, can, on startup,
 use the NtAllocateReserveObject system call to
 request the kernel to pre-allocate the KAPC structure. Then the
 application uses a different system call,
 NtQueueUserApcThreadEx, that contains an extra
 parameter that is used to store the handle to the reserve object.
 Instead of allocating a new structure, the kernel attempts to
 acquire the reserve object (by setting its
 InUse bit to true) and use
 it until the KAPC object is not needed anymore, at which point the
 reserve object is released back to the system. Currently, to prevent
 mismanagement of system resources by third-party developers, the
 reserve object API is available only internally through system calls
 for operating system components. For example, the RPC library uses
 reserved APC objects to guarantee asynchronous callbacks will still
 be able to return in low-memory situations.
A similar scenario can occur when applications need
 failure-free delivery of an I/O completion port message, or packet.
 Typically, packets are sent with the
 PostQueuedCompletionStatus API in
 Kernelbase.dll, which calls the
 NtSetIoCompletion API. Similarly to the user
 APC, the kernel must allocate an I/O manager structure to contain
 the completion-packet information, and if this allocation fails, the
 packet cannot be created. With reserve objects, the application can
 use the NtAllocateReserveObject API on startup
 to have the kernel pre-allocate the I/O completion packet, and the
 NtSetIoCompletionEx system call can be used to
 supply a handle to this reserve object, guaranteeing a success path.
 Just like User APC reserve objects, this functionality is reserved
 for system components and is used both by the RPC library
 and the Windows Peer-To-Peer BranchCache service (see Chapter 7, for more information on networking) to
 guarantee completion of asynchronous I/O operations.

Object Security

When you open a file, you must specify whether you intend to
 read or to write. If you try to write to a file that is opened for
 read access, you get an error. Likewise, in the executive, when a
 process creates an object or opens a handle to an existing object,
 the process must specify a set of desired access
 rights—that is, what it wants to do with the object. It
 can request either a set of standard access rights (such as read,
 write, and execute) that apply to all object types or specific
 access rights that vary depending on the object type. For example,
 the process can request delete access or append access to a file
 object. Similarly, it might require the ability to suspend or
 terminate a thread object.
When a process opens a handle to an object, the object manager
 calls the security reference monitor, the
 kernel-mode portion of the security system, sending it the process’
 set of desired access rights. The security reference monitor checks
 whether the object’s security descriptor permits the type of access
 the process is requesting. If it does, the reference monitor returns
 a set of granted access rights that the process
 is allowed, and the object manager stores them in the object handle
 it creates. How the security system determines who gets access to
 which objects is explored in Chapter 6.
Thereafter, whenever the process’ threads use the handle
 through a service call, the object manager can quickly check whether
 the set of granted access rights stored in the handle corresponds to
 the usage implied by the object service the threads have called. For
 example, if the caller asked for read access to a section object but
 then calls a service to write to it, the service fails.
EXPERIMENT: Looking at Object Security
You can look at the various permissions on an object by
 using either Process Explorer, WinObj, or AccessCheck, which are
 all tools from Sysinternals. Let’s look at different ways you can
 display the access control list (ACL) for an object:
	You can use WinObj to navigate to any object on the
 system, including object directories, right-click on the
 object, and select Properties. For example, select the
 BaseNamedObjects directory, select Properties, and click on
 the Security tab. You should see a dialog box similar to the
 one shown next.
By examining the settings in the dialog box, you can see
 that the Everyone group doesn’t have
 delete access to the directory, for
 example, but the SYSTEM account does (because this is where
 session 0 services with SYSTEM privileges will store their
 objects).
[image: image with no caption]

	Instead of using WinObj, you can view the handle
 table of a process using Process Explorer, as shown in the
 experiment EXPERIMENT: Viewing Open Handles
 earlier in the chapter. Look at the handle table for the
 Explorer.exe process. You should notice a Directory object
 handle to the \Sessions\n\BaseNamedObjects directory. (We’ll
 describe the per-session namespace shortly.) You can
 double-click on the object handle and then click on the
 Security tab and see a similar dialog box (with more users and
 rights granted). Process Explorer cannot decode the specific
 object directory access rights, so all you’ll see are generic
 rights.

	Finally, you can use AccessCheck to query the security
 information of any object by using the –o
 switch as shown in the following output. Note that using
 AccessCheck will also show you the integrity
 level of the object. (See Chapter 6 for more information on
 integrity levels and the security reference monitor.)
C:\Windows>accesschk -o \Sessions\1\BaseNamedObjects

Accesschk v5.02 - Reports effective permissions for securable objects
Copyright (C) 2006-2011 Mark Russinovich
Sysinternals - www.sysinternals.com

\sessions\2\BaseNamedObjects
 Type: Directory
 RW NT AUTHORITY\SYSTEM
 RW NTDEV\markruss
 RW NTDEV\S-1-5-5-0-5491067-markruss
 RW BUILTIN\Administrators
 R Everyone
 NT AUTHORITY\RESTRICTED

Windows also supports Ex
 (Extended) versions of the APIs—CreateEventEx,
 CreateMutexEx, CreateSemaphoreEx—that add another
 argument for specifying the access mask. This makes it possible for
 applications to properly use discretionary access control lists
 (DACLs) to secure their objects without breaking their ability to
 use the create object APIs to open a handle to them. You might be
 wondering why a client application would not simply use
 OpenEvent, which does support a desired access
 argument. Using the open object APIs leads to an inherent race
 condition when dealing with a failure in the open call—that is, when
 the client application has attempted to open the event before it has
 been created. In most applications of this kind, the open API is
 followed by a create API in the failure case. Unfortunately, there
 is no guaranteed way to make this create operation
 atomic—in other words, to occur only once.
 Indeed, it would be possible for multiple threads and/or processes
 to have executed the create API concurrently and all attempt to
 create the event at the same time. This race condition and the extra
 complexity required to try and handle it makes using the open object
 APIs an inappropriate solution to the problem, which is why the
 Ex APIs should be used instead.

Object Retention

There are two types of objects: temporary and permanent. Most
 objects are temporary—that is, they remain while they are in use and
 are freed when they are no longer needed. Permanent objects remain
 until they are explicitly freed. Because most objects are temporary,
 the rest of this section describes how the object manager implements
 object retention—that is, retaining temporary
 objects only as long as they are in use and then deleting them.
 Because all user-mode processes that access an object must first
 open a handle to it, the object manager can easily track how many of
 these processes, and even which ones, are using an object. Tracking
 these handles represents one part of implementing retention. The
 object manager implements object retention in two phases. The first
 phase is called name retention, and it is
 controlled by the number of open handles to an object that exist.
 Every time a process opens a handle to an object, the object manager
 increments the open handle counter in the object’s header. As
 processes finish using the object and close their handles to it, the
 object manager decrements the open handle counter. When the counter
 drops to 0, the object manager deletes the object’s name from its
 global namespace. This deletion prevents processes from opening a
 handle to the object.
The second phase of object retention is to stop retaining the
 objects themselves (that is, to delete them) when they are no longer
 in use. Because operating system code usually accesses objects by
 using pointers instead of handles, the object manager must also
 record how many object pointers it has dispensed to operating system
 processes. It increments a reference count for
 an object each time it gives out a pointer to the object; when
 kernel-mode components finish using the pointer, they call the
 object manager to decrement the object’s reference count. The system
 also increments the reference count when it increments the handle
 count, and likewise decrements the reference count when the handle
 count decrements, because a handle is also a reference to the object
 that must be tracked.
Figure 3-23 illustrates
 two event objects that are in use. Process A has the first event
 open. Process B has both events open. In addition, the first event
 is being referenced by some kernel-mode structure; thus, the
 reference count is 3. So even if Processes A and B closed their
 handles to the first event object, it would continue to exist
 because its reference count is 1. However, when Process B closes its
 handle to the second event object, the object would be
 deallocated.
So even after an object’s open handle counter reaches
 0, the object’s reference count might remain positive, indicating
 that the operating system is still using the object. Ultimately,
 when the reference count drops to 0, the object manager deletes the
 object from memory. This deletion has to respect certain rules and
 also requires cooperation from the caller in certain cases. For
 example, because objects can be present both in paged or nonpaged
 pool memory (depending on the settings located in their object
 type), if a dereference occurs at an IRQL level of dispatch or
 higher and this dereference causes the pointer count to drop to 0,
 the system would crash if it attempted to immediately free the
 memory of a paged-pool object. (Recall that such access is illegal
 because the page fault will never be serviced.) In this scenario,
 the object manager performs a deferred delete
 operation, queuing the operation on a worker thread running at
 passive level (IRQL 0). We’ll describe more about system worker
 threads later in this chapter.
Another scenario that requires deferred deletion is when
 dealing with Kernel Transaction Manager (KTM) objects. In some
 scenarios, certain drivers might hold a lock related to this object,
 and attempting to delete the object will result in the system
 attempting to acquire this lock. However, the driver might never get
 the chance to release its lock, causing a deadlock. When dealing
 with KTM objects, driver developers must use
 ObDereferenceObjectDeferDelete to force
 deferred deletion regardless of IRQL level. Finally, the I/O manager
 also uses this mechanism as an optimization so that certain I/Os can
 complete more quickly, instead of waiting for the object manager to
 delete the object.
[image: Handles and reference counts]

Figure 3-23. Handles and reference counts

Because of the way object retention works, an
 application can ensure that an object and its name remain in memory
 simply by keeping a handle open to the object. Programmers who write
 applications that contain two or more cooperating processes need not
 be concerned that one process might delete an object before the
 other process has finished using it. In addition, closing an
 application’s object handles won’t cause an object to be deleted if
 the operating system is still using it. For example, one process
 might create a second process to execute a program in the
 background; it then immediately closes its handle to the process.
 Because the operating system needs the second process to run the
 program, it maintains a reference to its process object. Only when
 the background program finishes executing does the object manager
 decrement the second process’ reference count and then delete
 it.
Because object leaks can be dangerous to the system by leaking
 kernel pool memory and eventually causing systemwide memory
 starvation—and can also break applications in subtle ways—Windows
 includes a number of debugging mechanisms that can be enabled to
 monitor, analyze, and debug issues with handles and objects.
 Additionally, Debugging Tools for Windows come with two extensions
 that tap into these mechanisms and provide easy graphical analysis.
 Table 3-16 describes
 them.
Table 3-16. Debugging Mechanisms for Object Handles
	Mechanism
	Enabled By
	Kernel Debugger
 Extension

	Handle Tracing
 Database
	Kernel Stack Trace systemwide
 and/or per-process with the User Stack Trace option checked
 with Gflags.exe.
	!htrace <handle
 value> <process ID>

	Object Reference
 Tracing
	Per-process-name(s), or
 per-object-type-pool-tag(s), with Gflags.exe, under Object
 Reference Tracing.
	!obtrace <object
 pointer>

	Object Reference
 Tagging
	Drivers must call appropriate
 API.
	N/A

Enabling the handle-tracing database is useful when attempting
 to understand the use of each handle within an application or the
 system context. The !htrace debugger extension
 can display the stack trace captured at the time a specified handle
 was opened. After you discover a handle leak, the stack trace can
 pinpoint the code that is creating the handle, and it can be
 analyzed for a missing call to a function such as
 CloseHandle.
The object-reference-tracing !obtrace
 extension monitors even more by showing the stack trace for each new
 handle created as well as each time a handle is referenced by the
 kernel (and also each time it is opened, duplicated, or inherited)
 and dereferenced. By analyzing these patterns, misuse of an object
 at the system level can be more easily debugged. Additionally, these
 reference traces provide a way to understand the behavior of the
 system when dealing with certain objects. Tracing processes, for
 example, display references from all the drivers on the system that
 have registered callback notifications (such as Process Monitor) and
 help detect rogue or buggy third-party drivers that might be
 referencing handles in kernel mode but never dereferencing
 them.
Note
When enabling object-reference tracing for a
 specific object type, you can obtain the name of its pool tag by
 looking at the key member of the OBJECT_TYPE
 structure when using the dt command. Each
 object type on the system has a global variable that references
 this structure—for example, PsProcessType.
 Alternatively, you can use the !object
 command, which displays the pointer to this structure.

Unlike the previous two mechanisms, object-reference tagging
 is not a debugging feature that must be enabled with global flags or
 the debugger, but rather a set of APIs that should be used by
 device-driver developers to reference and dereference objects,
 including ObReferenceObjectWithTag and
 ObDereferenceObjectWithTag. Similar to pool
 tagging (see Chapter 10 in Part 2 for more information on pool
 tagging), these APIs allow developers to supply a four-character tag
 identifying each reference/dereference pair. When using the
 !obtrace extension just described, the tag for
 each reference or dereference operation is also shown, which avoids
 solely using the call stack as a mechanism to identify where leaks
 or under-references might occur, especially if a given call is
 performed thousands of times by the driver.

Resource Accounting

Resource accounting, like object retention, is closely related
 to the use of object handles. A positive open handle count indicates
 that some process is using that resource. It also indicates that
 some process is being charged for the memory the object occupies.
 When an object’s handle count and reference count drop to 0, the
 process that was using the object should no longer be charged for
 it.
Many operating systems use a quota system to limit processes’
 access to system resources. However, the types of quotas imposed on
 processes are sometimes diverse and complicated, and the code to
 track the quotas is spread throughout the operating system. For
 example, in some operating systems, an I/O component might record
 and limit the number of files a process can open, whereas a memory
 component might impose a limit on the amount of memory a process’
 threads can allocate. A process component might limit users to some
 maximum number of new processes they can create or a maximum number
 of threads within a process. Each of these limits is tracked and
 enforced in different parts of the operating system.
In contrast, the Windows object manager provides a central
 facility for resource accounting. Each object header contains an
 attribute called quota charges that records how
 much the object manager subtracts from a process’ allotted paged
 and/or nonpaged pool quota when a thread in the process opens a
 handle to the object.
Each process on Windows points to a quota structure that
 records the limits and current values for nonpaged-pool, paged-pool,
 and page-file usage. These quotas default to 0 (no limit) but can be
 specified by modifying registry values. (You need to add/edit
 NonPagedPoolQuota,
 PagedPoolQuota, and
 PagingFileQuota under
 HKLM\SYSTEM\CurrentControlSet\Control\Session Manager\Memory
 Management.) Note that all the processes in an interactive session
 share the same quota block (and there’s no documented way to create
 processes with their own quota blocks).

Object Names

An important consideration in creating a multitude of
 objects is the need to devise a successful system for keeping track
 of them. The object manager requires the following information to
 help you do so:
	A way to distinguish one object from another

	A method for finding and retrieving a particular
 object

The first requirement is served by allowing names to be
 assigned to objects. This is an extension of what most operating
 systems provide—the ability to name selected resources, files,
 pipes, or a block of shared memory, for example. The executive, in
 contrast, allows any resource represented by an object to have a
 name. The second requirement, finding and retrieving an object, is
 also satisfied by object names. If the object manager stores objects
 by name, it can find an object by looking up its name.
Object names also satisfy a third requirement, which is to
 allow processes to share objects. The executive’s object namespace
 is a global one, visible to all processes in the system. One process
 can create an object and place its name in the global namespace, and
 a second process can open a handle to the object by specifying the
 object’s name. If an object isn’t meant to be shared in this way,
 its creator doesn’t need to give it a name.
To increase efficiency, the object manager doesn’t look up an
 object’s name each time someone uses the object. Instead, it looks
 up a name under only two circumstances. The first is when a process
 creates a named object: the object manager looks up the name to
 verify that it doesn’t already exist before storing the new name in
 the global namespace. The second is when a process opens a handle to
 a named object: the object manager looks up the name, finds the
 object, and then returns an object handle to the caller; thereafter,
 the caller uses the handle to refer to the object. When looking up a
 name, the object manager allows the caller to select either a
 case-sensitive or case-insensitive search, a feature that supports
 Subsystem for UNIX Applications and other environments that use
 case-sensitive file names.

Object Directories

The object directory object is the object manager’s means for
 supporting this hierarchical naming structure. This object is
 analogous to a file system directory and contains the names of other
 objects, possibly even other object directories. The object
 directory object maintains enough information to translate these
 object names into pointers to the objects themselves. The object
 manager uses the pointers to construct the object handles that it
 returns to user-mode callers. Both kernel-mode code (including
 executive components and device drivers) and user-mode code (such as
 subsystems) can create object directories in which to store objects.
 For example, the I/O manager creates an object directory named
 \Device, which contains the names of objects representing I/O
 devices.
Where the names of objects are stored depends on the object
 type. Table 3-17 lists the
 standard object directories found on all Windows systems and what
 types of objects have their names stored there. Of the directories
 listed, only \BaseNamedObjects and \Global?? are visible to
 standard Windows applications. (See the Session Namespace section later in this chapter for
 more information.)
Table 3-17. Standard Object Directories
	Directory
	Types of Object Names
 Stored

	\ArcName
	Symbolic links mapping ARC-style
 paths to NT-style paths.

	\BaseNamedObjects
	Global mutexes, events,
 semaphores, waitable timers, jobs, ALPC ports, symbolic
 links, and section objects.

	\Callback
	Callback objects.

	\Device
	Device objects.

	\Driver
	Driver objects.

	\FileSystem
	File-system driver objects and
 file-system-recognizer device objects. The Filter Manager
 also creates its own device objects under the Filters
 subkey.

	\GLOBAL??
	MS-DOS device names. (The
 \Sessions\0\DosDevices\<LUID>\Global directories are
 symbolic links to this directory.)

	\KernelObjects
	Contains event objects that signal
 low resource conditions, memory errors, the completion of
 certain operating system tasks, as well as objects
 representing Sessions.

	\KnownDlls
	Section names and path for known
 DLLs (DLLs mapped by the system at startup
 time).

	\KnownDlls32
	On a 64-bit Windows installation,
 \KnownDlls contains the native 64-bit binaries, so this
 directory is used instead to store Wow64 32-bit versions of
 those DLLs.

	\Nls
	Section names for mapped national
 language support tables.

	\ObjectTypes
	Names of types of
 objects.

	\PSXSS
	If Subsystem for UNIX Applications
 is enabled (through installation of the SUA component), this
 contains ALPC ports used by Subsystem for UNIX
 Applications.

	\RPC Control
	ALPC ports used by remote
 procedure calls (RPCs), and events used by Conhost.exe as
 part of the console isolation mechanism.

	\Security
	ALPC ports and events used by
 names of objects specific to the security
 subsystem.

	\Sessions
	Per-session namespace directory.
 (See the next subsection.)

	\UMDFCommunicationPorts
	ALPC ports used by the User-Mode
 Driver Framework (UMDF).

	\Windows
	Windows subsystem ALPC ports,
 shared section, and window stations.

Because the base kernel objects such as mutexes, events,
 semaphores, waitable timers, and sections have their names stored in
 a single object directory, no two of these objects can have the same
 name, even if they are of a different type. This restriction
 emphasizes the need to choose names carefully so that they don’t
 collide with other names. For example, you could prefix names with a
 GUID and/or combine the name with the user’s security identifier
 (SID).
Object names are global to a single computer (or to all
 processors on a multiprocessor computer), but they’re not visible
 across a network. However, the object manager’s parse method makes
 it possible to access named objects that exist on other computers.
 For example, the I/O manager, which supplies file-object services,
 extends the functions of the object manager to remote files. When
 asked to open a remote file object, the object manager calls
 a parse method, which allows the I/O manager to intercept the
 request and deliver it to a network redirector, a driver that
 accesses files across the network. Server code on the remote Windows
 system calls the object manager and the I/O manager on that system
 to find the file object and return the information back across the
 network.
One security consideration to keep in mind when dealing with
 named objects is the possibility of object name
 squatting. Although object names in different sessions
 are protected from each other, there’s no standard protection inside
 the current session namespace that can be set with the standard
 Windows API. This makes it possible for an unprivileged application
 running in the same session as a privileged application to access
 its objects, as described earlier in the object security subsection.
 Unfortunately, even if the object creator used a proper DACL to
 secure the object, this doesn’t help against the
 squatting attack, in which the unprivileged
 application creates the object before the
 privileged application, thus denying access to the legitimate
 application.
Windows exposes the concept of a private
 namespace to alleviate this issue. It allows user-mode
 applications to create object directories through the
 CreatePrivateNamespace API and associate these
 directories with boundary descriptors, which
 are special data structures protecting the directories. These
 descriptors contain SIDs describing which security principals are
 allowed access to the object directory. In this manner, a privileged
 application can be sure that unprivileged applications will not be
 able to conduct a denial-of-service attack against its objects.
 (This doesn’t stop a privileged application from doing the same,
 however, but this point is moot.) Additionally, a boundary
 descriptor can also contain an integrity level, protecting objects
 possibly belonging to the same user account as the application,
 based on the integrity level of the process. (See Chapter 6 for more information on integrity
 levels.)
EXPERIMENT: Looking at the Base Named Objects
You can see the list of base objects that have names with
 the WinObj tool from Sysinternals. Run Winobj.exe., and click on
 \BaseNamedObjects, as shown here:
[image: image with no caption]

The named objects are shown on the right. The icons
 indicate the object type:
	Mutexes are indicated with a lock sign.

	Sections (Windows file-mapping objects) are shown as
 memory chips.

	Events are shown as exclamation points.

	Semaphores are indicated with an icon that resembles a
 traffic signal.

	Symbolic links have icons that are curved arrows.

	Folders indicate object directories.

	Gears indicate other objects, such as ALPC ports.

EXPERIMENT: Tampering with Single Instancing
Applications such as Windows Media Player and those in
 Microsoft Office are common examples of single-instancing
 enforcement through named objects. Notice that when launching the
 Wmplayer.exe executable, Windows Media Player appears only
 once—every other launch simply results in the window coming back
 into focus. You can tamper with the handle list by using Process
 Explorer to turn the computer into a media mixer! Here’s
 how:
	Launch Windows Media Player and Process Explorer to view
 the handle table (by clicking View, Lower Pane View, and then
 Handles). You should see a handle whose name column contains
 CheckForOtherInstanceMutex.
[image: image with no caption]

	Right-click on the handle, and select Close Handle.
 Confirm the action when asked.

	Now run Windows Media Player again. Notice that this
 time a second process is created.

	Go ahead and play a different song in each
 instance. You can also use the Sound Mixer in the system tray
 (click on the Volume icon) to select which of the two
 processes will have greater volume, effectively creating a
 mixing environment.

Instead of closing a handle to a named object, an
 application could have run on its own before Windows Media Player
 and created an object with the same name. In this scenario,
 Windows Media Player would never run, fooled into believing it was
 already running on the system.

Symbolic Links

In certain file systems (on NTFS and some UNIX systems, for
 example), a symbolic link lets a user create a file name or a
 directory name that, when used, is translated by the operating
 system into a different file or directory name. Using a symbolic
 link is a simple method for allowing users to indirectly share a
 file or the contents of a directory, creating a cross-link between
 different directories in the ordinarily hierarchical directory
 structure.
The object manager implements an object called a
 symbolic link object, which performs a
 similar function for object names in its object namespace. A
 symbolic link can occur anywhere within an object name string.
 When a caller refers to a symbolic link object’s name, the object
 manager traverses its object namespace until it reaches the
 symbolic link object. It looks inside the symbolic link and finds
 a string that it substitutes for the symbolic link name. It then
 restarts its name lookup.
One place in which the executive uses symbolic link objects
 is in translating MS-DOS-style device names into Windows internal
 device names. In Windows, a user refers to hard disk drives using
 the names C:, D:, and so on and serial ports as COM1, COM2, and so
 on. The Windows subsystem makes these symbolic link objects
 protected, global data by placing them in the object manager
 namespace under the \Global?? directory.

Session Namespace

Services have access to the global
 namespace, a namespace that serves as the first instance of the
 namespace. Additional sessions are given a session-private view of
 the namespace known as a local namespace. The
 parts of the namespace that are localized for each session include
 \DosDevices, \Windows, and \BaseNamedObjects. Making separate copies
 of the same parts of the namespace is known as
 instancing the namespace. Instancing
 \DosDevices makes it possible for each user to have different
 network drive letters and Windows objects such as serial ports. On
 Windows, the global \DosDevices directory is named \Global?? and is
 the directory to which \DosDevices points, and local \DosDevices
 directories are identified by the logon session ID.
The \Windows directory is where Win32k.sys inserts the
 interactive window station created by Winlogon, \WinSta0. A Terminal
 Services environment can support multiple interactive users, but
 each user needs an individual version of WinSta0 to preserve the
 illusion that he is accessing the predefined interactive window
 station in Windows. Finally, applications and the system create
 shared objects in \BaseNamedObjects, including events, mutexes, and
 memory sections. If two users are running an application that
 creates a named object, each user session must have a private
 version of the object so that the two instances of the application
 don’t interfere with one another by accessing the same
 object.
The object manager implements a local namespace by creating
 the private versions of the three directories mentioned under a
 directory associated with the user’s session under
 \Sessions\n (where n is
 the session identifier). When a Windows application in remote
 session two creates a named event, for example, the object manager
 transparently redirects the object’s name from \BaseNamedObjects to
 \Sessions\2\BaseNamedObjects.
All object-manager functions related to namespace management
 are aware of the instanced directories and participate in providing
 the illusion that all sessions use the same namespace. Windows
 subsystem DLLs prefix names passed by Windows applications that
 reference objects in \DosDevices with \?? (for
 example, C:\Windows becomes \??\C:\Windows). When the object manager
 sees the special \?? prefix, the steps it takes depends on the
 version of Windows, but it always relies on a field named
 DeviceMap in the executive process object
 (EPROCESS, which is described further in Chapter 5) that points to
 a data structure shared by other processes in the same
 session.
The DosDevicesDirectory field of the
 DeviceMap structure points at the object
 manager directory that represents the process’ local \DosDevices.
 When the object manager sees a reference to \??, it locates the
 process’ local \DosDevices by using the
 DosDevicesDirectory field of the
 DeviceMap. If the object manager doesn’t find
 the object in that directory, it checks the
 DeviceMap field of the directory object. If
 it’s valid, it looks for the object in the directory pointed to by
 the GlobalDosDevicesDirectory field of the
 DeviceMap structure, which is always
 \Global??.
Under certain circumstances, applications that are
 session–aware need to access objects in the global session even if
 the application is running in another session. The application might
 want to do this to synchronize with instances of itself running in
 other remote sessions or with the console session (that is, session
 0). For these cases, the object manager provides the special
 override “\Global” that an application can prefix to any object name
 to access the global namespace. For example, an application in
 session two opening an object named \Global\ApplicationInitialized
 is directed to \BaseNamedObjects\ApplicationInitialized instead of
 \Sessions\2\BaseNamedObjects\ApplicationInitialized.
An application that wants to access an object in the global
 \DosDevices directory does not need to use the \Global prefix as
 long as the object doesn’t exist in its local \DosDevices directory.
 This is because the object manager automatically looks in the global
 directory for the object if it doesn’t find it in the local
 directory. However, an application can force checking the global
 directory by using \GLOBALROOT.
Session directories are isolated from each other, and
 administrative privileges are required to create a global object
 (except for section objects). A special privilege named
 create global object is verified before
 allowing such operations.
EXPERIMENT: Viewing Namespace Instancing
You can see the separation between the session 0
 namespace and other session namespaces as soon as you log in. The
 reason you can is that the first console user is logged in to
 session 1 (while services run in session 0). Run Winobj.exe, and
 click on the \Sessions directory. You’ll see a subdirectory with a
 numeric name for each active session. If you open one of these
 directories, you’ll see subdirectories named \DosDevices,
 \Windows, and \BaseNamedObjects, which are the local namespace
 subdirectories of the session. The following screen shot shows a
 local namespace:
[image: image with no caption]

Next run Process Explorer and select a process in your
 session (such as Explorer.exe), and then view the handle table (by
 clicking View, Lower Pane View, and then Handles). You should see
 a handle to \Windows\WindowStations\WinSta0
 underneath\Sessions\n, where
 n is the session ID.
[image: image with no caption]

Object Filtering

Windows includes a filtering model in the object
 manager, similar to the file system minifilter model described in
 Chapter 8 in Part 2. One of the primary benefits of this filtering
 model is the ability to use the altitude
 concept that these existing filtering technologies use, which means
 that multiple drivers can filter object-manager events at
 appropriate locations in the filtering stack. Additionally, drivers
 are permitted to intercept calls such as
 NtOpenThread and
 NtOpenProcess and even to modify the access
 masks being requested from the process manager. This allows
 protection against certain operations on an open handle—however, an
 open operation cannot be entirely blocked because doing so would too
 closely resemble a malicious operation (processes that could never
 be managed).
Furthermore, drivers are able to take advantage of both
 pre and post callbacks,
 allowing them to prepare for a certain operation before it occurs,
 as well as to react or finalize information after the operation has
 occurred. These callbacks can be specified for each operation
 (currently, only open, create, and duplicate are supported) and be
 specific for each object type (currently, only process and thread
 objects are supported). For each callback, drivers can specify their
 own internal context value, which can be returned across all calls
 to the driver or across a pre/post pair. These callbacks can be
 registered with the ObRegisterCallbacks API and
 unregistered with the ObUnregisterCallbacks
 API—it is the responsibility of the driver to ensure deregistration
 happens.
Use of the APIs is restricted to images that have certain
 characteristics:
	The image must be signed, even on 32-bit computers,
 according to the same rules set forth in the Kernel Mode Code
 Signing (KMCS) policy. (Code integrity will be discussed later
 in this chapter.) The image must be compiled with the
 /integritycheck linker flag, which sets the
 IMAGE_DLLCHARACTERISTICS_FORCE_INTEGRITY value in the PE header.
 This instructs the memory manager to check the signature of the
 image regardless of any other defaults that might not normally
 result in a check.

	The image must be signed with a catalog containing
 cryptographic per-page hashes of the executable code. This
 allows the system to detect changes to the image after it has
 been loaded in memory.

Before executing a callback, the object manager calls the
 MmVerifyCallbackFunction on the target function
 pointer, which in turn locates the loader data table entry
 associated with the module owning this address, and verifies whether
 or not the LDRP_IMAGE_INTEGRITY_FORCED flag is set. (See the Loaded Module Database section in this chapter for more
 information.)

Synchronization

The concept of mutual exclusion is a crucial
 one in operating systems development. It refers to the guarantee that
 one, and only one, thread can access a particular resource at a time.
 Mutual exclusion is necessary when a resource doesn’t lend itself to
 shared access or when sharing would result in an unpredictable outcome.
 For example, if two threads copy a file to a printer port at the same
 time, their output could be interspersed. Similarly, if one thread reads
 a memory location while another one writes to it, the first thread will
 receive unpredictable data. In general, writable resources can’t
 be shared without restrictions, whereas resources that
 aren’t subject to modification can be shared. Figure 3-24 illustrates what happens when
 two threads running on different processors both write data to a
 circular queue.
[image: Incorrect sharing of memory]

Figure 3-24. Incorrect sharing of memory

Because the second thread obtained the value of the queue tail
 pointer before the first thread finished updating it, the second thread
 inserted its data into the same location that the first thread used,
 overwriting data and leaving one queue location empty. Even though Figure 3-24 illustrates what could happen
 on a multiprocessor system, the same error could occur on a
 single-processor system if the operating system performed a context
 switch to the second thread before the first thread updated the queue
 tail pointer.
Sections of code that access a nonshareable resource are called
 critical sections. To ensure correct code, only one
 thread at a time can execute in a critical section. While one thread is
 writing to a file, updating a database, or modifying a shared variable,
 no other thread can be allowed to access the same resource. The
 pseudocode shown in Figure 3-24 is a
 critical section that incorrectly accesses a shared data structure
 without mutual exclusion.
The issue of mutual exclusion, although important for all
 operating systems, is especially important (and intricate) for a
 tightly coupled, symmetric multiprocessing (SMP)
 operating system such as Windows, in which the same system code runs
 simultaneously on more than one processor, sharing certain data
 structures stored in global memory. In Windows, it is the kernel’s job
 to provide mechanisms that system code can use to prevent two threads
 from modifying the same structure at the same time. The kernel provides
 mutual-exclusion primitives that it and the rest of the executive use to
 synchronize their access to global data structures.
Because the scheduler synchronizes access to its data structures
 at DPC/dispatch level IRQL, the kernel and executive cannot rely on
 synchronization mechanisms that would result in a page fault or
 reschedule operation to synchronize access to data structures when the
 IRQL is DPC/dispatch level or higher (levels known as an
 elevated or high IRQL). In the
 following sections, you’ll find out how the kernel and executive use
 mutual exclusion to protect their global data structures when the IRQL
 is high and what mutual-exclusion and synchronization
 mechanisms the kernel and executive use when the IRQL is
 low (below DPC/dispatch level).
High-IRQL Synchronization

At various stages during its execution, the kernel must
 guarantee that one, and only one, processor at a time is executing
 within a critical section. Kernel critical sections are the code
 segments that modify a global data structure such as the kernel’s
 dispatcher database or its DPC queue. The operating system can’t
 function correctly unless the kernel can guarantee that threads access
 these data structures in a mutually exclusive manner.
The biggest area of concern is interrupts. For example, the
 kernel might be updating a global data structure when an interrupt
 occurs whose interrupt-handling routine also modifies the structure.
 Simple single-processor operating systems sometimes prevent such a
 scenario by disabling all interrupts each time they access global
 data, but the Windows kernel has a more sophisticated solution. Before
 using a global resource, the kernel temporarily masks the interrupts
 whose interrupt handlers also use the resource. It does so by raising
 the processor’s IRQL to the highest level used by any potential
 interrupt source that accesses the global data. For example, an
 interrupt at DPC/dispatch level causes the dispatcher, which uses the
 dispatcher database, to run. Therefore, any other part of the kernel
 that uses the dispatcher database raises the IRQL to DPC/dispatch
 level, masking DPC/dispatch-level interrupts before using the
 dispatcher database.
This strategy is fine for a single-processor system, but it’s
 inadequate for a multiprocessor configuration. Raising the IRQL on one
 processor doesn’t prevent an interrupt from occurring on another
 processor. The kernel also needs to guarantee mutually exclusive
 access across several processors.
Interlocked Operations

The simplest form of synchronization mechanisms rely on
 hardware support for multiprocessor-safe manipulation of integer
 values and for performing comparisons. They include functions such
 as InterlockedIncrement,
 InterlockedDecrement,
 InterlockedExchange, and
 InterlockedCompareExchange. The
 InterlockedDecrement function, for example,
 uses the x86 lock instruction prefix (for
 example, lock xadd) to lock the multiprocessor
 bus during the subtraction operation so that another processor
 that’s also modifying the memory location being decremented won’t be
 able to modify it between the decrementing processor’s read of the
 original value and its write of the decremented value. This form of
 basic synchronization is used by the kernel and drivers. In today’s
 Microsoft compiler suite, these functions are called
 intrinsic because the code for them is
 generated in an inline assembler, directly during the compilation
 phase, instead of going through a function call. (It’s likely that
 pushing the parameters onto the stack, calling the function, copying
 the parameters into registers, and then popping the parameters off
 the stack and returning to the caller would be a more expensive
 operation than the actual work the function is supposed to do in the
 first place.)

Spinlocks

The mechanism the kernel uses to achieve
 multiprocessor mutual exclusion is called a
 spinlock. A spinlock is a locking primitive
 associated with a global data structure such as the DPC queue shown
 in Figure 3-25.
[image: Using a spinlock]

Figure 3-25. Using a spinlock

Before entering either critical section shown in Figure 3-25, the kernel must acquire the spinlock
 associated with the protected DPC queue. If the spinlock isn’t free,
 the kernel keeps trying to acquire the lock until it succeeds. The
 spinlock gets its name from the fact that the kernel (and thus, the
 processor) waits, “spinning,” until it gets the lock.
Spinlocks, like the data structures they protect, reside in
 nonpaged memory mapped into the system address space. The code to
 acquire and release a spinlock is written in assembly language for
 speed and to exploit whatever locking mechanism the underlying
 processor architecture provides. On many architectures, spinlocks
 are implemented with a hardware-supported test-and-set operation,
 which tests the value of a lock variable and acquires the lock in
 one atomic instruction. Testing and acquiring the lock in one
 instruction prevents a second thread from grabbing the lock between
 the time the first thread tests the variable and the time it
 acquires the lock. Additionally, the lock
 instruction mentioned earlier can also be used on the test-and-set
 operation, resulting in the combined lock bts
 assembly operation, which also locks the multiprocessor bus;
 otherwise, it would be possible for more than one processor to
 atomically perform the operation. (Without the
 lock, the operation is guaranteed to be atomic
 only on the current processor.)
All kernel-mode spinlocks in Windows have an associated IRQL
 that is always DPC/dispatch level or higher. Thus, when a thread is
 trying to acquire a spinlock, all other activity at the spinlock’s
 IRQL or lower ceases on that processor. Because thread dispatching
 happens at DPC/dispatch level, a thread that holds a spinlock is
 never preempted because the IRQL masks the dispatching mechanisms.
 This masking allows code executing in a critical section protected
 by a spinlock to continue executing so that it will release the lock quickly. The kernel uses
 spinlocks with great care, minimizing the number of instructions it
 executes while it holds a spinlock. Any processor that attempts to
 acquire the spinlock will essentially be busy, waiting indefinitely,
 consuming power (a busy wait results in 100% CPU usage) and
 performing no actual work.
On x86 and x64 processors, a special
 pause assembly instruction can be inserted in
 busy wait loops. This instruction offers a hint
 to the processor that the loop instructions it is processing are
 part of a spinlock (or a similar construct) acquisition loop. The
 instruction provides three benefits:
	It significantly reduces power usage by delaying the core
 ever so slightly instead of continuously looping.

	On HyperThreaded cores, it allows the CPU to realize that
 the “work” being done by the spinning logical core is not
 terribly important and awards more CPU time to the second
 logical core instead.

	Because a busy wait loop results in a storm of read
 requests coming to the bus from the waiting thread (which might
 be generated out of order), the CPU attempts to correct for
 violations of memory order as soon as it detects a write (that
 is, when the owning thread releases the lock). Thus, as soon as
 the spinlock is released, the CPU reorders any pending memory
 read operations to ensure proper ordering. This reordering
 results in a large penalty in system performance and can be
 avoided with the pause instruction.

The kernel makes spinlocks available to other parts of the
 executive through a set of kernel functions, including
 KeAcquireSpinLock and
 KeReleaseSpinLock. Device drivers, for example,
 require spinlocks to guarantee that device registers and other
 global data structures are accessed by only one part of a device
 driver (and from only one processor) at a time. Spinlocks are not
 for use by user programs—user programs should use the objects
 described in the next section. Device drivers also need to protect
 access to their own data structures from interrupts associated with
 themselves. Because the spinlock APIs typically raise the IRQL only
 to DPC/dispatch level, this isn’t enough to protect against
 interrupts. For this reason, the kernel also exports the
 KeAcquireInterruptSpinLock and
 KeReleaseInterruptSpinLock APIs that take as a
 parameter the KINTERRUPT object discussed at the beginning of this
 chapter. The system looks inside the interrupt object for the
 associated DIRQL with the interrupt and raises the IRQL to the
 appropriate level to ensure correct access to structures shared with
 the ISR. Devices can use the
 KeSynchronizeExecution API to synchronize an
 entire function with an ISR, instead of just a critical section. In
 all cases, the code protected by an interrupt spinlock must execute
 extremely quickly—any delay causes higher-than-normal interrupt
 latency and will have significant negative performance
 effects.
Kernel spinlocks carry with them restrictions for code that
 uses them. Because spinlocks always have an IRQL of DPC/dispatch
 level or higher, as explained earlier, code holding a spinlock will
 crash the system if it attempts to make the scheduler perform a
 dispatch operation or if it causes a page fault.

Queued Spinlocks

To increase the scalability of spinlocks, a special
 type of spinlock, called a queued spinlock, is
 used in most circumstances instead of a standard spinlock. A queued
 spinlock works like this: When a processor wants to acquire a queued
 spinlock that is currently held, it places its identifier in a queue
 associated with the spinlock. When the processor that’s holding the
 spinlock releases it, it hands the lock over to the first processor
 identified in the queue. In the meantime, a processor waiting for a
 busy spinlock checks the status not of the spinlock itself but of a
 per-processor flag that the processor ahead of it in the queue sets
 to indicate that the waiting processor’s turn has arrived.
The fact that queued spinlocks result in spinning on
 per-processor flags rather than global spinlocks has two effects.
 The first is that the multiprocessor’s bus isn’t as heavily
 trafficked by interprocessor synchronization. The second is that
 instead of a random processor in a waiting group acquiring a
 spinlock, the queued spinlock enforces first-in, first-out (FIFO)
 ordering to the lock. FIFO ordering means more consistent
 performance across processors accessing the same locks.
Windows defines a number of global queued spinlocks by storing
 pointers to them in an array contained in each processor’s
 processor region control block (PRCB). A global
 spinlock can be acquired by calling
 KeAcquireQueuedSpinLock with the index into the
 PRCB array at which the pointer to the spinlock is stored. The
 number of global spinlocks has grown in each release of the
 operating system, and the table of index definitions for them is
 published in the WDK header file Wdm.h. Note, however, that
 acquiring one of these queued spinlocks from a device driver is an
 unsupported and heavily frowned-upon operation. These locks are
 reserved for the kernel’s own internal use.
EXPERIMENT: Viewing Global Queued Spinlocks
You can view the state of the global queued spinlocks (the
 ones pointed to by the queued spinlock array in each processor’s
 PCR) by using the !qlocks kernel debugger
 command. In the following example, the page frame number (PFN)
 database queued spinlock is held by processor 1, and the other
 queued spinlocks are not acquired. (The PFN database is described
 in Chapter 10 in Part 2.)
lkd> !qlocks
Key: O = Owner, 1-n = Wait order, blank = not owned/waiting, C = Corrupt

 Processor Number
 Lock Name 0 1

KE - Unused Spare
MM - Expansion
MM - Unused Spare
MM - System Space
CC - Vacb
CC - Master

Instack Queued Spinlocks

Device drivers can use dynamically allocated queued
 spinlocks with the
 KeAcquireInStackQueuedSpinLock and
 KeReleaseInStackQueuedSpinLock functions.
 Several components—including the cache manager, executive pool
 manager, and NTFS—take advantage of these types of locks instead of
 using global queued spinlocks.
KeAcquireInStackQueuedSpinLock takes a
 pointer to a spinlock data structure and a spinlock queue handle.
 The spinlock handle is actually a data structure in which the kernel
 stores information about the lock’s status, including the lock’s
 ownership and the queue of processors that might be waiting for the
 lock to become available. For this reason, the handle shouldn’t be a
 global variable. It is usually a stack variable, guaranteeing
 locality to the caller thread and is
 responsible for the InStack part of the
 spinlock and API name.

Executive Interlocked Operations

The kernel supplies a number of simple synchronization
 functions constructed on spinlocks for more advanced operations,
 such as adding and removing entries from singly and doubly linked
 lists. Examples include
 ExInterlockedPopEntryList and
 ExInterlockedPushEntryList for singly linked
 lists, and ExInterlockedInsertHeadList and
 ExInterlockedRemoveHeadList for doubly linked
 lists. All these functions require a standard spinlock as a
 parameter and are used throughout the kernel and device
 drivers.
Instead of relying on the standard APIs to acquire and release
 the spinlock parameter, these functions place the code required
 inline and also use a different ordering scheme. Whereas the
 Ke spinlock APIs first test and set the bit to
 see whether the lock is released and then atomically do a locked
 test-and-set operation to actually make the acquisition, these
 routines disable interrupts on the processor and immediately attempt
 an atomic test-and-set. If the initial attempt fails, interrupts are
 enabled again, and the standard busy waiting algorithm continues
 until the test-and-set operation returns 0—in which case, the whole
 function is restarted again. Because of these subtle differences, a
 spinlock used for the executive interlocked functions must not be
 used with the standard kernel APIs discussed previously. Naturally,
 noninterlocked list operations must not be mixed with interlocked
 operations.
Note
Certain executive interlocked operations silently ignore the
 spinlock when possible. For example, the
 ExInterlockedIncrementLong or
 ExInterlockedCompareExchange APIs actually
 use the same lock prefix used by the standard
 interlocked functions and the intrinsic functions. These functions
 were useful on older systems (or non-x86 systems) where the
 lock operation was not suitable or available.
 For this reason, these calls are now deprecated in favor of the
 intrinsic functions.

Low-IRQL Synchronization

Executive software outside the kernel also needs to
 synchronize access to global data structures in a multiprocessor
 environment. For example, the memory manager has only one page frame
 database, which it accesses as a global data structure, and device
 drivers need to ensure that they can gain exclusive access to their
 devices. By calling kernel functions, the executive can create a
 spinlock, acquire it, and release it.
Spinlocks only partially fill the executive’s needs for
 synchronization mechanisms, however. Because waiting for a spinlock
 literally stalls a processor, spinlocks can be used only under the
 following strictly limited circumstances:
	The protected resource must be accessed quickly and without
 complicated interactions with other code.

	The critical section code can’t be paged out of memory,
 can’t make references to pageable data, can’t call external
 procedures (including system services), and can’t generate
 interrupts or exceptions.

These restrictions are confining and can’t be met under all
 circumstances. Furthermore, the executive needs to perform other types
 of synchronization in addition to mutual exclusion, and it must also
 provide synchronization mechanisms to user mode.
There are several additional synchronization mechanisms for use
 when spinlocks are not suitable:
	Kernel dispatcher objects

	Fast mutexes and guarded mutexes

	Pushlocks

	Executive resources

Additionally, user-mode code, which also executes at low IRQL,
 must be able to have its own locking primitives. Windows supports
 various user-mode-specific primitives:
	Condition variables (CondVars)

	Slim Reader-Writer Locks (SRW Locks)

	Run-once initialization (InitOnce)

	Critical sections

We’ll take a look at the user-mode primitives and their
 underlying kernel-mode support later; for now, we’ll focus on
 kernel-mode objects. Table 3-18 serves as a reference
 that compares and contrasts the capabilities of these mechanisms and
 their interaction with kernel-mode APC delivery.
Table 3-18. Kernel Synchronization Mechanisms
	 	Exposed for Use by Device Drivers
	Disables Normal Kernel-Mode
 APCs
	Disables Special Kernel-Mode
 APCs
	Supports Recursive
 Acquisition
	Supports Shared and Exclusive
 Acquisition

	Kernel dispatcher
 mutexes
	Yes
	Yes
	No
	Yes
	No

	Kernel dispatcher semaphores or
 events
	Yes
	No
	No
	No
	No

	Fast mutexes
	Yes
	Yes
	Yes
	No
	No

	Guarded mutexes
	Yes
	Yes
	Yes
	No
	No

	Pushlocks
	No
	No
	No
	No
	Yes

	Executive resources
	Yes
	No
	No
	Yes
	Yes

Kernel Dispatcher Objects

The kernel furnishes additional synchronization mechanisms to
 the executive in the form of kernel objects, known collectively as
 dispatcher objects. The Windows API-visible
 synchronization objects acquire their synchronization capabilities
 from these kernel dispatcher objects. Each Windows API-visible
 object that supports synchronization encapsulates at least one
 kernel dispatcher object. The executive’s synchronization semantics
 are visible to Windows programmers through the
 WaitForSingleObject and
 WaitForMultipleObjects functions, which the
 Windows subsystem implements by calling analogous system services
 that the object manager supplies. A thread in a Windows application
 can synchronize with a variety of objects, including a Windows
 process, thread, event, semaphore, mutex, waitable timer, I/O
 completion port, ALPC port, registry key, or file object. In fact,
 almost all objects exposed by the kernel can be waited on. Some of
 these are proper dispatcher objects, while others are larger objects
 that have a dispatcher object within them (such as ports, keys, or
 files). Table 3-19 shows
 the proper dispatcher objects, so any other object that the Windows
 API allows waiting on probably internally contains one of those
 primitives.
One other type of executive synchronization object worth
 noting is called an executive resource.
 Executive resources provide exclusive access (like a mutex) as well
 as shared read access (multiple readers sharing read-only access to
 a structure). However, they’re available only to kernel-mode code
 and thus are not accessible from the Windows API. The remaining
 subsections describe the implementation details of waiting for
 dispatcher objects.

Waiting for Dispatcher Objects

A thread can synchronize with a dispatcher object by waiting
 for the object’s handle. Doing so causes the kernel to put the
 thread in a wait state.
At any given moment, a synchronization object is in one of two
 states: signaled state or nonsignaled
 state. A thread can’t resume its execution until its wait
 is satisfied, a condition that occurs when the dispatcher object whose handle the thread is
 waiting for also undergoes a state change, from the nonsignaled
 state to the signaled state (when another thread sets an event
 object, for example). To synchronize with an object, a thread calls
 one of the wait system services that the object manager supplies,
 passing a handle to the object it wants to synchronize with. The
 thread can wait for one or several objects and can also specify that
 its wait should be canceled if it hasn’t ended within a certain
 amount of time. Whenever the kernel sets an object to the signaled
 state, one of the kernel’s signal routines checks to see whether any
 threads are waiting for the object and not also waiting for other
 objects to become signaled. If there are, the kernel releases one or
 more of the threads from their waiting state so that they can
 continue executing.
The following example of setting an event illustrates how
 synchronization interacts with thread dispatching:
	A user-mode thread waits for an event object’s
 handle.

	The kernel changes the thread’s scheduling state to
 waiting and then adds the thread to a list of threads waiting
 for the event.

	Another thread sets the event.

	The kernel marches down the list of threads waiting for
 the event. If a thread’s conditions for waiting are satisfied
 (see the following note), the kernel takes the thread out of the
 waiting state. If it is a variable-priority thread, the kernel
 might also boost its execution priority. (For details on thread
 scheduling, see Chapter 5.)

Note
Some threads might be waiting for more than one object, so
 they continue waiting, unless they specified a
 WaitAny wait, which will wake them up as soon
 as one object (instead of all) is signaled.

What Signals an Object?

The signaled state is defined differently for different
 objects. A thread object is in the nonsignaled state during its
 lifetime and is set to the signaled state by the kernel when the
 thread terminates. Similarly, the kernel sets a process object to
 the signaled state when the process’ last thread terminates. In
 contrast, the timer object, like an alarm, is set to “go off” at a
 certain time. When its time expires, the kernel sets the timer
 object to the signaled state.
When choosing a synchronization mechanism, a program must take
 into account the rules governing the behavior of different
 synchronization objects. Whether a thread’s wait ends when an object
 is set to the signaled state varies with the type of object the
 thread is waiting for, as Table 3-19 illustrates.
Table 3-19. Definitions of the Signaled State
	Object Type
	Set to Signaled State
 When
	Effect on Waiting
 Threads

	Process
	Last thread
 terminates
	All are released.

	Thread
	Thread terminates
	All are released.

	Event (notification
 type)
	Thread sets the
 event
	All are released.

	Event (synchronization
 type)
	Thread sets the
 event
	One thread is released and might
 receive a boost; the event object is reset.

	Gate (locking type)
	Thread signals the
 gate
	First waiting thread is released
 and receives a boost.

	Gate (signaling
 type)
	Thread signals the
 type
	First waiting thread is
 released.

	Keyed event
	Thread sets event with a
 key
	Thread that’s waiting for the key
 and which is of the same process as the signaler is
 released.

	Semaphore
	Semaphore count increases by
 1
	One or more threads are
 released.

	Timer (notification
 type)
	Set time arrives, or time interval
 expires
	All are released.

	Timer (synchronization
 type)
	Set time arrives, or time interval
 expires
	One thread is
 released.

	Mutex
	Thread releases the
 mutex
	One thread is released and takes
 ownership of the mutex.

	Queue
	Item is placed on
 queue
	One thread is
 released.

When an object is set to the signaled state, waiting threads
 are generally released from their wait states immediately. Some of
 the kernel dispatcher objects and the system events that induce
 their state changes are shown in Figure 3-26.
For example, a notification event object (called a
 manual reset event in the Windows API) is used
 to announce the occurrence of some event. When the event object is
 set to the signaled state, all threads waiting for the event are
 released. The exception is any thread that is waiting for more than
 one object at a time; such a thread might be required to continue
 waiting until additional objects reach the signaled state.
In contrast to an event object, a mutex object has ownership
 associated with it (unless it was acquired during a DPC). It is used
 to gain mutually exclusive access to a resource, and only one thread
 at a time can hold the mutex. When the mutex object becomes free,
 the kernel sets it to the signaled state and then selects one
 waiting thread to execute, while also inheriting any priority boost
 that had been applied. (See Chapter 5 for more
 information on priority boosting.) The thread selected by the kernel
 acquires the mutex object, and all other threads continue
 waiting.
A mutex object can also be abandoned: this occurs when the
 thread currently owning it becomes terminated. When a thread
 terminate, the kernel enumerates all mutexes owned by the thread and
 sets them to the abandoned state, which, in terms of signaling
 logic, is treated as a signaled state in that ownership of the mutex
 is transferred to a waiting thread.
[image: Selected kernel dispatcher objects]

Figure 3-26. Selected kernel dispatcher objects

This brief discussion wasn’t meant to enumerate all
 the reasons and applications for using the various executive objects
 but rather to list their basic functionality and synchronization
 behavior. For information on how to put these objects to use in
 Windows programs, see the Windows reference documentation on
 synchronization objects or Jeffrey Richter and Christophe Nasarre’s
 book Windows via C/C++.

Data Structures

Three data structures are key to tracking
 who is waiting, how they
 are waiting, what they are waiting for, and
 which state the entire wait operation is at.
 These three structures are the dispatcher
 header, the wait block, and the
 wait status register. The former two structures
 are publicly defined in the WDK include file Wdm.h, while the latter
 is not documented.
The dispatcher header is a packed structure because it needs
 to hold lots of information in a fixed-size structure. (See the
 upcoming EXPERIMENT: Looking at Wait Queues
 section to see the definition of the dispatcher header data
 structure.) One of the main tricks is to define mutually exclusive
 flags at the same memory location (offset) in the structure. By
 using the Type field, the kernel knows which of
 these fields actually applies. For example, a mutex can be
 abandoned, but a timer can be absolute or relative. Similarly, a
 timer can be inserted into the timer list, but the Debug
 Active field makes sense only for processes. On the other
 hand, the dispatcher header does contain information generic for any
 dispatcher object: the object type, signaled state, and a list of
 the threads waiting for that object.
The wait block represents a thread waiting for an object. Each
 thread that is in a wait state has a list of the wait blocks that
 represent the objects the thread is waiting for. Each dispatcher
 object has a list of the wait blocks that represent which threads
 are waiting for the object. This list is kept so that when a
 dispatcher object is signaled, the kernel can quickly determine who
 is waiting for that object. Finally, because the balance-set-manager
 thread running on each CPU (see Chapter 5 for more
 information about the balance set manager) needs to analyze the time
 that each thread has been waiting for (in order to decide whether or
 not to page out the kernel stack), each PRCB has a list of waiting
 threads.
The wait block has a pointer to the object being waited for, a
 pointer to the thread waiting for the object, and a pointer to the
 next wait block (if the thread is waiting for more than one object).
 It also records the type of wait (any or all) as well as the
 position of that entry in the array of handles passed by the thread
 on the WaitForMultipleObjects call (position 0
 if the thread was waiting for only one object). The wait type is
 very important during wait satisfaction, because it determines
 whether or not all the wait blocks belonging to the thread waiting
 on the signaled object should be processed: for a wait
 any, the dispatcher does not care what the state of the
 other objects is because at least one (the current one) of the
 objects is now signaled. On the other hand, for a wait
 all, the dispatcher can wake the thread only if
 all the other objects are also in a signaled
 state, which requires traversing the wait blocks and associated
 objects.
The wait block also contains a volatile wait block
 state, which defines the current state of this wait block
 in the transactional wait operation it is currently being engaged
 in. The different states, their meaning, and their effects in the
 wait logic code, are explained in Table 3-20.
Table 3-20. Wait Block States
	State
	Meaning
	Effect

	WaitBlockActive
 (2)
	This wait block is actively linked
 to an object as part of a thread that is in a wait
 state.
	During wait satisfaction, this
 wait block will be unlinked from the wait block
 list.

	WaitBlockInactive
 (3)
	The thread wait associated with
 this wait block has been satisfied (or the timeout has
 already expired while setting it up).
	During wait satisfaction, this
 wait block will not be unlinked from the wait block list
 because the wait satisfaction must have aleady unlinked
 during its active state.

	WaitBlockBypassStart
 (0)
	A signal is being delivered to the
 thread while the wait has not yet been
 committed.
	During wait satisfaction (which
 would be immediate, before the thread enters the true wait
 state), the waiting thread must synchronize with the
 signaler because there is a risk that the wait object might
 be on the stack—marking the wait block as inactive would
 cause the waiter to unwind the stack while the signaler
 might still be accessing it.

	WaitBlockBypassComplete
 (1)
	The thread wait associated with
 this wait block has now been properly synchronized (the wait
 satisfaction has completed), and the bypass scenario is now
 completed.
	The wait block is now essentially
 treated the same as an inactive wait block
 (ignored).

Because the overall state of the thread (or any of the objects
 it is being required to start waiting on) can change while wait
 operations are still being set up (because there is nothing blocking
 another thread executing on a different logical processor from
 attempting to signal one of the objects, or possibly alerting the
 thread, or even sending it an APC), the kernel dispatcher needs to
 keep track of two additional pieces of data for each waiting thread:
 the current fine-grained wait state of the thread, as well as any
 pending state changes that could modify the result of the attempted
 wait operation.
When a thread is instructed to wait for a given object (such
 as due to a WaitForSingleObject call), it first
 attempts to enter the in-progress wait state
 (WaitInProgress) by beginning the wait. This
 operation succeeds if there are no pending alerts to the thread at
 the moment (based on the alertability of the wait and the current
 processor mode of the wait, which determine whether or not the alert
 can preempt the wait). If there is an alert, the wait is not even
 entered at all, and the caller receives the appropriate status code;
 otherwise, the thread now enters the
 WaitInProgress state, at which point the main
 thread state is set to Waiting, and the wait
 reason and wait time are recorded, with any timeout specified also
 being registered.
Once the wait is in progress, the thread can initialize the
 wait blocks as needed (and mark them as
 WaitBlockActive in the process) and then
 proceed to lock all the objects that are part of this wait. Because
 each object has its own lock, it is important that the kernel be
 able to maintain a consistent locking ordering scheme when multiple
 processors might be analyzing a wait chain consisting of many
 objects (caused by a WaitForMultipleObjects
 call). The kernel uses a technique known as address
 ordering to achieve this: because each object has a
 distinct and static kernel-mode address, the objects can be ordered
 in monotonically increasing address order, guaranteeing that locks
 are always acquired and released in the same order by all callers.
 This means that the caller-supplied array of objects will be
 duplicated and sorted accordingly.
The next step is to check for immediate satisfaction
 of the wait, such as when a thread is being told to wait on a mutex
 that has already been released or an event that is already signaled.
 In such cases, the wait is immediately satisfied, which involves
 unlinking the associated wait blocks (however, in this case, no wait
 blocks have yet been inserted) and performing a wait exit
 (processing any pending scheduler operations marked in the wait
 status register). If this shortcut fails, the kernel next attempts
 to check whether the timeout specified for the wait (if any) has
 actually already expired. In this case, the wait is not “satisfied”
 but merely “timed out,” which results in slightly faster processing
 of the exit code, albeit with the same result.
If none of these shortcuts were effective, the wait block is
 inserted into the thread’s wait list, and the thread now attempts to
 commit its wait. (Meanwhile, the object lock or locks have been
 released, allowing other processors to modify the state of any of
 the objects that the thread is now supposed to attempt waiting on.)
 Assuming a noncontended scenario, where other processors are not
 interested in this thread or its wait objects, the wait switches
 into the committed state as long as there are no pending changes
 marked by the wait status register. The commit operation links the
 waiting thread in the PRCB list, activates an extra wait queue
 thread if needed, and inserts the timer associated with the wait
 timeout, if any. Because potentially quite a lot of cycles have
 elapsed by this point, it is again possible that the timeout has
 already elapsed. In this scenario, inserting the timer will cause
 immediate signaling of the thread, and thus a wait satisfaction on
 the timer, and the overall timeout of the wait. Otherwise, in the
 much more common scenario, the CPU now context switches away to the
 next thread that is ready for execution. (See Chapter 5 for more
 information on scheduling.)
In highly contended code paths on multiprocessor machines, it
 is possible and likely that the thread attempting to commit its wait
 has experienced a change while its wait was still in progress. One
 possible scenario is that one of the objects it was waiting on has
 just been signaled. As touched upon earlier, this causes the
 associated wait block to enter the
 WaitBlockBypassStart state, and the thread’s
 wait status register now shows the WaitAborted
 wait state. Another possible scenario is for an alert or APC to have
 been issued to the waiting thread, which does not set the
 WaitAborted state but enables one of the
 corresponding bits in the wait status register. Because APCs can
 break waits (depending on the type of APC, wait mode, and
 alertability), the APC is delivered and the wait is aborted. Other
 operations that will modify the wait status register without
 generating a full abort cycle include modifications to the thread’s
 priority or affinity, which will be processed when exiting the wait
 due to failure to commit, as with the previous cases
 mentioned.
Figure 3-27 shows the relationship
 of dispatcher objects to wait blocks to threads to PRCB. In this
 example, CPU 0 has two waiting (committed) threads: thread 1 is
 waiting for object B, and thread 2 is waiting for objects A
 and B. If object A is signaled, the kernel sees
 that because thread 2 is also waiting for another object, thread 2
 can’t be readied for execution. On the other hand, if object B is
 signaled, the kernel can ready thread 1 for execution right away
 because it isn’t waiting for any other objects. (Alternatively, if
 thread 1 was also waiting for other objects but its wait type was a
 WaitAny, the kernel could still wake it
 up.)
[image: Wait data structures]

Figure 3-27. Wait data structures

EXPERIMENT: Looking at Wait Queues
You can see the list of objects a thread is waiting
 for with the kernel debugger’s !thread
 command. For example, the following excerpt from the output of a
 !process command shows that the thread is
 waiting for an event object:
kd> !process
§
 THREAD fffffa8005292060 Cid 062c062c.0660 Teb: 000007fffffde000 Win32Thread:
fffff900c01c68f0 WAIT: (WrUserRequest) UserMode Non-Alertable
 fffffa80047b8240 SynchronizationEvent
You can use the dt command to
 interpret the dispatcher header of the object like this:
lkd> dt nt!_DISPATCHER_HEADER fffffa80047b8240
 +0x000 Type : 0x1 ''
 +0x001 TimerControlFlags : 0 ''
 +0x001 Absolute : 0y0
 +0x001Coalescable : 0y0
 +0x001 KeepShifting : 0y0
 +0x001 EncodedTolerableDelay : 0y00000 (0)
 +0x001 Abandoned : 0 ''
 +0x001 Signalling : 0 ''
 +0x002 ThreadControlFlags : 0x6 ''
 +0x002 CpuThrottled : 0y0
 +0x002 CycleProfiling : 0y1
 +0x002 CounterProfiling : 0y1
 +0x002 Reserved : 0y00000 (0)
 +0x002 Hand : 0x6 ''
 +0x002 Size : 0x6
 +0x003 TimerMiscFlags : 0 ''
 +0x003 Index : 0y000000 (0)
 +0x003 Inserted : 0y0
 +0x003 Expired : 0y0
 +0x003 DebugActive : 0 ''
 +0x003 ActiveDR7 : 0y0
 +0x003 Instrumented : 0y0
 +0x003 Reserved2 : 0y0000
 +0x003 UmsScheduled : 0y0
 +0x003 UmsPrimary : 0y0
 +0x003 DpcActive : 0 ''
 +0x000 Lock : 393217
 +0x004 SignalState : 0
 +0x008 WaitListHead : _LIST_ENTRY [0xfffffa80'047b8248 - 0xfffffa80'047b8248]
You should ignore any values that do not correspond to the
 given object type, because they might be either incorrectly
 decoded by the debugger (because the wrong type or field is being
 used) or simply contain stale or invalid data from a previous
 allocation value. There is no defined correlation you can see
 between which fields apply to which object, other than by looking
 at the Windows kernel source code or the WDK header files’
 comments. For convenience, Table 3-21 lists the
 dispatcher header flags and the objects to which they
 apply.
Table 3-21. Usage and Meaning of the Dispatcher Header Flags
	Flag
	Applies To
	Meaning

	Absolute
	Timers
	The expiration time is absolute,
 not relative.

	Coalescable
	Periodic Timers
	Indicates whether coalescing
 should be used for this timer.

	KeepShifting
	Coalescable
 Timers
	Indicates whether or not the
 kernel dispatcher should continue attempting to shift the
 timer’s expiration time. When alignment is reached with
 the machine’s periodic interval, this eventually becomes
 FALSE.

	EncodedTolerableDelay
	Coalescable
 Timers
	The maximum amount of tolerance
 (shifted as a power of two) that the timer can support
 when running outside of its expected
 periodicity.

	Abandoned
	Mutexes
	The thread holding the mutex was
 terminated.

	Signaling
	Gates
	A priority boost should be
 applied to the woken thread when the gate is
 signaled.

	CpuThrottled
	Threads
	CPU throttling has been enabled
 for this thread, such as when running under DFSS mode
 (Dynamic Fair-Share Scheduler).

	CycleProfiling
	Threads
	CPU cycle profiling has been
 enabled for this thread.

	CounterProfiling
	Threads
	Hardware CPU performance counter
 monitoring/profiling has been enabled for this
 thread.

	Size
	All objects
	Size of the object divided by 4,
 to fit in a single byte.

	Hand
	Timers
	Index into the timer handle
 table.

	Index
	Timers
	Index into the timer expiration
 table.

	Inserted
	Timers
	Set if the timer was inserted
 into the timer handle table.

	Expired
	Timers
	Set if the timer has already
 expired.

	DebugActive
	Processes
	Specifies whether the process is
 being debugged.

	ActiveDR7
	Thread
	Hardware breakpoints are being
 used, so DR7 is active and should be sanitized during
 context operations.

	Instrumented
	Thread
	Specifies whether the thread has
 a user-mode instrumentation callback (supported only on
 Windows for x64 processors).

	UmsScheduled
	Thread
	This thread is a UMS Worker
 (scheduled) thread.

	UmsPrimary
	Thread
	This thread is a UMS Scheduler
 (primary) thread.

	DpcActive
	Mutexes
	The mutex was acquired during a
 DPC.

	Lock
	All objects
	Used for locking an object
 during wait operations which need to modify its state or
 linkage; actually corresponds to bit 7 (0x80) of the
 Type field.

Apart from these flags, the Type field
 contains the identifier for the object. This identifier
 corresponds to a number in the KOBJECTS enumeration, which you can
 dump with the debugger:
lkd> dt nt!_KOBJECTS
 EventNotificationObject = 0
 EventSynchronizationObject = 1
 MutantObject = 2
 ProcessObject = 3
 QueueObject = 4
 SemaphoreObject = 5
 ThreadObject = 6
 GateObject = 7
 TimerNotificationObject = 8
 TimerSynchronizationObject = 9
 Spare2Object = 10
 Spare3Object = 11
 Spare4Object = 12
 Spare5Object = 13
 Spare6Object = 14
 Spare7Object = 15
 Spare8Object = 16
 Spare9Object = 17
 ApcObject = 18
 DpcObject = 19
 DeviceQueueObject = 20
 EventPairObject = 21
 InterruptObject = 22
 ProfileObject = 23
 ThreadedDpcObject = 24
 MaximumKernelObject = 25
When the wait list head pointers are identical,
 there are either zero threads or one thread waiting on this
 object. Dumping a wait block for an object that is part of a
 multiple wait from a thread, or that multiple threads are waiting
 on, can yield the following:
dt nt!_KWAIT_BLOCK 0xfffffa80'053cf628
 +0x000 WaitListEntry : _LIST_ENTRY [0xfffffa80'02efe568 - 0xfffffa80'02803468]
 +0x010 Thread : 0xfffffa80'053cf520 _KTHREAD
 +0x018 Object : 0xfffffa80'02803460
 +0x020 NextWaitBlock : 0xfffffa80'053cf628 _KWAIT_BLOCK
 +0x028 WaitKey : 0
 +0x02a WaitType : 0x1 ''
 +0x02b BlockState : 0x2 ''
 +0x02c SpareLong : 8
If the wait list has more than one entry, you can execute
 the same command on the second pointer value in the
 WaitListEntry field of each wait block (by
 executing !thread on the thread pointer in
 the wait block) to traverse the list and see what other threads
 are waiting for the object. This would indicate more than one
 thread waiting on this object. On the other hand, when dealing
 with an object that’s part of a collection of objects being waited
 on by a single thread, you have to parse the
 NextWaitBlock field instead.

Keyed Events

A synchronization object called a keyed
 event bears special mention because of the role it plays
 in user-mode-exclusive synchronization primitives. Keyed events were
 originally implemented to help processes deal with low-memory
 situations when using critical sections, which are user-mode
 synchronization objects that we’ll see more about shortly. A keyed
 event, which is not documented, allows a thread to specify a “key”
 for which it waits, where the thread wakes when another thread of
 the same process signals the event with the same key.
If there is contention,
 EnterCriticalSection dynamically allocates an
 event object, and the thread wanting to acquire the critical section
 waits for the thread that owns the critical section to signal it in
 LeaveCriticalSection. Unfortunately, this
 introduces a new problem. Without keyed events, the system could be
 critically out of memory and critical-section acquisition could fail
 because the system was unable to allocate the event object required. The
 low-memory condition itself might have been caused by the
 application trying to acquire the critical section, so the system
 would deadlock in this situation. Low memory isn’t the only scenario
 that could cause this to fail: a less likely scenario is handle
 exhaustion. If the process reaches its 16-million-handle limit, the
 new handle for the event object could fail.
The failure caused by low-memory conditions typically are an
 exception from the code responsible for acquiring the critical
 section. Unfortunately, the result is also a damaged critical
 section, which makes the situation hard to debug and makes the
 object useless for a reacquisition attempt. Attempting a
 LeaveCriticalSection results in another
 event-object allocation attempt, further generating exceptions and
 corrupting the structure.
Allocating a global standard event object would not fix the
 issue because standard event primitives can be used only for a
 single object. Each critical section in the process still requires
 its own event object, so the same problem would resurface. The
 implementation of keyed events allows multiple critical sections
 (waiters) to use the same global (per-process) keyed event handle.
 This allows the critical section functions to operate properly even
 when memory is temporarily low.
When a thread signals a keyed event or performs a wait on it,
 it uses a unique identifier called a key, which
 identifies the instance of the keyed event (an association of the
 keyed event to a single critical section). When the owner thread
 releases the keyed event by signaling it, only a single thread
 waiting on the key is woken up (the same behavior as
 synchronization events, in contrast to
 notification events). Additionally, only the
 waiters in the current process are awakened, so the key is even
 isolated across processes, meaning that there is actually only a
 single keyed event object for the entire system. When a critical
 section uses the keyed event,
 EnterCriticalSection sets the key as the
 address of the critical section and performs a wait.
When EnterCriticalSection calls
 NtWaitForKeyedEvent to perform a wait on the
 keyed event, it can now give a NULL handle as parameter for the
 keyed event, telling the kernel that it was unable to create a keyed
 event. The kernel recognizes this behavior and uses a global keyed
 event named ExpCritSecOutOfMemoryEvent. The
 primary benefit is that processes don’t need to waste a handle for a
 named keyed event anymore because the kernel keeps track of the
 object and its references.
However, keyed events are more than just fallback objects for
 low-memory conditions. When multiple waiters are waiting on the same
 key and need to be woken up, the key is actually signaled multiple
 times, which requires the object to keep a list of all the waiters
 so that it can perform a “wake” operation on each of them. (Recall
 that the result of signaling a keyed event is the same as that of
 signaling a synchronization event.) However, a thread can signal a
 keyed event without any threads on the waiter list. In this
 scenario, the signaling thread instead waits on the event itself.
 Without this fallback, a signaling thread could signal the keyed
 event during the time that the user-mode code saw the keyed event as
 unsignaled and attempt a wait. The wait might have come
 after the signaling thread signaled the keyed
 event, resulting in a missed pulse, so the waiting thread would
 deadlock. By forcing the signaling thread to wait in this scenario,
 it actually signals the keyed event only when someone is looking
 (waiting).
Note
When the keyed-event wait code itself needs to
 perform a wait, it uses a built-in semaphore located in the
 kernel-mode thread object (ETHREAD) called
 KeyedWaitSemaphore. (This semaphore actually
 shares its location with the ALPC wait semaphore.) See Chapter 5 for more
 information on thread objects.

Keyed events, however, do not replace standard event objects
 in the critical section implementation. The initial reason, during
 the Windows XP timeframe, was that keyed events do not offer
 scalable performance in heavy-usage scenarios. Recall that all the
 algorithms described were meant to be used only in critical,
 low-memory scenarios, when performance and scalability aren’t all
 that important. To replace the standard event object would place
 strain on keyed events that they weren’t implemented to handle. The
 primary performance bottleneck was that keyed events maintained the
 list of waiters described in a doubly linked list. This kind of list
 has poor traversal speed, meaning the time
 required to loop through the list. In this case, this time depended
 on the number of waiter threads. Because the object is global,
 dozens of threads could be on the list, requiring long traversal
 times every single time a key was set or waited on.
Note
The head of the list is kept in the keyed event object,
 while the threads are actually linked through the
 KeyedWaitChain field (which is actually
 shared with the thread’s exit time, stored as a LARGE_INTEGER, the
 same size as a doubly linked list) in the kernel-mode thread
 object (ETHREAD). See Chapter 5 for more
 information on this object.

Windows improves keyed-event performance by using a hash table
 instead of a linked list to hold the waiter threads. This
 optimization allows Windows to include three new lightweight
 user-mode synchronization primitives (to be discussed shortly) that
 all depend on the keyed event. Critical sections, however, still
 continue to use event objects, primarily for application
 compatibility and debugging, because the event object and internals
 are well known and documented, while keyed events are opaque and not
 exposed to the Win32 API.

Fast Mutexes and Guarded Mutexes

Fast mutexes, which are also known as executive
 mutexes, usually offer better performance than mutex
 objects because, although they are built on dispatcher event
 objects, they perform a wait through the dispatcher only if the fast
 mutex is contended—unlike a standard mutex, which always attempts
 the acquisition through the dispatcher. This gives the fast mutex
 especially good performance in a multiprocessor environment. Fast
 mutexes are used widely in device drivers.
However, fast mutexes are suitable only when normal
 kernel-mode APC (described earlier in this chapter) delivery can be
 disabled. The executive defines two functions for acquiring them:
 ExAcquireFastMutex and
 ExAcquireFastMutexUnsafe. The former function
 blocks all APC delivery by raising the IRQL of the processor to APC
 level. The latter expects to be called with normal kernel-mode APC
 delivery disabled, which can be done by raising the IRQL to APC
 level. ExTryToAcquireFastMutex performs
 similarly to the first, but it does not actually wait if the fast
 mutex is already held, returning FALSE instead. Another
 limitation of fast mutexes is that they can’t be acquired
 recursively, like mutex objects can.
Guarded mutexes are essentially the same as fast mutexes
 (although they use a different synchronization object, the KGATE,
 internally). They are acquired with the
 KeAcquireGuardedMutex and
 KeAcquireGuardedMutexUnsafe functions, but
 instead of disabling APCs by raising the IRQL to APC level, they
 disable all kernel-mode APC delivery by calling
 KeEnterGuardedRegion. Similarly to fast
 mutexes, a KeTryToAcquireGuardedMutex method
 also exists. Recall that a guarded region, unlike a critical region,
 disables both special and normal kernel-mode APCs, which allows the
 guarded mutex to avoid raising the IRQL.
Three differences make guarded mutexes faster than fast
 mutexes:
	By avoiding raising the IRQL, the kernel can avoid talking
 to the local APIC of every processor on the bus, which is a
 significant operation on large SMP systems. On uniprocessor
 systems, this isn’t a problem because of lazy IRQL evaluation,
 but lowering the IRQL might still require accessing the
 PIC.

	The gate primitive is an optimized version of the event.
 By not having both synchronization and notification versions and
 by being the exclusive object that a thread can wait on, the
 code for acquiring and releasing a gate is heavily optimized.
 Gates even have their own dispatcher lock instead of acquiring
 the entire dispatcher database.

	In the noncontended case, the acquisition and release of a
 guarded mutex works on a single bit, with an atomic bit
 test-and-reset operation instead of the more complex integer
 operations fast mutexes perform.

Note
The code for a fast mutex is also optimized to account for
 almost all these optimizations—it uses the same atomic
 lock operation, and the event object is actually a gate
 object (although by dumping the type in the kernel debugger, you
 would still see an event object structure; this is actually a
 compatibility lie). However, fast mutexes still raise the IRQL
 instead of using guarded regions.

Because the flag responsible for special kernel APC delivery
 disabling (and the guarded-region functionality) was not added until
 Windows Server 2003, many drivers do not take advantage of guarded
 mutexes. Doing so would raise compatibility issues with earlier
 versions of Windows, which require a recompiled driver making use
 only of fast mutexes. Internally, however, the Windows kernel has
 replaced almost all uses of fast mutexes with guarded mutexes
 because the two have identical semantics and can be easily
 interchanged.
Another problem related to the guarded mutex was the kernel
 function KeAreApcsDisabled. Prior to Windows
 Server 2003, this function indicated whether normal APCs were
 disabled by checking whether the code was running inside a critical
 section. In Windows Server 2003, this function was changed to
 indicate whether the code was in a critical, or guarded, region,
 changing the functionality to also return TRUE if special kernel
 APCs are also disabled.
Because there are certain operations that drivers
 should not perform when special kernel APCs are disabled, it makes
 sense to call KeGetCurrentIrql to check whether
 the IRQL is APC level or not, which is the only way special kernel
 APCs could have been disabled. However, because the memory manager
 makes use of guarded mutexes instead, this check fails because
 guarded mutexes do not raise IRQL. Drivers should instead call
 KeAreAllApcsDisabled for this purpose. This
 function checks whether special kernel APCs are disabled and/or
 whether the IRQL is APC level—the sure-fire way to detect both
 guarded mutexes and fast mutexes.

Executive Resources

Executive resources are a synchronization mechanism that
 supports shared and exclusive access; like fast mutexes, they
 require that normal kernel-mode APC delivery be disabled before they
 are acquired. They are also built on dispatcher objects that are
 used only when there is contention. Executive resources are used
 throughout the system, especially in file-system drivers, because
 such drivers tend to have long-lasting wait periods in which I/O
 should still be allowed to some extent (such as reads).
Threads waiting to acquire an executive resource for shared
 access wait for a semaphore associated with the resource, and
 threads waiting to acquire an executive resource for exclusive
 access wait for an event. A semaphore with unlimited count is used
 for shared waiters because they can all be woken and granted access
 to the resource when an exclusive holder releases the resource
 simply by signaling the semaphore. When a thread waits for exclusive
 access of a resource that is currently owned, it waits on a
 synchronization event object because only one of the waiters will
 wake when the event is signaled. In the earlier section on
 synchronization events, it was mentioned that some event unwait
 operations can actually cause a priority boost: this scenario occurs
 when executive resources are used, which is one reason why they also
 track ownership like mutexes do. (See Chapter 5 for more
 information on the executive resource priority boost.)
Because of the flexibility that shared and exclusive access
 offer, there are a number of functions for acquiring resources:
 ExAcquireResourceSharedLite,
 ExAcquireResourceExclusiveLite,
 ExAcquireSharedStarveExclusive,
 ExAcquireShareWaitForExclusive. These functions
 are documented in the WDK.
EXPERIMENT: Listing Acquired Executive Resources
The kernel debugger !locks command
 searches paged pool for executive resource objects and dumps their
 state. By default, the command lists only executive resources that
 are currently owned, but the –d option lists
 all executive resources. Here is partial output of the
 command:
lkd> !locks
**** DUMP OF ALL RESOURCE OBJECTS ****
KD: Scanning for held locks.

Resource @ 0x89929320 Exclusively owned
 Contention Count = 3911396
 Threads: 8952d030-01<*>

KD: Scanning for held locks.......................................

Resource @ 0x89da1a68 Shared 1 owning threads
 Threads: 8a4cb533-01<*> *** Actual Thread 8a4cb530
Note that the contention count, which is extracted
 from the resource structure, records the number of times threads
 have tried to acquire the resource and had to wait because it was
 already owned.
You can examine the details of a specific resource object,
 including the thread that owns the resource and any threads that
 are waiting for the resource, by specifying the
 –v switch and the address of the
 resource:
lkd> !locks -v 0x89929320

Resource @ 0x89929320 Exclusively owned
 Contention Count = 3913573
 Threads: 8952d030-01<*>

 THREAD 8952d030 Cid 0acc.050c Teb: 7ffdf000 Win32Thread: fe82c4c0 RUNNING on processor 0
 Not impersonating
 DeviceMap 9aa0bdb8
 Owning Process 89e1ead8 Image: windbg.exe
 Wait Start TickCount 24620588 Ticks: 12 (0:00:00:00.187)
 Context Switch Count 772193
 UserTime 00:00:02.293
 KernelTime 00:00:09.828
 Win32 Start Address windbg (0x006e63b8)
 Stack Init a7eba000 Current a7eb9c10 Base a7eba000 Limit a7eb7000 Call 0
 Priority 10 BasePriority 8 PriorityDecrement 0 IoPriority 2 PagePriority 5
Unable to get context for thread running on processor 1, HRESULT 0x80004001
1 total locks, 1 locks currently held

Pushlocks

Pushlocks are another optimized synchronization mechanism
 built on gate objects; like guarded mutexes, they wait for a gate
 object only when there’s contention on the lock. They offer
 advantages over the guarded mutex in that they can be acquired in
 shared or exclusive mode. However, their main advantage is their
 size: a resource object is 56 bytes, but a pushlock is pointer-size.
 Unfortunately, they are not documented in the WDK and are therefore
 reserved for use by the operating system (although the APIs are
 exported, so internal drivers do use them).
There are two types of pushlocks: normal and cache-aware.
 Normal pushlocks require only the size of a pointer in storage (4
 bytes on 32-bit systems, and 8 bytes on 64-bit systems). When a
 thread acquires a normal pushlock, the pushlock code marks the
 pushlock as owned if it is not currently owned. If the pushlock is
 owned exclusively or the thread wants to acquire the thread
 exclusively and the pushlock is owned on a shared basis, the thread
 allocates a wait block on the thread’s stack, initializes a gate
 object in the wait block, and adds the wait block to the wait list
 associated with the pushlock. When a thread releases a pushlock, the
 thread wakes a waiter, if any are present, by signaling the event in
 the waiter’s wait block.
Because a pushlock is only pointer-sized, it actually contains
 a variety of bits to describe its state. The meaning of those bits
 changes as the pushlock changes from being contended to
 noncontended. In its initial state, the pushlock contains the
 following structure:
	One lock bit, set to 1 if the lock is acquired

	One waiting bit, set to 1 if the lock is contended and
 someone is waiting on it

	One waking bit, set to 1 if the lock is being granted to a
 thread and the waiter’s list needs to be optimized

	One multiple shared bit, set to 1 if the pushlock is
 shared and currently acquired by more than one thread

	28 (on 32-bit Windows) or 60 (on 64-bit Windows) share
 count bits, containing the number of threads that have acquired
 the pushlock

As discussed previously, when a thread acquires a pushlock
 exclusively while the pushlock is already acquired by either
 multiple readers or a writer, the kernel allocates a pushlock wait
 block. The structure of the pushlock value itself changes. The share
 count bits now become the pointer to the wait block. Because this
 wait block is allocated on the stack and the header files contain a
 special alignment directive to force it to be 16-byte aligned, the
 bottom 4 bits of any pushlock wait-block structure will be all
 zeros. Therefore, those bits are ignored for the purposes of pointer
 dereferencing; instead, the 4 bits shown earlier are combined with
 the pointer value. Because this alignment removes the share count
 bits, the share count is now stored in the wait block
 instead.
A cache-aware pushlock adds layers to the normal (basic)
 pushlock by allocating a pushlock for each processor in the system
 and associating it with the cache-aware pushlock. When a thread
 wants to acquire a cache-aware pushlock for shared access, it simply
 acquires the pushlock allocated for its current processor in shared
 mode; to acquire a cache-aware pushlock exclusively, the thread
 acquires the pushlock for each processor in exclusive mode.
Other than a much smaller memory footprint, one of the large
 advantages that pushlocks have over executive resources is that in
 the noncontended case they do not require lengthy accounting and
 integer operations to perform acquisition or release. By being as
 small as a pointer, the kernel can use atomic CPU instructions to
 perform these tasks. (lock cmpxchg is used,
 which atomically compares and exchanges the old lock with a new
 lock.) If the atomic compare and exchange fails, the lock contains
 values the caller did not expect (callers usually expect the lock to
 be unused or acquired as shared), and a call is then made to the
 more complex contended version. To improve performance even further,
 the kernel exposes the pushlock functionality as inline functions,
 meaning that no function calls are ever generated during
 noncontended acquisition—the assembly code is directly inserted in
 each function. This increases code size slightly, but it avoids the
 slowness of a function call. Finally, pushlocks use several
 algorithmic tricks to avoid lock convoys (a situation that can occur
 when multiple threads of the same priority are all waiting on a lock
 and little actual work gets done), and they are also self-optimizing: the list of threads
 waiting on a pushlock will be periodically rearranged to provide
 fairer behavior when the pushlock is released.
Areas in which pushlocks are used include the object manager,
 where they protect global object-manager data structures and object
 security descriptors, and the memory manager, where their
 cache-aware counterpart is used to protect Address Windowing
 Extension (AWE) data structures.
Deadlock Detection with Driver Verifier
A deadlock is a synchronization issue resulting from two
 threads or processors holding resources that the other wants and
 neither yielding what it has. This situation might result in
 system or process hangs. Driver Verifier, described in Chapter 8
 in Part 2 and Chapter 9 in Part 2, has an option to check for
 deadlocks involving spinlocks, fast mutexes, and mutexes. For
 information on when to enable Driver Verifier to help resolve
 system hangs, see Chapter 14 in Part 2.

Critical Sections

Critical sections are one of the main synchronization
 primitives that Windows provides to user-mode applications on top of
 the kernel-based synchronization primitives. Critical sections and
 the other user-mode primitives you’ll see later have one major
 advantage over their kernel counterparts, which is saving a
 round-trip to kernel mode in cases in which the lock is noncontended
 (which is typically 99 percent of the time or more). Contended cases
 still require calling the kernel, however, because it is the only
 piece of the system that is able to perform the complex waking and
 dispatching logic required to make these objects work.
Critical sections are able to remain in user mode by using a
 local bit to provide the main exclusive locking logic, much like a
 spinlock. If the bit is 0, the critical section can be acquired, and
 the owner sets the bit to 1. This operation doesn’t require calling
 the kernel but uses the interlocked CPU operations discussed
 earlier. Releasing the critical section behaves similarly, with bit
 state changing from 1 to 0 with an interlocked operation. On the
 other hand, as you can probably guess, when the bit is already 1 and
 another caller attempts to acquire the critical section, the kernel
 must be called to put the thread in a wait state.Finally, because
 critical sections are not kernel objects, they have certain
 limitations. The primary one is that you cannot obtain a kernel
 handle to a critical section; as such, no security, naming, or other
 object manager functionality can be applied to a critical section.
 Two processes cannot use the same critical section to coordinate
 their operations, nor can duplication or inheritance be used.

User-Mode Resources

User-mode resources also provide more fine-grained locking
 mechanisms than kernel primitives. A resource can be acquired for
 shared mode or for exclusive mode, allowing it to function as a
 multiple-reader (shared), single-writer (exclusive) lock for data
 structures such as databases. When a resource is acquired in shared
 mode and other threads attempt to acquire the same resource, no trip
 to the kernel is required because none of the threads will be
 waiting. Only when a thread attempts to acquire the resource for
 exclusive access, or the resource is already locked by an exclusive
 owner, will this be required.
To make use of the same dispatching and synchronization
 mechanism you saw in the kernel, resources actually make use of
 existing kernel primitives. A resource data structure (RTL_RESOURCE)
 contains handles to a kernel mutex as well as a kernel semaphore
 object. When the resource is acquired exclusively by more than one
 thread, the resource uses the mutex because it permits only one
 owner. When the resource is acquired in shared mode by more than one
 thread, the resource uses a semaphore because it allows multiple
 owner counts. This level of detail is typically hidden from the
 programmer, and these internal objects should never be used
 directly.
Resources were originally implemented to support the SAM (or
 Security Account Manager, which is discussed in Chapter 6) and not exposed through the Windows
 API for standard applications. Slim Reader-Writer Locks (SRW Locks),
 described next, were implemented in Windows Vista to expose a
 similar locking primitive through a documented API, although some
 system components still use the resource mechanism.

Condition Variables

Condition variables provide a Windows native implementation
 for synchronizing a set of threads that are waiting on a specific
 result to a conditional test. Although this operation was possible
 with other user-mode synchronization methods, there was no
 atomic mechanism to check the result of the
 conditional test and to begin waiting on a change in the result.
 This required that additional synchronization be used around such
 pieces of code.
A user-mode thread initializes a condition variable by calling
 InitializeConditionVariable to set up the
 initial state. When it wants to initiate a wait on the variable, it
 can call SleepConditionVariableCS, which uses a
 critical section (that the thread must have initialized) to wait for
 changes to the variable. The setting thread must use
 WakeConditionVariable (or
 WakeAllConditionVariable) after it has modified
 the variable. (There is no automatic detection mechanism.) This call
 releases the critical section of either one or all waiting threads,
 depending on which function was used.
Before condition variables, it was common to use either a
 notification event or a
 synchronization event (recall that these are
 referred to as auto-reset or
 manual-reset in the Windows API) to signal the
 change to a variable, such as the state of a worker queue. Waiting
 for a change required a critical section to be acquired and then
 released, followed by a wait on an event. After the wait, the
 critical section had to be re-acquired. During this series of
 acquisitions and releases, the thread might have switched contexts,
 causing problems if one of the threads called
 PulseEvent (a similar problem to the one that
 keyed events solve by forcing a wait for the signaling thread if
 there is no waiter). With condition variables, acquisition of the
 critical section can be maintained by the application while
 SleepConditionVariableCS is called and can be
 released only after the actual work is done. This makes writing
 work-queue code (and similar implementations) much simpler and
 predictable.
Internally, condition variables can be thought of as a port of
 the existing pushlock algorithms present in kernel mode, with the
 additional complexity of acquiring and releasing critical sections
 in the SleepConditionVariableCS
 API. Condition variables are pointer-size (just like pushlocks),
 avoid using the dispatcher (which requires a ring transition to
 kernel mode in this scenario, making the advantage even more
 noticeable), automatically optimize the wait list during wait
 operations, and protect against lock convoys. Additionally,
 condition variables make full use of keyed events instead of the
 regular event object that developers would have used on their own,
 which makes even contended cases more optimized.

Slim Reader-Writer Locks

Although condition variables are a synchronization mechanism,
 they are not fully primitive locking objects. As you’ve seen, they
 still depend on the critical section lock, whose acquisition and
 release uses standard dispatcher event objects, so trips through
 kernel mode can still happen and callers still require the
 initialization of the large critical section object. If condition
 variables share a lot of similarities with pushlocks, Slim
 Reader-Writer Locks (SRW Locks) are nearly identical. They are also
 pointer-size, use atomic operations for acquisition and release,
 rearrange their waiter lists, protect against lock convoys, and can
 be acquired both in shared and exclusive mode. Some differences from
 pushlocks, however, include the fact that SRW Locks cannot be
 “upgraded” or converted from shared to exclusive or vice versa.
 Additionally, they cannot be recursively acquired. Finally, SRW
 Locks are exclusive to user-mode code, while pushlocks are exclusive
 to kernel-mode code, and the two cannot be shared or exposed from
 one layer to the other.
Not only can SRW Locks entirely replace critical sections in
 application code, but they also offer multiple-reader, single-writer
 functionality. SRW Locks must first be initialized with
 InitializeSRWLock, after which they can be
 acquired or released in either exclusive or shared mode with the
 appropriate APIs: AcquireSRWLockExclusive,
 ReleaseSRWLockExclusive, AcquireSRWLockShared, and
 ReleaseSRWLockShared.
Note
Unlike most other Windows APIs, the SRW locking functions do
 not return with a value—instead they generate exceptions if the
 lock could not be acquired. This makes it obvious that an
 acquisition has failed so that code that assumes success will
 terminate instead of potentially proceeding to corrupt user
 data.

The Windows SRW Locks do not prefer readers or writers,
 meaning that the performance for either case should be the same.
 This makes them great replacements for critical sections, which are
 writer-only or exclusive synchronization
 mechanisms, and they provide an optimized alternative to resources.
 If SRW Locks were optimized for readers, they would be poor
 exclusive-only locks, but this isn’t the case. As a result, the
 design of the condition variable mechanism introduced earlier also
 allows for the use of SRW Locks instead of critical sections,
 through the SleepConditionVariableSRW API.
 Finally, SRW Locks also use keyed events instead of standard event
 objects, so the combination of condition variables and SRW Locks
 results in scalable, pointer-size synchronization mechanisms with
 very few trips to kernel mode—except in contended cases, which are
 optimized to take less time and memory to wake and set because of
 the use of keyed events.

Run Once Initialization

The ability to guarantee the
 atomic execution of a piece of code responsible
 for performing some sort of initialization task—such as allocating
 memory, initializing certain variables, or even creating objects on
 demand—is a typical problem in multithreaded programming. In a piece
 of code that can be called simultaneously by multiple threads (a
 good example is the DllMain routine, which
 initializes a DLL), there are several ways of attempting to ensure
 the correct, atomic, and unique execution of initialization
 tasks.
In this scenario, Windows implements init
 once, or one-time initialization
 (also called run once initialization
 internally). This mechanism allows for both synchronous (meaning
 that the other threads must wait for initialization to complete)
 execution of a certain piece of code, as well as asynchronous
 (meaning that the other threads can attempt to do their own
 initialization and race) execution. We’ll look at the logic behind
 asynchronous execution after explaining the synchronous
 mechanism.
In the synchronous case, the developer writes the piece of
 code that would normally execute after double-checking the global
 variable in a dedicated function. Any information that this routine
 needs can be passed through the parameter
 variable that the init-once routine accepts. Any output information
 is returned through the context variable. (The
 status of the initialization itself is returned as a Boolean.) All
 the developer has to do to ensure proper execution is call
 InitOnceExecuteOnce with the
 parameter, context, and
 run-once function pointer after initializing an INIT_ONCE object
 with InitOnceInitialize API. The system will
 take care of the rest.
For applications that want to use the asynchronous model
 instead, the threads call
 InitOnceBeginInitialize and receive a BOOLEAN
 pending status and the
 context described earlier. If the
 pending status is FALSE, initialization has
 already taken place, and the thread uses the context value for the
 result. (It’s also possible for the function itself to return FALSE,
 meaning that initialization failed.) However, if the pending status
 comes back as TRUE, the thread should race to
 be the first to create the object. The code that follows performs
 whatever initialization tasks are required, such as creating objects
 or allocating memory. When this work is done, the thread calls
 InitOnceComplete with the result of the work as
 the context and receives a BOOLEAN status. If
 the status is TRUE, the thread won the race, and the object that it
 created or allocated is the one that will be the global object. The
 thread can now save this object or return it to a caller, depending
 on the usage.
In the more complex scenario when the status is FALSE, this
 means that the thread lost the race. The thread must undo all the
 work it did, such as deleting objects or freeing memory, and then
 call InitOnceBeginInitialize again. However,
 instead of requesting to start a race as it did initially, it uses
 the INIT_ONCE_CHECK_ONLY flag, knowing that it
 has lost, and requests the winner’s context instead (for example,
 the objects or memory that were created or allocated by the winner).
 This returns another status, which can be TRUE,
 meaning that the context is valid and should be used or returned to
 the caller, or FALSE, meaning that initialization failed and nobody
 has actually been able to perform the work (such as in the case of a
 low-memory condition, perhaps).
In both cases, the mechanism for run-once initialization is
 similar to the mechanism for condition variables and SRW Locks. The
 init once structure is pointer-size, and inline
 assembly versions of the SRW acquisition/release code are used for the
 noncontended case, while keyed events are used when contention has
 occurred (which happens when the mechanism is used in synchronous
 mode) and the other threads must wait for initialization. In the
 asynchronous case, the locks are used in shared mode, so multiple
 threads can perform initialization at the same time.

System Worker Threads

During system initialization, Windows creates several threads in
 the System process, called system worker threads,
 which exist solely to perform work on behalf of other threads. In many
 cases, threads executing at DPC/dispatch level need to execute functions
 that can be performed only at a lower IRQL. For example, a DPC routine,
 which executes in an arbitrary thread context (because DPC execution can
 usurp any thread in the system) at DPC/dispatch level IRQL, might need
 to access paged pool or wait for a dispatcher object used to synchronize
 execution with an application thread. Because a DPC routine can’t lower
 the IRQL, it must pass such processing to a thread that executes at an
 IRQL below DPC/dispatch level.
Some device drivers and executive components create their own
 threads dedicated to processing work at passive level; however, most use
 system worker threads instead, which avoids the unnecessary scheduling
 and memory overhead associated with having additional threads in the
 system. An executive component requests a system worker thread’s
 services by calling the executive functions
 ExQueueWorkItem or
 IoQueueWorkItem. Device drivers should use only the
 latter (because this associates the work item with a Device object,
 allowing for greater accountability and the handling of scenarios in
 which a driver unloads while its work item is active). These functions
 place a work item on a queue dispatcher object
 where the threads look for work. (Queue dispatcher objects are described
 in more detail in the section “I/O Completion Ports” in Chapter 8 in
 Part 2.)
The IoQueueWorkItemEx, IoSizeofWorkItem,
 IoInitializeWorkItem, and
 IoUninitializeWorkItem APIs act similarly, but they
 create an association with a driver’s Driver object or one of its Device
 objects.
Work items include a pointer to a routine and a parameter that the
 thread passes to the routine when it processes the work item. The device
 driver or executive component that requires passive-level execution
 implements the routine. For example, a DPC routine that must wait for a
 dispatcher object can initialize a work item that points to the routine
 in the driver that waits for the dispatcher object, and perhaps points
 to a pointer to the object. At some stage, a system worker thread will
 remove the work item from its queue and execute the driver’s routine.
 When the driver’s routine finishes, the system worker thread checks to
 see whether there are more work items to process. If there aren’t any
 more, the system worker thread blocks until a work item is placed on the
 queue. The DPC routine might or might not have finished executing when
 the system worker thread processes its work item.
There are three types of system worker threads:
	Delayed worker threads execute at
 priority 12, process work items that aren’t considered
 time-critical, and can have their stack paged out to a paging file
 while they wait for work items. The object manager uses a delayed work item to
 perform deferred object deletion, which deletes kernel objects after
 they have been scheduled for freeing.

	Critical worker threads execute at
 priority 13, process time-critical work items, and on Windows Server
 systems have their stacks present in physical memory at all
 times.

	A single hypercritical worker thread executes at priority 15
 and also keeps its stack in memory. The process manager uses the
 hypercritical work item to execute the thread “reaper” function that
 frees terminated threads.

The number of delayed and critical worker threads created by the
 executive’s ExpWorkerInitialization function, which
 is called early in the boot process, depends on the amount of memory
 present on the system and whether the system is a server. Table 3-22 shows the initial
 number of threads created on default configurations. You can specify
 that ExpInitializeWorker create up to 16 additional
 delayed and 16 additional critical worker threads with the
 AdditionalDelayedWorkerThreads and
 AdditionalCriticalWorkerThreads values under the
 registry key HKLM\SYSTEM\CurrentControlSet\Control\Session
 Manager\Executive.
Table 3-22. Initial Number of System Worker Threads
	Work Queue Type
	Default Number of
 Threads

	Delayed
	7

	Critical
	5

	Hypercritical
	1

The executive tries to match the number of critical worker threads
 with changing workloads as the system executes. Once every second, the
 executive function ExpWorkerThreadBalanceManager
 determines whether it should create a new critical worker thread. The
 critical worker threads that are created by
 ExpWorkerThreadBalanceManager are called
 dynamic worker threads, and all the following
 conditions must be satisfied before such a thread is created:
	Work items exist in the critical work queue.

	The number of inactive critical worker threads (ones that are
 either blocked waiting for work items or that have blocked on
 dispatcher objects while executing a work routine) must be less than
 the number of processors on the system.

	There are fewer than 16 dynamic worker threads.

Dynamic worker threads exit after 10 minutes of inactivity. Thus,
 when the workload dictates, the executive can create up to 16 dynamic
 worker threads.
EXPERIMENT: Listing System Worker Threads
You can use the !exqueue kernel
 debugger command to see a listing of system worker threads classified
 by their type:
lkd> !exqueue
Dumping ExWorkerQueue: 820FDE40

**** Critical WorkQueue(current = 0 maximum = 2)
THREAD 861160b8 Cid 0004.001c Teb: 00000000 Win32Thread: 00000000 WAIT
THREAD 8613b020 Cid 0004.0020 Teb: 00000000 Win32Thread: 00000000 WAIT
THREAD 8613bd78 Cid 0004.0024 Teb: 00000000 Win32Thread: 00000000 WAIT
THREAD 8613bad0 Cid 0004.0028 Teb: 00000000 Win32Thread: 00000000 WAIT
THREAD 8613b828 Cid 0004.002c Teb: 00000000 Win32Thread: 00000000 WAIT

**** Delayed WorkQueue(current = 0 maximum = 2)
THREAD 8613b580 Cid 0004.0030 Teb: 00000000 Win32Thread: 00000000 WAIT
THREAD 8613b2d8 Cid 0004.0034 Teb: 00000000 Win32Thread: 00000000 WAIT
THREAD 8613c020 Cid 0004.0038 Teb: 00000000 Win32Thread: 00000000 WAIT
THREAD 8613cd78 Cid 0004.003c Teb: 00000000 Win32Thread: 00000000 WAIT
THREAD 8613cad0 Cid 0004.0040 Teb: 00000000 Win32Thread: 00000000 WAIT
THREAD 8613c828 Cid 0004.0044 Teb: 00000000 Win32Thread: 00000000 WAIT
THREAD 8613c580 Cid 0004.0048 Teb: 00000000 Win32Thread: 00000000 WAIT

**** HyperCritical WorkQueue(current = 0 maximum = 2)
THREAD 8613c2d8 Cid 0004.004c Teb: 00000000 Win32Thread: 00000000 WAIT

Windows Global Flags

Windows has a set of flags stored in a systemwide global variable
 named NtGlobalFlag that enable various internal
 debugging, tracing, and validation support in the operating system. The
 system variable NtGlobalFlag is initialized from
 the registry key HKLM\SYSTEM\CurrentControlSet\Control\Session Manager
 in the value GlobalFlag at system boot time. By
 default, this registry value is 0, so it’s likely that on your systems,
 you’re not using any global flags. In addition, each image has a set of
 global flags that also turn on internal tracing and validation code
 (although the bit layout of these flags is entirely different from the
 systemwide global flags).
Fortunately, the debugging tools contains a utility named
 Gflags.exe you can use to view and change the system global flags
 (either in the registry or in the running system) as well as image
 global flags. Gflags has both a command-line and a GUI interface. To see
 the command-line flags, type gflags
 /?. If you run the utility without any switches, the dialog
 box shown in Figure 3-28
 is displayed.
[image: Setting system debugging options with Gflags]

Figure 3-28. Setting system debugging options with Gflags

You can configure a variable’s settings in the registry on
 the System Registry page or the current value of a variable in system
 memory on the Kernel Flags page.
The Image File page requires you to fill in the file name of an
 executable image. Use this option to change a set of global flags that
 apply to an individual image (rather than to the whole system). In Figure 3-29, notice that the
 flags are different from the operating system ones shown in Figure 3-28.
[image: Setting image global flags with Gflags]

Figure 3-29. Setting image global flags with Gflags

EXPERIMENT: Viewing and Setting
 NtGlobalFlag
You can use the !gflag kernel
 debugger command to view and set the state of the
 NtGlobalFlag kernel variable. The
 !gflag command lists all the flags that are
 enabled. You can use !gflag -? to get the entire
 list of supported global flags.

Advanced Local Procedure Call

All modern operating systems require a mechanism for securely
 transferring data between one or more processes in user mode, as well as
 between a service in the kernel and clients in user mode. Typically,
 UNIX mechanisms such as mailslots, files, named pipes, and sockets are
 used for portability, while other developers use window messages for
 graphical applications. Windows implements an internal IPC mechanism
 called Advanced Local Procedure Call, or ALPC, which is a high-speed,
 scalable, and secured facility for message passing arbitrary-size
 messages. Although it is internal, and thus not available for
 third-party developers, ALPC is widely used in various parts of
 Windows:
	Windows applications that use remote procedure call (RPC), a
 documented API, indirectly use ALPC when they specify
 local-RPC over the ncalrpc
 transport, a form of RPC used to communicate between processes on
 the same system. Kernel-mode RPC, used by the network stack, also
 uses ALPC.

	Whenever a Windows process and/or thread starts, as well as
 during any Windows subsystem operation (such as all console I/O),
 ALPC is used to communicate with the subsystem process (CSRSS). All
 subsystems communicate with the session manager (SMSS) over
 ALPC.

	Winlogon uses ALPC to communicate with the local security
 authentication process, LSASS.

	The security reference monitor (an executive component
 explained in Chapter 6) uses ALPC to
 communicate with the LSASS process.

	The user-mode power manager and power monitor communicate with
 the kernel-mode power manager over ALPC, such as whenever the LCD
 brightness is changed.

	Windows Error Reporting uses ALPC to receive context
 information from crashing processes.

	The User-Mode Driver Framework (UMDF) enables user-mode
 drivers to communicate using ALPC.

Note
ALPC is the replacement for an older IPC mechanism initially
 shipped with the very first kernel design of Windows NT, called LPC,
 which is why certain variables, fields, and functions might still
 refer to “LPC” today. Keep in mind that LPC is now emulated on top of
 ALPC for compatibility and has been removed from the kernel (legacy
 system calls still exist, which get wrapped into ALPC calls).

Connection Model

Typically, ALPCs are used between a server process and
 one or more client processes of that server. An ALPC connection can be
 established between two or more user-mode processes or between a
 kernel-mode component and one or more user-mode processes. ALPC
 exports a single executive object called the port
 object to maintain the state needed for communication.
 Although this is just one object, there are actually several kinds of
 ALPC ports that it can represent:
	Server connection
 port. A named port that is a server connection request point.
 Clients can connect to the server by connecting to this
 port.

	Server communication
 port. An unnamed port a server uses to communicate with a
 particular client. The server has one such port per active
 client.

	Client communication
 port. An unnamed port a particular client thread uses to
 communicate with a particular server.

	Unconnected communication
 port. An unnamed port a client can use to communicate locally
 with itself.

ALPC follows a connection and communication model that’s
 somewhat reminiscent of BSD socket programming. A server first creates
 a server connection port (NtAlpcCreatePort),
 while a client attempts to connect to it
 (NtAlpcConnectPort). If the server was in a
 listening state, it receives a connection request message and can
 choose to accept it (NtAlpcAcceptPort). In doing
 so, both the client and server communication ports are created, and
 each respective endpoint process receives a handle to its
 communication port. Messages are then sent across this handle
 (NtAlpcSendWaitReceiveMessage), typically in a
 dedicated thread, so that the server can continue listening for
 connection requests on the original connection port (unless this
 server expects only one client).
The server also has the ability to deny the connection, either
 for security reasons or simply due to protocol or versioning issues.
 Because clients can send a custom payload with a connection request,
 this is usually used by various services to ensure that the correct
 client, or only one client, is talking to the server. If any anomalies
 are found, the server can reject the connection, and, optionally,
 return a payload containing information on why the client was rejected
 (allowing the client to take corrective action, if possible, or for
 debugging purposes).
Once a connection is made, a connection information structure
 (actually, a blob, as will be described shortly) stores the linkage
 between all the different ports, as shown in Figure 3-30.
[image: Use of ALPC ports]

Figure 3-30. Use of ALPC ports

Message Model

Using ALPC, a client and thread using blocking messages
 each take turns performing a loop around the
 NtAlpcSendWaitReplyPort system call, in which one
 side sends a request and waits for a reply while the other side does
 the opposite. However, because ALPC supports asynchronous messages,
 it’s possible for either side not to block and choose instead to
 perform some other runtime task and check for messages later (some of
 these methods will be described shortly). ALPC supports the following
 three methods of exchanging payloads sent with a message:
	A message can be sent to another process through the
 standard double-buffering mechanism, in which the kernel maintains
 a copy of the message (copying it from the source process),
 switches to the target process, and copies the data from the
 kernel’s buffer. For compatibility, if legacy LPC is being used,
 only messages up to 256 bytes can be sent this way, while ALPC has
 the ability to allocate an extension buffer
 for messages up to ~64KB.

	A message can be stored in an ALPC section object from which
 the client and server processes map views. (See Chapter 10 in Part
 2 for more information on section mappings.)

	A message can be stored in a message
 zone, which is an Memory Descriptor List (MDL) that
 backs the physical pages containing the data and that is mapped
 into the kernel’s address space.

An important side effect of the ability to send asynchronuos
 messages is that a message can be canceled—for example, when a request
 takes too long or the user has indicated that she wants to cancel the
 operation it implements. ALPC supports this with the
 NtAlpcCancelMessage system call.
An ALPC message can be on one of four different queues
 implemented by the ALPC port object:
	Main queue. A message has been sent, and the client is processing
 it.

	Pending queue. A message has been sent and the caller is waiting for a
 reply, but the reply has not yet been sent.

	Large message
 queue. A message has been sent, but the caller’s buffer was too
 small to receive it. The caller gets another chance to allocate
 a larger buffer and request the message payload again.

	Canceled queue. A message that was sent to the port, but has since been
 canceled.

Note that a fifth queue, called the wait
 queue, does not link messages together; instead, it links
 all the threads waiting on a message.
EXPERIMENT: Viewing Subsystem ALPC Port Objects
You can see named ALPC port objects with the WinObj tool from
 Sysinternals. Run Winobj.exe, and select the root directory. A gear
 icon identifies the port objects, as shown here:
[image: image with no caption]

You should see the ALPC ports used by the power
 manager, the security manager, and other internal Windows services.
 If you want to see the ALPC port objects used by RPC, you can select
 the \RPC Control directory. One of the primary users of ALPC,
 outside of Local RPC, is the Windows subsystem, which uses ALPC to
 communicate with the Windows subsystem DLLs that are present in all
 Windows processes. (Subsystem for UNIX Applications uses a similar
 mechanism.) Because CSRSS loads once for each session, you will find
 its ALPC port objects under the appropriate \Sessions\X\Windows
 directory, such as shown here:
[image: image with no caption]

Asynchronous Operation

The synchronous model of ALPC is tied to the original LPC
 architecture in the early NT design, and is similar to other blocking
 IPC mechanisms, such as Mach ports. Although it is simple to design, a
 blocking IPC algorithm includes many possibilities for deadlock, and
 working around those scenarios creates complex code that requires
 support for a more flexible asynchronous (nonblocking) model. As such,
 ALPC was primarily designed to support asynchronous operation as well,
 which is a requirement for scalable RPC and other uses, such as
 support for pending I/O in user-mode drivers. A basic feature of ALPC,
 which wasn’t originally present in LPC, is that blocking calls can
 have a timeout parameter. This allows legacy applications to avoid
 certain deadlock scenarios.
However, ALPC is optimized for asynchronous messages and
 provides three different models for asynchronous notifications. The
 first doesn’t actually notify the client or server, but simply copies
 the data payload. Under this model, it’s up to the implementor to
 choose a reliable synchronization method. For example, the client and
 the server can share a notification event object, or the client can
 poll for data arrival. The data structure used by this model is the
 ALPC completion list (not to be confused with the
 Windows I/O completion port). The ALPC completion list is an
 efficient, nonblocking data structure that enables atomic passing of data
 between clients, and its internals are described further in the Performance section.
The next notification model is a waiting model that uses the
 Windows completion-port mechanism (on top of the ALPC completion
 list). This enables a thread to retrieve multiple payloads at once,
 control the maximum number of concurrent requests, and take advantage
 of native completion-port functionality. The user-mode thread pool
 (described later in this chapter) implementation provides internal
 APIs that processes use to manage ALPC messages within the same
 infrastructure as worker threads, which are implemented using this
 model. The RPC system in Windows, when using Local RPC (over
 ncalrpc), also makes use of this functionality to
 provide efficient message delivery by taking advantage of this kernel
 support.
Finally, because drivers can also use asynchronous ALPC, but do
 not typically support completion ports at such a high-level, ALPC also
 provides a mechanism for a more basic, kernel-based notification using
 executive callback objects. A driver can register its own callback and
 context with NtAlpcSetInformation, after which it
 will get called whenever a message is received. The user-mode,
 power-manager interfaces in the kernel employ this mechanism for
 asynchronous LCD backlight operation on laptops, for example.

Views, Regions, and Sections

Instead of sending message buffers between their two respective
 processes, a server and client can choose a more efficient
 data-passing mechanism that is at the core of Windows’ memory manager:
 the section object. (More information is
 available in Chapter 10 in Part 2.) This allows a piece of memory to
 be allocated as shared, and for both client and server to have a
 consistent, and equal, view of this memory. In this scenario, as much
 data as can fit can be transferred, and data is merely copied into one
 address range and immediately available in the other. Unfortunately,
 shared-memory communication, such as LPC traditionally provided, has
 its share of drawbacks, especially when considering security
 ramifications. For one, because both client and server must have
 access to the shared memory, an unprivileged client can use this to
 corrupt the server’s shared memory, and even build executable payloads
 for potential exploits. Additionally, because the client knows the
 location of the server’s data, it can use this information to bypass
 ASLR protections. (See Chapter 8 in Part 2 for more
 information.)
ALPC provides its own security on top of what’s provided by
 section objects. With ALPC, a specific ALPC section object must be
 created with the appropriate
 NtAlpcCreatePortSection API, which will create
 the correct references to the port, as well as allow for automatic
 section garbage collection. (A manual API also exists for deletion.)
 As the owner of the ALPC section object begins using the section, the
 allocated chunks are created as ALPC regions, which represent a range
 of used addresses within the section and add an extra reference to the
 message. Finally, within a range of shared memory, the clients obtain
 views to this memory, which represents the local mapping within their
 address space.
Regions also support a couple of security options. First of all,
 regions can be mapped either using a secure mode or an unsecure mode.
 In the secure mode, only two views (mappings) are allowed to the
 region. This is typically used when a server wants to share data
 privately with a single client process. Additionally, only one region for a given range
 of shared memory can be opened from within the context of a given
 port. Finally, regions can also be marked with write-access
 protection, which enables only one process context (the server) to
 have write access to the view (by using
 MmSecureVirtualMemoryAgainstWrites). Other
 clients, meanwhile, will have read-only access only. These settings
 mitigate many privilege-escalation attacks that could happen due to
 attacks on shared memory, and they make ALPC more resilient than
 typical IPC mechanisms.

Attributes

ALPC provides more than simple message passing: it also enables
 specific contextual information to be added to each message and have
 the kernel track the validity, lifetime, and implementation of that
 information. Users of ALPC have the ability to assign their own custom
 context information as well. Whether it’s system-managed or
 user-managed, ALPC calls this data attributes.
 There are three of these that the kernel manages:
	The security attribute, which holds key information to allow
 impersonation of clients, as well as advanced ALPC security
 functionality (which is described later)

	The data view attribute, responsible for managing the
 different views associated with the regions of an ALPC
 section

	The handle attribute, which contains information about which
 handles to associate with the message (which is described in more
 detail later in the Security
 section).

Normally, these attributes are initially passed in by the server
 or client when the message is sent and converted into the kernel’s own
 internal ALPC representation. If the ALPC user requests this data
 back, it is exposed back securely. By
 implementing this kind of model and combining it with its own internal
 handle table, described next, ALPC can keep critical data opaque
 between clients and servers, while still maintaining the true pointers
 in kernel mode.
Finally, a fourth attribute is supported, called the
 context attribute. This attribute supports the
 traditional, LPC-style, user-specific context pointer that could be
 associated with a given message, and it is still supported for
 scenarios where custom data needs to be associated with a
 client/server pair.
To define attributes correctly, a variety of APIs are available
 for internal ALPC consumers, such as
 AlpcInitializeMessageAttribute and
 AlpcGetMessageAttribute.

Blobs, Handles, and Resources

Although the ALPC library exposes only one Object Manager object
 type (the port), it internally must manage a number of data structures
 that allow it to perform the tasks required by its mechanisms. For
 example, ALPC needs to allocate and track the messages associated with
 each port, as well as the message attributes, which it must track for
 the duration of their lifetime. Instead of using the Object Manager’s
 routines for data management, ALPC implements its own lightweight
 objects called blobs. Just like objects, blobs
 can automatically be allocated and garbage collected, reference
 tracked, and locked through synchronization. Additionally, blobs can
 have custom allocation and deallocation callbacks, which let their
 owners control extra information that might need to be tracked for
 each blob. Finally, ALPC also uses the executive’s handle table
 implementation (used for objects and PIDs/TIDs) to have an
 ALPC-specific handle table, which allows ALPC to generate private
 handles for blobs, instead of using pointers.
In the ALPC model, messages are blobs, for example, and their
 constructor generates a message ID, which is itself a handle into
 ALPC’s handle table. Other ALPC blobs include the following:
	The connection blob, which stores the client and server
 communication ports, as well as the server connection port and
 ALPC handle table.

	The security blob, which stores the security data necessary
 to allow impersonation of a client. It stores the security
 attribute.

	The section, region, and view blobs, which describe ALPC’s
 shared-memory model. The view blob is ultimately responsible for
 storing the data view attribute.

	The reserve blob, which implements support for ALPC Reserve
 Objects. (See the Reserve Objects section in
 this chapter.)

	The handle data blob, which contains the information that
 enables ALPC’s handle attribute support.

Because blobs are allocated from pageable memory, they must
 carefully be tracked to ensure their deletion at the appropriate time.
 For certain kinds of blobs, this is easy: for example, when an ALPC
 message is freed, the blob used to contain it is also deleted.
 However, certain blobs can represent numerous attributes attached to a
 single ALPC message, and the kernel must manage their lifetime
 appropriately. For example, because a message can have multiple views
 associated with it (when many clients have access to the same shared
 memory), the views must be tracked with the messages that reference
 them. ALPC implements this functionality by using a concept of
 resources. Each message is associated with a
 resource list, and whenever a blob associated with a message (that
 isn’t a simple pointer) is allocated, it is also added as a resource
 of the message. In turn, the ALPC library provides functionality for
 looking up, flushing, and deleting associated resources. Security
 blobs, reserve blobs, and view blobs are all stored as
 resources.

Security

ALPC implements several security mechanisms, full security
 boundaries, and mitigations to prevent attacks in case of generic IPC
 parsing bugs. At a base level, ALPC port objects are managed by the
 same object manager interfaces that manage object security, preventing
 nonprivileged applications from obtaining handles to server ports with
 ACL. On top of that, ALPC provides a SID-based trust model, inherited
 from the original LPC design. This model enables clients to validate
 the server they are connecting to by relying on more than just the
 port name. With a secured port, the client process submits to the kernel the SID of the server
 process it expects on the side of the endpoint. At connection time,
 the kernel validates that the client is indeed connecting to the
 expected server, mitigating namespace squatting attacks where an
 untrusted server creates a port to spoof a server.
ALPC also allows both clients and servers to atomically and
 uniquely identify the thread and process responsible for each message.
 It also supports the full Windows impersonation model through the
 NtAlpcImpersonateClientThread API. Other APIs
 give an ALPC server the ability to query the SIDs associated with all
 connected clients and to query the LUID (locally unique identifier) of
 the client’s security token (which is further described in Chapter 6).

Performance

ALPC uses several strategies to enhance performance, primarily
 through its support of completion lists, which were briefly described
 earlier. At the kernel level, a completion list is essentially a user
 MDL that’s been probed and locked and then mapped to an address. (For
 more information on Memory Descriptor Lists, see Chapter 10 in Part
 2.) Because it’s associated with an MDL (which tracks physical pages),
 when a client sends a message to a server, the payload copy can happen
 directly at the physical level, instead of requiring the kernel to
 double-buffer the message, as is common in other IPC
 mechanisms.
The completion list itself is implemented as a 64-bit queue of
 completed entries, and both user-mode and kernel-mode consumers can
 use an interlocked compare-exchange operation to insert and remove
 entries from the queue. Furthermore, to simplify allocations, once an
 MDL has been initialized, a bitmap is used to identify available areas
 of memory that can be used to hold new messages that are still being
 queued. The bitmap algorithm also uses native lock instructions on the
 processor to provide atomic allocation and de-allocation of areas of
 physical memory that can be used by completion lists.
Another ALPC performance optimization is the use of
 message zones. A message zone is simply a
 pre-allocated kernel buffer (also backed by an MDL) in which a message
 can be stored until a server or client retrieves it. A message zone
 associates a system address with the message, allowing it to be made
 visible in any process address space. More importantly, in the case of
 asynchronous operation, it does not require the complex setup of
 delayed payloads because no matter when the consumer finally retrieves
 the message data, the message zone will still be valid. Both
 completion lists and message zones can be set up with
 NtAlpcSetInformation.
A final optimization worth mentioning is that instead of copying
 data as soon as it is sent, the kernel sets up the payload for a
 delayed copy, capturing only the needed information, but without any
 copying. The message data is copied only when the receiver requests
 the message. Obviously, if a message zone or shared memory is being
 used, there’s no advantage to this method, but in asynchronous,
 kernel-buffer message passing, this can be used to optimize
 cancellations and high-traffic scenarios.

Debugging and Tracing

On checked builds of the kernel, ALPC messages can be
 logged. All ALPC attributes, blobs, message zones, and dispatch
 transactions can be individually logged, and undocumented
 !alpc commands in WinDbg can dump the logs. On
 retail systems, IT administrators and troubleshooters can enable the
 ALPC Event Tracing for Windows (ETW) logger to monitor ALPC messages.
 ETW events do not include payload data, but they do contain
 connection, disconnection, and send/receive and wait/unblock
 information. Finally, even on retail systems, certain
 !alpc commands obtain information on ALPC ports
 and messages.
EXPERIMENT: Dumping a Connection Port
In this experiment, you’ll use the CSRSS API port for Windows
 processes running in Session 1, which is the typical interactive
 session for the console user. Whenever a Windows application
 launches, it connects to CSRSS’s API port in the appropriate
 session.
	Start by obtaining a pointer to the connection port with
 the !object command:
0: kd> !object \Sessions\1\Windows\ApiPort
Object: fffffa8004dc2090 Type: (fffffa80027a2ed0) ALPC Port
 ObjectHeader: fffffa8004dc2060 (new version)
 HandleCount: 1 PointerCount: 50
 Directory Object: fffff8a001a5fb30 Name: ApiPort

	Now dump information on the port object itself with
 !alpc /p. This will confirm, for example,
 that CSRSS is the owner:
0: kd> !alpc /p fffffa8004dc2090
Port @ fffffa8004dc2090
 Type : ALPC_CONNECTION_PORT
 CommunicationInfo : fffff8a001a22560
 ConnectionPort : fffffa8004dc2090
 ClientCommunicationPort : 0000000000000000
 ServerCommunicationPort : 0000000000000000
 OwnerProcess : fffffa800502db30 (csrss.exe)
 SequenceNo : 0x000003C9 (969)
 CompletionPort : 0000000000000000
 CompletionList : 0000000000000000
 MessageZone : 0000000000000000
 ConnectionPending : No
 ConnectionRefused : No
 Disconnected : No
 Closed : No
 FlushOnClose : Yes

 ReturnExtendedInfo : No
 Waitable : No
 Security : Static
 Wow64CompletionList : No

 Main queue is empty.
 Large message queue is empty.
 Pending queue is empty.
 Canceled queue is empty.

	You can see what clients are connected to the port, which
 will include all Windows processes running in the session, with
 the undocumented !alpc /lpc command. You
 will also see the server and client communication ports
 associated with each connection and any pending messages on any
 of the queues:
0: kd> !alpc /lpc fffffa8004dc2090

Port @fffffa8004dc2090 has 14 connections

SRV:fffffa8004809c50 (m:0, p:0, l:0) <-> CLI:fffffa8004809e60 (m:0, p:0, l:0),
 Process=fffffa8004ffcb30 ('winlogon.exe')
SRV:fffffa80054dfb30 (m:0, p:0, l:0) <-> CLI:fffffa80054dfe60 (m:0, p:0, l:0),
 Process=fffffa80054de060 ('dwm.exe')
SRV:fffffa8005394dd0 (m:0, p:0, l:0) <-> CLI:fffffa80054e1440 (m:0, p:0, l:0),
 Process=fffffa80054e2290 ('winvnc.exe')
SRV:fffffa80053965d0 (m:0, p:0, l:0) <-> CLI:fffffa8005396900 (m:0, p:0, l:0),
 Process=fffffa80054ed060 ('explorer.exe')
SRV:fffffa80045a8070 (m:0, p:0, l:0) <-> CLI:fffffa80045af070 (m:0, p:0, l:0),
 Process=fffffa80045b1340 ('logonhlp.exe')
SRV:fffffa8005197940 (m:0, p:0, l:0) <-> CLI:fffffa800519a900 (m:0, p:0, l:0),
 Process=fffffa80045da060 ('TSVNCache.exe')
SRV:fffffa800470b070 (m:0, p:0, l:0) <-> CLI:fffffa800470f330 (m:0, p:0, l:0),
 Process=fffffa8004713060 ('vmware-tray.ex')
SRV:fffffa80045d7670 (m:0, p:0, l:0) <-> CLI:fffffa80054b16f0 (m:0, p:0, l:0),
 Process=fffffa80056b8b30 ('WINWORD.EXE')
SRV:fffffa80050e0e60 (m:0, p:0, l:0) <-> CLI:fffffa80056fee60 (m:0, p:0, l:0),
 Process=fffffa800478f060 ('Winobj.exe')
SRV:fffffa800482e670 (m:0, p:0, l:0) <-> CLI:fffffa80047b7680 (m:0, p:0, l:0),
 Process=fffffa80056aab30 ('cmd.exe')
SRV:fffffa8005166e60 (m:0, p:0, l:0) <-> CLI:fffffa80051481e0 (m:0, p:0, l:0),
 Process=fffffa8002823b30 ('conhost.exe')
SRV:fffffa80054a2070 (m:0, p:0, l:0) <-> CLI:fffffa80056e6210 (m:0, p:0, l:0),
 Process=fffffa80055669e0 ('livekd.exe')
SRV:fffffa80056aa390 (m:0, p:0, l:0) <-> CLI:fffffa80055a6c00 (m:0, p:0, l:0),
 Process=fffffa80051b28b0 ('livekd64.exe')
SRV:fffffa8005551d90 (m:0, p:0, l:0) <-> CLI:fffffa80055bfc60 (m:0, p:0, l:0),
 Process=fffffa8002a69b30 ('kd.exe')

	Note that if you have other sessions, you can repeat this
 experiment on those sessions also (as well as with session 0,
 the system session). You will eventually get a list of all the
 Windows processes on your machine. If you are using Subsystem
 for UNIX Applications, you can also use this technique on the
 \PSXSS\ApiPort object.

Kernel Event Tracing

Various components of the Windows kernel and several core
 device drivers are instrumented to record trace data of their operations
 for use in system troubleshooting. They rely on a common infrastructure
 in the kernel that provides trace data to the user-mode Event Tracing
 for Windows (ETW) facility. An application that uses ETW falls into one
 or more of three categories:
	Controller. A controller starts and stops logging sessions and manages
 buffer pools. Example controllers include Reliability and
 Performance Monitor (see the EXPERIMENT: Tracing TCP/IP Activity with the Kernel
 Logger section,
 later in this section) and XPerf from the Windows Performance
 Toolkit (see the EXPERIMENT: Monitoring Interrupt and DPC Activity section,
 earlier in this chapter).

	Provider. A provider defines GUIDs (globally unique identifiers) for
 the event classes it can produce traces for and registers them
 with ETW. The provider accepts commands from a controller for
 starting and stopping traces of the event classes for which it’s
 responsible.

	Consumer. A consumer selects one or more trace sessions for which it
 wants to read trace data. Consumers can receive the events in
 buffers in real time or in log files.

Windows includes dozens of user-mode providers, for everything
 from Active Directory to the Service Control Manager to Explorer. ETW
 also defines a logging session with the name NT Kernel Logger (also
 known as the kernel logger) for use by the kernel and core drivers. The
 providers for the NT Kernel Logger are implemented by ETW code in
 Ntoskrnl.exe and the core drivers.
When a controller in user mode enables the kernel logger, the ETW
 library (which is implemented in \Windows\System32\Ntdll.dll) calls the
 NtTraceControl system function, telling the ETW
 code in the kernel which event classes the controller wants to start
 tracing. If file logging is configured (as opposed to in-memory logging
 to a buffer), the kernel creates a system thread in the system process
 that creates a log file. When the kernel receives trace events from the
 enabled trace sources, it records them to a buffer. If it was started,
 the file logging thread wakes up once per second to dump the contents of
 the buffers to the log file.
Trace records generated by the kernel logger have a standard ETW
 trace event header, which records time stamp, process, and thread IDs,
 as well as information on what class of event the record corresponds to.
 Event classes can provide additional data specific to their events. For
 example, disk event class trace records indicate the operation type
 (read or write), disk number at which the operation is directed, and
 sector offset and length of the operation.
Some of the trace classes that can be enabled for the kernel
 logger and the component that generates each class include the
 following:
	Disk I/O. Disk class driver

	File I/O. File system drivers

	File I/O
 Completion. File system drivers

	Hardware
 Configuration. Plug and Play manager (See Chapter 9 in Part 2 for
 information on the Plug and Play manager.)

	Image
 Load/Unload. The system image loader in the kernel

	Page Faults. Memory manager (See Chapter 10 in Part 2 for more
 information on page faults.)

	Hard Page Faults. Memory manager

	Process
 Create/Delete. Process manager (See Chapter 5 for more
 information on the process manager.)

	Thread
 Create/Delete. Process manager

	Registry
 Activity. Configuration manager (See The Registry section in Chapter 4 for more information on the
 configuration manager.)

	Network TCP/IP. TCP/IP driver

	Process Counters. Process manager

	Context Switches. Kernel dispatcher

	Deferred Procedure
 Calls. Kernel dispatcher

	Interrupts. Kernel dispatcher

	System Calls. Kernel dispatcher

	Sample Based
 Profiling. Kernel dispatcher and HAL

	Driver Delays. I/O manager

	Split I/O. I/O manager

	Power Events. Power manager

	ALPC. Advanced local procedure call

	Scheduler and
 Synchronization. Kernel dispatcher (See Chapter 5 for more
 information about thread scheduling)

You can find more information on ETW and the kernel logger,
 including sample code for controllers and consumers, in the Windows
 SDK.
EXPERIMENT: Tracing TCP/IP Activity with the Kernel
 Logger
To enable the kernel logger and have it generate a log
 file of TCP/IP activity, follow these steps:
	Run the Performance Monitor, and click on Data Collector
 Sets, User Defined.

	Right-click on User Defined, choose New, and select Data
 Collector Set.

	When prompted, enter a name for the data collector set (for
 example, experiment), and
 choose Create Manually (Advanced) before clicking Next.

	In the dialog box that opens, select Create Data Logs, check
 Event Trace Data, and then click Next. In the Providers area,
 click Add, and locate Windows Kernel Trace. In the Properties
 list, select Keywords(Any), and then click Edit.
[image: image with no caption]

	From this list, select only Net for Network TCP/IP, and then
 click OK.
[image: image with no caption]

	Click Next to select a location where the files are saved.
 By default, this location is C:\Perflogs\<User>\experiment\,
 if this is how you named the data collector set. Click Next, and
 in the Run As edit box, enter the Administrator account name and
 set the password to match it. Click Finish. You should now see a
 window similar to the one shown here:
[image: image with no caption]

	Right-click on “experiment” (or whatever name you gave your
 data collector set), and then click Start. Now generate some
 network activity by opening a browser and visiting a web
 site.

	Right-click on the data collector set node again, and then
 click Stop.

	Open a command prompt, and change to the
 C:\Perflogs\experiment\00001 directory (or the directory into
 which you specified that the trace log file be stored).

	Run tracerpt, and pass it the name of
 the trace log file:
tracerpt DataCollector01.etl –o dumpfile.csv –of CSV

	Open dumpfile.csv in Microsoft Excel or in a text editor.
 You should see TCP and/or UDP trace records like the
 following:

	TcpIp
	SendIPV4
	0xFFFFFFFF
	1.28663E+17
	0
	0
	1992
	1388
	157.54.86.28
	172.31.234.35
	80
	49414
	646659
	646661

	UdpIp
	RecvIPV4
	0xFFFFFFFF
	1.28663E+17
	0
	0
	4
	50
	172.31.239.255
	172.31.233.110
	137
	137
	0
	0x0

	UdpIp
	RecvIPV4
	0xFFFFFFFF
	1.28663E+17
	0
	0
	4
	50
	172.31.239.255
	172.31.234.162
	137
	137
	0
	0x0

	TcpIp
	RecvIPV4
	0xFFFFFFFF
	1.28663E+17
	0
	0
	1992
	1425
	157.54.86.28
	172.31.234.35
	80
	49414
	0
	0x0

	TcpIp
	RecvIPV4
	0xFFFFFFFF
	1.28663E+17
	0
	0
	1992
	1380
	157.54.86.28
	172.31.234.35
	80
	49414
	0
	0x0

	TcpIp
	RecvIPV4
	0xFFFFFFFF
	1.28663E+17
	0
	0
	1992
	45
	157.54.86.28
	172.31.234.35
	80
	49414
	0
	0x0

	TcpIp
	RecvIPV4
	0xFFFFFFFF
	1.28663E+17
	0
	0
	1992
	1415
	157.54.86.28
	172.31.234.35
	80
	49414
	0
	0x0

	TcpIp
	RecvIPV4
	0xFFFFFFFF
	1.28663E+17
	0
	0
	1992
	740
	157.54.86.28
	172.31.234.35
	80
	49414
	0
	0x0

Wow64

Wow64 (Win32 emulation on 64-bit Windows) refers to the
 software that permits the execution of 32-bit x86 applications on 64-bit
 Windows. It is implemented as a set of user-mode DLLs, with some support
 from the kernel for creating 32-bit versions of what would normally only
 be 64-bit data structures, such as the process environment block (PEB)
 and thread environment block (TEB). Changing Wow64 contexts through
 Get/SetThreadContext is also implemented by the
 kernel. Here are the user-mode DLLs responsible for Wow64:
	Wow64.dll. Manages process and thread creation, and hooks
 exception-dispatching and base system calls exported by
 Ntoskrnl.exe. It also implements file-system redirection and
 registry redirection.

	Wow64Cpu.dll. Manages the 32-bit CPU context of each running thread inside
 Wow64, and provides processor architecture-specific support for
 switching CPU mode from 32-bit to 64-bit and vice versa.

	Wow64Win.dll. Intercepts the GUI system calls exported by
 Win32k.sys.

	IA32Exec.bin and Wowia32x.dll on
 IA64 systems. Contain the IA-32 software emulator and its interface
 library. Because Itanium processors cannot natively execute x86
 32-bit instructions in an efficient manner (performance is worse
 than 30 percent), software emulation (through binary translation)
 is required through the use of these two additional
 components.

The relationship of these DLLs is shown in Figure 3-31.
[image: Wow64 architecture]

Figure 3-31. Wow64 architecture

Wow64 Process Address Space Layout

Wow64 processes can run with 2 GB or 4 GB of virtual space. If
 the image header has the large-address-aware flag set, the memory
 manager reserves the user-mode address space above the 4-GB boundary
 through the end of the user-mode boundary. If the image is not marked
 as large address space aware, the memory manager reserves the
 user-mode address space above 2 GB. (For more information on
 large-address-space support, see the section “x86 User Address Space
 Layouts” in Chapter 10 in Part 2.)

System Calls

Wow64 hooks all the code paths where 32-bit code would
 transition to the native 64-bit system or when the native system needs
 to call into 32-bit user-mode code. During process creation, the
 process manager maps into the process address space the native 64-bit
 Ntdll.dll, as well as the 32-bit Ntdll.dll for Wow64 processes. When
 the loader initialization is called, it calls the Wow64 initialization
 code inside Wow64.dll. Wow64 then sets up the startup context required
 by the 32-bit Ntdll, switches the CPU mode to 32-bits, and starts
 executing the 32-bit loader. From this point onward, execution
 continues as if the process is running on a native 32-bit
 system.
Special 32-bit versions of Ntdll.dll, User32.dll, and Gdi32.dll
 are located in the \Windows\Syswow64 folder (as well as certain other
 DLLs that perform interprocess communication, such as Rpcrt4.dll).
 These call into Wow64 rather than issuing the native 32-bit system
 call instruction. Wow64 transitions to native 64-bit mode, captures
 the parameters associated with the system call (converting 32-bit
 pointers to 64-bit pointers), and issues the corresponding native
 64-bit system call. When the native system call returns, Wow64
 converts any output parameters if necessary from 64-bit to 32-bit
 formats before returning to 32-bit mode.

Exception Dispatching

Wow64 hooks exception dispatching through Ntdll’s
 KiUserExceptionDispatcher. Whenever the 64-bit
 kernel is about to dispatch an exception to a Wow64 process, Wow64
 captures the native exception and context record in user mode and then
 prepares a 32-bit exception and context record and dispatches it the
 same way the native 32-bit kernel would.

User APC Dispatching

Wow64 also hooks user-mode APC delivery through Ntdll’s
 KiUserApcDispatcher. Whenever the 64-bit kernel
 is about to dispatch a user-mode APC to a Wow64 process, it maps the
 32-bit APC address to a higher range of 64-bit address space. The
 64-bit Ntdll then captures the native APC and context record in user
 mode and maps it back to a 32-bit address. It then prepares a 32-bit
 user-mode APC and context record and dispatches it the same way the
 native 32-bit kernel would.

Console Support

Because console support is implemented in user mode by
 Csrss.exe, of which only a single native binary exists, 32-bit
 applications would be unable to perform console I/O while on 64-bit
 Windows. Similarly to how a special rpcrt4.dll exits to thunk 32-bit
 to 64-bit RPCs, the 32-bit Kernel.dll for Wow64 contains special code
 to call into Wow, for thunking parameters during interaction with
 Csrss and Conhost.exe.

User Callbacks

Wow64 intercepts all callbacks from the kernel into user
 mode. Wow64 treats such calls as system calls; however, the data
 conversion is done in the reverse order: input parameters are
 converted from 64 bits to 32 bits, and output parameters are converted
 when the callback returns from 32 bits to 64 bits.

File System Redirection

To maintain application compatibility and to reduce the effort
 of porting applications from Win32 to 64-bit Windows, system directory
 names were kept the same. Therefore, the \Windows\System32 folder
 contains native 64-bit images. Wow64, as it hooks all the system
 calls, translates all the path-related APIs and replaces the path name
 of the \Windows\System32 folder with \Windows\Syswow64. Wow64 also
 redirects \Windows\LastGood to \Windows\LastGood\syswow64 and \Windows
 \Regedit.exe to \Windows\syswow64\Regedit.exe. Through the use of
 system environment variables, the %PROGRAMFILES% variable is also set
 to \Program Files (x86) for 32-bit applications, while it is set to
 \Program Files folder for 64-bit applications. CommonProgramFiles and
 CommonProgramFiles (x86) also exist, which always point to the 32-bit
 location, while ProgramW6432 and CommonProgramW6432 point to the
 64-bit locations unconditionally.
Note
Because certain 32-bit applications might indeed be aware and
 able to deal with 64-bit images, a virtual directory,
 \Windows\Sysnative, allows any I/Os originating from a 32-bit
 application to this directory to be exempted from file redirection.
 This directory doesn’t actually exist—it is a virtual path that
 allows access to the real System32 directory, even from an
 application running under Wow64.

There are a few subdirectories of \Windows\System32 that, for
 compatibility reasons, are exempted from being redirected such that
 access attempts to them made by 32-bit applications actually access
 the real one. These directories include the following:
	%windir%\system32\drivers\etc

	%windir%\system32\spool

	%windir%\system32\catroot and
 %windir%\system32\catroot2

	%windir%\system32\logfiles

	%windir%\system32\driverstore

Finally, Wow64 provides a mechanism to control the file system
 redirection built into Wow64 on a per-thread basis through the
 Wow64DisableWow64FsRedirection and
 Wow64RevertWow64FsRedirection functions. This
 mechanism can have issues with delay-loaded DLLs, opening files
 through the common file dialog and even internationalization—because
 once redirection is disabled, the system no longer users it during
 internal loading either, and certain 64-bit-only files would then fail
 to be found. Using the c:\windows\sysnative path or some of the other
 consistent paths introduced earlier is usually a safer methodology for
 developers to use.

Registry Redirection

Applications and components store their configuration
 data in the registry. Components usually write their configuration
 data in the registry when they are registered during installation. If
 the same component is installed and registered both as a 32-bit binary
 and a 64-bit binary, the last component registered will override the
 registration of the previous component because they both write to the
 same location in the registry.
To help solve this problem transparently without introducing any
 code changes to 32-bit components, the registry is split into two
 portions: Native and Wow64. By default, 32-bit components access the
 32-bit view and 64-bit components access the 64-bit view. This
 provides a safe execution environment for 32-bit and 64-bit components
 and separates the 32-bit application state from the 64-bit one if it
 exists.
To implement this, Wow64 intercepts all the system calls that
 open registry keys and retranslates the key path to point it to the
 Wow64 view of the registry. Wow64 splits the registry at these
 points:
	HKLM\SOFTWARE

	HKEY_CLASSES_ROOT

However, note that many of the subkeys are actually shared
 between 32-bit and 64-bit apps—that is, not the entire hive is
 split.
Under each of these keys, Wow64 creates a key called
 Wow6432Node. Under this key is stored 32-bit configuration
 information. All other portions of the registry are shared between
 32-bit and 64-bit applications (for example, HKLM\SYSTEM).
As an extra help, if a 32-bit application writes a REG_SZ or
 REG_EXPAND_SZ value that starts with the data “%ProgramFiles%” or
 “%commonprogramfiles%” to the registry, Wow64 modifies the actual
 values to “%ProgramFiles(x86)%” and “%commonprogramfiles(x86)%” to
 match the file system redirection and layout explained earlier. The
 32-bit application must write exactly these strings using this
 case—any other data will be ignored and written normally. Finally, any
 key containing “system32” is replaced with “syswow64” in all cases,
 regardless of flags and case sensitivity, unless KEY_WOW64_64KEY is
 used and the key is on the list of “reflected keys”, which is
 available on MSDN.
For applications that need to explicitly specify a registry key
 for a certain view, the following flags on the
 RegOpenKeyEx,
 RegCreateKeyEx,
 RegOpenKeyTransacted,
 RegCreateKeyTransacted, and
 RegDeleteKeyEx functions permit this:
	KEY_WOW64_64KEY—Explicitly opens a 64-bit key from either a
 32-bit or 64-bit application, and disables the REG_SZ or
 REG_EXPAND_SZ interception explained earlier

	KEY_WOW64_32KEY—Explicitly opens a 32-bit key from either a
 32-bit or 64-bit application

I/O Control Requests

Besides normal read and write operations, applications can
 communicate with some device drivers through device I/O control
 functions using the Windows DeviceIoControl API.
 The application might specify an input and/or output buffer along with
 the call. If the buffer contains pointer-dependent data and the process sending the control request is a
 Wow64 process, the view of the input and/or output structure is
 different between the 32-bit application and the 64-bit driver,
 because pointers are 4 bytes for 32-bit applications and 8 bytes for
 64-bit applications. In this case, the kernel driver is expected to
 convert the associated pointer-dependent structures. Drivers can call
 the IoIs32bitProcess function to detect whether
 or not an I/O request originated from a Wow64 process. Look for
 “Supporting 32-Bit I/O in Your 64-Bit Driver” on MSDN for more
 details.

16-Bit Installer Applications

Wow64 doesn’t support running 16-bit applications. However,
 because many application installers are 16-bit programs, Wow64 has
 special case code to make references to certain well-known 16-bit
 installers work. These installers include the following:
	Microsoft ACME Setup version: 1.2, 2.6, 3.0, and 3.1

	InstallShield version 5.x (where x is
 any minor version number)

Whenever a 16-bit process is about to be created using the
 CreateProcess() API, Ntvdm64.dll is loaded and
 control is transferred to it to inspect whether the 16-bit executable
 is one of the supported installers. If it is, another
 CreateProcess is issued to launch a 32-bit
 version of the installer with the same command-line arguments.

Printing

32-bit printer drivers cannot be used on 64-bit Windows. Print
 drivers must be ported to native 64-bit versions. However, because
 printer drivers run in the user-mode address space of the requesting
 process and only native 64-bit printer drivers are supported on 64-bit
 Windows, a special mechanism is needed to support printing from 32-bit
 processes. This is done by redirecting all printing functions to
 Splwow64.exe, the Wow64 RPC print server. Because Splwow64 is a 64-bit
 process, it can load 64-bit printer drivers.

Restrictions

Wow64 does not support the execution of 16-bit applications
 (this is supported on 32-bit versions of Windows) or the loading of
 32-bit kernel-mode device drivers (they must be ported to native
 64-bits). Wow64 processes can load only 32-bit DLLs and can’t load
 native 64-bit DLLs. Likewise, native 64-bit processes can’t load
 32-bit DLLs. The one exception is the ability to load
 resource or data-only DLLs cross-architecture,
 which is allowed because those DLLs contain only data, not
 code.
In addition to the above, due to page size differences, Wow64 on
 IA64 systems does not support the
 ReadFileScatter,
 WriteFileGather,
 GetWriteWatch, AVX registers, XSAVE, and AWE
 functions. Also, hardware acceleration through DirectX is not
 available. (Software emulation is provided for Wow64
 processes.)

User-Mode Debugging

Support for user-mode debugging is split into three
 different modules. The first one is located in the executive itself and
 has the prefix Dbgk, which stands for
 Debugging Framework. It provides the necessary
 internal functions for registering and listening for debug events,
 managing the debug object, and packaging the information for consumption
 by its user-mode counterpart. The user-mode component that talks
 directly to Dbgk is located in the native system
 library, Ntdll.dll, under a set of APIs that begin with the prefix
 DbgUi. These APIs are responsible for wrapping the
 underlying debug object implementation (which is opaque), and they allow
 all subsystem applications to use debugging by wrapping their own APIs
 around the DbgUi implementation. Finally, the third
 component in user-mode debugging belongs to the subsystem DLLs. It is
 the exposed, documented API (located in KernelBase.dll for the Windows
 subsystem) that each subsystem supports for performing debugging of
 other applications.
Kernel Support

The kernel supports user-mode debugging through an object
 mentioned earlier, the debug object. It provides
 a series of system calls, most of which map directly to the Windows
 debugging API, typically accessed through the
 DbgUi layer first. The debug object itself is a
 simple construct, composed of a series of flags that determine state,
 an event to notify any waiters that debugger events are present, a
 doubly linked list of debug events waiting to be processed, and a fast
 mutex used for locking the object. This is all the information that
 the kernel requires for successfully receiving and sending debugger
 events, and each debugged process has a debug
 port member in its structure pointing to this debug
 object.
Once a process has an associated debug port, the events
 described in Table 3-23 can cause
 a debug event to be inserted into the list of events.
Table 3-23. Kernel-Mode Debugging Events
	Event Identifier
	Meaning
	Triggered By

	DbgKmExceptionApi
	An exception has
 occurred.
	KiDispatchException
 during an exception that occurred in user mode

	DbgKmCreateThreadApi
	A new thread has been
 created.
	Startup of a user-mode
 thread

	DbgKmCreateProcessApi
	A new process has been
 created.
	Startup of a user-mode thread that
 is the first thread in the process

	DbgKmExitThreadApi
	A thread has exited.
	Death of a user-mode
 thread

	DbgKmExitProcessApi
	A process has exited.
	Death of a user-mode thread that was
 the last thread in the process

	DbgKmLoadDllApi
	A DLL was loaded.
	NtMapViewOfSection
 when the section is an image file (could be an EXE as
 well)

	DbgKmUnloadDllApi
	A DLL was unloaded.
	NtUnmapViewOfSection
 when the section is an image file (could be an EXE as
 well)

	DbgKmErrorReportApi
	An exception needs to be forwarded
 to Windows Error Reporting (WER).
	KiDispatchException
 during an exception that occurred in user mode, after the
 debugger was unable to handle it

Apart from the causes mentioned in the table, there are
 a couple of special triggering cases outside the regular scenarios
 that occur at the time a debugger object first becomes associated with
 a process. The first create process and
 create thread messages will be manually sent when
 the debugger is attached, first for the process itself and its main
 thread and followed by create thread messages for all the other
 threads in the process. Finally, load dll events
 for the executable being debugged (Ntdll.dll) and then all the current
 DLLs loaded in the debugged process will be sent.
Once a debugger object has been associated with a process, all
 the threads in the process are suspended. At this point, it is the
 debugger’s responsibility to start requesting that debug events be
 sent through. Debuggers request that debug events be sent back to user
 mode by performing a wait on the debug object.
 This call loops the list of debug events. As each request is removed
 from the list, its contents are converted from the internal
 dbgk structure to the native
 structure that the next layer up understands. As you’ll see, this
 structure is different from the Win32 structure as well, and another
 layer of conversion has to occur. Even after all pending debug
 messages have been processed by the debugger, the kernel does not
 automatically resume the process. It is the debugger’s responsibility
 to call the ContinueDebugEvent function to resume
 execution.
Apart from some more complex handling of certain multithreading
 issues, the basic model for the framework is a simple matter of
 producers—code in the kernel that generates the
 debug events in the previous table—and
 consumers—the debugger waiting on these events
 and acknowledging their receipt.

Native Support

Although the basic protocol for user-mode debugging is quite
 simple, it’s not directly usable by Windows applications—instead, it’s
 wrapped by the DbgUi functions in Ntdll.dll. This
 abstraction is required to allow native applications, as well as
 different subsystems, to use these routines (because code inside
 Ntdll.dll has no dependencies). The functions that this component
 provides are mostly analogous to the Windows API functions and related
 system calls. Internally, the code also provides the functionality
 required to create a debug object associated with the thread. The
 handle to a debug object that is created is never exposed. It is saved
 instead in the thread environment block (TEB) of the debugger thread
 that performs the attachment. (For more information on the TEB, see
 Chapter 5.) This
 value is saved in DbgSsReserved[1].
When a debugger attaches to a process, it expects the process to
 be broken into—that is, an int
 3 (breakpoint) operation should have happened, generated by
 a thread injected into the process. If this didn’t happen, the
 debugger would never actually be able to take control of the process
 and would merely see debug events flying by. Ntdll.dll is responsible
 for creating and injecting that thread into the target process.
Finally, Ntdll.dll also provides APIs to convert the native
 structure for debug events into the structure that the Windows API
 understands.
EXPERIMENT: Viewing Debugger Objects
Although you’ve been using WinDbg to do kernel-mode
 debugging, you can also use it to debug user-mode programs. Go ahead
 and try starting Notepad.exe with the debugger attached using these
 steps:
	Run WinDbg, and then click File, Open Executable.

	Navigate to the \Windows\System32\ directory, and choose
 Notepad.exe.

	You’re not going to do any debugging, so simply ignore
 whatever might come up. You can type g in the command window to instruct
 WinDbg to continue executing Notepad.

Now run Process Explorer, and be sure the lower pane is
 enabled and configured to show open handles. (Click on View, Lower
 Pane View, and then Handles.) You also want to look at unnamed
 handles, so click on View, Show Unnamed Handles And Mappings.
Next, click on the Windbg.exe process and look at its handle
 table. You should see an open, unnamed handle to a debug object.
 (You can organize the table by Type to find this entry more
 readily.) You should see something like the following:
[image: image with no caption]

You can try right-clicking on the handle and closing it.
 Notepad should disappear, and the following message should appear in
 WinDbg:
ERROR: WaitForEvent failed, NTSTATUS 0xC0000354
This usually indicates that the debuggee has been
killed out from underneath the debugger.
You can use .tlist to see if the debuggee still exists.
WaitForEvent failed
In fact, if you look at the description for the NTSTATUS code
 given, you will find the text: “An attempt to do an operation on a
 debug port failed because the port is in the process of being
 deleted,” which is exactly what you’ve done by closing the
 handle.

As you can see, the native DbgUi
 interface doesn’t do much work to support the framework except for
 this abstraction. The most complicated task it does is the conversion
 between native and Win32 debugger structures. This involves several
 additional changes to the structures.

Windows Subsystem Support

The final component responsible for allowing debuggers such as
 Microsoft Visual Studio or WinDbg to debug user-mode applications is
 in Kernel32.dll. It provides the documented Windows APIs. Apart from
 this trivial conversion of one function name to another, there is one
 important management job that this side of the debugging
 infrastructure is responsible for: managing the duplicated file and
 thread handles.
Recall that each time a load DLL event is
 sent, a handle to the image file is duplicated by the kernel and
 handed off in the event structure, as is the case with the handle to
 the process executable during the create process
 event. During each wait call, Kernel32.dll checks
 whether this is an event that results in new duplicated process and/or
 thread handles from the kernel (the two create
 events). If so, it allocates a structure in which it stores the
 process ID, thread ID, and the thread and/or process handle associated
 with the event. This structure is linked into the first
 DbgSsReserved array index in the TEB, where we
 mentioned the debug object handle is stored. Likewise, Kernel32.dll
 also checks for exit events. When it detects such
 an event, it “marks” the handles in the data structure.
Once the debugger is finished using the handles and performs the
 continue call, Kernel32.dll parses these
 structures, looks for any handles whose threads have exited, and
 closes the handles for the debugger. Otherwise, those threads and
 processes would actually never exit, because there would always be
 open handles to them as long as the debugger was running.

Image Loader

When a process is started on the system, the kernel creates a
 process object to represent it (see Chapter 5 for more
 information on processes) and performs various kernel-related
 initialization tasks. However, these tasks do not result in the
 execution of the application, merely in the preparation of its context
 and environment. In fact, unlike drivers, which are kernel-mode code,
 applications execute in user mode. So most of the actual initialization
 work is done outside the kernel. This work is performed by the
 image loader, also internally referred to as
 Ldr.
The image loader lives in the user-mode system DLL
 Ntdll.dll and not in the kernel library. Therefore,
 it behaves just like standard code that is part of a DLL, and it is
 subject to the same restrictions in terms of memory access and security
 rights. What makes this code special is the guaranty that it will always
 be present in the running process (Ntdll.dll is always loaded) and that
 it is the first piece of code to run in user mode as part of a new
 application. (When the system builds the initial context, the program
 counter, or instruction pointer, is set to an initialization function
 inside Ntdll.dll. See Chapter 5 for more
 information.)
Because the loader runs before the actual application
 code, it is usually invisible to users and developers. Additionally,
 although the loader’s initialization tasks are hidden, a program
 typically does interact with its interfaces during the run time of a
 program—for example, whenever loading or unloading a DLL or querying the
 base address of one. Some of the main tasks the loader is responsible
 for include these:
	Initializing the user-mode state for the application, such as
 creating the initial heap and setting up the thread-local storage
 (TLS) and fiber-local storage (FLS) slots

	Parsing the import table (IAT) of the application to look for
 all DLLs that it requires (and then recursively parsing the IAT of
 each DLL), followed by parsing the export table of the DLLs to make
 sure the function is actually present (Special forwarder
 entries can also redirect an export to yet another
 DLL.)

	Loading and unloading DLLs at run time, as well as on demand,
 and maintaining a list of all loaded modules (the module
 database)

	Allowing for run-time patching (called
 hotpatching) support, explained later in the
 chapter

	Handling manifest files

	Reading the application compatibility database for any shims,
 and loading the shim engine DLL if required

	Enabling support for API sets and API redirection, a core part
 of the MinWin refactoring effort

	Enabling dynamic runtime compatibility mitigations through the
 SwitchBranch mechanism

As you can see, most of these tasks are critical to enabling an
 application to actually run its code; without them, everything from
 calling external functions to using the heap would immediately fail.
 After the process has been created, the loader calls a special native
 API to continue execution based on a context frame located on the stack.
 This context frame, built by the kernel, contains the actual entry point
 of the application. Therefore, because the loader doesn’t use a standard
 call or jump into the running application, you’ll never see the loader
 initialization functions as part of the call tree in a stack trace for a
 thread.
EXPERIMENT: Watching the Image Loader
In this experiment, you’ll use global flags to enable a
 debugging feature called loader snaps. This
 allows you to see debug output from the image loader while debugging
 application startup.
	From the directory where you’ve installed WinDbg, launch the
 Gflags.exe application, and then click on the Image File
 tab.

	In the Image field, type Notepad.exe, and then press the Tab key.
 This should enable the check boxes. Select the Show Loader Snaps
 option, and then click OK to dismiss the dialog box.

	Now follow the steps in the EXPERIMENT: Viewing Debugger Objects section to start
 debugging the Notepad.exe application.

	You should now see a couple of screens of debug information
 similar to that shown here:
0924:0248 @ 116983652 - LdrpInitializeProcess - INFO: Initializing process 0x924
0924:0248 @ 116983652 - LdrpInitializeProcess - INFO: Beginning execution of
 notepad.exe (C:\Windows\notepad.exe)
0924:0248 @ 116983652 - LdrpLoadDll - INFO: Loading DLL "kernel32.dll" from path
 "C:\Windows;C:\Windows\system32;C:\Windows\system;C:\Windows;
0924:0248 @ 116983652 - LdrpMapDll - INFO: Mapped DLL "kernel32.dll" at address
 76BD000
0924:0248 @ 116983652 - LdrGetProcedureAddressEx - INFO: Locating procedure
 "BaseThreadInitThunk" by name
0924:0248 @ 116983652 - LdrpRunInitializeRoutines - INFO: Calling init routine
 76C14592 for DLL "C:\Windows\system32\kernel32.dll"
0924:0248 @ 116983652 - LdrGetProcedureAddressEx - INFO: Locating procedure
 "BaseQueryModuleData" by name

	Eventually, the debugger breaks somewhere inside the loader
 code, at a special place where the image loader checks whether a
 debugger is attached and fires a breakpoint. If you press the G
 key to continue execution, you will see more messages from the
 loader, and Notepad will appear.

	Try interacting with Notepad and see how certain operations
 invoke the loader. A good experiment is to open the Save/Open
 dialog. That demonstrates that the loader not only runs at
 startup, but continuously responds to thread requests that can
 cause delayed loads of other modules (which
 can then be unloaded after use).

Early Process Initialization

Because the loader is present in Ntdll.dll, which is a native
 DLL that’s not associated with any particular subsystem, all processes
 are subject to the same loader behavior (with some minor differences).
 In Chapter 5, we’ll
 look in detail at the steps that lead to the creation of a process in
 kernel mode, as well as some of the work performed by the Windows
 function CreateProcess. Here, however, we’ll
 cover the work that takes place in user mode, independent of any
 subsystem, as soon as the first user-mode instruction starts
 execution. When a process starts, the loader performs the following
 steps:
	Build the image path name for the application, and query the
 Image File Execution Options key for the application, as well as
 the DEP and SEH validation linker settings.

	Look inside the executable’s header to see whether it is a
 .NET application (specified by the presence of a .NET-specific
 image directory).

	Initialize the National Language Support (NLS for
 internationalization) tables for the process.

	Initialize the Wow64 engine if the image is 32-bit and is
 running on 64-bit Windows.

	Load any configuration options specified in the
 executable’s header. These options, which a developer can define
 when compiling the application, control the behavior of the
 executable.

	Set the affinity mask if one was specified in the executable
 header.

	Initialize FLS and TLS.

	Initialize the heap manager for the process, and create the
 first process heap.

	Allocate an SxS (Side-by-Side Assembly)/Fusion activation
 context for the process. This allows the system to use the
 appropriate DLL version file, instead of defaulting to the DLL
 that shipped with the operating system. (See Chapter 5 for more
 information.)

	Open the \KnownDlls object directory, and build the known
 DLL path. For a Wow64 process, \KnownDlls32 is used
 instead.

	Determine the process’ current directory and default load
 path (used when loading images and opening files).

	Build the first loader data table entries for the
 application executable and Ntdll.dll, and insert them into the
 module database.

At this point, the image loader is ready to start parsing the
 import table of the executable belonging to the application and start
 loading any DLLs that were dynamically linked during the compilation
 of the application. Because each imported DLL can also have its own
 import table, this operation will continue recursively until all DLLs
 have been satisfied and all functions to be imported have been found.
 As each DLL is loaded, the loader will keep state information for it
 and build the module database.

DLL Name Resolution and Redirection

Name resolution is the process by which the system converts the
 name of a PE-format binary to a physical file in situations where the
 caller has not specified or cannot specify a unique file identity.
 Because the locations of various directories (the application
 directory, the system directory, and so on) cannot be hardcoded at
 link time, this includes the resolution of all binary dependencies as
 well as LoadLibrary operations in which the
 caller does not specify a full path.
When resolving binary dependencies, the basic Windows
 application model locates files in a search path—a list of locations
 that is searched sequentially for a file with a matching base
 name—although various system components override the search path
 mechanism in order to extend the default application model. The notion
 of a search path is a holdover from the era of the command line, when
 an application’s current directory was a meaningful notion; this is
 somewhat anachronistic for modern GUI applications.
However, the placement of the current directory in this ordering
 allowed load operations on system binaries to be overridden by placing
 malicious binaries with the same base name in the application’s
 current directory. To prevent security risks associated with this
 behavior, a feature known as safe DLL search mode
 was added to the path search computation and, starting with Windows XP
 SP2, is enabled by default for all processes. Under safe
 search mode, the current directory is moved behind the three system
 directories, resulting in the following path ordering:
	The directory from which the application was launched

	The native Windows system directory (for example,
 C:\Windows\System32)

	The 16-bit Windows system directory (for example,
 C:\Windows\System)

	The Windows directory (for example, C:\Windows)

	The current directory at application launch time

	Any directories specified by the %PATH% environment
 variable

The DLL search path is recomputed for each subsequent DLL load
 operation. The algorithm used to compute the search path is the same
 as the one used to compute the default search path, but the
 application can change specific path elements by editing the %PATH%
 variable using the SetEnvironmentVariable API,
 changing the current directory using the
 SetCurrentDirectory API, or using the
 SetDllDirectory API to specify a DLL directory
 for the process. When a DLL directory is specified, the directory
 replaces the current directory in the search path and the loader
 ignores the safe DLL search mode setting for the process.
Callers can also modify the DLL search path for specific load
 operations by supplying the LOAD_WITH_ALTERED_SEARCH_PATH flag to the
 LoadLibraryEx API. When this flag is supplied and
 the DLL name supplied to the API specifies a full path string, the
 path containing the DLL file is used in place of the application
 directory when computing the search path for the operation.
DLL Name Redirection

Before attempting to resolve a DLL name string to a file, the
 loader attempts to apply DLL name redirection rules. These
 redirection rules are used to extend or override portions of the DLL
 namespace—which normally corresponds to the Win32 file system
 namespace—to extend the Windows application model. In order of
 application, they are
	MinWin API Set
 Redirection. The API set mechanism is designed to allow the Windows
 team to change the binary that exports a given system API in a
 manner that is transparent to applications.

	.LOCAL
 Redirection. The .LOCAL redirection mechanism allows applications to
 redirect all loads of a specific DLL base name, regardless of
 whether a full path is specified, to a local copy of the DLL
 in the application directory—either by creating a copy of the
 DLL with the same base name followed by
 .local (for example, MyLibrary.dll.local)
 or by creating a file folder with the name .local under the
 application directory and placing a copy of the local DLL in
 the folder (for example, C:\Program Files\My
 App\.LOCAL\MyLibrary.dll). DLLs redirected by the .LOCAL
 mechanism are handled identically to those redirected by SxS.
 (See the next bullet point.) The loader honors .LOCAL
 redirection of DLLs only when the executable does not have an
 associated manifest, either embedded or external.

	Fusion (SxS)
 Redirection. Fusion (also referred to as
 side-by-side, or SxS) is an extension to
 the Windows application model that allows components to
 express more detailed binary dependency information (usually
 versioning information) by embedding binary resources known as
 manifests. The Fusion mechanism was first
 used so that applications could load the correct version of
 the Windows common controls package (comctl32.dll) after that
 binary was split into different versions that could be
 installed alongside one another; other binaries have since
 been versioned in the same fashion. As of Visual Studio 2005,
 applications built with the Microsoft linker will use Fusion
 to locate the appropriate version of the C runtime
 libraries.
The Fusion runtime tool reads embedded dependency
 information from a binary’s resource section using the Windows
 resource loader, and it packages the dependency information into
 lookup structures known as activation
 contexts. The system creates default activation
 contexts at the system and process level at boot and process
 startup time, respectively; in addition, each thread has an
 associated activation context stack, with the activation context
 structure at the top of the stack considered active. The
 per-thread activation context stack is managed both explicitly,
 via the ActivateActCtx and
 DeactivateActCtx APIs, and implicitly by
 the system at certain points, such as when the DLL main routine
 of a binary with embedded dependency information is called. When
 a Fusion DLL name redirection lookup occurs, the system searches
 for redirection information in the activation context at the
 head of the thread’s activation context stack, followed by the
 process and system activation contexts; if redirection
 information is present, the file identity specified by the
 activation context is used for the load operation.

	Known DLL
 Redirection. Known DLLs is a mechanism that maps specific DLL base
 names to files in the system directory, preventing the DLL
 from being replaced with an alternate version in a different
 location.
One edge case in the DLL path search algorithm is the DLL
 versioning check performed on 64-bit and WOW64 applications. If
 a DLL with a matching base name is located but is subsequently
 determined to have been compiled for the wrong machine
 architecture—for example, a 64-bit image in a 32-bit
 application—the loader ignores the error and resumes the path
 search operation, starting with the path element after the one
 used to locate the incorrect file. This behavior is designed to
 allow applications to specify both 64-bit and 32-bit entries in
 the global %PATH% environment variable.

EXPERIMENT: Observing DLL Load Search Order
You can use Sysinternals Process Monitor to watch how the
 loader searches for DLLs. When the loader attempts to resolve a
 DLL dependency, you will see it perform CreateFile calls to probe
 each location in the search sequence until either it finds the
 specified DLL or the load fails.
Here’s the capture of the loader’s search when an executable
 named Myapp.exe has a static dependency on a library named
 Mylibrary.dll. The executable is stored in C:\Myapp, but the
 current working directory was C:\ when the executable was
 launched. For the sake of demonstration, the executable does not
 include a manifest (by default, Visual Studio has one) so that the
 loader will check inside the C:\Myapp\Myapp.exe.local subdirectory
 that was created for the experiment. To reduce noise, the Process Monitor
 filter includes the myapp.exe process and any paths that contain
 the string “mylibrary.dll”.
[image: image with no caption]

Note how the search order matches that described. First, the
 loader checks the .LOCAL subdirectory, then the directory where
 the executable resides, then C:\Windows\System32 directory
 (because this is a 32-bit executable, that redirects to
 C:\Windows\SysWOW64), then the 16-bit Windows directory, then
 C:\Windows, and finally, the current directory at the time the
 executable was launched. The Load Image event confirms that the
 loader successfully resolved the import.

Loaded Module Database

The loader maintains a list of all modules (DLLs as well as the
 primary executable) that have been loaded by a process. This
 information is stored in a per-process structure called the process
 environment block, or PEB (see Chapter 5 for a full
 description of the PEB)—namely, in a substructure identified by
 Ldr and called PEB_LDR_DATA. In the structure,
 the loader maintains three doubly-linked lists, all containing the
 same information but ordered differently (either by load order, memory
 location, or initialization order). These lists contain structures
 called loader data table entries
 (LDR_DATA_TABLE_ENTRY) that store information about each module. Table 3-24 lists the various
 pieces of information the loader maintains in an entry.
Table 3-24. Fields in a Loader Data Table Entry
	Field
	Meaning

	BaseDllName
	Name of the module itself, without
 the full path

	ContextInformation
	Used by
 SwitchBranch (described later) to store
 the current Windows context GUID associated with this
 module

	DllBase
	Holds the base address at which the
 module was loaded

	EntryPoint
	Contains the initial routine of the
 module (such as DllMain)

	EntryPointActivationContext
	Contains the SxS/Fusion activation
 context when calling initializers

	Flags
	Loader state flags for this module
 (See Table 3-25 for a
 description of the flags.)

	ForwarderLinks
	Linked list of modules that were
 loaded as a result of export table forwarders from the
 module

	FullDllName
	Fully qualified path name of the
 module

	HashLinks
	Linked list used during process
 startup and shutdown for quicker lookups

	List Entry
 Links
	Links this entry into each of the
 three ordered lists part of the loader database

	LoadCount
	Reference count for the module (that
 is, how many times it has been loaded)

	LoadTime
	Stores the system time value when
 this module was being loaded

	OriginalBase
	Stores the original base address
 (set by the linker) of this module, enabling faster processing
 of relocated import entries

	PatchInformation
	Information that’s relevant during a
 hotpatch operation on this module

	ServiceTagLinks
	Linked list of services (see Chapter 4 for more information)
 referencing this module

	SizeOfImage
	Size of the module in
 memory

	StaticLinks
	Linked list of modules loaded as a
 result of static references from this one

	TimeDateStamp
	Time stamp written by the linker
 when the module was linked, which the loader obtains from the
 module’s image PE header

	TlsIndex
	Thread local storage slot associated
 with this module

One way to look at a process’ loader database is to use WinDbg
 and its formatted output of the PEB. The next experiment shows you how
 to do this and how to look at the LDR_DATA_TABLE_ENTRY structures on
 your own.
EXPERIMENT: Dumping the Loaded Modules Database
Before starting the experiment, perform the same steps as in
 the previous two experiments to launch Notepad.exe with WinDbg as
 the debugger. When you get to the first prompt (where you’ve been
 instructed to type g until now),
 follow these instructions:
	You can look at the PEB of the current process with the
 !peb command. For now, you’re interested
 only in the Ldr data that will be
 displayed. (See Chapter 5 for details
 about other information stored in the PEB.)
0: kd> !peb
PEB at 000007fffffda000
 InheritedAddressSpace: No
 ReadImageFileExecOptions: No
 BeingDebugged: No
 ImageBaseAddress: 00000000ff590000
 Ldr 0000000076e72640
 Ldr.Initialized: Yes
 Ldr.InInitializationOrderModuleList: 0000000000212880 . 0000000004731c20
 Ldr.InLoadOrderModuleList: 0000000000212770 . 0000000004731c00
 Ldr.InMemoryOrderModuleList: 0000000000212780 . 0000000004731c10
 Base TimeStamp Module
 ff590000 4ce7a144 Nov 20 11:21:56 2010 C:\Windows\Explorer.EXE
 76d40000 4ce7c8f9 Nov 20 14:11:21 2010 C:\Windows\SYSTEM32\ntdll.dll
 76870000 4ce7c78b Nov 20 14:05:15 2010 C:\Windows\system32\kernel32.dll
 7fefd2d0000 4ce7c78c Nov 20 14:05:16 2010 C:\Windows\system32\KERNELBASE.dll
 7fefee20000 4a5bde6b Jul 14 02:24:59 2009 C:\Windows\system32\ADVAPI32.dll

	The address shown on the Ldr line is a pointer to
 the PEB_LDR_DATA structure described earlier. Notice that WinDbg
 shows you the address of the three lists and dumps the
 initialization order list for you, displaying the full path,
 time stamp, and base address of each module.

	You can also analyze each module entry on its own by going
 through the module list and then dumping the data at each
 address, formatted as a LDR_DATA_TABLE_ENTRY structure. Instead
 of doing this for each entry, however, WinDbg can do most of the
 work by using the !list extension and the
 following syntax:
!list –t ntdll!_LIST_ENTRY.Flink –x "dt ntdll!_LDR_DATA_TABLE_ENTRY @$extret\"
0000000076e72640
Note that the last number is variable: it depends on
 whatever is shown on your machine under
 Ldr.InLoadOrderModuleList.

	You should then see the entries for each module:
0:001> !list –t ntdll!_LIST_ENTRY.Flink –x "dt ntdll!_LDR_DATA_TABLE_ENTRY
@$extret\" 001c1cf8
 +0x000 InLoadOrderLinks : _LIST_ENTRY [0x1c1d68 - 0x76fd4ccc]
 +0x008 InMemoryOrderLinks : _LIST_ENTRY [0x1c1d70 - 0x76fd4cd4]
 +0x010 InInitializationOrderLinks : _LIST_ENTRY [0x0 - 0x0]
 +0x018 DllBase : 0x00d80000
 +0x01c EntryPoint : 0x00d831ed
 +0x020 SizeOfImage : 0x28000
 +0x024 FullDllName : _UNICODE_STRING "C:\Windows\notepad.exe"
 +0x02c BaseDllName : _UNICODE_STRING "notepad.exe"
 +0x034 Flags : 0x4010

Although this section covers the user-mode loader in
 Ntdll.dll, note that the kernel also employs its own loader for
 drivers and dependent DLLs, with a similar loader entry structure.
 Likewise, the kernel-mode loader has its own database of such
 entries, which is directly accessible through the
 PsActiveModuleList global data variable. To
 dump the kernel’s loaded module database, you can use a similar
 !list command as shown in the preceding
 experiment by replacing the pointer at the end of the command with
 “nt!PsActiveModuleList”.
Looking at the list in this raw format gives you some extra
 insight into the loader’s internals, such as
 the flags field, which contains state
 information that !peb on its own would not show
 you. See Table 3-25 for their
 meaning. Because both the kernel and user-mode loaders use this
 structure, some flags apply only to kernel-mode drivers, while
 others apply only to user-mode applications (such as .NET
 state).
Table 3-25. Loader Data Table Entry Flags
	Flag
	Meaning

	LDRP_STATIC_LINK
 (0x2)
	This module is referenced by an
 import table and is required.

	LDRP_IMAGE_DLL
 (0x4)
	The module is an image DLL (and
 not a data DLL or executable).

	LDRP_IMAGE_INTEGRITY_FORCED
 (0x20)
	The module was linked with
 /FORCEINTEGRITY (contains
 IMAGE_DLLCHARACTERISTICS_FORCE_INTEGRITY_in its PE
 header).

	LDRP_LOAD_IN_PROGRESS
 (0x1000)
	This module is currently being
 loaded.

	LDRP_UNLOAD_IN_PROGRESS
 (0x2000)
	This module is currently being
 unloaded.

	LDRP_ENTRY_PROCESSED
 (0x4000)
	The loader has finished processing
 this module.

	LDRP_ENTRY_INSERTED
 (0x8000)
	The loader has finished inserting
 this entry into the loaded module database.

	LDRP_FAILED_BUILTIN_LOAD
 (0x20000)
	Indicates this boot driver failed
 to load.

	LDRP_DONT_CALL_FOR_THREADS
 (0x40000)
	Do not send
 DLL_THREAD_ATTACH/DETACH notifications to this
 DLL.

	LDRP_PROCESS_ATTACH_CALLED
 (0x80000)
	This DLL has been sent the
 DLL_PROCESS_ATTACH notification.

	LDRP_DEBUG_SYMBOLS_LOADED
 (0x100000)
	The debug symbols for this module
 have been loaded by the kernel or user
 debugger.

	LDRP_IMAGE_NOT_AT_BASE
 (0x200000)
	This image was relocated from its
 original base address.

	LDRP_COR_IMAGE
 (0x400000)
	This module is a .NET
 application.

	LDRP_COR_OWNS_UNMAP
 (0x800000)
	This module should be unmapped by
 the .NET runtime.

	LDRP_SYSTEM_MAPPED
 (0x1000000)
	This module is mapped into kernel
 address space with System PTEs (versus being in the initial
 boot loader’s memory).

	LDRP_IMAGE_VERIFYING
 (0x2000000)
	This module is currently being
 verified by Driver Verifier.

	LDRP_DRIVER_DEPENDENT_DLL
 (0x4000000)
	This module is a DLL that is in a
 driver’s import table.

	LDRP_ENTRY_NATIVE
 (0x8000000)
	This module was compiled for
 Windows 2000 or later. It’s used by Driver Verifier as an
 indication that a driver might be suspect.

	LDRP_REDIRECTED
 (0x10000000)
	The manifest file specified a
 redirected file for this DLL.

	LDRP_NON_PAGED_DEBUG_INFO
 (0x20000000)
	The debug information for this
 module is in nonpaged memory.

	LDRP_MM_LOADED
 (0x40000000)
	This module was loaded by the
 kernel loader through
 MmLoadSystemImage.

	LDRP_COMPAT_DATABASE_PROCESSED
 (0x80000000)
	The shim engine has processed this
 DLL.

Import Parsing

Now that we’ve explained the way the loader keeps track
 of all the modules loaded for a process, you can continue analyzing
 the startup initialization tasks performed by the loader. During this
 step, the loader will do the following:
	Load each DLL referenced in the import table of the process’
 executable image.

	Check whether the DLL has already been loaded by checking
 the module database. If it doesn’t find it in the list, the loader
 opens the DLL and maps it into memory.

	During the mapping operation, the loader first looks at the
 various paths where it should attempt to find this DLL, as well as
 whether this DLL is a “known DLL,” meaning that the system has
 already loaded it at startup and provided a global memory mapped
 file for accessing it. Certain deviations from the standard lookup
 algorithm can also occur, either through the use of a .local file
 (which forces the loader to use DLLs in the local path) or through
 a manifest file, which can specify a redirected DLL to use to
 guarantee a specific version.

	After the DLL has been found on disk and mapped, the loader
 checks whether the kernel has loaded it somewhere else—this is
 called relocation. If the loader detects relocation, it parses the
 relocation information in the DLL and performs the operations
 required. If no relocation information is present, DLL loading
 fails.

	The loader then creates a loader data table entry for this
 DLL and inserts it into the database.

	After a DLL has been mapped, the process is repeated for
 this DLL to parse its import table and all its
 dependencies.

	After each DLL is loaded, the loader parses the IAT to look
 for specific functions that are being imported. Usually this is
 done by name, but it can also be done by ordinal (an index
 number). For each name, the loader parses the export table of the
 imported DLL and tries to locate a match. If no match is found,
 the operation is aborted.

	The import table of an image can also be bound. This means
 that at link time, the developers already assigned static
 addresses pointing to imported functions in external DLLs. This
 removes the need to do the lookup for each name, but it assumes
 that the DLLs the application will use will always be located at
 the same address. Because Windows uses address space randomization
 (see Chapter 10 in Part 2 for more information on Address Space
 Load Randomization, or ASLR), this is usually not the case for
 system applications and libraries.

	The export table of an imported DLL can use a forwarder
 entry, meaning that the actual function is implemented in another
 DLL. This must essentially be treated like an import or
 dependency, so after parsing the export table, each DLL referenced
 by a forwarder is also loaded and the loader goes back to step
 1.

After all imported DLLs (and their own dependencies, or imports)
 have been loaded, all the required imported functions have been looked
 up and found, and all forwarders also have been loaded and processed,
 the step is complete: all dependencies that were defined at compile
 time by the application and its various DLLs have now been
 fulfilled. During execution, delayed dependencies (called
 delay load), as well as run-time operations (such
 as calling LoadLibrary) can call into the loader
 and essentially repeat the same tasks. Note, however, that a failure
 in these steps will result in an error launching the application if
 they are done during process startup. For example, attempting to run
 an application that requires a function that isn’t present in the
 current version of the operating system can result in a message
 similar to the one in Figure 3-32.
[image: Dialog box shown when a required (imported) function is not present in a DLL]

Figure 3-32. Dialog box shown when a required (imported) function is not
 present in a DLL

Post-Import Process Initialization

After the required dependencies have been loaded, several
 initialization tasks must be performed to fully finalize launching the
 application. In this phase, the loader will do the following:
	Check if the application is a .NET application, and redirect
 execution to the .NET runtime entry point instead, assuming the
 image has been validated by the framework.

	Check if the application itself requires relocation, and
 process the relocation entries for the application. If the
 application cannot be relocated, or does not have relocation
 information, the loading will fail.

	Check if the application makes use of TLS, and look in the
 application executable for the TLS entries it needs to allocate
 and configure.

	If this is a Windows application, the Windows subsystem
 thread-initialization thunk code is located after loading
 kernel32.dll, and the Authz/AppLocker enforcement is enabled. (See
 Chapter 6 for more information on
 Software Restriction Policies.) If Kernel32.dll is not found, the
 system is presumably assumed to be running in MinWin and only
 Kernelbase.dll is loaded.

	Any static imports are now loaded.

	At this point, the initial debugger breakpoint will be hit
 when using a debugger such as WinDbg. This is where you had to
 type g to continue execution in
 the earlier experiments.

	Make sure that the application will be able to run properly
 if the system is a multiprocessor system.

	Set up the default data execution prevention (DEP) options,
 including for exception-chain validation, also called “software”
 DEP. (See Chapter 10 in Part 2 for more information on
 DEP.)

	Check whether this application requires any
 application compatibility work, and load the shim engine if
 required.

	Detect if this application is protected by SecuROM,
 SafeDisc, and other kinds of wrapper or protection utilities that
 could have issues with DEP (and reconfigure DEP settings in those
 cases).

	Run the initializers for all the loaded modules.

	Run the post-initialization Shim Engine callback if the
 module is being shimmed for application compatibility.

	Run the associated subsystem DLL post-process initialization
 routine registered in the PEB. For Windows applications, this does
 Terminal Services–specific checks, for example.

Running the initializers is the last main step in the loader’s
 work. This is the step that calls the DllMain
 routine for each DLL (allowing each DLL to perform its own
 initialization work, which might even include loading new DLLs at run
 time) as well as processes the TLS initializers of each DLL. This is
 one of the last steps in which loading an application can fail. If all
 the loaded DLLs do not return a successful return code after finishing
 their DllMain routines, the loader aborts
 starting the application. As a very last step, the loader calls the
 TLS initializer of the actual application.

SwitchBack

As each new version of Windows fixes bugs such as race
 conditions and incorrect parameter validation checks in existing API
 functions, an application-compatibility risk is created for each
 change, no matter how minor. Windows makes use of a technology called
 SwitchBack, implemented in the loader, which enables software
 developers to embed a GUID specific to the Windows version they are
 targeting in their executable’s associated manifest. For example, if a
 developer wants to take advantage of improvements added in Windows 7
 to a given API, she would include the Windows 7 GUID in her manifest,
 while if a developer has a legacy application that depends on Windows
 Vista–specific behavior, she would put the Windows Vista GUID in the
 manifest instead. SwitchBack parses this information and correlates it
 with embedded information in SwitchBack-compatible DLLs (in the
 .sb_data image section) to decide which version of an affected API
 should be called by the module. Because SwitchBack works at the
 loaded-module level, it enables a process to have both legacy and
 current DLLs concurrently calling the same API, yet observing
 different results.
Windows currently defines two GUIDs that represent either
 Windows Vista or Windows 7 compatibility settings:
	{e2011457-1546-43c5-a5fe-008deee3d3f0} for Windows
 Vista

	{35138b9a-5d96-4fbd-8e2d-a2440225f93a} for Windows 7

These GUIDs must be present in the application’s manifest file
 under the SupportedOS ID present in a compatibility attribute entry.
 (If the application manifest does not contain a GUID, Windows
 Vista is chosen as the default compatibility mode.)
 Running under the Windows 7 context affects the following
 components:
	RPC components use the Windows thread pool instead of a
 private implementation.

	DirectDraw Lock cannot be acquired on the primary
 buffer.

	Blitting on the desktop is not allowed without a clipping
 window.

	A race condition in GetOverlappedResult
 is fixed.

Whenever a Windows API is affected by changes that might break
 compatibility, the function’s entry code calls the
 SbSwitchProcedure to invoke the SwitchBack logic.
 It passes along a pointer to the SwitchBack Module Table, which
 contains information about the SwitchBack mechanisms employed in the
 module. The table also contains a pointer to an array of entries for
 each SwitchBack point. This table contains a description of each
 branch-point that identifies it with a symbolic name and a
 comprehensive description, along with an associated mitigation tag.
 Typically, there will be two branch-points in a module, one for
 Windows Vista behavior, and one for Windows 7 behavior. For each
 branch-point, the required SwitchBack context is given—it is this
 context that determines which of the two (or more) branches is taken
 at runtime. Finally, each of these descriptors contains a function
 pointer to the actual code that each branch should execute. If the
 application is running with the Windows 7 GUID, this will be part of
 its SwitchBack context, and the SbSelectProcedure
 API, upon parsing the module table, will perform a match operation. It
 finds the module entry descriptor for the context and proceeds to call
 the function pointer included in the descriptor.
SwitchBack uses ETW to trace the selection of given SwitchBack
 contexts and branch-points and feeds the data into the Windows AIT
 (Application Impact Telemetry) logger. This data can be periodically
 collected by Microsoft to determine the extent to which each
 compatibility entry is being used, identify the applications using it
 (a full stack trace is provided in the log), and notify third-party
 vendors.
As mentioned, the compatibility level of the application is
 stored in its manifest. At load time, the loader parses the manifest
 file, creates a context data structure, and caches it in the
 pContextData member of the process environment
 block. (For more information on the PEB, see Chapter 5.) This context
 data contains the associated compatibility GUIDs that this process is
 executing under and determines which version of the branch-points in
 the called APIs that employ SwitchBack will be executed.

API Sets

While SwitchBack uses API redirection for specific
 application-compatibility scenarios, there is a much more pervasive
 redirection mechanism used in Windows for all applications, called
 API Sets. Its purpose is to enable fine-grained
 categorization of Windows APIs into sub-DLLs instead of having large
 multipurpose DLLs that span nearly thousands of APIs that might not be
 needed on all types of Windows systems today and in the future. This
 technology, developed mainly to support the refactoring of the
 bottom-most layers of the Windows architecture to separate it from
 higher layers, goes hand in hand with the breakdown of Kernel32.dll and
 Advapi32.dll (among others) into multiple, virtual DLL files.
For example, the following graphic shows that Kernel32.dll,
 which is a core Windows library, imports from many other DLLs,
 beginning with API-MS-WIN. Each of these DLLs contain a small subset
 of the APIs that Kernel32 normally provides, but together they make up
 the entire API surface exposed by Kernel32.dll. The CORE-STRING
 library, for instance, provides only the Windows base string
 functions.
In splitting functions across discrete files, two objectives are
 achieved: first, doing this allows future applications to link only
 with the API libraries that provide the functionality that they need,
 and second, if Microsoft were to create a version of Windows that did
 not support, for example, Localization (say a non-user-facing,
 English-only embedded system), it would be possible to simply remove
 the sub-DLL and modify the API Set schema. This would result in a
 smaller Kernel32 binary, and any applications that ran without
 requiring localization would still run.
With this technology, a “base” Windows system called “MinWin” is
 defined (and, at the source level, built), with a minimum set of
 services that includes the kernel, core drivers (including file
 systems, basic system processes such as CSRSS and the Service Control
 Manager, and a handful of Windows services). Windows Embedded, with
 its Platform Builder, provides what might seem to be a similar
 technology, as system builders are able to remove select “Windows
 components,” such as the shell, or the network stack. However,
 removing components from Windows leaves dangling
 dependencies—code paths that, if exercised, would fail
 because they depend on the removed components. MinWin’s dependencies,
 on the other hand, are entirely self-contained.
[image: image with no caption]

When the process manager initializes, it calls the
 PspInitializeApiSetMap function, which is
 responsible for creating a section object (using a standard section
 object) of the API Set redirection table, which is stored in
 %SystemRoot%\System32\ApiSetSchema.dll. The DLL contains no executable
 code, but it has a section called .apiset that
 contains API Set mapping data that maps virtual API Set DLLs to
 logical DLLs that implement the APIs. Whenever a new process starts,
 the process manager maps the section object into the process’ address
 space and sets the ApiSetMap field in the
 process’ PEB to point to the base address where the section object was
 mapped.
In turn, the loader’s
 LdrpApplyFileNameRedirection function, which is
 normally responsible for the .local and SxS/Fusion manifest
 redirection that was mentioned earlier, also checks for API Set
 redirection data whenever a new import library that has a name
 starting with “API-” loads (either dynamically or statically). The API
 Set table is organized by library with each entry describing in which
 logical DLL the function can be found, and that DLL is what gets
 loaded. Although the schema data is a binary format, you can dump its
 strings with the Sysinternals Strings tool to see which DLLs are
 currently defined:
C:\Windows\System32>strings apisetschema.dll
...
MS-Win-Core-Console-L1-1-0
kernel32.dllMS-Win-Core-DateTime-L1-1-0
MS-Win-Core-Debug-L1-1-0
kernelbase.dllMS-Win-Core-DelayLoad-L1-1-0
MS-Win-Core-ErrorHandling-L1-1-0
MS-Win-Core-Fibers-L1-1-0
MS-Win-Core-File-L1-1-0
MS-Win-Core-Handle-L1-1-0
MS-Win-Core-Heap-L1-1-0
MS-Win-Core-Interlocked-L1-1-0
MS-Win-Core-IO-L1-1-0
MS-Win-Core-LibraryLoader-L1-1-0
MS-Win-Core-Localization-L1-1-0
MS-Win-Core-LocalRegistry-L1-1-0
MS-Win-Core-Memory-L1-1-0
MS-Win-Core-Misc-L1-1-0
MS-Win-Core-NamedPipe-L1-1-0
MS-Win-Core-ProcessEnvironment-L1-1-0
MS-Win-Core-ProcessThreads-L1-1-0
MS-Win-Core-Profile-L1-1-0
MS-Win-Core-RtlSupport-L1-1-0
ntdll.dll
MS-Win-Core-String-L1-1-0

Hypervisor (Hyper-V)

One of the key technologies in the software industry—used
 by system administrators, developers, and testers alike—is called
 virtualization, and it refers to the ability to run
 multiple operating systems simultaneously on the same physical machine.
 One operating system, in which the virtualization software is executing,
 is called the host, while the other operating
 systems are running as guests inside the
 virtualization software. The usage scenarios for this model cover
 everything from being able to test an application on different platforms
 to having fully virtual servers all actually running as part of the same
 machine and managed through one central point.
Until recently, all the virtualization was done by the software
 itself, sometimes assisted by hardware-level virtualization technology
 (called host-based virtualization). Thanks to
 hardware virtualization, the CPU can do most of the notifications
 required for trapping instructions and virtualizing access to memory.
 These notifications, as well as the various configuration steps required
 for allowing guest operating systems to run concurrently, must be
 handled by a piece of infrastructure compatible with the CPU’s
 virtualization support. Instead of relying on a piece of separate
 software running inside a host operating system to perform these tasks,
 a thin piece of low-level system software, which uses strictly
 hardware-assisted virtualization support, can be used—a
 hypervisor. Figure 3-33 shows a simple
 architectural overview of these two kinds of systems.
[image: Two architectures for virtualization]

Figure 3-33. Two architectures for virtualization

With Hyper-V, Windows server computers can install support for
 hypervisor-based virtualization as a server role (as long as an edition
 with Hyper-V support is licensed). Because the hypervisor is part of the
 operating system, managing the guests inside it, as well as interacting
 with them, is fully integrated in the operating system through standard
 management mechanisms such as WMI and services. (See Chapter 4 for more information on these
 topics.)
Finally, apart from having a hypervisor that allows running other
 guests managed by a Windows Server host, both client and server editions
 of Windows also ship with enlightenments, which are
 special optimizations in the kernel and possibly device drivers that
 detect that the code is being run as a guest under a hypervisor and
 perform certain tasks differently, or more efficiently, considering this
 environment. We will look at some of these improvements later; for now,
 we’ll take a look at the basic architecture of the Windows
 virtualization stack, shown in Figure 3-34.
[image: Windows Hyper-V architectural stack]

Figure 3-34. Windows Hyper-V architectural stack

Partitions

One of the key architectural components behind the
 Windows hypervisor is the concept of a partition.
 A partition essentially references an instance of an operating system
 installation, which can refer either to what’s traditionally called
 the host or to the guest. Under the Windows hypervisor model, these
 two terms are not used; instead, we talk of either a parent
 partition or a child partition,
 respectively. Consequently, at a minimum, a Hyper-V system will have a
 parent partition, which is recommended to contain a Windows Server
 Core installation, as well as the virtualization stack and its
 associated components. Although this installation type is recommended
 because it allows minimizing patches and reducing the security surface
 area, resulting in increased availability of the server, a full
 installation is also supported. Each operating system running within
 the virtualized environment represents a child partition, which might
 contain certain additional tools that optimize access to the hardware
 or allow management of the operating system.

Parent Partition

One of the main goals behind the design of the Windows
 hypervisor was to have it as small and modular as possible, much like
 a microkernel, instead of providing a full, monolithic module. This
 means that most of the virtualization work is actually done by a
 separate virtualization stack and that there are also no
 hypervisor drivers. In lieu of these, the
 hypervisor uses the existing Windows driver architecture and talks to
 actual Windows device drivers. This architecture results in several
 components that provide and manage this behavior, which are
 collectively called the hypervisor stack.
Logically, it is the parent partition that is
 responsible for providing the hypervisor, as well as the entire
 hypervisor stack. Because these are Microsoft components, only a
 Windows machine can be a root partition, naturally. A parent partition
 should have almost no resource usage for itself because its role is to
 run other operating systems. The main components that the parent
 partition provides are shown in Figure 3-35.
[image: Components of a parent partition]

Figure 3-35. Components of a parent partition

Parent Partition Operating System

The Windows installation (typically the minimal footprint
 server installation, called Windows Server Core, to minimize
 resource usage) is responsible for providing the hypervisor and the
 device drivers for the hardware on the system (which the hypervisor
 will need to access), as well as for running the hypervisor stack.
 It is also the management point for all the child partitions.

Virtual Machine Manager Service and Worker Processes

The virtual machine management service
 (%SystemRoot%\System32\Vmms.exe) is responsible for providing the
 Windows Management Instrumentation (WMI) interface to the
 hypervisor, which allows managing the child partitions through a
 Microsoft Management Console (MMC) plug-in. It is also responsible
 for communicating requests to applications that need to communicate
 to the hypervisor or to child partitions. It controls settings such
 as which devices are visible to child partitions, how the memory and
 processor allocation for each partition is defined, and more.
The virtual machine worker processes (VMWPs), on the other
 hand, perform various virtualization work that a typical monolithic
 hypervisor would perform (similar to the work of a software-based
 virtualization solution). This means managing the state machine for
 a given child partition (to allow support for features such as
 snapshots and state transitions), responding to various
 notifications coming in from the hypervisor, performing the
 emulation of certain devices exposed to child partitions, and
 collaborating with the VM service and configuration
 component.
On a system with child partitions performing lots of
 I/O or privileged operations, you would expect most of the CPU usage
 to be visible in the parent partition: you can identify them by the
 name Vmwp.exe (one for each child partition). The worker process
 also includes components responsible for remote management of the
 virtualization stack, as well as an RDP component that allows using
 the remote desktop client to connect to any child partition and
 remotely view its user interface and interact with it.

Virtualization Service Providers

Virtualization service providers (VSPs) are responsible for
 the high-speed emulation of certain devices visible to child
 partitions (the exact difference between VSP-emulated devices and
 user-mode–process-emulated devices will be explained later), and
 unlike the VM service and processes, VSPs can also run in kernel
 mode as drivers. More detail on VSPs will follow in the section that
 describes device architecture in the virtualization stack.

VM Infrastructure Driver and Hypervisor API Library

Because the hypervisor cannot be directly accessed by
 user-mode applications, such as the VM service that is responsible
 for management, the virtualization stack must actually talk to a
 driver in kernel mode that is responsible for relaying the requests
 to the hypervisor. This is the job of the VM infrastructure driver
 (VID). The VID also provides support for certain low-memory memory
 devices, such as MMIO and ROM emulation.
A library located in kernel mode provides the actual interface
 to the hypervisor (called hypercalls). Messages
 can also come from child partitions (which will perform their own
 hypercalls), because there is only one hypervisor for the whole
 system and it can listen to messages coming from any partition. You
 can find this functionality in the Winhv.sys device driver.

Hypervisor

At the bottom of the architecture is the hypervisor itself,
 which registers itself with the processor at system boot-up time and
 provides its services for the stack to use (through the use of the
 hypercall interface). This early initialization is performed by the
 hvboot.sys driver, which is configured to start early on during a
 system boot. Because Intel and AMD processors have slightly
 differing implementations of hardware-assisted virtualization, there
 are actually two different hypervisors—the correct one is selected
 at boot-up time by querying the processor through CPUID
 instructions. On Intel systems, the Hvix64.exe binary is loaded,
 while on AMD systems, the Hvax64.exe image is used.

Child Partitions

The child partition, as discussed earlier, is an instance of any
 operating system running parallel to the parent partition. (Because
 you can save or pause the state of any child, it might not necessarily
 be running, but there will be a worker process for it.) Unlike the
 parent partition, which has full access to the APIC, I/O ports, and
 physical memory, child partitions are limited for security and
 management reasons to their own view of address space (the Guest
 Virtual Address Space, or GVA, which is managed by the hypervisor) and have no direct access to
 hardware. In terms of hypervisor access, it is also limited mainly to
 notifications and state changes. For example, a child partition
 doesn’t have control over other partitions (and can’t create new
 ones).
Child partitions have many fewer virtualization components than
 a parent partition because they are not responsible for running the
 virtualization stack—only for communicating with it. Also, these
 components can also be considered optional because they enhance
 performance of the environment but are not critical to its use. Figure 3-36 shows the components
 present in a typical Windows child partition.
[image: Components in a child partition]

Figure 3-36. Components in a child partition

EXPERIMENT: Examining Child Partitions from the Parent with
 LiveKd
With Sysinternals LiveKd, you can examine a Windows XP or
 higher virtual machine from the parent partition without having to
 boot the child operating system in debugging mode. First, specify
 the –hvl option to LiveKd, which has it list
 the IDs and names of active child partitions:
[image: image with no caption]

Then run LiveKd with the –hv switch and
 specify the ID or name of the child partition that you want to
 examine. Just as for debugging the local system with Livekd, the
 contents of the virtual machine’s memory can change as you execute
 LiveKd commands, resulting in LiveKd seeing inconsistencies caused by data reflecting
 different points in time. If you want LiveKd to see a consistent
 view, you can specify the –p option to have the
 child partition paused while LiveKd is running. All commands that
 work on a local system also work when you use LiveKd to explore a
 virtual machine. Here’s the partial output of the
 !vm kernel debugger command, which lists
 various memory-related statistics, when executed on a Hyper-V child
 partition:
[image: image with no caption]

Virtualization Service Clients

Virtualization service clients (VSCs) are the child partition
 analogues of VSPs. Like VSPs, VSCs are used for device emulation,
 which is a topic of later discussion.

Enlightenments

Enlightenments are one of the key performance optimizations
 that Windows virtualization takes advantage of. They are direct
 modifications to the standard Windows kernel code that can detect
 that this operating system is running in a child partition and
 perform work differently. Usually, these optimizations are highly
 hardware-specific and result in a hypercall to notify the
 hypervisor. An example is notifying the hypervisor of a long busy-wait spin
 loop. The hypervisor can keep some state stale in this scenario
 instead of keeping track of the state at every single loop
 instruction. Entering and exiting an interrupt state can also be
 coordinated with the hypervisor, as well as access to the APIC,
 which can be enlightened to avoid trapping the real access and then
 virtualizing it.
Another example has to do with memory management, specifically
 TLB flushing and changing address space. (See Chapter 9 for more
 information on these concepts.) Usually, the operating system
 executes a CPU instruction to flush this information, which affects
 the entire processor. However, because a child partition could be
 sharing a CPU with many other child partitions, such an operation
 would also flush this information for those operating systems,
 resulting in noticeable performance degradation. If Windows is
 running under a hypervisor, it instead issues a hypercall to have
 the hypervisor flush only the specific information belonging to the
 child partition.

Hardware Emulation and Support

A virtualization solution must also provide optimized access to
 devices. Unfortunately, most devices aren’t made to accept multiple
 requests coming in from different operating systems. The hypervisor
 steps in by providing the same level of synchronization where possible
 and by emulating certain devices when real access to hardware cannot
 be permitted. In addition to devices, memory and processors must also
 be virtualized. Table 3-26 describes the
 three types of hardware that the hypervisor must manage.
Table 3-26. Virtualized Hardware
	Component
	Managed By
	Usage

	Processor
	Hypervisor built-in scheduler and
 related microkernel components
	Manage usage of hardware’s
 processing power, share multiple processors across multiple
 child partitions, manage and switch processor states (such as
 registers).

	Memory
	Hypervisor built-in memory manager
 and related microkernel components
	Manage hardware’s RAM usage and
 availability. Protect memory from child partitions and parent
 partition. Provide a contiguous view of physical memory
 starting at address 0.

	Devices
	VM worker processes—hypervisor
 responsible only for interception and
 notification
	Provide hardware multiplexing so
 that multiple child partitions can access the same device on
 the physical machine. Optimize access to physical devices to
 be as fast as possible.

Instead of exposing actual hardware to child partitions, the
 hypervisor exposes virtual devices (called
 VDevs). VDevs are packaged as COM components that
 run inside a VM worker process, and they are the central manageable
 object behind the device. (Usually, VDevs expose a WMI interface.) The
 Windows virtualization stack provides support for two kinds of virtual
 devices: emulated devices and synthetic
 devices (also called enlightened I/O).
 The former provide support for various devices that the operating
 systems on the child partition would expect to find, while the latter
 requires specific support from the guest operating system. On the
 other hand, synthetic devices provide a significant performance
 benefit by reducing CPU overhead.
Emulated Devices

Emulated devices work by presenting the child
 partition with a set of I/O ports, memory ranges, and interrupts
 that are being controlled and monitored by the hypervisor. When
 access to these resources is detected, the VM worker process
 eventually gets notified through the virtualization stack (shown
 earlier in Figure 3-34).
 The process then emulates whatever action is expected from the
 device and completes the request, going back through the hypervisor
 and then to the child partition. From this topological view alone,
 one can see that there is a definite loss in performance, without
 even considering that the software emulation of a hardware device is
 usually slow.
The need for emulated devices comes from the fact that the
 hypervisor needs to support nonhypervisor-aware operating systems,
 as well as the early installation steps of even Windows itself.
 During the boot process, the installer can’t simply load all the
 child partition’s required components (such as VSCs) to use
 synthetic devices, so a Windows installation will always use
 emulated devices (which is why installation will seem very slow, but
 once installed the operating system will run quite close to native
 speed). Emulated devices are also used for hardware that doesn’t
 require high-speed emulation and for which software emulation might
 even be faster. This includes items such as COM (serial) ports,
 parallel ports, or the motherboard itself.
Note
Hyper-V emulates an Intel i440BX motherboard, an S3 Trio
 video card, and an Intel 21140 NIC.

Synthetic Devices

Although emulated devices work adequately for 10-Mbit network
 connections, low-resolution VGA displays, and 16-bit sound cards,
 the operating systems and hardware that child partitions usually
 require in today’s usage scenarios require a lot more processing
 power, such as support for 1000-Mbit GbE connections; full-color,
 high-resolution 3D support; and high-speed access to storage
 devices. To support this kind of virtualized hardware access at an
 acceptable CPU usage level and virtualized throughput, the
 virtualization stack uses a variety of components to optimize device
 I/Os to their fullest (similar to kernel enlightenments). Three
 components are part of this support, and they all belong to what’s
 presented to the user as integration components
 or ICs:
	Virtualization service providers (VSPs)

	Virtualization service clients/consumers (VSCs)

	VMBus

Figure 3-37 shows a
 diagram of how an enlightened, or synthetic storage I/O, is handled
 by the virtualization stack.
[image: I/O handling paths in Hyper-V]

Figure 3-37. I/O handling paths in Hyper-V

As shown in Figure 3-37, VSPs run in the
 parent partition, where they are associated with a specific device
 that they are responsible for enlightening.
 (We’ll use that as a term instead of emulating
 when referring to synthetic devices.) VSCs reside in the child
 partition and are also associated with a specific device. Note,
 however, that the term provider can refer to
 multiple components spread across the device stack. For example, a
 VSP can be any of the following:
	A user-mode service

	A user-mode COM component

	A kernel-mode driver

In all three cases, the VSP will be associated with the actual
 virtual device inside the VM worker process. VSCs, on the other
 hand, are almost always designed to be drivers sitting at the lowest
 level of the device stack (see Chapter 8 in Part 2 for more
 information on device stacks) and intercept I/Os to a device and
 redirect them through a more optimized path. The main optimization
 that is performed by this model is to avoid actual hardware access
 and use VMBus instead. Under this model, the hypervisor is unaware
 of the I/O, and the VSP redirects it directly to the parent
 partition’s kernel storage stack, avoiding a trip to user mode as well.
 Other VSPs can perform work directly on the device, by talking to
 the actual hardware and bypassing any driver that might have been
 loaded on the parent partition. Another option is to have a
 user-mode VSP, which can make sense when dealing with
 lower-bandwidth devices.
As described earlier, VMBus is the name of the bus transport
 used to optimize device access by implementing a communications
 protocol using hypervisor services. VMBus is a bus driver present on
 both the parent partition and the child partitions responsible for
 the Plug and Play enumeration of synthetic devices in a child. It
 also contains the optimized cross-partition messaging protocol that
 uses a transport method that is appropriate for the data size. One
 of these methods is to provide a shared ring buffer between each
 partition—essentially an area of memory on which a certain amount of
 data is loaded on one side and unloaded on the other side. No memory
 needs to be allocated or freed because the buffer is continuously
 reused and simply rotated. Eventually, it might become full with
 requests, which would mean that newer I/Os would overwrite older
 I/Os. In this uncommon scenario, VMBus simply delays newer requests
 until older ones complete. The other messaging transport is direct
 child memory mapping to the parent address space for large enough
 transfers.

Virtual Processors

Just as the hypervisor doesn’t allow direct access to hardware
 (or to memory, as you’ll see later), child partitions don’t really
 see the actual processors on the machine but have a virtualized view
 of CPUs as well. On the root machine, the administrator and the
 operating system deal with logical processors,
 which are the actual processors on which threads can run (for
 example, a dual quad-core machine has eight logical processors), and
 assign these processors to various child partitions. For example,
 one child partition could be scheduled on logical processors 1, 2,
 3, and 4, while the second child partition is scheduled on
 processors 5, 6, 7, and 8. These operations are all made possible
 through the use of virtual processors, or
 VPs.
Because processors can be shared across multiple child
 partitions, the hypervisor includes its own scheduler that
 distributes the workload of the various partitions across each
 processor. Additionally, the hypervisor maintains the register state
 for each virtual processor and to an appropriate “processor switch”
 when the same logical processor is being used by another child
 partition. The parent partition has the ability to access all these
 contexts and modify them as required, an essential part of the
 virtualization stack that must respond to certain instructions and
 perform actions.
The hypervisor is also directly responsible for virtualizing
 processor APICs and providing a simpler, less-featured virtual APIC,
 including support for the timer that’s found on most APICs (however,
 at a slower rate). Because not all operating systems support APICs,
 the hypervisor also allows for the injection of interrupts through a
 hypercall, which permits the virtualization stack to emulate a
 standard i8059 PIC.
Finally, because Windows supports dynamic processor addition,
 an administrator can add new processors to a child partition at run
 time to increase the responsiveness of the guest operating systems
 if it’s under heavy load.

Memory Virtualization

The final piece of hardware that must be abstracted
 away from child partitions is memory, not only for the normal
 behavior of the guest operating systems, but also for security and
 stability. Improperly managing the child partitions’ access to
 memory could result in privacy disclosures and data corruption, as
 well as possible malicious attacks by “escaping” the child partition
 and attacking the parent (which would then allow attacks on the
 other child partitions). Apart from this aspect, there is also the
 matter of the guest operating system’s view of physical address
 space. Almost all operating systems expect memory to begin at
 address 0 and be somewhat contiguous, so simply assigning chunks of
 physical memory to each child partition wouldn’t work even if enough
 memory was available on the system.
To solve this problem, the hypervisor implements an address
 space called the guest physical address space
 (GPA space). The GPA starts at address 0, which satisfies the needs
 of operating systems inside child partitions. However, the GPA is
 not a simple mapping to a chunk of physical memory because of the
 second problem (the lack of contiguous memory). As such, GPAs can
 point to any location in the machine’s physical memory (which is
 called the system physical address space, or
 SPA space), and there must be a translation system to go from one
 address type to another. This translation system is maintained by
 the hypervisor and is nearly identical to the way virtual memory is
 mapped to physical memory on x86 and x64 processors. (See Chapter 10
 in Part 2 for more information on the memory manager and address
 translation.)
As for actual virtual addresses in the child partition (which
 are called guest virtual address space—GVA
 space), these continue to be managed by the operating system without
 any change in behavior. What the operating system believes are real
 physical addresses in its own page tables are actually SPAs. Figure 3-38 shows an
 overview of the mapping between each level.
[image: Guest virtual and physical address translation]

Figure 3-38. Guest virtual and physical address translation

This means that when a guest operating system boots up and
 creates the page tables to map virtual to physical memory, the
 hypervisor intercepts SPAs and keeps its own copy of the page
 tables. Conceptually, whenever a piece of code accesses a virtual
 address inside a guest operating system, the hypervisor does the
 initial page table translation to go from the guest virtual address
 to the GPA and then maps that GPA to the respective SPA. In reality,
 this operation is optimized through the use of shadow page
 tables (SPTs), which the hypervisor maintains to have
 direct GVA-to-SPA translations and simply loads when appropriate so
 that the guest accesses the SPA directly.
Second-Level Address Translation and Tagged TLB
Because the translation from GVA to GPA to SPA is
 expensive (because it must be done in software), CPU manufacturers
 have worked to curtail this inefficiency by making the processor
 natively aware of the address translation requirements of a
 virtual machine—in other words, an advanced processor could
 understand that the memory access is occurring from a hosted
 virtual machine and perform the GVA-to-SPA lookup on its own,
 without requiring assistance from the hypervisor. This lookup
 technology is called Second-Level Address Translation (SLAT)
 because it covers both the target-to-host translation (second
 level) and the host VA–to–host PA translation (first level). For
 marketing purposes, however, Intel has called this support VT
 Extended/Nested Page Table (NPT) technology, while AMD calls it
 AMD-V Rapid Virtualization Indexing (RVI).
The latest version of the Hyper-V stack takes full advantage
 of this processor support, reducing the complexity of its code and
 minimizing the number of context switches required to handle page
 faults in hosted partitions. Additionally, SLAT enables Hyper-V to
 throw out its shadow page tables and relevant mappings, which
 allows an additional reduction of memory overhead as well. These
 changes increase the scalability of Hyper-V on such systems,
 notably leading to an increase in the maximum number of virtual
 machines that a single host (Hyper-V server) can serve, or run
 concurrently. According to tests performed by Microsoft, support
 for SLAT increases the maximum number of supported sessions
 between 1.6 and 2.5 times. Furthermore, the processor overhead
 drops from about 10 percent to 2 percent, and each virtual machine
 consumes one less megabyte of physical RAM on the host.
In addition, both Intel and AMD introduced a functionality
 that was typically found only on RISC processors such as ARM,
 MIPS, or PPC, which is the ability of the processor to
 differentiate between the processes associated with each cached
 virtual-to-physical translation entry in the translation
 look-aside buffer (TLB). On CISC processors such as the x86 and
 x64, the TLB was built as a systemwide resource—each time the
 operating system switched the currently executing process, the TLB
 had to be flushed to invalidate any cached entries that might’ve
 belonged to the previous executing process. If the processor,
 instead, could be told that the process has changed, the TLB would
 avoid a flush and the processor would simply not use the cached
 entries that did not correspond to this process. New entries would
 be created, eventually overriding other processes’ older entries.
 This type of smarter TLB is called a tagged
 TLB, because each cache entry is
 tagged with a per-process identifier.
Flushing the TLB is even worse when dealing with Hyper-V
 systems because a different process can actually correspond to a
 completely different VM. In other words, each time the hypervisor
 and operating system scheduled another VM for execution, the
 host’s TLB had to be flushed, flushing away all the cached
 translations the previous VM had performed, slowing down memory
 access, and causing significant latency. When running on a
 processor that implements a tagged TLB, the Hyper-V can simply
 notify the processor that a new process/VM is running and that the
 entries of other VM should not be used. AMD processors with RVI
 support tagged TLBs through an Address Space Identifier, or ASID,
 while recent Intel Nehalem-EX processors implement a tagged TLB by
 using a Virtual Processor Identifier (VPID).

Dynamic Memory
A feature called Dynamic Memory enables systems
 administrators to make a virtual machine’s physical memory
 allocation variable based on the memory demands of the active
 virtual machines, in much the same way that the Windows memory
 manager adjusts the physical memory assigned to each process based
 on their memory demands. The capability means that administrators
 do not have to precisely gauge the size of a virtual machine
 required for optimal performance and that the system’s physical
 memory is more effectively used by the virtual machines that need
 it.
Dynamic Memory’s architecture consists of several
 components, shown in Figure 3-39.
[image: Dynamic Memory architecture]

Figure 3-39. Dynamic Memory architecture

The principle components of the architecture are as
 follows:
	The Dynamic Memory balancer, which is implemented in the
 virtual machine management service. The balancer is
 responsible for assigning physical memory to child
 partitions.

	The Dynamic Memory VSP (DM VSP), which runs in the VMWPs
 of child partitions that have dynamic memory enabled.

	The Dynamic Memory VSC (DM VSC,
 %SystemRoot%\System32\Drivers\Dmvsc.sys), installed as an
 enlightenment driver running in the child partitions.

To configure a VM for dynamic memory, an
 administrator chooses Dynamic in the VM’s memory settings as shown
 in Figure 3-40.
[image: Dynamic memory configuration dialog]

Figure 3-40. Dynamic memory configuration dialog

The associated settings include the amount of memory that
 will be assigned to the VM when it starts (Startup RAM), the
 maximum amount that it can be assigned (Maximum RAM), the
 percentage of the VM’s memory that should be available for
 immediate use by the operating system if its memory demand
 increases, and finally, the weight of the VM with respect to other
 VMs. In addition to serving as weighting for the distribution of
 physical memory among virtual machines that have dynamic memory
 enabled, the hypervisor also uses it as a guide for the startup
 order of virtual machines configured to start when the system
 boots. Finally, the available memory percentage is a reference to
 memory within the VM that the VM’s operating system has not
 assigned to a process, device drivers, or itself, and that can be
 assigned without incurring a page fault. Chapter 10 in Part 2
 describes available memory in more detail.
When the DM VSC starts in a child partition that has dynamic
 memory enabled in its memory configuration, it first checks to see
 if the operating system supports dynamic memory capabilities. It
 performs this check by simply calling the memory manager’s hot-add
 memory function, specifying a block of child physical memory
 already assigned to the virtual machine. If the memory manager
 supports hot add, it returns an error indicating that the address
 range is already in use, and if it doesn’t, it reports that the
 function is not supported. If dynamic memory is supported, the DM VSC establishes a
 connection to the DM VSP via VMBus. Because the system’s memory
 usage fluctuates during the boot process, after all autostart
 Windows services have finished initializing, the VSC begins
 reporting memory statistics once per second that indicate the
 current system commit level in the virtual machine. (See Chapter
 10 in Part 2 for more information on system commit.)
The DM VSP in the parent partition calculates a memory
 pressure value for its corresponding VM using the following
 calculation based on the VM’s memory report:
Memory Pressure = Committed Memory / Physical
 Memory
Physical Memory refers to the amount of
 memory currently assigned to the VM’s partition. It also keeps a
 running exponential average pressure that represents the previous
 20 seconds of pressure reports, adjusting the average pressure
 only when the current pressure deviates from the average by at
 least a standard deviation.
A component called the balancer
 executes in the VMMS service. Once per second, it analyzes the
 memory pressures reported by the DM VSPs, considers VM policy
 configuration, and determines if and how much memory should be
 redistributed. If a global Hyper-V setting called NUMA
 spanning is enabled, the balancer uses two balancing
 engines: one engine is the global balancer, and it is responsible
 for assigning new VMs to NUMA nodes. It does so based on the
 memory usage and VM pressures of the nodes at the time of the
 assignment. Each NUMA node has its own local balancer that manages
 the distribution of the node’s memory across the VMs assigned to
 the node. If the NUMA spanning option is off, the global balancer
 has no role other than to invoke the only local balancer for the
 system.
The benefit of assigning VMs to NUMA nodes is that VMs will
 be guaranteed the fastest memory accesses possible. The tradeoff,
 however, is that it might not be possible to start or add memory
 to a VM in the case where the sum of unassigned memory is
 sufficient but no one node has enough available memory to
 accommodate the amount of memory requested.
A local balancer increases or decreases a global target
 memory pressure to use all available memory under its management
 or to use it until a minimum pressure level is reached that
 indicates all VMs have ample memory. The balancer then loops over
 the VMs, determining how much memory to add or remove from each VM
 to reach the target pressure. During the calculations, the
 balancer reserves a minimum amount of memory for the host. The
 host’s reservation is a base amount of approximately 400 MB plus
 30 MB for each 1 GB of RAM on the system. Factors that can affect
 the amount of memory reserved include whether or not the system is
 using SLAT or software paging, and whether multimedia redirection
 is enabled. Every five minutes, the balancer also removes memory
 from VMs that have so much memory that their pressure is
 essentially zero.
Note that if the child partition’s operating system is
 running a 32-bit version of Windows, the dynamic memory engine
 will not assign the partition more than 4 GB of memory.
Once it has calculated the amounts of memory to add and
 remove from VMs, it asks each WP to perform the desired operation.
 If the operation is to remove memory, the WP signals the child DM VSC over VMBUS of the amount to remove
 and the DM VSC balloons its memory usage by allocating physical
 memory from the system using the
 MmAllocatePagesForMdlEx function. It
 retrieves the allocated GPAs and sends that back to the WP, which
 passes them to the Hyper-V memory manager. The Hyper-V memory
 manager then converts the GPAs to SPAs and adds the memory to its
 free memory pool.
If it’s a memory add operation, the WP asks the Hyper-V
 memory manager first if the VM has any physical memory assigned to
 it but currently allocated by the VSC’s balloon. If it does, the
 WP retrieves the GPAs for an amount that should be
 unballooned and asks the VSC to free those
 pages, making them available again for use by the VM’s operating
 system. If the amount that can be released by unballooning falls
 short of the amount of physical memory the balancer wants to give
 the VM, it asks the Hyper-V memory manager to give the remaining
 amount from its free memory pool to the child partition via
 Windows support for hot-add memory and reports the GPAs it added
 to the WP, which in turn relays them to the child’s DM VSC.

EXPERIMENT: Watching Dynamic Memory
You can watch the behavior of Dynamic Memory by configuring
 Dynamic Memory for a VM running a 64-bit Dynamic Memory-compatible
 operating system, such as Windows 7 or Windows Server 2008 R2.
 Hyper-V exposes several Dynamic Memory–related performance
 counters under Hyper-V Dynamic Memory Balancer and Dynamic Memory
 VM. Counters include the amount of memory assigned to a guest, the
 guest operating system–visible memory (the amount of memory it
 thinks it has), its current and average memory pressure, and the
 amount of memory added and removed over time:
[image: image with no caption]

After freshly booting the virtual machine, add the
 Guest Visible Physical Memory and Physical Memory counters. Set
 the scale to three times the current Guest Visible Physical Memory
 value, which will be at least as large as the Physical Memory
 value. Then run the Sysinternals Testlimit tool in the virtual
 machine with the following commandline: testlimit -m
 1000 -c 1
Assuming you have enough available physical memory on the
 system, this causes Testlimit to allocate about 1 GB of virtual
 memory, raising the memory pressure in the virtual machine. After
 a few seconds, you will see the guest visible and actual physical
 memory assigned to the virtual machine jump to the same value.
 Roughly 30 seconds later, you’ll see another jump when the
 balancer decides that the additional memory is not enough to
 completely relieve the memory pressure in the virtual machine and,
 because there’s more memory available on the host, gives the
 virtual machine some more.
[image: image with no caption]

If you terminate Testlimit, the memory levels remain
 constant for several minutes if there’s no memory demands from the
 host or other virtual machines, but eventually the balancer will
 respond to the lack of memory pressure in the virtual machine by
 trimming memory. Note that the Guest Visible Physical Memory counter remains
 unchanged, but the Physical Memory counter drops back to a level
 near what it was before Testlimit executed:
[image: image with no caption]

Intercepts

We’ve talked about the various ways in which access to
 hardware, processors, and memory is virtualized by the hypervisor
 and sometimes handed off to a VM worker process, but we haven’t yet
 talked about the mechanism that allows this to
 happen—intercepts. Intercepts are configurable
 hooks that a parent partition can install and
 configure in order to respond to. These can include the following
 items:
	I/O intercepts, useful for device emulation

	MSR intercepts, useful for APIC emulation and
 profiling

	Access to GPAs, useful for device emulation, monitoring,
 and profiling (Additionally, the intercept can be fine-tuned to
 a specific access, such as read, write, or execute.)

	Exception intercepts such as page faults, useful for
 maintaining machine state and memory emulation (for example,
 maintaining copy-on-write)

Once the hypervisor detects an event for which an
 intercept has been registered, it sends an intercept message through
 the virtualization stack and puts the VP in a suspended state. The
 virtualization stack (usually the worker process) must then handle
 the event and resume the VP (typically with a modified register
 state that reflects the work performed to handle the
 intercept).

Live Migration

To support scenarios such as planned hardware upgrades and
 resource load balancing across servers, Hyper-V includes support for
 migrating virtual machines between nodes of a Windows Failover
 Cluster with minimal downtime. The key to Live Migration’s
 efficiency is that the bulk of the transfer of the virtual machine’s
 memory from the source to the target occurs while the virtual
 machine continues to run on the source node; only when the memory
 transfer is complete does the virtual machine suspend and resume
 operating on the target node. This small window when final virtual
 machine state migrates is typically less than the default TCP
 timeout value, preserving open connections from clients using
 services of the virtual machine and making the migration transparent
 from their perspective. Figure 3-41 shows the Live Migration
 process.
[image: Live migration transfer steps]

Figure 3-41. Live migration transfer steps

The Live Migration process proceeds in a number of steps,
 shown in Figure 3-41:
	1.
	Migration
 Setup The VMMS of the hosting (source) node of
 the virtual machine opens a TCP connection with the
 destination host. It transfers the virtual machine’s
 configuration information, which includes virtual hardware
 specifications such as the number of processors and amount
 of RAM, to the destination. VMMS on the destination (target)
 node instantiates a paused virtual machine matching the
 configuration. The VMMS on the source notifies the virtual
 machine’s worker process that the live migration is ready to
 proceed and hands it the TCP connection. Likewise, the
 target VMMS hands its end of the connection to the target
 worker process.

	2.
	Memory
 Transfer The memory transfer phase consists of
 several subphases:
 	The source VMWP creates a bitmap with one bit
 representing each page of the virtual machine’s guest
 physical memory. It sets every bit to indicate that
 the page is dirty, which means
 that the page’s current contents have not yet been
 sent to the target.

	The source VMWP registers a
 memory-change notification callback with the
 hypervisor that sets the corresponding bit in the
 bitmap for each page of the virtual machine that
 changes.

	The source VMWP proceeds to walk through the
 dirty-page bitmap in 16-KB blocks, clearing the dirty
 bits in the dirty-page bitmap for the pages in the
 block, reading each dirty page’s contents via a
 hypervisor call, and sending the contents to the
 target. The target VMWP invokes the hypervisor to
 inject the memory contents into the target virtual
 machine’s guest physical memory.

	When it’s finished iterating over the dirty-page
 bitmap, the source VMWP checks to see if any pages
 have been dirtied during the iteration. If not, it
 moves to the next phase of the migration, but if any
 pages have been dirtied, it repeats the iteration. If
 it’s iterated five times, the virtual machine is
 dirtying memory faster than the worker process can
 send modifications, so it proceeds to the next phase
 of the migration.

	5.
	State
 Transfer The source VMWP suspends the virtual
 machine and makes a final iteration through the dirty-page
 bitmap to send over any pages that were dirtied since the
 last pass. Because the virtual machine is suspended during
 the transfer, no more pages will be dirtied. Then the source
 worker process sends the virtual machine’s state, including
 the contents of the virtual processor registers. Finally, it
 notifies VMMS that the migration is complete, waits for
 acknowledgement, and then sends a message to the target
 transferring ownership of the virtual machine. As the last
 migration step, the target worker process moves the virtual
 machine to the running state.

	6.
	Another aspect of Live Migration
 is the transfer of ownership of the virtual machine’s files,
 including its VHDs. Traditional Windows Clustering is a
 shared-nothing model, where each LUN of the cluster’s
 storage system is owned by one node at a time. The LUN’s
 owning node has sole access to the LUN and any files stored
 on it. This model can lead to management complexity because
 each virtual machine must be stored on a separate LUN and
 therefore a separate volume, causing an explosion of volumes
 in a cluster hosting many virtual machines. It poses an even
 more significant challenge for Live Migration because LUN
 ownership transfer is an expensive operation, consisting of
 the source node flushing any modified file data to the LUN,
 the source node unmounting the volumes formatted on the LUN,
 ownership transfer from the source node to target node, and
 the target node mounting the volumes. Depending on the
 number of volumes on the LUN and the amount of dirty data
 that needs to be written back, the entire sequence can take
 tens of seconds, which would prevent Live Migration from
 meeting its goal of perceived nearly-instantaneous
 migrations.

	7.
	To address the limitations of the
 traditional clustering model and make Live Migration
 possible, Live Migration leverages a storage feature called
 Clustered Shared Volumes (CSV). With CSV, one node owns the
 namespace of the volumes on a LUN while others can have
 exclusive ownership of individual files. Exclusive ownership
 permits the node hosting the virtual machine to directly
 access the on-disk storage of the VHD file, bypassing the
 network file system accesses normally required to interact
 with a LUN owned by another node. Only when a node wants to
 create or delete files, change the size of files (for
 example, to extend the size of a dynamic or differencing VHD), or change other
 file metadata such as timestamps does it need to send a
 request via the SMB2 protocol to the owning node if it’s not
 the owner.

	8.
	The hybrid sharing model of CSV
 enables LUN ownership to remain unchanged during Live
 Migration and enables only ownership of individual migrating
 virtual machine’s file to change, avoiding the unmounts and
 mount operations. Also, only dirty data specific to the
 virtual machine files must be written before the migration,
 something that can typically happen concurrently with the
 memory migration. Figure 3-42
 depicts the storage ownership changes during a Live
 Migration. CSV’s implementation is described in the “File
 System Filter Drivers” section of Chapter 12, “File
 Systems,” in Part 2.

[image: Clustered Shared Volumes in Live Migration]

Figure 3-42. Clustered Shared Volumes in Live Migration

Kernel Transaction Manager

One of the more tedious aspects of software development is
 handling error conditions. This is especially true if, in the course of
 performing a high-level operation, an application has completed one or
 more subtasks that result in changes to the file system or registry. For
 example, an application’s software updating service might make several
 registry updates, replace one of the application’s executables, and then
 be denied access when it attempts to update a second executable. If the
 service doesn’t want to leave the application in the resulting
 inconsistent state, it must track all the changes it makes and be
 prepared to undo them. Testing the error-recovery code is difficult, and
 consequently often skipped, so errors in the recovery code can negate
 the effort.
Applications can, with very little effort, gain automatic
 error-recovery capabilities by using a kernel mechanism called the
 Kernel Transaction Manager (KTM), which provides
 the facilities required to perform such transactions and enables
 services such as the distributed transaction
 coordinator (DTC) in user mode to take advantage of them. Any developer who
 uses the appropriate APIs can take advantage of these services as
 well.
KTM does more than solve large-scale issues like the one
 presented. Even on single-user home computers, installing a service
 patch or performing a system restore are large operations that involve
 both files and registry keys. Unplug an older Windows computer during
 such an operation, and the chances for a successful boot are slim. Even
 though the NT File System (NTFS) has always had a log file permitting
 the file system to guarantee atomic operations (see Chapter 12 in Part 2
 for more information on NTFS), this only means that whichever file was
 being written to during the process will get fully written or fully
 deleted—it does not guarantee the entire update or restore operation.
 Likewise, the registry has had numerous improvements over the years to
 deal with corruption (see Chapter 4 for
 more information on the registry), but the fixes apply only at the
 key/value level.
As the heart of transaction support, KTM allows transactional
 resource managers such as NTFS and the registry to coordinate their
 updates for a specific set of changes made by an application. NTFS uses
 an extension to support transactions, called TxF. The registry uses a
 similar extension, called TxR. These kernel-mode resource managers work
 with KTM to coordinate the transaction state, just as user-mode resource
 managers use DTC to coordinate transaction state across multiple
 user-mode resource managers. Third parties can also use KTM to implement
 their own resource managers.
TxF and TxR both define a new set of file system and registry APIs
 that are similar to existing ones, except that they include a
 transaction parameter. If an application wants to create a file within a
 transaction, it first uses KTM to create the transaction, and then it
 passes the resulting transaction handle to the new file creation API.
 Although we’ll look at the registry and NTFS implementations of KTM
 later, these are not its only possible uses. In fact, it provides four
 system objects that allow a variety of operations to be supported. These
 are listed in Table 3-27.
Table 3-27. KTM Objects
	Object
	Meaning
	Usage

	Transaction
	Collection of data operations to be
 performed. Provides atomic,
 consistent, isolated,
 and durable operations.
	Can be associated with the registry
 and file I/O to make those operations part of the same larger
 operation.

	Enlistment
	Association between a resource manager
 and a transaction.
	Register with a transaction to receive
 notifications on it. The enlistment can specify which
 notifications should be generated.

	Resource Manager (RM)
	Container for the transactions and the
 data on which they operate.
	Provides an interface for clients to
 read and write the data, typically on a database.

	Transaction Manager
 (TM)
	Container of all transactions that are
 part of the associated resource managers. As an instance of a
 log, it knows about all transaction states but not their
 data.
	Provides an infrastructure through
 which clients and resource managers can communicate, and
 provides and coordinates recovery operations after a crash.
 Clients use the TM for transactions; RMs use the TM for
 enlistments.

EXPERIMENT: Listing Transaction Managers
Windows ships with a built-in tool called Ktmutil.exe
 that allows you to see ongoing transactions as well as registered
 transaction managers on the system (and force the outcome of ongoing
 transactions). In this experiment, you’ll use it to display the
 transaction managers typically seen on a Windows machine.
Start an elevated command prompt and type:
Ktmutil.exe tm list
Here’s an example of output on a typical Windows system:
C:\Windows\system32>ktmutil tm list
TmGuid TmLogPath
-------------------------------------- ---
{fef0dc5f-0392-11de-979f-002219dd8c25} \Device\HarddiskVolume2\$Extend\$RmMetadata\$TxfLog
\$TxfLog::KtmLog
{fef0dc63-0392-11de-979f-002219dd8c25} \Device\HarddiskVolume1\$Extend\$RmMetadata\$TxfLog
\$TxfLog::KtmLog
{5e68e4aa-129e-11e0-8635-806e6f6e6963} \Device\HarddiskVolume2\Windows\ServiceProfiles\
NetworkService\ntuser.dat{5e68e4a8-129e-11e0-8635-806e6f6e6963}.TM
{5e68e4ae-129e-11e0-8635-005056c00008} \Device\HarddiskVolume2\Windows\ServiceProfiles\
LocalService\ntuser.dat{5e68e4ac-129e-11e0-8635-005056c00008}.TM
{51ce23c9-0d6c-11e0-8afb-806e6f6e6963} \SystemRoot\System32\Config\TxR\{51ce23c7-0d6c-
11e0-8afb-806e6f6e6963}.TM
{51ce23ee-0d6c-11e0-8afb-005056c00008} \Device\HarddiskVolume2\Users\markruss\ntuser.
dat{51ce23ec-0d6c-11e0-8afb-005056c00008}.TM
{51ce23f2-0d6c-11e0-8afb-005056c00008} \Device\HarddiskVolume2\Users\markruss\AppData\
Local\Microsoft\Windows\UsrClass.dat{51ce23f0-0d6c-11e0-8afb-005056c00008}.TM

Hotpatch Support

Rebooting a machine to apply the latest patches can mean
 significant downtime for a server, which is why Windows supports a
 run-time method of patching, called a hot patch (or
 simply hotpatch), in contrast to a cold
 patch, which requires a reboot. Hotpatching doesn’t simply
 allow files to be overwritten during execution; instead, it includes a
 complex series of operations that can be requested (and combined). These
 operations are listed in Table 3-28.
Table 3-28. Hotpatch Operations
	Operation
	Meaning
	Usage

	Rename Image
	Replacing a DLL that is on the disk
 and currently used by other applications, or replacing a driver
 that is on the disk and is currently loaded by the
 kernel
	When an entire library in user mode
 needs to be replaced, the kernel can detect which processes and
 services are referencing it, unload them, and then update the
 DLL and restart the programs and services (which is done through
 the restart manager). When a driver needs
 to be replaced, the kernel can unload the driver (the driver
 requires an unload routine), update it, and then reload
 it.

	Object Swap
	Atomically renaming an object in the
 object directory namespace
	When a file (typically a
 known DLL) needs to be renamed atomically
 but not affect any process that might be using it (so that the
 process can start using the new file immediately, using the old
 handle, without requiring an application
 restart).

	Patch Function Code
	Replacing the code of one or more
 functions inside an image file with another
 version
	If a DLL or driver can’t be replaced
 or renamed during run time, functions in the image can be
 directly patched. A hotpatch DLL that contains the newer code is
 jumped to whenever an older function is called.

	Refresh System DLL
	Reload the memory mapped section
 object for Ntdll.dll
	The system native library, Ntdll.dll,
 is loaded only once during boot-up and then simply duplicated
 into the address space of every new process. If it has been
 hotpatched, the system must refresh this section to load the
 newer version.

Although hotpatches use internal kernel mechanisms, their actual
 implementation is no different from cold patches. The patch is delivered
 through Windows Update, typically as an executable file containing a
 program called Update.exe that performs the extraction of the patch and
 the update process. For hotpatches, however, an additional hotpatch
 file, containing the .hp extension, will be
 present. This file contains a special PE header called
 .HOT1. This header contains a data structure
 describing the various patch descriptors present
 inside the file. Each of these descriptors identifies the offset in the
 original file that needs to be patched, a validation mechanism (which
 can include a simple comparison of the old data, a checksum, or a hash),
 and the new data to be patched. The kernel parses the descriptors and
 applies the appropriate modifications. In the case of a
 protected process (see Chapter 5 for more
 information on processes) and other digitally signed images, the
 hotpatch must also be digitally signed in order to prevent fake patches
 from being applied to sensitive files or processes.
Note
Because the hotpatch file also includes the original data, the
 hotpatching mechanism can also be used to uninstall a patch at run
 time.

Compile-time hotpatching support works by adding 7 additional
 bytes to the beginning of each function—4 are considered part of the end
 of the previous function, and 2 are part of the function
 prolog—that is, the function’s beginning. Here’s an example
 of a function that was built with hotpatching information:
lkd> u nt!NtCreateFile - 5
nt!FsRtlTeardownPerFileContexts+0x169:
82227ea5 90 nop
82227ea6 90 nop
82227ea7 90 nop
82227ea8 90 nop
82227ea9 90 nop
nt!NtCreateFile:
82227eaa 8bff mov edi,edi
Notice that the five nop instructions
 don’t actually do anything, while the mov edi, edi
 at the beginning of the NtCreateFile function are
 also essentially meaningless—no actual state-changing operation takes
 place. Because 7 bytes are available, the
 NtCreateFile prologue can be transformed into a
 short jump to the buffer of five instructions
 available, which are then converted to a near jump
 instruction to the patched routine. Here’s
 NtCreateFile after having been hotpatched:
lkd> u nt!NtCreateFile - 5
nt!FsRtlTeardownPerFileContexts+0x169:
82227ea5 e93d020010 jmp nt_patch!NtCreateFile (922280e7)
nt!NtCreateFile:
82227eaa ebfc jmp nt!FsRtlTeardownPerFileContexts+0x169 (82227ea5)
This method allows only the addition of 2 bytes to each function
 by jumping into the previous function’s alignment padding that it would
 most likely have at its end anyway.
There are some limitations to the hotpatching
 functionality:
	Patches that third-party applications such as security
 software might block or that might be incompatible with the
 operation of third-party applications

	Patches that modify a file’s export table or import
 table

	Patches that change data structures, fix infinite loops, or
 contain inline assembly code

Kernel Patch Protection

Some 32-bit device drivers modify the behavior of Windows in
 unsupported ways. For example, they patch the system call table to
 intercept system calls or patch the kernel image in memory to add
 functionality to specific internal functions. Shortly after the release
 of 64-bit Windows for x64 and before a rich third-party ecosystem had
 developed, Microsoft saw an opportunity to preserve the stability of
 64-bit Windows. To prevent these kinds of changes, x64 Windows
 implements Kernel Patch Protection (KPP), also referred to as
 PatchGuard. KPP’s job on the system is similar to what its name
 implies—it attempts to deter common techniques for patching the system,
 or hooking it. Table 3-29 lists
 which components or structures are protected and for what
 purpose.
Table 3-29. Components Protected by KPP
	Component
	Legitimate Usage
	Potential Malicious
 Usage

	Ntoskrnl.exe, Hal.dll, Ci.dll,
 Kdcom.dll, Pshed.dll, Clfs.sys, Ndis.sys,
 Tcpip.sys
	Kernel, HAL, and their dependencies.
 Lower layer of network stack.
	Patching code in the kernel and/or HAL
 to subvert normal operation and behavior. Patching Ndis.sys to
 silently add back doors on open ports.

	Global Descriptor Table
 (GDT)
	CPU hardware protection for the
 implementation of ring privilege levels (Ring 0 vs. Ring
 3).
	Ability to set up a
 callgate, a CPU mechanism through which
 user (Ring 3) code could perform operations with kernel
 privileges (Ring 0).

	Interrupt Descriptor Table
 (IDT)
	Table read by the CPU to deliver
 interrupt vectors to the correct handling
 routine.
	Malicious drivers could intercept file
 I/Os directly at the interrupt level, or hook page faults to
 hide contents of memory. Rootkits could hook the INT2E handler
 to hook all system calls from a single point.

	System Service Descriptor Table
 (SSDT)
	Table containing the array of pointers
 for each system call handler.
	Rootkits could modify the output or
 input of calls from user mode and hide processes, files, or
 registry keys.

	Processor Machine State Registers
 (MSRs)
	LSTAR MSR is used to set the handler
 of the SYSENTER and/or SYSCALL instructions used for system
 calls.
	LSTAR could be overwritten by a
 malicious driver to provide a single hook for all system calls
 performed on the system.

	KdpStub, KiDebugRoutine, KdpTrap
 function pointers
	Used for run-time configuration of
 where exceptions should be delivered, based on whether a kernel
 debugger is remotely connected to the machine.
	Value of the pointers could be
 overwritten by a malicious rootkit to take control of the system
 at predetermined times and perform invisible background
 tasks.

	PsInvertedFunctionTable
	Cache of exception directories used on
 x64, allowing quick mapping between code where an exception
 happened and its handler.
	Could be used to take control of the
 system during the exception handling of unrelated system code,
 including KPP’s own exception code responsible for detecting
 modifications in the first place.

	Kernel stacks
	Store function arguments, the call
 stack (where a function should return), and
 variables.
	A driver could allocate memory on the
 side, set it as a kernel stack for a thread, and then manipulate
 its contents to redirect calls and parameters.

	Object types
	Definitions for the various objects
 (such as processes and files) that the system supports through
 the object manager.
	Could be used as part of a technique
 called DKOM (Direct Kernel Object Modification) to modify system
 behavior—for example, by hooking the object callbacks that each
 object type has registered.

	Other
	Code related to bug-checking the
 system during a KPP violation, executing the DPCs and timers
 associated with KPP, and more.
	By modifying certain parts of the
 system used by KPP, malicious drivers could attempt to silence,
 ignore, or otherwise cripple KPP.

Note
Because certain 64-bit Intel processors implement a slightly
 different feature set of the x64 architecture, the kernel needs to
 perform run-time code patching to work around the lack of a
 prefetch instruction. KPP can deter kernel
 patching even on these processors, by exempting those specific patches
 from detection. Additionally, because of hypervisor (Hyper-V)
 enlightenments (more information on the hypervisor is provided earlier
 in this chapter), certain functions in the kernel are patched at boot
 time, such as the swap context routine. These
 patches are also allowed by very explicit checks to make sure they are
 known patches to the hypervisor-enlightened versions.

When KPP detects a change in any of the structures
 mentioned (as well as some other internal consistency checks), it
 crashes the system with code 0x109—CRITICAL_STRUCTURE_CORRUPTION.
For third-party developers who used techniques that KPP deters,
 the following supported techniques can be used:
	File system minifilters (see Chapter 8 in Part 2 for more
 information on these) to hook all file operations, including loading
 image files and DLLs, that can be intercepted to purge malicious
 code on-the-fly or block reading of known bad executables.

	Registry filter notifications (see Chapter 4 for more information on these
 notifications) to hook all registry operations. Security software
 can block modification of critical parts of the registry, as well as
 heuristically determine malicious software by registry access
 patterns or known bad registry keys.

	Process notifications (see Chapter 5 for more
 information on these notifications). Security software can monitor
 the execution and termination of all processes and threads on the
 system, as well as DLLs being loaded or unloaded. With the enhanced
 notifications added for antivirus and other security vendors, they
 also have the ability to block process launch.

	Object manager filtering (explained in the object manager
 section earlier). Security software can remove certain access rights
 being granted to processes and/or threads to defend their own
 utilities against certain operations.

There is no way to disable KPP once it’s enabled. Because device
 driver developers might need to make changes to a running system as part
 of debugging, KPP does not enable if the system boots in debugging mode
 with an active kernel-debugging connection.

Code Integrity

Code integrity is a Windows mechanism that authenticates the
 integrity and source of executable images (such as applications, DLLs,
 or drivers) by validating a digital certificate contained within the
 image’s resources. This mechanism works in conjunction with system
 policies, defining how signing should be enforced. One of these policies
 is the Kernel Mode Code Signing (KMCS) policy,
 which requires that kernel-mode code be signed with a valid Authenticode
 certificate rooted by one of several recognized code signing
 authorities, such as Verisign or Thawte.
To address backward-compatibility concerns, the KMCS policy is
 only fully enforced on 64-bit machines, because those drivers have to be
 recompiled recently in order to run on that Windows architecture. This,
 in turn, implies that a company or individual is still responsible for
 maintaining the driver and is able to sign it. On 32-bit machines,
 however, many older devices ship with outdated drivers, possibly from
 out-of-business companies, so signing those drivers would sometimes be
 unfeasible. Figure 3-43 shows the warning
 displayed on 64-bit Windows machines that attempt to load an unsigned
 driver.
Note
Windows also has a second driver-signing policy, which is part
 of the Plug and Play manager. This policy is applied solely to Plug
 and Play drivers, and unlike the kernel-mode code-signing policy, it
 can be configured to allow unsigned Plug and Play drivers (but not on
 64-bit systems, where the KMCS policy takes precedence). See Chapter 8
 in Part 2 for more information on the Plug and Play manager.

[image: Warning when attempting to install an unsigned 64-bit driver]

Figure 3-43. Warning when attempting to install an unsigned 64-bit
 driver

Even on 32-bit Windows, code integrity writes an event to the Code
 Integrity event log when it loads an unsigned driver.
Note
Protected Media Path applications can also query the kernel for
 its integrity state, which includes information
 on whether or not unsigned 32-bit drivers are loaded on the system. In
 such scenarios, they are allowed to disable protected, high-definition
 media playback as a method to ensure the security and reliability of
 the encrypted stream.

The code-integrity mechanism doesn’t stop at driver load time,
 however. Stronger measures also exist to authenticate per-page image
 contents for executable pages. This requires using a special flag while
 signing the driver binary and will generate a catalog with the
 cryptographic hash of every executable page on which the driver will
 reside. (Pages are a unit of protection on the CPU; for more
 information, see Chapter 10 in Part 2.) This method allows for detection
 of modification of an existing driver, which might happen either at run
 time by another driver or through a page file or hibernation file attack
 (in which the contents of memory are edited on the disk and then
 reloaded into memory). Generating such per-page hashes is also a
 requirement for the new filtering model, as well as Protected Media Path
 components.

Conclusion

In this chapter, we examined the key base system mechanisms on
 which the Windows executive is built. In the next chapter, we’ll look at
 three important mechanisms involved with the management infrastructure
 of Windows: the registry, services, and Windows Management
 Instrumentation (WMI).

Chapter 4. Management Mechanisms

This chapter describes four fundamental mechanisms in the
 Microsoft Windows operating system that are critical to its management and
 configuration:
	The registry

	Services

	Unified Background Process Manager

	Windows Management Instrumentation

	Windows Diagnostics Infrastructure

The Registry

The registry plays a key role in the configuration and control of
 Windows systems. It is the repository for both systemwide and per-user
 settings. Although most people think of the registry as static data
 stored on the hard disk, as you’ll see in this section, the registry is
 also a window into various in-memory structures maintained by the
 Windows executive and kernel.
We’ll start by providing you with an overview of the registry
 structure, a discussion of the data types it supports, and a brief tour
 of the key information Windows maintains in the registry. Then we’ll
 look inside the internals of the configuration manager, the executive
 component responsible for implementing the registry database. Among the
 topics we’ll cover are the internal on-disk structure of the registry,
 how Windows retrieves configuration information when an application
 requests it, and what measures are employed to protect this critical
 system database.
Viewing and Changing the Registry

In general, you should never have to edit the registry directly:
 application and system settings stored in the registry that might
 require manual changes should have a corresponding user interface to
 control their modification. However, as you’ve already seen a number
 of times in this book, some advanced and debug settings have no
 editing user interface. Therefore, both graphical user interface (GUI)
 and command-line tools are included with Windows to enable you to view
 and modify the registry.
Windows comes with one main GUI tool for editing the
 registry—Regedit.exe—and a number of command-line registry tools.
 Reg.exe, for instance, has the ability to import, export, back up, and
 restore keys, as well as to compare, modify, and delete keys and
 values. It can also set or query flags used in UAC virtualization.
 Regini.exe, on the other hand, allows you to import registry data
 based on text files that contain ASCII or Unicode configuration
 data.
The Windows Driver Kit (WDK) also supplies a redistributable
 component, Offreg.dll, which hosts the Offline Registry Library. This
 library allows loading registry hive files in their binary format and
 applying operations on the files themselves, bypassing the usual
 logical loading and mapping that Windows requires for registry
 operations. Its use is primarily to assist in offline registry access,
 such as for purposes of integrity checking and validation. It can also
 provide performance benefits if the underlying data is not meant to be
 visible by the system, because the access is done through local file
 I/O instead of registry system calls.

Registry Usage

There are four principal times at which configuration data is
 read:
	During the initial boot process, the boot loader reads
 configuration data and the list of boot device drivers to load
 into memory before initializing the kernel. Because the Boot
 Configuration Database (BCD) is really stored in a registry hive,
 one could argue that registry access happens even earlier, when
 the Boot Manager displays the list of operating systems.

	During the kernel boot process, the kernel reads settings
 that specify which device drivers to load and how various system
 elements—such as the memory manager and process manager—configure
 themselves and tune system behavior.

	During logon, Explorer and other Windows components read
 per-user preferences from the registry, including network
 drive-letter mappings, desktop wallpaper, screen saver, menu
 behavior, icon placement, and perhaps most importantly, which
 startup programs to launch and which files were most recently
 accessed.

	During their startup, applications read systemwide settings,
 such as a list of optionally installed components and licensing
 data, as well as per-user settings that might include menu and
 toolbar placement and a list of most-recently accessed
 documents.

However, the registry can be read at other times as well, such
 as in response to a modification of a registry value or key. Although
 the registry provides asynchronous callbacks that are the preferred
 way to receive change notifications, some applications constantly
 monitor their configuration settings in the registry through polling
 and automatically take updated settings into account. In general,
 however, on an idle system there should be no registry activity and
 such applications violate best practices. (Process Monitor, from
 Sysinternals, is a great tool for tracking down such activity and the
 application or applications at fault.)
The registry is commonly modified in the following
 cases:
	Although not a modification, the registry’s initial
 structure and many default settings are defined by a prototype
 version of the registry that ships on the Windows setup media that
 is copied onto a new installation.

	Application setup utilities create default application
 settings and settings that reflect installation configuration
 choices.

	During the installation of a device driver, the Plug and
 Play system creates settings in the registry that tell the I/O
 manager how to start the driver and creates other settings that
 configure the driver’s operation. (See Chapter 8, “I/O System,” in
 Part 2 for more information on how device drivers are
 installed.)

	When you change application or system settings through user
 interfaces, the changes are often stored in the registry.

Registry Data Types

The registry is a database whose structure is similar to that of
 a disk volume. The registry contains keys, which are similar to a
 disk’s directories, and values, which are comparable to files on a
 disk. A key is a container that can consist of other keys (subkeys) or
 values. Values, on the other hand, store data. Top-level keys are root
 keys. Throughout this section, we’ll use the words subkey and key
 interchangeably.
Both keys and values borrow their naming convention from the
 file system. Thus, you can uniquely identify a value with the name
 mark, which is stored in a key called trade, with the name trade\mark.
 One exception to this naming scheme is each key’s unnamed value.
 Regedit displays the unnamed value as (Default).
Values store different kinds of data and can be one of the 12
 types listed in Table 4-1. The majority
 of registry values are REG_DWORD, REG_BINARY, or REG_SZ. Values of
 type REG_DWORD can store numbers or Booleans (on/off values);
 REG_BINARY values can store numbers larger than 32 bits or raw data
 such as encrypted passwords; REG_SZ values store strings (Unicode, of
 course) that can represent elements such as names, file names, paths,
 and types.
Table 4-1. Registry Value Types
	Value Type
	Description

	REG_NONE
	No value type

	REG_SZ
	Fixed-length Unicode
 string

	REG_EXPAND_SZ
	Variable-length Unicode string that
 can have embedded environment variables

	REG_BINARY
	Arbitrary-length binary
 data

	REG_DWORD
	32-bit number

	REG_DWORD_BIG_ENDIAN
	32-bit number, with high byte
 first

	REG_LINK
	Unicode symbolic link

	REG_MULTI_SZ
	Array of Unicode NULL-terminated
 strings

	REG_RESOURCE_LIST
	Hardware resource
 description

	REG_FULL_RESOURCE_DESCRIPTOR
	Hardware resource
 description

	REG_RESOURCE_REQUIREMENTS_LIST
	Resource requirements

	REG_QWORD
	64-bit number

The REG_LINK type is particularly interesting because it lets a
 key transparently point to another key. When you traverse the registry
 through a link, the path searching continues at the target of the
 link. For example, if \Root1\Link has a REG_LINK value of
 \Root2\RegKey and RegKey contains the value RegValue, two paths
 identify RegValue: \Root1\Link\RegValue and \Root2\RegKey\RegValue. As
 explained in the next section, Windows prominently uses registry
 links: three of the six registry root keys are links to subkeys within
 the three nonlink root keys.

Registry Logical Structure

You can chart the organization of the registry via the data
 stored within it. There are six root keys (and you can’t add new root
 keys or delete existing ones) that store information, as shown in
 Table 4-2.
Table 4-2. The Six Root Keys
	Root Key
	Description

	HKEY_CURRENT_USER
	Stores data associated with the
 currently logged-on user

	HKEY_USERS
	Stores information about all the
 accounts on the machine

	HKEY_CLASSES_ROOT
	Stores file association and
 Component Object Model (COM) object registration
 information

	HKEY_LOCAL_MACHINE
	Stores system-related
 information

	HKEY_PERFORMANCE_DATA
	Stores performance
 information

	HKEY_CURRENT_CONFIG
	Stores some information about the
 current hardware profile

Why do root-key names begin with an H? Because the root-key
 names represent Windows handles (H) to keys (KEY). As mentioned in
 Chapter 1, HKLM is an abbreviation used
 for HKEY_LOCAL_MACHINE. Table 4-3 lists
 all the root keys and their abbreviations. The following sections
 explain in detail the contents and purpose of each of these six root
 keys.
Table 4-3. Registry Root Keys
	Root Key
	Abbreviation
	Description
	Link

	HKEY_CURRENT_USER
	HKCU
	Points to the user profile of the
 currently logged-on user
	Subkey under HKEY_USERS
 corresponding to currently logged-on user

	HKEY_USERS
	HKU
	Contains subkeys for all loaded user
 profiles
	Not a link

	HKEY_CLASSES_ROOT
	HKCR
	Contains file association and COM
 registration information
	Not a direct link; rather, a merged
 view of HKLM\SOFTWARE\Classes and
 HKEY_USERS\<SID>\SOFTWARE\Classes

	HKEY_LOCAL_MACHINE
	HKLM
	Global settings for the
 machine.
	Not a link

	HKEY_CURRENT_CONFIG
	HKCC
	Current hardware
 profile
	HKLM\SYSTEM\CurrentControlSet\Hardware
 Profiles\Current

	HKEY_PERFORMANCE_DATA
	HKPD
	Performance counters
	Not a link

HKEY_CURRENT_USER

The HKCU root key contains data regarding the preferences and
 software configuration of the locally logged-on user. It points to
 the currently logged-on user’s user profile, located on the hard
 disk at \Users\<username>\Ntuser.dat. (See the section Registry Internals later in this chapter to find out
 how root keys are mapped to files on the hard disk.) Whenever a user
 profile is loaded (such as at logon time or when a service process
 runs under the context of a specific user name), HKCU is created to
 map to the user’s key under HKEY_USERS. Table 4-4 lists some of
 the subkeys under HKCU.
Table 4-4. HKEY_CURRENT_USER Subkeys
	Subkey
	Description

	AppEvents
	Sound/event
 associations

	Console
	Command window settings (for
 example, width, height, and colors)

	Control Panel
	Screen saver, desktop scheme,
 keyboard, and mouse settings, as well as accessibility and
 regional settings

	Environment
	Environment variable
 definitions

	EUDC
	Information on end-user defined
 characters

	Identities
	Windows Mail account
 information

	Keyboard Layout
	Keyboard layout setting (for
 example, U.S. or U.K.)

	Network
	Network drive mappings and
 settings

	Printers
	Printer connection
 settings

	Software
	User-specific software
 preferences

	Volatile
 Environment
	Volatile environment variable
 definitions

HKEY_USERS

HKU contains a subkey for each loaded user profile and
 user class registration database on the system. It also contains a
 subkey named HKU\.DEFAULT that is linked to the profile for the
 system (which is used by processes running under the local system
 account and is described in more detail in the section Services later in this chapter). This is the profile
 used by Winlogon, for example, so that changes to the desktop
 background settings in that profile will be implemented on the logon
 screen. When a user logs on to a system for the first time and her
 account does not depend on a roaming domain profile (that is, the
 user’s profile is obtained from a central network location at the
 direction of a domain controller), the system creates a profile for
 her account that’s based on the profile stored in
 %SystemDrive%\Users\Default.
The location under which the system stores profiles is defined
 by the registry value HKLM\Software\Microsoft\Windows
 NT\CurrentVersion\ProfileList\ProfilesDirectory, which is by default
 set to %SystemDrive%\Users. The ProfileList key also stores the list
 of profiles present on a system. Information for each profile
 resides under a subkey that has a name reflecting the security
 identifier (SID) of the account to which the profile corresponds.
 (See Chapter 6, for more information on
 SIDs.) Windows shows the list of profiles stored on a system in the
 User Profiles management dialog box, shown in Figure 4-1, which you access
 by clicking Settings in the User Profiles section of the Advanced
 tab in the Advanced System Settings of the System Control Panel
 applet.
[image: The User Profiles management dialog box]

Figure 4-1. The User Profiles management dialog box

EXPERIMENT: Watching Profile Loading and Unloading
You can see a profile load into the registry and
 then unload by using the Runas command to launch a process in an
 account that’s not currently logged on to the machine. While the
 new process is running, run Regedit and note the loaded profile
 key under HKEY_USERS. After terminating the process, perform a
 refresh in Regedit by pressing the F5 key and the profile should
 no longer be present.

HKEY_CLASSES_ROOT

HKCR consists of three types of information: file extension
 associations, COM class registrations, and the virtualized registry
 root for User Account Control (UAC). (See Chapter 6 for more information on UAC.) A key
 exists for every registered file name extension. Most keys contain a
 REG_SZ value that points to another key in HKCR containing the
 association information for the class of files that extension
 represents.
For example, HKCR\.xls would point to information on Microsoft
 Office Excel files in a key such as HKCU\.xls\Excel.Sheet.8. Other
 keys contain configuration details for COM objects registered on the
 system. The UAC virtualized registry is located in the VirtualStore
 key, which is not related to the other kinds of data stored in
 HKCR.
The data under HKEY_CLASSES_ROOT comes from two
 sources:
	The per-user class registration data in
 HKCU\SOFTWARE\Classes (mapped to the file on hard disk
 \Users\<username>\AppData\Local\Microsoft\Windows\Usrclass.dat)

	Systemwide class registration data in
 HKLM\SOFTWARE\Classes

The reason that there is a separation of per-user registration
 data from systemwide registration data is so that roaming profiles
 can contain these customizations. It also closes a security hole: a
 nonprivileged user cannot change or delete keys in the systemwide
 version HKEY_CLASSES_ROOT, and thus cannot affect the operation of
 applications on the system. Nonprivileged users and applications can
 read systemwide data and can add new keys and values to systemwide
 data (which are mirrored in their per-user data), but they can
 modify existing keys and values in their private data only.

HKEY_LOCAL_MACHINE

HKLM is the root key that contains all the systemwide
 configuration subkeys: BCD00000000, COMPONENTS (loaded dynamically
 as needed), HARDWARE, SAM, SECURITY, SOFTWARE, and SYSTEM.
The HKLM\BCD00000000 subkey contains the Boot Configuration
 Database (BCD) information loaded as a registry hive. This database
 replaces the Boot.ini file that was used before Windows Vista and
 adds greater flexibility and isolation of per-installation boot
 configuration data. (For more information on the BCD, see Chapter
 13, “Startup and Shutdown,” in Part 2.)
Each entry in the BCD, such as a Windows installation
 or the command-line settings for the installation, is stored in the
 Objects subkey, either as an object referenced by a GUID (in the
 case of a boot entry) or as a numeric subkey called an element. Most
 of these raw elements are documented in the BCD reference in the
 MSDN Library and define various command-line settings or boot
 parameters. The value associated with each element subkey
 corresponds to the value for its respective command-line flag or
 boot parameter.
The BCDEdit command-line utility allows you to modify the BCD
 using symbolic names for the elements and objects. It also provides
 extensive help for all the boot options available; unfortunately, it
 works only locally. Because the registry can be opened remotely as
 well as imported from a hive file, you can modify or read the BCD of
 a remote computer by using the Registry Editor. The following
 experiment shows you how to enable kernel debugging by using the
 Registry Editor.
EXPERIMENT: Offline or Remote BCD Editing
In this experiment, you enable debugging through editing the
 BCD inside the registry. For the purposes of this example, you
 edit the local copy of the BCD, but the point of this technique is
 that it can be used on any machine’s BCD hive. Follow these steps
 to add the /DEBUG command-line flag:
	Open the Registry Editor, and then navigate to the
 HKLM\BCD00000000 key. Expand every subkey so that the
 numerical identifiers of each Elements key are fully
 visible.
[image: image with no caption]

	Identify the boot entry for your Windows
 installation by locating the Description with a Type value of
 0x10200003, and then check ID 0x12000004 in the Elements tree.
 In the Element value of that subkey, you should find the name
 of your version of Windows, such as Windows 7. If you have
 more than one Windows installation on your machine, you may
 need to check the 0x22000002 Element, which contains the path,
 such as \Windows.

	Now that you’ve found the correct GUID for your Windows
 installation, create a new subkey under the Elements subkey
 for that GUID and name it 0x260000a0. If this subkey already
 exists, simply navigate to it.

	If you had to create the subkey, now create a binary
 value called Element inside it.

	Edit the value and set it to 01. This will enable
 kernel-mode debugging. Here’s what these changes should look
 like:
[image: image with no caption]

Note
The 0x12000004 ID corresponds to
 BcdLibraryString_ApplicationPath, while the 0x22000002 ID
 corresponds to BcdOSLoaderString_SystemRoot. Finally, the ID
 you added, 0x260000a0, corresponds to
 BcdOSLoaderBoolean_KernelDebuggerEnabled. These values are
 documented in the BCD reference in the MSDN Library.

The HKLM\COMPONENTS subkey contains information pertinent to
 the Component Based Servicing (CBS) stack. This stack contains
 various files and resources that are part of a Windows installation
 image (used by the Automated Installation Kit or the OEM
 Preinstallation Kit) or an active installation. The CBS APIs that
 exist for servicing purposes use the information located in this key
 to identify installed components and their configuration
 information. This information is used whenever components are
 installed, updated, or removed either individually (called units) or
 in groups (called packages). To optimize system resources, because
 this key can get quite large, it is only dynamically loaded and
 unloaded as needed if the CBS stack is servicing a request.
The HKLM\HARDWARE subkey maintains descriptions of the
 system’s legacy hardware and some hardware device-to-driver
 mappings. On a modern system, only a few peripherals—such as
 keyboard, mouse, and ACPI BIOS data—are likely to be found here. The
 Device Manager tool (which is available by running System from
 Control Panel and then clicking Device Manager) lets you view
 registry hardware information that it obtains by simply reading
 values out of the HARDWARE key (although it primarily uses the
 HKLM\SYSTEM\CurrentControlSet\Enum tree).
HKLM\SAM holds local account and group information, such as
 user passwords, group definitions, and domain associations. Windows
 Server systems that are operating as domain controllers store domain
 accounts and groups in Active Directory, a database that stores
 domainwide settings and information. (Active Directory isn’t
 described in this book.) By default, the security descriptor on the
 SAM key is configured so that even the administrator account doesn’t
 have access.
HKLM\SECURITY stores systemwide security policies and
 user-rights assignments. HKLM\SAM is linked into the SECURITY subkey
 under HKLM\SECURITY\SAM. By default, you can’t view the contents of
 HKLM\SECURITY or HKLM\SAM\SAM because the security settings of those
 keys allow access only by the System account. (System accounts are
 discussed in greater detail later in this chapter.) You can change
 the security descriptor to allow read access to administrators, or
 you can use PsExec to run Regedit in the local system account if you
 want to peer inside. However, that glimpse won’t be very revealing
 because the data is undocumented and the passwords are encrypted
 with one-way mapping—that is, you can’t determine a password from
 its encrypted form.
HKLM\SOFTWARE is where Windows stores systemwide configuration
 information not needed to boot the system. Also, third-party
 applications store their systemwide settings here, such as paths to
 application files and directories and licensing and expiration date
 information.
HKLM\SYSTEM contains the systemwide configuration information
 needed to boot the system, such as which device drivers to load and
 which services to start. Because this information is critical to
 starting the system, Windows also maintains a copy of part of this
 information, called the last known good control set, under this key.
 The maintenance of a copy allows an administrator to select a
 previously working control set in the case that configuration
 changes made to the current control set prevent the system from
 booting. For details on when Windows declares the current control
 set “good,” see the section Accepting the Boot and Last Known Good later in this
 chapter.

HKEY_CURRENT_CONFIG

HKEY_CURRENT_CONFIG is just a link to the current hardware
 profile, stored under HKLM\SYSTEM\CurrentControlSet\Hardware
 Profiles\Current. Hardware profiles are no longer supported in
 Windows, but the key still exists to support legacy applications
 that might be depending on its presence.

HKEY_PERFORMANCE_DATA

The registry is the mechanism used to access
 performance counter values on Windows, whether those are from
 operating system components or server applications. One of the side
 benefits of providing access to the performance counters via the
 registry is that remote performance monitoring works “for free”
 because the registry is easily accessible remotely through the
 normal registry APIs.
You can access the registry performance counter information
 directly by opening a special key named HKEY_PERFORMANCE_DATA and
 querying values beneath it. You won’t find this key by looking in
 the Registry Editor; this key is available only programmatically
 through the Windows registry functions, such as
 RegQueryValueEx. Performance information isn’t
 actually stored in the registry; the registry functions use this key
 to locate the information from performance data providers.
You can also access performance counter information by using
 the Performance Data Helper (PDH) functions available through the
 Performance Data Helper API (Pdh.dll). Figure 4-2 shows the
 components involved in accessing performance counter
 information.
[image: Registry performance counter architecture]

Figure 4-2. Registry performance counter architecture

Transactional Registry (TxR)

Thanks to the Kernel Transaction Manager (KTM; for more
 information see the section about the KTM in Chapter 3), developers have access to a
 straightforward API that allows them to implement robust
 error-recovery capabilities when performing registry operations, which
 can be linked with nonregistry operations, such as file or database
 operations.
Three APIs support transactional modification of the registry:
 RegCreateKeyTransacted,
 RegOpenKeyTransacted, and
 RegDeleteKeyTransacted. These new routines take
 the same parameters as their nontransacted analogs, except that a new
 transaction handle parameter is added. A developer supplies this
 handle after calling the KTM function
 CreateTransaction.
After a transacted create or open operation, all subsequent
 registry operations—such as creating, deleting, or modifying values
 inside the key—will also be transacted. However, operations on the
 subkeys of a transacted key will not be automatically transacted,
 which is why the third API,
 RegDeleteKeyTransacted exists. It allows the
 transacted deletion of subkeys, which
 RegDeleteKeyEx would not normally do.
Data for these transacted operations is written to log files
 using the common logging file system (CLFS) services, similar to other
 KTM operations. Until the transaction itself is committed or rolled
 back (both of which might happen programmatically or as a result of a
 power failure or system crash, depending on the state of the
 transaction), the keys, values, and other registry modifications
 performed with the transaction handle will not be visible to external
 applications through the nontransacted APIs. Also, transactions are
 isolated from each other; modifications made inside one transaction
 will not be visible from inside other transactions or outside the
 transaction until the transaction is committed.
Note
A nontransactional writer will abort a transaction in case of
 conflict—for example, if a value was created inside a transaction
 and later, while the transaction is still active, a nontransactional
 writer tries to create a value under the same key. The
 nontransactional operation will succeed, and all operations in the
 conflicting transaction will be aborted.

The isolation level (the “I” in ACID) implemented by TxR
 resource managers is read-commit, which means that changes become
 available to other readers (transacted or not) immediately after being
 committed. This mechanism is important for people who are familiar
 with transactions in databases, where the isolation level is
 predictable-reads (or cursor-stability, as it is called in database
 literature). With a predictable-reads isolation level, after you read
 a value inside a transaction, subsequent reads will give you back the
 same data. Read-commit does not make this guarantee. One of the
 consequences is that registry transactions can’t be used for “atomic”
 increment/decrement operations on a registry value.
To make permanent changes to the registry, the application that
 has been using the transaction handle must call the KTM function
 CommitTransaction. (If the application decides to
 undo the changes, such as during a failure path, it can call the
 RollbackTransaction API.) The changes will then
 be visible through the regular registry APIs as well.
Note
If a transaction handle created with
 CreateTransaction is closed before the
 transaction is committed (and there are no other handles open to
 that transaction), the system will roll back that
 transaction.

Apart from using the CLFS support provided by the KTM,
 TxR also stores its own internal log files in the
 %SystemRoot%\System32\Config\Txr folder on the system volume; these
 files have a .regtrans-ms extension and are hidden by default. Even if
 there are no third-party applications installed, your system likely
 will contain files in this directory because Windows Update and
 Component Based Servicing make use of TxR to atomically write data to
 the registry to avoid system failure or inconsistent component data in
 the case of an incomplete update. In fact, if you take a look at some
 of the transaction files, you should be able to see the key names on
 which the transaction was being performed.
There is a global registry resource manager (RM) that services
 all the hives that are mounted at boot time. For every hive that is
 mounted explicitly, an RM is created. For applications that use
 registry transactions, the creation of an RM is transparent because
 KTM ensures that all RMs taking part in the same transaction are
 coordinated in the two-phase commit/abort protocol. For the global
 registry RM, the CLFS log files are stored, as mentioned earlier,
 inside System32\Config\Txr. For other hives, they are stored alongside
 the hive (in the same directory). They are hidden and follow the same
 naming convention, ending in .regtrans-ms. The log file names are
 prefixed with the name of the hive to which they correspond.

Monitoring Registry Activity

Because the system and applications depend so heavily on
 configuration settings to guide their behavior, system and application
 failures can result from changing registry data or security. When the
 system or an application fails to read settings that it assumes it
 will always be able to access, it might not function properly, display
 error messages that hide the root cause, or even crash. It’s virtually
 impossible to know what registry keys or values are misconfigured
 without understanding how the system or the application that’s failing
 is accessing the registry. In such situations, the Process Monitor
 utility from Windows Sysinternals (http://technet.microsoft.com/sysinternals)
 might provide the answer.
Process Monitor lets you monitor registry activity as it occurs.
 For each registry access, Process Monitor shows you the process that
 performed the access; the time, type, and result of the access; and
 the stack of the thread at the moment of the access. This information
 is useful for seeing how applications and the system rely on the
 registry, discovering where applications and the system store
 configuration settings, and troubleshooting problems related to
 applications having missing registry keys or values. Process Monitor
 includes advanced filtering and highlighting so that you can zoom in
 on activity related to specific keys or values or to the activity of
 particular processes.

Process Monitor Internals

Process Monitor relies on a device driver that it extracts from
 its executable image at run time and then starts. Its first execution
 requires that the account running it have the Load Driver privilege as
 well as the Debug privilege; subsequent executions in the same boot
 session require only the Debug privilege because, once loaded, the
 driver remains resident.
EXPERIMENT: Viewing Registry Activity on an Idle
 System
Because the registry implements the
 RegNotifyChangeKey function that applications
 can use to request notification of registry changes without polling
 for them, when you launch Process Monitor on a system that’s idle
 you should not see repetitive accesses to the same registry keys or
 values. Any such activity identifies a poorly written application
 that unnecessarily negatively affects a system’s overall
 performance.
Run Process Monitor, and after several seconds examine the
 output log to see whether you can spot polling behavior. Right-click
 on an output line associated with polling, and then choose Process
 Properties from the context menu to view details about the process
 performing the activity.

EXPERIMENT: Using Process Monitor to Locate Application
 Registry Settings
In some troubleshooting scenarios, you might need to determine
 where in the registry the system or an application stores particular
 settings. This experiment has you use Process Monitor to discover
 the location of Notepad’s settings. Notepad, like most Windows
 applications, saves user preferences—such as word-wrap mode, font
 and font size, and window position—across executions. By having
 Process Monitor watching when Notepad reads or writes its settings,
 you can identify the registry key in which the settings are stored.
 Here are the steps for doing this:
	Have Notepad save a setting you can easily search for in a
 Process Monitor trace. You can do this by running Notepad,
 setting the font to Times New Roman, and then exiting
 Notepad.

	Run Process Monitor. Open the filter dialog box and the
 Process Name filter, and type notepad.exe as the string to
 match. This step specifies that Process Monitor will log only
 activity by the notepad.exe process.

	Run Notepad again, and after it has launched stop Process
 Monitor’s event capture by toggling Capture Events on the
 Process Monitor File menu.

	Scroll to the top line of the resultant log and select
 it.

	Press Ctrl+F to open a Find dialog box, and search for
 times new. Process Monitor should highlight a line like the one
 shown in the following screen that represents Notepad reading
 the font value from the registry. Other operations in the
 immediate vicinity should relate to other Notepad
 settings.
[image: image with no caption]

	Finally, right-click the highlighted line and
 click Jump To. Process Monitor will execute Regedit (if it’s not
 already running) and cause it to navigate to and select the
 Notepad-referenced registry value.

Process Monitor Troubleshooting Techniques

Two basic Process Monitor troubleshooting techniques are
 effective for discovering the cause of registry-related application
 or system problems:
	Look at the last thing in the Process Monitor trace that
 the application did before it failed. This action might point to
 the problem.

	Compare a Process Monitor trace of the failing application
 with a trace from a working system.

To follow the first approach, run Process Monitor and then run
 the application. At the point the failure occurs, go back to Process
 Monitor and stop the logging (by pressing Ctrl+E). Then go to the
 end of the log and find the last operations performed by the
 application before it failed (or crashed, hung, or whatever).
 Starting with the last line, work your way backward, examining the
 files, registry keys, or both that were referenced—often this will
 help pinpoint the problem.
Use the second approach when the application fails on one
 system but works on another. Capture a Process Monitor trace of the
 application on the working and failing systems, and save the output
 to a log file. Then open the good and bad log files with Microsoft
 Excel (accepting the defaults in the Import wizard), and delete the
 first three columns. (If you don’t delete the first three columns,
 the comparison will show every line as different because the first
 three columns contain information that is different from run to run,
 such as the time and the process ID.) Finally, compare the resulting
 log files. (You can do this by using WinDiff, which is included in
 the Windows SDK).
Entries in a Process Monitor trace that have values of NAME
 NOT FOUND or ACCESS DENIED in the Result column are ones you should
 investigate. NAME NOT FOUND is reported when an application attempts
 to read from a registry key or value that doesn’t exist. In many
 cases, a missing key or value is innocuous because a process that fails to
 read a setting from the registry simply falls back on default
 values. In some cases, however, applications expect to find values
 for which there is no default and will fail if they are
 missing.
Access-denied errors are a common source of registry-related
 application failures and occur when an application doesn’t have
 permission to access a key the way that it wants. Applications that
 do not validate registry operation results or perform proper error
 recovery will fail.
A common result string that might appear suspicious is BUFFER
 OVERFLOW. It does not indicate a buffer-overflow exploit in the
 application that receives it. Instead, it’s used by the
 configuration manager to inform an application that the buffer it
 specified to store a registry value is too small to hold the value.
 Application developers often take advantage of this behavior to
 determine how large a buffer to allocate to store a value. They
 first perform a registry query with a zero-length buffer that
 returns a buffer-overflow error and the length of the data it
 attempted to read. The application then allocates a buffer of the
 indicated size and rereads the value. You should therefore see
 operations that return BUFFER OVERFLOW repeat with a successful
 result.
In one example of Process Monitor being used to troubleshoot a
 real problem, it saved a user from doing a complete reinstall of his
 Windows system. The symptom was that Internet Explorer would hang on
 startup if the user did not first manually dial the Internet
 connection. This Internet connection was set as the default
 connection for the system, so starting Internet Explorer should have
 caused an automatic dial-up to the Internet (because Internet
 Explorer was set to display a default home page upon
 startup).
An examination of a Process Monitor log of Internet Explorer
 startup activity, going backward from the point in the log where
 Internet Explorer hung, showed a query to a key under
 HKCU\Software\Microsoft\RAS Phonebook. The user reported that he had
 previously uninstalled the dialer program associated with the key
 and manually created the dial-up connection. Because the dial-up
 connection name did not match that of the uninstalled dialer
 program, it appeared that the key had not been deleted by the
 dialer’s uninstall program and that it was causing Internet Explorer
 to hang. After the key was deleted, Internet Explorer functioned as
 expected.

Logging Activity in Unprivileged Accounts or During
 Logon/Logoff

A common application-failure scenario is that an application
 works when run in an account that has Administrative group
 membership but not when run in the account of an unprivileged user.
 As described earlier, executing Process Monitor requires security
 privileges that are not normally assigned to standard user accounts,
 but you can capture a trace of applications executing in the logon
 session of an unprivileged user by using the Runas command to
 execute Process Monitor in an administrative account.
If a registry problem relates to account logon or logoff,
 you’ll also have to take special steps to be able to use Process
 Monitor to capture a trace of those phases of a logon session.
 Applications that are run in the local system account are not
 terminated when a user logs off, and you can take advantage of that
 fact to have Process Monitor run through a logoff and subsequent
 logon. You can launch Process Monitor in the local system account
 either by using the At command that’s built into Windows and
 specifying the /interactive flag, or by using the Sysinternals
 PsExec utility, like this:
	psexec –i 0 –s –d
 c:\procmon.exe

The –i 0 switch directs PsExec to have
 Process Monitor’s window appear on the session 0 interactive window
 station’s default desktop, the –s switch has
 PsExec run Process Monitor in the local system account, and the
 –d switch has PsExec launch Process Monitor and
 exit without waiting for Process Monitor to terminate. When you
 execute this command, the instance of Process Monitor that executes
 will survive logoff and reappear on the desktop when you log back
 on, having captured the registry activity of both actions.
Another way to monitor registry activity during the logon,
 logoff, boot, or shutdown process is to use the Process Monitor log
 boot feature, which you can enable by selecting Log Boot on the
 Options menu. The next time you boot the system, the Process Monitor
 device driver logs registry activity from early in the boot to
 %SystemRoot%\Procmon.pml. It will continue logging to that file
 until disk space runs out, the system shuts down, or you run Process
 Monitor. A log file storing a registry trace of startup, logon,
 logoff, and shutdown on a Windows system will typically be between
 50 and 150 MB in size.

Registry Internals

In this section, you’ll find out how the configuration
 manager—the executive subsystem that implements the registry—organizes
 the registry’s on-disk files. We’ll examine how the configuration
 manager manages the registry as applications and other operating
 system components read and change registry keys and values. We’ll also
 discuss the mechanisms by which the configuration manager tries to
 ensure that the registry is always in a recoverable state, even if the
 system crashes while the registry is being modified.
Hives

On disk, the registry isn’t simply one large file but rather a
 set of discrete files called hives. Each hive contains a registry
 tree, which has a key that serves as the root or starting point of
 the tree. Subkeys and their values reside beneath the root. You
 might think that the root keys displayed by the Registry Editor
 correlate to the root keys in the hives, but such is not the case.
 Table 4-5 lists
 registry hives and their on-disk file names. The path names of all
 hives except for user profiles are coded into the configuration
 manager. As the configuration manager loads hives, including system
 profiles, it notes each hive’s path in the values under the
 HKLM\SYSTEM\CurrentControlSet\Control\Hivelist subkey, removing the
 path if the hive is unloaded. It creates the root keys, linking
 these hives together to build the registry structure you’re familiar
 with and that the Registry Editor displays.
You’ll notice that some of the hives listed in Table 4-5 are volatile
 and don’t have associated files. The system creates and manages
 these hives entirely in memory; the hives are therefore temporary.
 The system creates volatile hives every time it boots. An example of
 a volatile hive is the HKLM\HARDWARE hive, which stores information
 about physical devices and the devices’ assigned resources. Resource assignment and hardware detection
 occur every time the system boots, so not storing this data on disk
 is logical.
Table 4-5. On-Disk Files Corresponding to Paths in the
 Registry
	Hive Registry Path
	Hive File Path

	HKEY_LOCAL_MACHINE\BCD00000000
	\Boot\BCD

	HKEY_LOCAL_MACHINE\COMPONENTS
	%SystemRoot%\System32\Config\Components

	HKEY_LOCAL_MACHINE\SYSTEM
	%SystemRoot%\System32\Config\System

	HKEY_LOCAL_MACHINE\SAM
	%SystemRoot%\System32\Config\Sam

	HKEY_LOCAL_MACHINE\SECURITY
	%SystemRoot%\System32\Config\Security

	HKEY_LOCAL_MACHINE\SOFTWARE
	%SystemRoot%\System32\Config\Software

	HKEY_LOCAL_MACHINE\HARDWARE
	Volatile hive

	HKEY_USERS\<SID of local
 service account>
	%SystemRoot%\ServiceProfiles\LocalService\Ntuser.dat

	HKEY_USERS\<SID of network
 service account>
	%SystemRoot%\ServiceProfiles\NetworkService\NtUser.dat

	HKEY_USERS\<SID of
 username>
	\Users\<username>\Ntuser.dat

	HKEY_USERS\<SID of
 username>_Classes
	\Users\<username>\AppData\Local\Microsoft\Windows\Usrclass.dat

	HKEY_USERS\.DEFAULT
	%SystemRoot%\System32\Config\Default

EXPERIMENT: Manually Loading and Unloading Hives
Regedit has the ability to load hives that you can access
 through its File menu. This capability can be useful in
 troubleshooting scenarios where you want to view or edit a hive
 from an unbootable system or a backup medium. In this experiment,
 you’ll use Regedit to load a version of the HKLM\SYSTEM hive that
 Windows Setup creates during the install process.
	Hives can be loaded only underneath HKLM or HKU, so open
 Regedit, select HKLM, and choose Load Hive from the Regedit
 File menu.

	Navigate to the %SystemRoot%\System32\Config\RegBack
 directory in the Load Hive dialog box, select System and open
 it. When prompted, type Test as the name of the key under
 which it will load.

	Open the newly created HKLM\Test key, and explore the
 contents of the hive.

	Open HKLM\SYSTEM\CurrentControlSet\Control\Hivelist, and
 locate the entry \Registry\Machine\Test, which demonstrates
 how the configuration manager lists loaded hives in the
 Hivelist key.

	Select HKLM\Test, and then choose Unload Hive from the
 Regedit File menu to unload the hive.

Hive Size Limits

In some cases, hive sizes are limited. For example,
 Windows places a limit on the size of the HKLM\SYSTEM hive. It does
 so because Winload reads the entire HKLM\SYSTEM hive into physical
 memory near the start of the boot process when virtual memory paging
 is not enabled. Winload also loads Ntoskrnl and boot device drivers
 into physical memory, so it must constrain the amount of physical
 memory assigned to HKLM\SYSTEM. (See Chapter 13 in Part 2 for more
 information on the role Winload plays during the startup process.)
 On 32-bit systems, Winload allows the hive to be as large as 400 MB
 or one-half the amount of physical memory on the system, whichever
 is lower. On x64 systems, the lower bound is 1.5 GB. On Itanium
 systems, it is 32 MB.

Registry Symbolic Links

A special type of key known as a registry symbolic link makes
 it possible for the configuration manager to link keys to organize
 the registry. A symbolic link is a key that redirects the
 configuration manager to another key. Thus, the key HKLM\SAM is a
 symbolic link to the key at the root of the SAM hive. Symbolic links
 are created by specifying the REG_CREATE_LINK parameter to
 RegCreateKey or RegCreateKeyEx. Internally, the
 configuration manager will create a REG_LINK value called
 SymbolicLinkValue, which will contain the path to the target key.
 Because this value is a REG_LINK instead of a REG_SZ, it will not be
 visible with Regedit—it is, however, part of the on-disk registry
 hive.
EXPERIMENT: Looking at Hive Handles
The configuration manager opens hives by using the kernel
 handle table (described in Chapter 3)
 so that it can access hives from any process context. Using the
 kernel handle table is an efficient alternative to approaches that
 involve using drivers or executive components to access from the
 System process only handles that must be protected from user
 processes. You can use Process Explorer to see the hive handles,
 which will be displayed as being opened in the System process.
 Select the System process, and then select Handles from the Lower
 Pane View menu entry on the View menu. Sort by handle type, and
 scroll until you see the hive files, as shown in the following
 screen.
[image: image with no caption]

Hive Structure

The configuration manager logically divides a hive
 into allocation units called blocks in much the same way that a file
 system divides a disk into clusters. By definition, the registry
 block size is 4096 bytes (4 KB). When new data expands a hive, the
 hive always expands in block-granular increments. The first block of
 a hive is the base block.
The base block includes global information about the hive,
 including a signature—regf—that identifies the file as a hive,
 updated sequence numbers, a time stamp that shows the last time a
 write operation was initiated on the hive, information on registry
 repair or recovery performed by Winload, the hive format version
 number, a checksum, and the hive file’s internal file name (for
 example, \Device\HarddiskVolume1\WINDOWS\SYSTEM32\CONFIG\SAM). We’ll
 clarify the significance of the updated sequence numbers and time
 stamp when we describe how data is written to a hive file.
The hive format version number specifies the data format
 within the hive. The configuration manager uses hive format version
 1.3 (which improved searching by caching the first four characters
 of the name inside the cell index structure for quick lookups) for
 all hives except for System and Software for roaming profile
 compatibility with Windows 2000. For System and Software hives, it
 uses version 1.5 because of the later format’s optimizations for
 large values (values larger than 1 MB are supported) and searching
 (instead of caching the first four characters of a name, a hash of
 the entire name is used to reduce collisions).
Windows organizes the registry data that a hive stores in
 containers called cells. A cell can hold a key, a value, a security
 descriptor, a list of subkeys, or a list of key values. A 4-byte
 character tag at the beginning of a cell’s data describes the data’s
 type as a signature. Table 4-6 describes
 each cell data type in detail. A cell’s header is a field that
 specifies the cell’s size as the 1’s complement (not present in the
 CM_ structures). When a cell joins a hive and the hive must expand
 to contain the cell, the system creates an allocation unit called a
 bin.
A bin is the size of the new cell rounded up to the next block
 or page boundary, whichever is higher. The system considers any
 space between the end of the cell and the end of the bin to be free
 space that it can allocate to other cells. Bins also have headers
 that contain a signature, hbin, and a field that records the offset
 into the hive file of the bin and the bin’s size.
Table 4-6. Cell Data Types
	Data Type
	Structure Type
	Description

	Key cell
	CM_KEY_NODE
	A cell that contains a registry
 key, also called a key node. A key cell contains a signature
 (kn for a key, kl for a link node), the time stamp of the
 most recent update to the key, the cell index of the key’s
 parent key cell, the cell index of the subkey-list cell that
 identifies the key’s subkeys, a cell index for the key’s
 security descriptor cell, a cell index for a string key that
 specifies the class name of the key, and the name of the key
 (for example, CurrentControlSet). It also saves cached
 information such as the number of subkeys under the key, as
 well as the size of the largest key, value name, value data,
 and class name of the subkeys under this key.

	Value cell
	CM_KEY_VALUE
	A cell that contains information
 about a key’s value. This cell includes a signature (kv),
 the value’s type (for example, REG_ DWORD or REG_BINARY),
 and the value’s name (for example, Boot-Execute). A value
 cell also contains the cell index of the cell that contains
 the value’s data.

	Subkey-list cell
	CM_KEY_INDEX
	A cell composed of a list of cell
 indexes for key cells that are all subkeys of a common
 parent key.

	Value-list cell
	CM_KEY_INDEX
	A cell composed of a list of cell
 indexes for value cells that are all values of a common
 parent key.

	Security-descriptor
 cell
	CM_KEY_SECURITY
	A cell that contains a security
 descriptor. Security-descriptor cells include a signature
 (ks) at the head of the cell and a reference count that
 records the number of key nodes that share the security
 descriptor. Multiple key cells can share security-descriptor
 cells.

By using bins, instead of cells, to track active parts of the
 registry, Windows minimizes some management chores. For example, the
 system usually allocates and deallocates bins less frequently than
 it does cells, which lets the configuration manager manage memory
 more efficiently. When the configuration manager reads a registry
 hive into memory, it reads the whole hive, including empty bins, but
 it can choose to discard them later. When the system adds and
 deletes cells in a hive, the hive can contain empty bins
 interspersed with active bins. This situation is similar to disk
 fragmentation, which occurs when the system creates and deletes
 files on the disk. When a bin becomes empty, the configuration
 manager joins to the empty bin any adjacent empty bins to form as
 large a contiguous empty bin as possible. The configuration manager
 also joins adjacent deleted cells to form larger free cells. (The
 configuration manager shrinks a hive only when bins at the end of
 the hive become free. You can compact the registry by backing it up
 and restoring it using the Windows RegSaveKey
 and RegReplaceKey functions, which are used by
 the Windows Backup utility.)
The links that create the structure of a hive are called cell
 indexes. A cell index is the offset of a cell into the hive file
 minus the size of the base block. Thus, a cell index is like a
 pointer from one cell to another cell that the configuration manager
 interprets relative to the start of a hive. For example, as you saw
 in Table 4-6, a cell that describes a key
 contains a field specifying the cell index of its parent key; a cell
 index for a subkey specifies the cell that describes the subkeys
 that are subordinate to the specified subkey. A subkey-list cell
 contains a list of cell indexes that refer to the subkey’s key
 cells. Therefore, if you want to locate, for example, the key cell
 of subkey A, whose parent is key B, you must first locate the cell
 containing key B’s subkey list using the subkey-list cell index in
 key B’s cell. Then you locate each of key B’s subkey cells by using
 the list of cell indexes in the subkey-list cell. For each subkey
 cell, you check to see whether the subkey’s name, which a key cell
 stores, matches the one you want to locate, in this case, subkey
 A.
The distinction between cells, bins, and blocks can be
 confusing, so let’s look at an example of a simple registry hive
 layout to help clarify the differences. The sample registry hive
 file in Figure 4-3
 contains a base block and two bins. The first bin is empty, and the
 second bin contains several cells. Logically, the hive has only two
 keys: the root key Root, and a subkey of Root, Sub Key. Root has two
 values, Val 1 and Val 2. A subkey-list cell locates
 the root key’s subkey, and a value-list cell locates the root key’s
 values. The free spaces in the second bin are empty cells. Figure 4-3 doesn’t show the
 security cells for the two keys, which would be present in a
 hive.
[image: Internal structure of a registry hive]

Figure 4-3. Internal structure of a registry hive

To optimize searches for both values and subkeys, the
 configuration manager sorts subkey-list cells alphabetically. The
 configuration manager can then perform a binary search when it looks
 for a subkey within a list of subkeys. The configuration manager
 examines the subkey in the middle of the list, and if the name of
 the subkey the configuration manager is looking for is
 alphabetically before the name of the middle subkey, the
 configuration manager knows that the subkey is in the first half of
 the subkey list; otherwise, the subkey is in the second half of the
 subkey list. This splitting process continues until the
 configuration manager locates the subkey or finds no match.
 Value-list cells aren’t sorted, however, so new values are always
 added to the end of the list.

Cell Maps

If hives never grew, the configuration manager could perform
 all its registry management on the in-memory version of a hive as if
 the hive were a file. Given a cell index, the configuration manager
 could calculate the location in memory of a cell simply by adding
 the cell index, which is a hive file offset, to the base of the
 in-memory hive image. Early in the system boot, this process is
 exactly what Winload does with the SYSTEM hive: Winload reads the
 entire SYSTEM hive into memory as a read-only hive and adds the cell
 indexes to the base of the in-memory hive image to locate cells.
 Unfortunately, hives grow as they take on new keys and values, which
 means the system must allocate paged pool memory to store the new
 bins that contain added keys and values. Thus, the paged pool that
 keeps the registry data in memory isn’t necessarily
 contiguous.
EXPERIMENT: Viewing Hive Paged Pool Usage
There are no administrative-level tools that show you the
 amount of paged pool that registry hives, including user profiles,
 are consuming on Windows. However, the !reg dumppool kernel
 debugger command shows you not only how many pages of the paged
 pool each loaded hive consumes but also how many of the pages
 store volatile and nonvolatile data. The command prints the total
 hive memory usage at the end of the output. (The command shows
 only the last 32 characters of a hive’s name.)
kd> !reg dumppool

dumping hive at e20d66a8 (a\Microsoft\Windows\UsrClass.dat)
 Stable Length = 1000
 1/1 pages present
 Volatile Length = 0

dumping hive at e215ee88 (ettings\Administrator\ntuser.dat)
 Stable Length = f2000
 242/242 pages present
 Volatile Length = 2000
 2/2 pages present

dumping hive at e13fa188 (\SystemRoot\System32\Config\SAM)
 Stable Length = 5000
 5/5 pages present
 Volatile Length = 0

...

To deal with noncontiguous memory addresses referencing hive
 data in memory, the configuration manager adopts a strategy similar
 to what the Windows memory manager uses to map virtual memory
 addresses to physical memory addresses. The configuration manager
 employs a two-level scheme, which Figure 4-4 illustrates, that takes as
 input a cell index (that is, a hive file offset) and returns as
 output both the address in memory of the block the cell index
 resides in and the address in memory of the block the cell resides
 in. Remember that a bin can contain one or more blocks and that
 hives grow in bins, so Windows always represents a bin with a
 contiguous region of memory. Therefore, all blocks within a bin
 occur within the same cache manager view.
[image: Structure of a cell index]

Figure 4-4. Structure of a cell index

To implement the mapping, the configuration manager
 divides a cell index logically into fields, in the same way that the
 memory manager divides a virtual address into fields. Windows
 interprets a cell index’s first field as an index into a hive’s cell
 map directory. The cell map directory contains 1024 entries, each of
 which refers to a cell map table that contains 512 map entries. An
 entry in this cell map table is specified by the second field in the
 cell index. That entry locates the bin and block memory addresses of
 the cell. Not all bins are necessarily mapped into memory, and if a
 cell lookup yields an address of 0, the configuration manager maps
 the bin into memory, unmapping another on the mapping LRU list it
 maintains, if necessary.
In the final step of the translation process, the
 configuration manager interprets the last field of the cell index as
 an offset into the identified block to precisely locate a cell in
 memory. When a hive initializes, the configuration manager
 dynamically creates the mapping tables, designating a map entry for
 each block in the hive, and it adds and deletes tables from the cell
 directory as the changing size of the hive requires.

The Registry Namespace and Operation

The configuration manager defines a key object type to
 integrate the registry’s namespace with the kernel’s general
 namespace. The configuration manager inserts a key object named
 Registry into the root of the Windows namespace, which serves as the
 entry point to the registry. Regedit shows key names in the form
 HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet, but the Windows
 subsystem translates such names into their object namespace form
 (for example, \Registry\Machine\System\CurrentControlSet). When the
 Windows object manager parses this name, it encounters the key
 object by the name of Registry first and hands the rest of the name
 to the configuration manager. The configuration manager takes over
 the name parsing, looking through its internal hive tree to find the
 desired key or value. Before we describe the flow of control for a
 typical registry operation, we need to discuss key objects and key
 control blocks. Whenever an application opens or creates a registry
 key, the object manager gives a handle with which to reference the
 key to the application. The handle corresponds to a key object that
 the configuration manager allocates with the help of the object
 manager. By using the object manager’s object support, the
 configuration manager takes advantage of the security and
 reference-counting functionality that the object manager
 provides.
For each open registry key, the configuration manager also
 allocates a key control block. A key control block stores the name
 of the key, includes the cell index of the key node that the control
 block refers to, and contains a flag that notes whether the
 configuration manager needs to delete the key cell that the key
 control block refers to when the last handle for the key closes.
 Windows places all key control blocks into a hash table to enable
 quick searches for existing key control blocks by name. A key object
 points to its corresponding key control block, so if two
 applications open the same registry key, each will receive a key
 object, and both key objects will point to a common key control
 block.
When an application opens an existing registry key, the flow
 of control starts with the application specifying the name of the
 key in a registry API that invokes the object manager’s name-parsing
 routine. The object manager, upon encountering the configuration
 manager’s registry key object in the namespace, hands the path name
 to the configuration manager. The configuration manager performs a
 lookup on the key control block hash table. If the related key
 control block is found there, there’s no need for any further work; otherwise, the lookup
 provides the configuration manager with the closest key control
 block to the searched key, and the lookup continues by using the
 in-memory hive data structures to search through keys and subkeys to
 find the specified key. If the configuration manager finds the key
 cell, the configuration manager searches the key control block tree
 to determine whether the key is open (by the same application or
 another one). The search routine is optimized to always start from
 the closest ancestor with a key control block already opened. For
 example, if an application opens \Registry\Machine\Key1\Subkey2, and
 \Registry\Machine is already opened, the parse routine uses the key
 control block of \Registry\Machine as a starting point. If the key
 is open, the configuration manager increments the existing key
 control block’s reference count. If the key isn’t open, the
 configuration manager allocates a new key control block and inserts
 it into the tree. Then the configuration manager allocates a key
 object, points the key object at the key control block, and returns
 control to the object manager, which returns a handle to the
 application.
When an application creates a new registry key, the
 configuration manager first finds the key cell for the new key’s
 parent. The configuration manager then searches the list of free
 cells for the hive in which the new key will reside to determine
 whether cells exist that are large enough to hold the new key cell.
 If there aren’t any free cells large enough, the configuration
 manager allocates a new bin and uses it for the cell, placing any
 space at the end of the bin on the free cell list. The new key cell
 fills with pertinent information—including the key’s name—and the
 configuration manager adds the key cell to the subkey list of the
 parent key’s subkey-list cell. Finally, the system stores the cell
 index of the parent cell in the new subkey’s key cell.
The configuration manager uses a key control block’s reference
 count to determine when to delete the key control block. When all
 the handles that refer to a key in a key control block close, the
 reference count becomes 0, which denotes that the key control block
 is no longer necessary. If an application that calls an API to
 delete the key sets the delete flag, the configuration manager can
 delete the associated key from the key’s hive because it knows that
 no application is keeping the key open.
EXPERIMENT: Viewing Key Control Blocks
You can use the kernel debugger to list all the key control
 blocks allocated on a system with the command !reg openkeys
 command. Alternatively, if you want to view the key control block
 for a particular open key, use !reg findkcb:
kd> !reg findkcb \registry\machine\software\microsoft

Found KCB = e1034d40 :: \REGISTRY\MACHINE\SOFTWARE\MICROSOFT
You can then examine a reported key control block with the
 !reg kcb command:
kd> !reg kcb e1034d40

Key : \REGISTRY\MACHINE\SOFTWARE\MICROSOFT
RefCount : 1f
Flags : CompressedName, Stable
ExtFlags :
Parent : 0xe1997368
KeyHive : 0xe1c8a768
KeyCell : 0x64e598 [cell index]
TotalLevels : 4
DelayedCloseIndex: 2048
MaxNameLen : 0x3c
MaxValueNameLen : 0x0
MaxValueDataLen : 0x0
LastWriteTime : 0x 1c42501:0x7eb6d470
KeyBodyListHead : 0xe1034d70 0xe1034d70
SubKeyCount : 137
ValueCache.Count : 0
KCBLock : 0xe1034d40
KeyLock : 0xe1034d40
The Flags field indicates that the name
 is stored in compressed form, and the
 SubKeyCount field shows that the key has 137
 subkeys.

Stable Storage

To make sure that a nonvolatile registry hive (one
 with an on-disk file) is always in a recoverable state, the
 configuration manager uses log hives. Each nonvolatile hive has an
 associated log hive, which is a hidden file with the same base name
 as the hive and a logN extension. To ensure forward progress, the
 configuration manger uses a dual-logging scheme. There are
 potentially two log files: .log1 and .log2. If, for any reason,
 .log1 was written but a failure occurred while writing dirty data to
 the primary log file, the next time a flush happens, a switch to
 .log2 will occur with the cumulative dirty data. If that fails as
 well, the cumulative dirty data (the data in .log1 and the data that
 was dirtied in between) is saved in .log2. As a consequence, .log1
 will be used again next time around, until a successful write
 operation is done to the primary log file. If no failure occurs,
 only .log1 is used.
For example, if you look in your %SystemRoot%\System32\Config
 directory (and you have the Show Hidden Files And Folders folder
 option selected), you’ll see System.log1, Sam.log1, and other .log1
 and .log2 files. When a hive initializes, the configuration manager
 allocates a bit array in which each bit represents a 512-byte
 portion, or sector, of the hive. This array is called the dirty
 sector array because an on bit in the array means that the system
 has modified the corresponding sector in the hive in memory and must
 write the sector back to the hive file. (An off bit means that the
 corresponding sector is up to date with the in-memory hive’s
 contents.)
When the creation of a new key or value or the modification of
 an existing key or value takes place, the configuration manager
 notes the sectors of the hive that change in the hive’s dirty sector
 array. Then the configuration manager schedules a lazy write
 operation, or a hive sync. The hive lazy writer system thread wakes
 up five seconds after the request to synchronize the hive and writes
 dirty hive sectors for all hives from memory to the hive files on
 disk. Thus, the system flushes, at the same time, all the registry
 modifications that take place between the time a hive sync is
 requested and the time the hive sync occurs. When a hive sync takes
 place, the next hive sync will occur no sooner than five seconds
 later.
Note
The RegFlushKey API’s name
 implies that the function flushes only modified data for a
 specified key to disk, but it actually triggers a full registry
 flush, which has a major performance impact on the system. For
 that reason and the fact that the registry automatically makes
 sure that modified data is in stable storage within seconds,
 application programmers should avoid using it.

If the lazy writer simply wrote all a hive’s dirty sectors to
 the hive file and the system crashed in mid-operation, the hive file
 would be in an inconsistent (corrupted) and unrecoverable state. To
 prevent such an occurrence, the lazy writer first dumps the hive’s
 dirty sector array and all the dirty sectors to the hive’s log file,
 increasing the log file’s size if necessary. The lazy writer then
 updates a sequence number in the hive’s base block and writes the
 dirty sectors to the hive. When the lazy writer is finished, it
 updates a second sequence number in the base block. Thus, if the
 system crashes during the write operations to the hive, at the next
 reboot the configuration manager will notice that the two sequence
 numbers in the hive’s base block don’t match. The configuration
 manager can update the hive with the dirty sectors in the hive’s log
 file to roll the hive forward. The hive is then up to date and
 consistent.
The Windows Boot Loader also contains some code related to
 registry reliability. For example, it can parse the System.log file
 before the kernel is loaded and do repairs to fix consistency.
 Additionally, in certain cases of hive corruption (such as if a base
 block, bin, or cell contains data that fails consistency checks),
 the configuration manager can reinitialize corrupted data
 structures, possibly deleting subkeys in the process, and continue
 normal operation. If it has to resort to a self-healing operation,
 it pops up a system error dialog box notifying the user.

Registry Filtering

The configuration manager in the Windows kernel implements a
 powerful model of registry filtering, which allows for monitoring of
 registry activity by tools such as Process Monitor. When a driver
 uses the callback mechanism, it registers a callback function with
 the configuration manager. The configuration manager executes the
 driver’s callback function before and after the execution of
 registry system services so that the driver has full visibility and
 control over registry accesses. Antivirus products that scan
 registry data for viruses or prevent unauthorized processes from
 modifying the registry are other users of the callback
 mechanism.
Registry callbacks are also associated with the concept of
 altitudes. Altitudes are a way for different vendors to register a
 “height” on the registry filtering stack so that the order in which
 the system calls each callback routine can be deterministic and
 correct. This avoids a scenario in which an antivirus product would
 be scanning encrypted keys before an encryption product would run
 its own callback to decrypt them. With the Windows registry callback
 model, both types of tools are assigned a base altitude
 corresponding to the type of filtering they are doing—in this case,
 encryption versus scanning. Secondly, companies that create these
 types of tools must register with Microsoft so that within their own
 group, they will not collide with similar or competing
 products.
The filtering model also includes the ability to
 either completely take over the processing of the registry operation
 (bypassing the configuration manager and preventing it from handling
 the request) or redirect the operation to a different operation
 (such as Wow64’s registry redirection). Additionally, it is also
 possible to modify the output parameters as well as the return value
 of a registry operation.
Finally, drivers can assign and tag per-key or per-operation
 driver-defined information for their own purposes. A driver can
 create and assign this context data during a create or open
 operation, which the configuration manager will remember and return
 during each subsequent operation on the key.

Registry Optimizations

The configuration manager makes a few noteworthy performance
 optimizations. First, virtually every registry key has a security
 descriptor that protects access to the key. Storing a unique
 security-descriptor copy for every key in a hive would be highly
 inefficient, however, because the same security settings often apply
 to entire subtrees of the registry. When the system applies security
 to a key, the configuration manager checks a pool of the unique
 security descriptors used within the same hive as the key to which
 new security is being applied, and it shares any existing descriptor
 for the key, ensuring that there is at most one copy of every unique
 security descriptor in a hive.
The configuration manager also optimizes the way it stores key
 and value names in a hive. Although the registry is fully
 Unicode-capable and specifies all names using the Unicode
 convention, if a name contains only ASCII characters, the
 configuration manager stores the name in ASCII form in the hive.
 When the configuration manager reads the name (such as when
 performing name lookups), it converts the name into Unicode form in
 memory. Storing the name in ASCII form can significantly reduce the
 size of a hive.
To minimize memory usage, key control blocks don’t store full
 key registry path names. Instead, they reference only a key’s name.
 For example, a key control block that refers to
 \Registry\System\Control would refer to the name Control rather than
 to the full path. A further memory optimization is that the
 configuration manager uses key name control blocks to store key
 names, and all key control blocks for keys with the same name share
 the same key name control block. To optimize performance, the
 configuration manager stores the key control block names in a hash
 table for quick lookups.
To provide fast access to key control blocks, the
 configuration manager stores frequently accessed key control blocks
 in the cache table, which is configured as a hash table. When the
 configuration manager needs to look up a key control block, it first
 checks the cache table. Finally, the configuration manager has
 another cache, the delayed close table, that stores key control
 blocks that applications close so that an application can quickly
 reopen a key it has recently closed. To optimize lookups, these
 cache tables are stored for each hive. The configuration manager
 removes the oldest key control blocks from the delayed close table
 as it adds the most recently closed blocks to the table.

Services

Almost every operating system has a mechanism to start
 processes at system startup time that provide services not tied to an
 interactive user. In Windows, such processes are called services or
 Windows services, because they rely on the Windows API to interact with
 the system. Services are similar to UNIX daemon processes and often
 implement the server side of client/server applications. An example of a
 Windows service might be a web server, because it must be running
 regardless of whether anyone is logged on to the computer and it must
 start running when the system starts so that an administrator doesn’t
 have to remember, or even be present, to start it.
Windows services consist of three components: a service
 application, a service control program (SCP), and the service control
 manager (SCM). First, we’ll describe service applications, service
 accounts, and the operations of the SCM. Then we’ll explain how
 auto-start services are started during the system boot. We’ll also cover
 the steps the SCM takes when a service fails during its startup and the
 way the SCM shuts down services.
Service Applications

Service applications, such as web servers, consist of at least
 one executable that runs as a Windows service. A user wanting to
 start, stop, or configure a service uses an SCP. Although Windows
 supplies built-in SCPs that provide general start, stop, pause, and
 continue functionality, some service applications include their own
 SCP that allows administrators to specify configuration settings
 particular to the service they manage.
Service applications are simply Windows executables (GUI or
 console) with additional code to receive commands from the SCM as well
 as to communicate the application’s status back to the SCM. Because
 most services don’t have a user interface, they are built as console
 programs.
When you install an application that includes a service, the
 application’s setup program must register the service with the system.
 To register the service, the setup program calls the Windows
 CreateService function, a services-related
 function implemented in Advapi32.dll
 (%SystemRoot%\System32\Advapi32.dll). Advapi32, the “Advanced API”
 DLL, implements all the client-side SCM APIs.
When a setup program registers a service by calling
 CreateService, a message is sent to the SCM on
 the machine where the service will reside. The SCM then creates a
 registry key for the service under
 HKLM\SYSTEM\CurrentControlSet\Services. The Services key is the
 nonvolatile representation of the SCM’s database. The individual keys
 for each service define the path of the executable image that contains
 the service as well as parameters and configuration options.
After creating a service, an installation or management
 application can start the service via the
 StartService function. Because some service-based
 applications also must initialize during the boot process to function,
 it’s not unusual for a setup program to register a service as an
 auto-start service, ask the user to reboot the system to complete an
 installation, and let the SCM start the service as the system
 boots.
When a program calls CreateService,
 it must specify a number of parameters describing the service’s
 characteristics. The characteristics include the service’s type
 (whether it’s a service that runs in its own process rather than a
 service that shares a process with other services), the location of
 the service’s executable image file, an optional display name, an
 optional account name and password used to start the service in a
 particular account’s security context, a start type that indicates
 whether the service starts automatically when the system boots or
 manually under the direction of an SCP, an error code that indicates
 how the system should react if the service detects an error when
 starting, and, if the service starts automatically, optional
 information that specifies when the service starts relative to other
 services.
The SCM stores each characteristic as a value in the service’s
 registry key. Figure 4-5
 shows an example of a service registry key.
[image: Example of a service registry key]

Figure 4-5. Example of a service registry key

Table 4-7 lists
 all the service characteristics, many of which also apply to device
 drivers. (Not every characteristic applies to every type of service or
 device driver.) If a service needs to store configuration information
 that is private to the service, the convention is to create a subkey
 named Parameters under its service key and then store the
 configuration information in values under that subkey. The service
 then can retrieve the values by using standard registry
 functions.
Note
The SCM does not access a service’s Parameters subkey until
 the service is deleted, at which time the SCM deletes the service’s
 entire key, including subkeys like Parameters.

Table 4-7. Service and Driver Registry Parameters
	Value Setting
	Value Name
	Value Setting
 Description

	Start
	SERVICE_BOOT_START
 (0)
	Winload preloads the driver so that
 it is in memory during the boot. These drivers are initialized
 just prior to SERVICE_ SYSTEM_START drivers.

	SERVICE_SYSTEM_START
 (1)
	The driver loads and initializes
 during kernel initialization after SERVICE_ BOOT_START drivers
 have initialized.

	SERVICE_AUTO_START
 (2)
	The SCM starts the driver or service
 after the SCM process, Services.exe, starts.

	SERVICE_DEMAND_START
 (3)
	The SCM starts the driver or service
 on demand.

	SERVICE_DISABLED (4)
	The driver or service doesn’t load
 or initialize.

	ErrorControl
	SERVICE_ERROR_IGNORE
 (0)
	Any error the driver or service
 returns is ignored, and no warning is logged or
 displayed.

	SERVICE_ERROR_NORMAL
 (1)
	If the driver or service reports an
 error, an event log message is written.

	SERVICE_ERROR_SEVERE
 (2)
	If the driver or service returns an
 error and last known good isn’t being used, reboot into last
 known good; otherwise, continue the boot.

	SERVICE_ERROR_CRITICAL
 (3)
	If the driver or service returns an
 error and last known good isn’t being used, reboot into last
 known good; otherwise, stop the boot with a blue screen
 crash.

	Type
	SERVICE_KERNEL_DRIVER
 (1)
	Device driver.

	SERVICE_FILE_SYSTEM_DRIVER
 (2)
	Kernel-mode file system
 driver.

	SERVICE_ADAPTER (4)
	Obsolete.

	SERVICE_RECOGNIZER_DRIVER
 (8)
	File system recognizer
 driver.

	SERVICE_WIN32_OWN_PROCESS
 (16)
	The service runs in a process that
 hosts only one service.

	SERVICE_WIN32_SHARE_PROCESS
 (32)
	The service runs in a process that
 hosts multiple services.

	 	SERVICE_INTERACTIVE_PROCESS
 (256)
	The service is allowed to display
 windows on the console and receive user input, but only on the
 console session (0) to prevent interacting with user/console
 applications on other sessions.

	Group
	Group name
	The driver or service initializes
 when its group is initialized.

	Tag
	Tag number
	The specified location in a group
 initialization order. This parameter doesn’t apply to
 services.

	ImagePath
	Path to the service or driver
 executable file
	If ImagePath isn’t specified, the
 I/O manager looks for drivers in
 %SystemRoot%\System32\Drivers. Required for Windows
 services.

	DependOnGroup
	Group name
	The driver or service won’t load
 unless a driver or service from the specified group
 loads.

	DependOnService
	Service name
	The service won’t load until after
 the specified service loads. This parameter doesn’t apply to
 device drivers other than those with a start type of
 SERVICE_AUTO_START or SERVICE_DEMAND_START.

	ObjectName
	Usually LocalSystem, but it can be
 an account name, such as .\Administrator
	Specifies the account in which the
 service will run. If ObjectName isn’t specified, LocalSystem
 is the account used. This parameter doesn’t apply to device
 drivers.

	DisplayName
	Name of the service
	The service application shows
 services by this name. If no name is specified, the name of
 the service’s registry key becomes its name.

	Description
	Description of
 service
	Up to 32767-byte description of the
 service.

	FailureActions
	Description of actions the SCM
 should take when the service process exits
 unexpectedly
	Failure actions include restarting
 the service process, rebooting the system, and running a
 specified program. This value doesn’t apply to
 drivers.

	FailureCommand
	Program command line
	The SCM reads this value only if
 FailureActions specifies that a program should execute upon
 service failure. This value doesn’t apply to
 drivers.

	DelayedAutoStart
	0 or 1 (TRUE or
 FALSE)
	Tells the SCM to start this service
 after a certain delay has passed since the SCM was started.
 This reduces the number of services starting simultaneously
 during startup.

	PreshutdownTimeout
	Timeout in
 milliseconds
	This value allows services to
 override the default preshutdown notification timeout of 180
 seconds. After this timeout, the SCM will perform shutdown
 actions on the service if it has not yet
 responded.

	ServiceSidType
	SERVICE_SID_TYPE_NONE
 (0)
	Backward-compatibility
 setting.

	SERVICE_SID_TYPE_UNRESTRICTED
 (1)
	The SCM will add the service SID as
 a group owner to the service process’ token when it is
 created.

	SERVICE_SID_TYPE_RESTRICTED
 (3)
	Same as above, but the SCM will also
 add the service SID to the restricted SID list of the service
 process, along with the world, logon, and write-restricted
 SIDs.

	RequiredPrivileges
	List of privileges
	This value contains the list of
 privileges that the service requires to function. The SCM will
 compute their union when creating the token for the shared
 process related to this service, if any.

	Security
	Security descriptor
	This value contains the optional
 security descriptor that defines who has what access to the
 service object created internally by the SCM. If this value is
 omitted, the SCM applies a default security
 descriptor.

Notice that Type values include three that apply to
 device drivers: device driver, file system driver, and file system
 recognizer. These are used by Windows device drivers, which also store
 their parameters as registry data in the Services registry key. The
 SCM is responsible for starting drivers with a Start value of
 SERVICE_AUTO_START or SERVICE_DEMAND_START, so it’s natural for the
 SCM database to include drivers. Services use the other types,
 SERVICE_WIN32_OWN_PROCESS and SERVICE_WIN32_SHARE_PROCESS, which are
 mutually exclusive. An executable that hosts more than one service
 specifies the SERVICE_WIN32_SHARE_PROCESS type.
An advantage to having a process run more than one service is
 that the system resources that would otherwise be required to run them
 in distinct processes are saved. A potential disadvantage is that if
 one of the services of a collection running in the same process causes
 an error that terminates the process, all the services of that process
 terminate. Also, another limitation is that all the services must run
 under the same account (however, if a service takes advantage of
 service security hardening mechanisms, it can limit some of its
 exposure to malicious attacks).
When the SCM starts a service process, the process must
 immediately invoke the StartServiceCtrlDispatcher
 function. StartServiceCtrlDispatcher accepts a
 list of entry points into services, one entry point for each service
 in the process. Each entry point is identified by the name of the
 service the entry point corresponds to. After making a named-pipe
 communications connection to the SCM,
 StartServiceCtrlDispatcher waits for commands to
 come through the pipe from the SCM. The SCM sends a service-start
 command each time it starts a service the process owns. For each start
 command it receives, the
 StartServiceCtrlDispatcher function creates a
 thread, called a service thread, to invoke the starting service’s
 entry point and implement the command loop for the service.
 StartServiceCtrlDispatcher waits indefinitely for
 commands from the SCM and returns control to the process’ main
 function only when all the process’ services have stopped, allowing
 the service process to clean up resources before exiting.
A service entry point’s first action is to call the
 RegisterServiceCtrlHandler function. This
 function receives and stores a pointer to a function, called the
 control handler, which the service implements to handle various
 commands it receives from the SCM.
 RegisterServiceCtrlHandler doesn’t communicate
 with the SCM, but it stores the function in local process memory for
 the StartServiceCtrlDispatcher function. The
 service entry point continues initializing the service, which can
 include allocating memory, creating communications end points, and
 reading private configuration data from the registry. As explained
 earlier, a convention most services follow is to store their
 parameters under a subkey of their service registry key, named
 Parameters.
While the entry point is initializing the service, it must
 periodically send status messages, using the
 SetServiceStatus function, to the SCM indicating
 how the service’s startup is progressing. After the entry point
 finishes initialization, a service thread usually sits in a loop
 waiting for requests from client applications. For example, a Web
 server would initialize a TCP listen socket and wait for inbound HTTP
 connection requests.
A service process’ main thread, which executes in the
 StartServiceCtrlDispatcher function, receives SCM
 commands directed at services in the process and invokes the target
 service’s control handler function (stored by
 RegisterServiceCtrlHandler). SCM commands include
 stop, pause, resume, interrogate, and shutdown or application-defined
 commands. Figure 4-6 shows the
 internal organization of a service process. Pictured are the two
 threads that make up a process hosting one service: the main thread
 and the service thread.
[image: Inside a service process]

Figure 4-6. Inside a service process

Service Accounts

The security context of a service is an important
 consideration for service developers as well as for system
 administrators because it dictates what resources the process can
 access. Unless a service installation program or administrator
 specifies otherwise, most services run in the security context of
 the local system account (displayed sometimes as SYSTEM and other
 times as LocalSystem). Two other built-in accounts are the network
 service and local service accounts. These accounts have fewer
 capabilities than the local system account from a security
 standpoint, and any built-in Windows service that does not require
 the power of the local system account runs in the appropriate
 alternate service account. The following subsections describe the
 special characteristics of these accounts.

The Local System Account

The local system account is the same account in which core
 Windows user-mode operating system components run, including the
 Session Manager (%SystemRoot%\System32\Smss.exe), the Windows
 subsystem process (Csrss.exe), the Local Security Authority process
 (%SystemRoot%\System32\Lsass.exe), and the Logon process
 (%SystemRoot%\System32\Winlogon.exe). For more information on these
 latter two processes, see Chapter 6.
From a security perspective, the local system account
 is extremely powerful—more powerful than any local or domain account
 when it comes to security ability on a local system. This account
 has the following characteristics:
	It is a member of the local administrators group. Table 4-8 shows the groups
 to which the local system account belongs. (See Chapter 6 for information on how group
 membership is used in object access checks.)

	It has the right to enable virtually every privilege (even
 privileges not normally granted to the local administrator
 account, such as creating security tokens). See Table 4-9 for the list of
 privileges assigned to the local system account. (Chapter 6 describes the use of each
 privilege.)

	Most files and registry keys grant full access to the
 local system account. (Even if they don’t grant full access, a
 process running under the local system account can exercise the
 take-ownership privilege to gain access.)

	Processes running under the local system account run with
 the default user profile (HKU\.DEFAULT). Therefore, they can’t
 access configuration information stored in the user profiles of
 other accounts.

	When a system is a member of a Windows domain, the local
 system account includes the machine security identifier (SID)
 for the computer on which a service process is running.
 Therefore, a service running in the local system account will be
 automatically authenticated on other machines in the same forest
 by using its computer account. (A forest is a grouping of
 domains.)

	Unless the machine account is specifically granted access
 to resources (such as network shares, named pipes, and so on), a
 process can access network resources that allow null
 sessions—that is, connections that require no credentials. You
 can specify the shares and pipes on a particular computer that
 permit null sessions in the NullSessionPipes and
 NullSessionShares registry values under
 HKLM\SYSTEM\CurrentControlSet\Services\lanmanserver\parameters.

Table 4-8. Service Account Group Membership
	Local System
	Network Service
	Local Service

	Everyone

 Authenticated Users

 Administrators
	Everyone

 Authenticated Users
 Users

 Local
 Network Service

 Service
	Everyone

 Authenticated Users
 Users

 Local
 Local Service

 Service

Table 4-9. Service Account Privileges
	Local System
	Network Service
	Local Service

	SeAssignPrimaryTokenPrivilege

 SeAuditPrivilege
 SeBackupPrivilege

 SeChangeNotifyPrivilege

 SeCreateGlobalPrivilege

 SeCreatePagefilePrivilege

 SeCreatePermanentPrivilege

 SeCreateTokenPrivilege

 SeDebugPrivilege

 SeImpersonatePrivilege

 SeIncreaseBasePriorityPrivilege

 SeIncreaseQuotaPrivilege

 SeLoadDriverPrivilege

 SeLockMemoryPrivilege

 SeManageVolumePrivilege

 SeProfileSingleProcessPrivilege

 SeRestorePrivilege

 SeSecurityPrivilege

 SeShutdownPrivilege

 SeSystemEnvironmentPrivilege

 SeSystemTimePrivilege

 SeTakeOwnershipPrivilege

 SeTcbPrivilege
 SeUndockPrivilege (client
 only)
	SeAssignPrimaryTokenPrivilege

 SeAuditPrivilege

 SeChangeNotifyPrivilege

 SeCreateGlobalPrivilege

 SeImpersonatePrivilege

 SeIncreaseQuotaPrivilege

 SeShutdownPrivilege
 SeUndockPrivilege
 (client only)
 Privileges assigned to the
 Everyone, Authenticated Users, and Users
 groups
	SeAssignPrimaryTokenPrivilege

 SeAuditPrivilege

 SeChangeNotifyPrivilege

 SeCreateGlobalPrivilege

 SeImpersonatePrivilege

 SeIncreaseQuotaPrivilege

 SeShutdownPrivilege
 SeUndockPrivilege
 (client only)
 Privileges assigned to the
 Everyone, Authenticated Users, and Users
 groups

The Network Service Account

The network service account is intended for use by services
 that want to authenticate to other machines on the network using the
 computer account, as does the local system account, but do not have
 the need for membership in the Administrators group or the use of
 many of the privileges assigned to the local system account. Because
 the network service account does not belong to the Administrators
 group, services running in the network service account by default
 have access to far fewer registry keys and file system folders and
 files than the services running in the local system account.
 Further, the assignment of few privileges limits the scope of a
 compromised network service process. For example, a process running
 in the network service account cannot load a device driver or open
 arbitrary processes.
Another difference between the network service and local
 system accounts is that processes running in the network service
 account use the network service account’s profile. The registry
 component of the network service profile loads under HKU\S-1-5-20,
 and the files and directories that make up the component reside in
 %SystemRoot%\ServiceProfiles\NetworkService.
A service that runs in the network service account is the DNS
 client, which is responsible for resolving DNS names and for
 locating domain controllers.

The Local Service Account

The local service account is virtually identical to the
 network service account with the important difference that it can
 access only network resources that allow anonymous access. Table 4-9 shows that the network
 service account has the same privileges as the local service
 account, and Table 4-8
 shows that it belongs to the same groups with the
 exception that it belongs to the Network Service group instead of
 the Local Service group. The profile used by processes running in
 the local service loads into HKU\S-1-5-19 and is stored in
 %SystemRoot%\ServiceProfiles\LocalService.
Examples of services that run in the local service account
 include the Remote Registry Service, which allows remote access to
 the local system’s registry, and the LmHosts service, which performs
 NetBIOS name resolution.

Running Services in Alternate Accounts

Because of the restrictions just outlined, some services need
 to run with the security credentials of a user account. You can
 configure a service to run in an alternate account when the service
 is created or by specifying an account and password that the service
 should run under with the Windows Services MMC snap-in. In the
 Services snap-in, right-click on a service and select Properties,
 click on the Log On tab, and select the This Account option, as
 shown in Figure 4-7.

Running with Least Privilege

Services typically are subject to an all-or-nothing model,
 meaning that all privileges available to the account the service
 process is running under are available to a service running in the
 process that might require only a subset of those privileges. To
 better conform to the principle of least privilege, in which Windows
 assigns services only the privileges they require, developers can
 specify the privileges their service requires, and the SCM creates a
 security token that contains only those privileges.
[image: Service account settings]

Figure 4-7. Service account settings

Note
The privileges a service specifies must be a subset
 of those that are available to the service account in which it
 runs.

Service developers use the
 ChangeServiceConfig2 API to indicate the list
 of privileges they desire. The API saves that information in the
 registry under the Parameters key for the service. When the service
 starts, the SCM reads the key and adds those privileges to the token
 of the process in which the service is running.
If there is a RequiredPrivileges value and the service is a
 stand-alone service (running as a dedicated process), the SCM
 creates a token containing only the privileges that the service
 needs. For services running as part of a multiservice service
 process (as are most services that are part of Windows) and
 specifying required privileges, the SCM computes the union of those
 privileges and combines them for the service-hosting process’ token.
 In other words, only the privileges not specified by any of the
 services that are part of that service group will be removed. In the
 case in which the registry value does not exist, the SCM has no
 choice but to assume that the service is either incompatible with
 least privileges or requires all privileges in order to function. In
 this case, the full token is created, containing all privileges, and
 no additional security is offered by this model. To strip almost all
 privileges, services can specify only the Change Notify
 privilege.
EXPERIMENT: Viewing Privileges Required by Services
You can look at the privileges a service requires with the
 Service Control utility, Sc.exe, and the qprivs option.
 Additionally, Process Explorer can show you information about the
 security token of any service process on the system, so you can
 compare the information returned by Sc.exe with the privileges
 part of the token. The following steps show you how to do this for
 some of the best locked-down services on the system.
	Use Sc.exe to take a look at the required privileges
 specified by Dhcp by typing the following into a command
 prompt:
	sc qprivs dhcp

You should see two privileges being requested: the
 SeCreateGlobalPrivilege and the
 SeChangeNotifyPrivilege.

	Run Process Explorer, and take a look at the process
 list.
You should see a couple of Svchost.exe processes that
 are hosting the services on your machine. Process Explorer
 highlights these in pink.

	Now locate the service hosting process in which the Dhcp
 service is running. It should be running alongside other
 services that are part of the LocalServiceNetworkRestricted
 service group, such as the Audiosrv service and Eventlog
 service. You can do this by hovering the mouse over each
 Svchost process and reading the tooltip, which contains the
 names of the services running inside the service host.

	Once you’ve found the process, double-click to
 open the Properties dialog box and select the Security
 tab.
[image: image with no caption]

Note that although the service is running as part of the
 local service account, the list of privileges Windows assigned to
 it is much shorter than the list available to the local service
 account shown in Table 4-9.
Because for a service-hosting process the privileges part of
 the token is the union of the privileges requested by all the
 services running inside it, this must mean that services such as
 Audiosrv and Eventlog have not requested privileges other than the
 ones shown by Process Explorer. You can verify this by running the
 Sc.exe tool on those other services as well.

Service Isolation

Although restricting the privileges that a service has access
 to helps lessen the ability of a compromised service process to
 compromise other processes, it does nothing to isolate the service
 from resources that the account in which it is running has access to
 under normal conditions. As mentioned earlier, the local system
 account has complete access to critical system files, registry keys,
 and other securable objects on the system because the
 access control lists (ACLs) grant permissions to that
 account.
At times, access to some of these resources is indeed critical
 to a service’s operation, while other objects should be secured from
 the service. Previously, to avoid running in the local system
 account to obtain access to required resources, a service would be
 run under a standard user account and ACLs would be added on the
 system objects, which greatly increased the risk of malicious code
 attacking the system. Another solution was to create dedicated
 service accounts and set specific ACLs for each account (associated
 to a service), but this approach easily became an administrative
 hassle.
Windows now combines these two approaches into a much more
 manageable solution: it allows services to run in a nonprivileged
 account but still have access to specific privileged resources
 without lowering the security of those objects. In a manner similar
 to the second pre–Windows Vista solution, the ACLs on an object can
 now set permissions directly for a service, but not by requiring a
 dedicated account. Instead, the SCM generates a service SID to
 represent a service, and this SID can be used to set permissions on
 resources such as registry keys and files. Service SIDs are
 implemented in the group SIDs part of the token for any process
 hosting a service. They are generated by the SCM during system
 startup for each service that has requested one via the
 ChangeServiceConfig2 API. In the case of
 service-hosting processes (a process that contains more than one
 service), the process’ token will contain the service SIDs of all
 services that are part of the service group associated with the
 process, including services that are not started because there is no
 way to add new SIDs after a token has been created.
The usefulness of having a SID for each service extends beyond
 the mere ability to add ACL entries and permissions for various
 objects on the system as a way to have fine-grained control over
 their access. Our discussion initially covered the case in which
 certain objects on the system, accessible by a given account, must
 be protected from a service running within that same account. As
 we’ve described to this point, service SIDs prevent that problem
 only by requiring that Deny entries associated with the service SID
 be placed on every object that needs to be secured, a clearly
 unmanageable approach.
To avoid requiring Deny access control entries (ACEs) as a way
 to prevent services from having access to resources that the user
 account in which they run does have access, there are two types of
 service SIDs: the restricted service SID
 (SERVICE_SID_TYPE_RESTRICTED) and the unrestricted service SID
 (SERVICE_SID_TYPE_UNRESTRICTED), the latter being the default and
 the case we’ve looked at until now.
Unrestricted service SIDs are created as enabled-by-default,
 group owner SIDs, and the process token is also given a new ACE
 providing full permission to the service logon SID, which allows the
 service to continue communicating with the SCM. (A primary use of
 this would be to enable or disable service SIDs inside the process
 during service startup or shutdown.)
A restricted service SID, on the other hand, turns the
 service-hosting process’ token into a write-restricted token (see
 Chapter 6 for more information on tokens),
 which means that only objects granting explicit write access to the
 service SID will be writable by the service, regardless of the
 account it’s running as. Because of this, all services running
 inside that process (part of the same service group) must have the restricted SID type;
 otherwise, services with the restricted SID type will fail to start.
 Once the token becomes write-restricted, three more SIDs are added
 for compatibility reasons:
	The world SID is added to allow write access to objects
 that are normally accessible by anyone anyway, most importantly
 certain DLLs in the load path.

	The service logon SID is added to allow the service to
 communicate with the SCM.

	The write-restricted SID is added to allow objects to
 explicitly allow any write-restricted service write access to
 them. For example, Event Tracing for Windows (ETW) uses this SID
 on its objects to allow any write-restricted service to generate
 events.

Figure 4-8 shows
 an example of a service-hosting process containing services that
 have been marked as having restricted service SIDs. For example, the
 Base Filtering Engine (BFE), which is responsible for applying
 Windows Firewall filtering rules, is part of this service because
 these rules are stored in registry keys that must be protected from
 malicious write access should a service be compromised. (This could
 allow a service exploit to disable the outgoing traffic firewall
 rules, enabling bidirectional communication with an attacker, for
 example.)
[image: Service with restricted service SIDs]

Figure 4-8. Service with restricted service SIDs

By blocking write access to objects that would
 otherwise be writable by the service (through inheriting the
 permissions of the account it is running as), restricted service
 SIDs solve the other side of the problem we initially presented
 because users do not need to do anything to prevent a service
 running in a privileged account from having write access to critical
 system files, registry keys, or other objects, limiting the attack
 exposure of any such service that might have been
 compromised.
Windows also allows for firewall rules that reference service
 SIDs linked to one of the three behaviors described in Table 4-10.
Table 4-10. Network Restriction Rules
	Scenario
	Example
	Restrictions

	Network access
 blocked
	The shell hardware detection
 service (ShellHWDetection).
	All network communications are
 blocked (both incoming and outgoing).

	Network access statically
 port-restricted
	The RPC service (Rpcss) operates
 on port 135 (TCP and UDP).
	Network communications are
 restricted to specific TCP or UDP ports.

	Network access dynamically
 port-restricted
	The DNS service (Dns) listens on
 variable ports (UDP).
	Network communications are
 restricted to configurable TCP or UDP ports.

Interactive Services and Session 0 Isolation

One restriction for services running under the local system,
 local service, and network service accounts that has always been
 present in Windows is that these services could not display (without
 using a special flag on the MessageBox
 function, discussed in a moment) dialog boxes or windows on the
 interactive user’s desktop. This limitation wasn’t the direct result
 of running under these accounts but rather a consequence of the way
 the Windows subsystem assigns service processes to window stations.
 This restriction is further enhanced by the use of sessions, in a
 model called Session Zero Isolation, a result of which is that
 services cannot directly interact with a user’s desktop.
The Windows subsystem associates every Windows process with a
 window station. A window station contains desktops, and desktops
 contain windows. Only one window station can be visible on a console
 and receive user mouse and keyboard input. In a Terminal Services
 environment, one window station per session is visible, but services
 all run as part of the console session. Windows names the visible
 window station WinSta0, and all interactive processes access
 WinSta0.
Unless otherwise directed, the Windows subsystem associates
 services running in the local system account with a nonvisible
 window station named Service-0x0-3e7$ that all noninteractive
 services share. The number in the name, 3e7, represents the logon
 session identifier that the Local Security Authority process (LSASS)
 assigns to the logon session the SCM uses for noninteractive
 services running in the local system account.
Services configured to run under a user account (that is, not
 the local system account) are run in a different nonvisible window
 station named with the LSASS logon identifier assigned for the
 service’s logon session. Figure 4-9
 shows a sample display from the Sysinternals WinObj tool, viewing
 the object manager directory in which Windows places window station
 objects. Visible are the interactive window station (WinSta0) and
 the noninteractive system service window station
 (Service-0x0-3e7$).
[image: List of window stations]

Figure 4-9. List of window stations

Regardless of whether services are running in a user
 account, the local system account, or the local or network service
 accounts, services that aren’t running on the visible window station
 can’t receive input from a user or display windows on the console.
 In fact, if a service were to pop up a normal dialog box on the
 window station, the service would appear hung because no user would
 be able to see the dialog box, which of course would prevent the
 user from providing keyboard or mouse input to dismiss it and allow
 the service to continue executing.
Note
In the past, it was possible to use the special
 MB_SERVICE_NOTIFICATION or MB_DEFAULT_DESKTOP_ONLY flags with the
 MessageBox API to display messages on the
 interactive window station even if the service was marked as
 noninteractive. Because of session isolation, any service using
 this flag will receive an immediate IDOK return value, and the
 message box will never be displayed.

In rare cases, a service can have a valid reason to interact
 with the user via dialog boxes or windows. To configure a service
 with the right to interact with the user, the
 SERVICE_INTERACTIVE_PROCESS modifier must be present in the
 service’s registry key’s Type parameter. (Note that services
 configured to run under a user account can’t be marked as
 interactive.) When the SCM starts a service marked as interactive,
 it launches the service’s process in the local system account’s
 security context but connects the service with WinSta0 instead of
 the noninteractive service window station.
Were user processes to run in the same session as services,
 this connection to WinSta0 would allow the service to display dialog
 boxes and windows on the console and enable those windows to respond
 to user input because they would share the window station with the
 interactive services. However, only processes owned by the system
 and Windows services run in session 0; all other logon sessions,
 including those of console users, run in different sessions. Any
 window displayed by processes in session 0 is therefore not visible
 to the user.
This additional boundary helps prevent shatter
 attacks, whereby a less privileged application sends window messages
 to a window visible on the same window station to exploit a bug in a
 more privileged process that owns the window, which permits it to
 execute code in the more privileged process.
To remain compatible with services that depend on user input,
 Windows includes a service that notifies users when a service has
 displayed a window. The Interactive Services Detection (UI0Detect)
 service looks for visible windows on the main desktop of the WinSta0
 window station of session 0 and displays a notification dialog box
 on the console user’s desktop, allowing the user to switch to
 session 0 and view the service’s UI. (This is akin to connecting to
 a local Terminal Services session or switching users.)
Note
The Interactive Services Detection mechanism is purely for
 application compatibility, and developers are strongly recommended
 to move away from interactive services and use a secondary,
 nonprivileged helper application to communicate visually with the
 user. Local RPC or COM can be used between this helper application
 and the service for configuration purposes after UI input has been
 received.

The dialog box, an example of which is shown in Figure 4-10, includes the
 process name, the time when the UI message was displayed, and the
 title of the window being displayed. Once the user connects to
 session 0, a similar dialog box provides a portal back to the user’s
 session. In the figure, the service displaying a window is Microsoft
 Paint, which was explicitly started by the Sysinternals PsExec
 utility with options that caused PsExec to run Paint in session 0.
 You can try this yourself with the following command:
	psexec –s –i 0 –d mspaint.exe

This tells PsExec to run Microsoft Paint as a system process
 (–s) running on session 0 (–i 0), and to return immediately instead
 of waiting for the process to finish (–d).
[image: The Interactive Services Detection service at work]

Figure 4-10. The Interactive Services Detection service at work

If you click View The Message, you can switch to the
 console for session 0 (and switch back again with a similar window
 on the console).

The Service Control Manager

The SCM’s executable file is %SystemRoot%\System32\Services.exe,
 and like most service processes, it runs as a Windows console program.
 The Wininit process starts the SCM early during the system boot.
 (Refer to Chapter 13 in Part 2 for details on the boot process.) The
 SCM’s startup function, SvcCtrlMain, orchestrates
 the launching of services that are configured for automatic
 startup.
SvcCtrlMain first creates a synchronization
 event named SvcctrlStartEvent_A3752DX that it initializes as
 nonsignaled. Only after the SCM completes steps necessary to prepare
 it to receive commands from SCPs does the SCM set the event to a
 signaled state. The function that an SCP uses to establish a dialog
 with the SCM is OpenSCManager.
 OpenSCManager prevents an SCP from trying to
 contact the SCM before the SCM has initialized by waiting for
 SvcctrlStartEvent_A3752DX to become signaled.
Next, SvcCtrlMain gets down to business and
 calls ScGenerateServiceDB, the function that
 builds the SCM’s internal service database.
 ScGenerateServiceDB reads and stores the contents
 of HKLM\SYSTEM\CurrentControlSet\Control\ServiceGroupOrder\List, a
 REG_MULTI_SZ value that lists the names and order of the defined
 service groups. A service’s registry key contains an optional Group
 value if that service or device driver needs to control its startup
 ordering with respect to services from other groups. For example, the
 Windows networking stack is built from the bottom up, so networking
 services must specify Group values that place them later in the
 startup sequence than networking device drivers. The SCM internally
 creates a group list that preserves the ordering of the groups it
 reads from the registry. Groups include (but are not limited to) NDIS,
 TDI, Primary Disk, Keyboard Port, and Keyboard Class. Add-on and
 third-party applications can even define their own groups and add them
 to the list. Microsoft Transaction Server, for example, adds a group
 named MS Transactions.
ScGenerateServiceDB then scans the contents
 of HKLM\SYSTEM\CurrentControlSet\Services, creating an entry in the
 service database for each key it encounters. A database entry includes
 all the service-related parameters defined for a service as well as
 fields that track the service’s status. The SCM adds entries for
 device drivers as well as for services because the SCM starts services
 and drivers marked as auto-start and detects startup failures for
 drivers marked boot-start and system-start. It also provides a means
 for applications to query the status of drivers. The I/O manager loads
 drivers marked boot-start and system-start before any user-mode
 processes execute, and therefore any drivers having these start types
 load before the SCM starts.
ScGenerateServiceDB reads a service’s Group
 value to determine its membership in a group and associates this value
 with the group’s entry in the group list created earlier. The function
 also reads and records in the database the service’s group and service
 dependencies by querying its DependOnGroup and DependOnService
 registry values. Figure 4-11
 shows how the SCM organizes the service entry and group order lists.
 Notice that the service list is alphabetically sorted. The reason this
 list is sorted alphabetically is that the SCM creates the list from
 the Services registry key, and Windows stores registry keys
 alphabetically.
[image: Organization of a service database]

Figure 4-11. Organization of a service database

During service startup, the SCM calls on LSASS (for
 example, to log on a service in a non-local system account), so the
 SCM waits for LSASS to signal the LSA_RPC_SERVER_ACTIVE
 synchronization event, which it does when it finishes initializing.
 Wininit also starts the LSASS process, so the initialization of LSASS
 is concurrent with that of the SCM, and the order in which LSASS and
 the SCM complete initialization can vary. Then
 SvcCtrlMain calls
 ScGetBootAndSystemDriverState to scan the service
 database looking for boot-start and system-start device driver
 entries.
ScGetBootAndSystemDriverState determines
 whether or not a driver successfully started by looking up its name in
 the object manager namespace directory named \Driver. When a device
 driver successfully loads, the I/O manager inserts the driver’s object
 in the namespace under this directory, so if its name isn’t present,
 it hasn’t loaded. Figure 4-12 shows
 WinObj displaying the contents of the Driver directory.
 SvcCtrlMain notes the names of drivers that
 haven’t started and that are part of the current profile in a list
 named ScFailedDrivers.
Before starting the auto-start services, the SCM performs a few
 more steps. It creates its remote procedure call (RPC) named pipe,
 which is named \Pipe\Ntsvcs, and then RPC launches a thread to listen
 on the pipe for incoming messages from SCPs. The SCM then signals its
 initialization-complete event, SvcctrlStartEvent_A3752DX. Registering
 a console application shutdown event handler and registering with the
 Windows subsystem process via
 RegisterServiceProcess prepares the SCM for
 system shutdown.
[image: List of driver objects]

Figure 4-12. List of driver objects

Network Drive Letters
In addition to its role as an interface to services,
 the SCM has another totally unrelated responsibility: it notifies
 GUI applications in a system whenever the system creates or deletes
 a network drive-letter connection. The SCM waits for the Multiple
 Provider Router (MPR) to signal a named event,
 \BaseNamedObjects\ScNetDrvMsg, which MPR signals whenever an
 application assigns a drive letter to a remote network share or
 deletes a remote-share drive-letter assignment. (See Chapter 7, for more information on MPR.) When MPR
 signals the event, the SCM calls the GetDriveType Windows function
 to query the list of connected network drive letters. If the list
 changes across the event signal, the SCM sends a Windows broadcast
 message of type WM_DEVICECHANGE. The SCM uses either
 DBT_DEVICEREMOVECOMPLETE or DBT_DEVICEARRIVAL as the message’s
 subtype. This message is primarily intended for Windows Explorer so
 that it can update any open Computer windows to show the presence or
 absence of a network drive letter.

Service Startup

SvcCtrlMain invokes the SCM function
 ScAutoStartServices to start all services that
 have a Start value designating auto-start (except delayed auto-start
 services). ScAutoStartServices also starts
 auto-start device drivers. To avoid confusion, you should assume that
 the term services means services and drivers unless indicated
 otherwise. The algorithm in ScAutoStartServices
 for starting services in the correct order proceeds in phases, whereby
 a phase corresponds to a group and phases proceed in the sequence
 defined by the group ordering stored in the
 HKLM\SYSTEM\CurrentControlSet\Control\ServiceGroupOrder\List registry
 value. The List value, shown in Figure 4-13, includes the names of
 groups in the order that the SCM should start them.
 Thus, assigning a service to a group has no effect other than to
 fine-tune its startup with respect to other services belonging to
 different groups.
[image: ServiceGroupOrder registry key]

Figure 4-13. ServiceGroupOrder registry key

When a phase starts, ScAutoStartServices
 marks all the service entries belonging to the phase’s group for
 startup. Then ScAutoStartServices loops through
 the marked services seeing whether it can start each one. Part of this
 check includes seeing whether the service is marked as delayed
 auto-start, which causes the SCM to start it at a later stage.
 (Delayed auto-start services must also be ungrouped.) Another part of
 the check it makes consists of determining whether the service has a
 dependency on another group, as specified by the existence of the
 DependOnGroup value in the service’s registry key. If a dependency
 exists, the group on which the service is dependent must have already
 initialized, and at least one service of that group must have
 successfully started. If the service depends on a group that starts
 later than the service’s group in the group startup sequence, the SCM
 notes a “circular dependency” error for the service. If
 ScAutoStartServices is considering a Windows
 service or an auto-start device driver, it next checks to see whether
 the service depends on one or more other services, and if so, if those
 services have already started. Service dependencies are indicated with
 the DependOnService registry value in a service’s registry key. If a
 service depends on other services that belong to groups that come
 later in the ServiceGroupOrder\List, the SCM also generates a
 “circular dependency” error and doesn’t start the service. If the
 service depends on any services from the same group that haven’t yet
 started, the service is skipped.
When the dependencies of a service have been satisfied,
 ScAutoStartServices makes a final check to see
 whether the service is part of the current boot configuration before
 starting the service. When the system is booted in safe mode, the SCM
 ensures that the service is either identified by name or by group in
 the appropriate safe boot registry key. There are two safe boot keys,
 Minimal and Network, under
 HKLM\SYSTEM\CurrentControlSet\Control\SafeBoot, and the one that the
 SCM checks depends on what safe mode the user booted. If the user
 chose Safe Mode or Safe Mode With Command Prompt at the special boot
 menu (which you can access by pressing F8 early in the boot process),
 the SCM references the Minimal key; if the user chose Safe Mode With
 Networking, the SCM refers to Network. The existence of a string value
 named Option under the SafeBoot key indicates not only that the system
 booted in safe mode but also the type of safe mode the user selected.
 For more information about safe boots, see the section “Safe Mode” in
 Chapter 13 in Part 2.
Once the SCM decides to start a service, it calls
 ScStartService, which takes different steps for
 services than for device drivers. When
 ScStartService starts a Windows service, it first
 determines the name of the file that runs the service’s process by
 reading the ImagePath value from the service’s registry key. It then
 examines the service’s Type value, and if that value is
 SERVICE_WINDOWS_SHARE_PROCESS (0x20), the SCM ensures that the process
 the service runs in, if already started, is logged on using the same
 account as specified for the service being started. (This is to ensure
 that the service is not configured with the wrong account, such as a
 LocalService account, but with an image path pointing to a running
 Svchost, such as netsvcs, which runs as LocalSystem.) A service’s
 ObjectName registry value stores the user account in which the service
 should run. A service with no ObjectName or an ObjectName of
 LocalSystem runs in the local system account.
The SCM verifies that the service’s process hasn’t already been
 started in a different account by checking to see whether the
 service’s ImagePath value has an entry in an internal SCM database
 called the image database. If the image database doesn’t have an entry
 for the ImagePath value, the SCM creates one. When the SCM creates a
 new entry, it stores the logon account name used for the service and
 the data from the service’s ImagePath value. The SCM requires services
 to have an ImagePath value. If a service doesn’t have an ImagePath
 value, the SCM reports an error stating that it couldn’t find the
 service’s path and isn’t able to start the service. If the SCM locates
 an existing image database entry with matching ImagePath data, the SCM
 ensures that the user account information for the service it’s
 starting is the same as the information stored in the database entry—a
 process can be logged on as only one account, so the SCM reports an
 error when a service specifies a different account name than another
 service that has already started in the same process.
The SCM calls ScLogonAndStartImage to log
 on a service if the service’s configuration specifies and to start the
 service’s process. The SCM logs on services that don’t run in the
 System account by calling the LSASS function
 LogonUserEx. LogonUserEx
 normally requires a password, but the SCM indicates to LSASS that the
 password is stored as a service’s LSASS “secret” under the key
 HKLM\SECURITY\Policy\Secrets in the registry. (Keep in mind that the
 contents of SECURITY aren’t typically visible because its default
 security settings permit access only from the System account.) When
 the SCM calls LogonUserEx, it specifies a service
 logon as the logon type, so LSASS looks up the password in the Secrets
 subkey that has a name in the form _SC_<service name>.
The SCM directs LSASS to store a logon password as a secret
 using the LsaStorePrivateData function when an
 SCP configures a service’s logon information. When a logon is
 successful, LogonUserEx returns a handle to an
 access token to the caller. Windows uses access tokens to represent a
 user’s security context, and the SCM later associates the access token
 with the process that implements the service.
After a successful logon, the SCM loads the account’s profile
 information, if it’s not already loaded, by calling the UserEnv DLL’s
 (%SystemRoot%\System32\Userenv.dll)
 LoadUserProfile function. The value
 HKLM\SOFTWARE\Microsoft\Windows NT\CurrentVersion\ProfileList\<user
 profile key>\ProfileImagePath contains the location on disk of a
 registry hive that LoadUserProfile loads into the
 registry, making the information in the hive the HKEY_CURRENT_USER key
 for the service.
An interactive service must open the WinSta0 window
 station, but before ScLogonAndStartImage allows
 an interactive service to access WinSta0 it checks to see whether the
 value
 HKLM\SYSTEM\CurrentControlSet\Control\Windows\NoInteractiveServices is
 set. Administrators set this value to prevent services marked as
 interactive from displaying windows on the console. This option is
 desirable in unattended server environments in which no user is
 present to respond to the Session 0 UI Discovery notification from
 interactive services.
As its next step, ScLogonAndStartImage
 proceeds to launch the service’s process, if the process hasn’t
 already been started (for another service, for example). The SCM
 starts the process in a suspended state with the
 CreateProcessAsUser Windows function. The SCM
 next creates a named pipe through which it communicates with the
 service process, and it assigns the pipe the name
 \Pipe\Net\NtControlPipeX, where X is a number that increments each
 time the SCM creates a pipe. The SCM resumes the service process via
 the ResumeThread function and waits for the service to connect to its
 SCM pipe. If it exists, the registry value
 HKLM\SYSTEM\CurrentControlSet\Control\ServicesPipeTimeout determines
 the length of time that the SCM waits for a service to call
 StartServiceCtrlDispatcher and connect before it
 gives up, terminates the process, and concludes that the service
 failed to start. If ServicesPipeTimeout doesn’t exist, the SCM uses a
 default timeout of 30 seconds. The SCM uses the same timeout value for
 all its service communications.
When a service connects to the SCM through the pipe, the SCM
 sends the service a start command. If the service fails to respond
 positively to the start command within the timeout period, the SCM
 gives up and moves on to start the next service. When a service
 doesn’t respond to a start request, the SCM doesn’t terminate the
 process, as it does when a service doesn’t call
 StartServiceCtrlDispatcher within the timeout;
 instead, it notes an error in the system Event Log that indicates the
 service failed to start in a timely manner.
If the service the SCM starts with a call to
 ScStartService has a Type registry value of
 SERVICE_KERNEL_DRIVER or SERVICE_FILE_SYSTEM_DRIVER, the service is
 really a device driver, so ScStartService calls
 ScLoadDeviceDriver to load the driver.
 ScLoadDeviceDriver enables the load driver
 security privilege for the SCM process and then invokes the kernel
 service NtLoadDriver, passing in the data in the
 ImagePath value of the driver’s registry key. Unlike services, drivers
 don’t need to specify an ImagePath value, and if the value is absent,
 the SCM builds an image path by appending the driver’s name to the
 string %SystemRoot%\System32\Drivers\.
ScAutoStartServices continues looping
 through the services belonging to a group until all the services have
 either started or generated dependency errors. This looping is the
 SCM’s way of automatically ordering services within a group according
 to their DependOnService dependencies. The SCM will start the services
 that other services depend on in earlier loops, skipping the dependent
 services until subsequent loops. Note that the SCM ignores Tag values
 for Windows services, which you might come across in subkeys under the
 HKLM\SYSTEM\CurrentControlSet\Services key; the I/O manager honors Tag
 values to order device driver startup within a group for boot-start
 and system-start drivers. Once the SCM completes phases for all the
 groups listed in the ServiceGroupOrder\List value, it performs a phase
 for services belonging to groups not listed in the value and then
 executes a final phase for services without a group.
After handling auto-start services, the SCM calls
 ScInitDelayStart, which queues a delayed work
 item associated with a worker thread responsible for processing all
 the services that ScAutoStartServices skipped
 because they were marked delayed auto-start. This worker thread will
 execute after the delay. The default delay is 120 seconds, but it can
 be overridden by the creating an AutoStartDelay value in
 HKLM\SYSTEM\CurrentControlSet\Control. The SCM performs the same
 actions as those used during startup of nondelayed auto-start
 services.
Delayed Auto-Start Services
Delayed auto-start services enable Windows to cope with the
 growing number of services that are being started when a user logs
 on, bogging down the boot-up process and increasing the time before
 a user is able to get responsiveness from the desktop. The design of
 auto-start services was primarily intended for services required
 early in the boot process because other services depend on them, a
 good example being the RPC service, on which all other services
 depend. The other use was to allow unattended startup of a service,
 such as the Windows Update service. Because many auto-start services
 fall in this second category, marking them as delayed auto-start
 allows critical services to start faster and for the user’s desktop
 to be ready sooner when a user logs on immediately after booting.
 Additionally, these services run in background mode, which lowers
 their thread, I/O, and memory priority. Configuring a service for
 delayed auto-start requires calling the ChangeServiceConfig2 API.
 You can check the state of the flag for a service by using the qc
 bits option of sc.exe instead.

Note
If a nondelayed auto-start service has a delayed auto-start
 service as one of its dependencies, the delayed auto-start flag will
 be ignored and the service will be started immediately in order to
 satisfy the dependency.

When it’s finished starting all auto-start services and drivers,
 as well as setting up the delayed auto-start work item, the SCM
 signals the event \BaseNamedObjects\SC_AutoStartComplete. This event
 is used by the Windows Setup program to gauge startup progress during
 installation.

Startup Errors

If a driver or a service reports an error in response to the
 SCM’s startup command, the ErrorControl value of the service’s
 registry key determines how the SCM reacts. If the ErrorControl value
 is SERVICE_ERROR_IGNORE (0) or the ErrorControl value isn’t specified,
 the SCM simply ignores the error and continues processing service
 startups. If the ErrorControl value is SERVICE_ERROR_NORMAL (1), the
 SCM writes an event to the system Event Log that says, “The
 <service name> service failed to start due to the following
 error:”. The SCM includes the textual representation of the Windows
 error code that the service returned to the SCM as the reason for the
 startup failure in the Event Log record. Figure 4-14 shows the Event
 Log entry that reports a service startup error.
[image: Service startup failure Event Log entry]

Figure 4-14. Service startup failure Event Log entry

If a service with an ErrorControl value of
 SERVICE_ERROR_SEVERE (2) or SERVICE_ERROR_CRITICAL (3) reports a
 startup error, the SCM logs a record to the Event Log and then calls
 the internal function ScRevertToLastKnownGood. This function switches
 the system’s registry configuration to a version, named last known
 good, with which the system last booted successfully. Then it restarts
 the system using the NtShutdownSystem system service, which is
 implemented in the executive. If the system is already booting with
 the last known good configuration, the system just reboots.

Accepting the Boot and Last Known Good

Besides starting services, the system charges the SCM with
 determining when the system’s registry configuration,
 HKLM\SYSTEM\CurrentControlSet, should be saved as the last known good
 control set. The CurrentControlSet key contains the Services key as a
 subkey, so CurrentControlSet includes the registry representation of
 the SCM database. It also contains the Control key, which stores many
 kernel-mode and user-mode subsystem configuration settings. By
 default, a successful boot consists of a successful startup of
 auto-start services and a successful user logon. A boot fails if the
 system halts because a device driver crashes the system during the
 boot or if an auto-start service with an ErrorControl value of
 SERVICE_ERROR_SEVERE or SERVICE_ERROR_CRITICAL reports a startup
 error.
The SCM obviously knows when it has completed a successful
 startup of the auto-start services, but Winlogon
 (%SystemRoot%\System32\Winlogon.exe) must notify it when there is a
 successful logon. Winlogon invokes the NotifyBootConfigStatus function
 when a user logs on, and NotifyBootConfigStatus
 sends a message to the SCM. Following the successful
 start of the auto-start services or the receipt of the message from
 NotifyBootConfigStatus (whichever comes last),
 the SCM calls the system function
 NtInitializeRegistry to save the current registry
 startup configuration.
Third-party software developers can supersede Winlogon’s
 definition of a successful logon with their own definition. For
 example, a system running Microsoft SQL Server might not consider a
 boot successful until after SQL Server is able to accept and process
 transactions. Developers impose their definition of a successful boot
 by writing a boot-verification program and installing the program by
 pointing to its location on disk with the value stored in the registry
 key HKLM\SYSTEM\CurrentControlSet\Control\BootVerificationProgram. In
 addition, a boot-verification program’s installation must disable
 Winlogon’s call to NotifyBootConfigStatus by
 setting HKLM\SOFTWARE\Microsoft\Windows
 NT\CurrentVersion\Winlogon\ReportBootOk to 0. When a boot-verification
 program is installed, the SCM launches it after finishing auto-start
 services and waits for the program’s call to
 NotifyBootConfigStatus before saving the last
 known good control set.
Windows maintains several copies of CurrentControlSet, and
 CurrentControlSet is really a symbolic registry link that points to
 one of the copies. The control sets have names in the form
 HKLM\SYSTEM\ControlSetnnn, where nnn is a number such as 001 or 002.
 The HKLM\SYSTEM\Select key contains values that identify the role of
 each control set. For example, if CurrentControlSet points to
 ControlSet001, the Current value under Select has a value of 1. The
 LastKnownGood value under Select contains the number of the last known
 good control set, which is the control set last used to boot
 successfully. Another value that might be on your system under the
 Select key is Failed, which points to the last control set for which
 the boot was deemed unsuccessful and aborted in favor of an attempt at
 booting with the last known good control set. Figure 4-15 displays a system’s control
 sets and Select values.
NtInitializeRegistry takes the contents of
 the last known good control set and synchronizes it with that of the
 CurrentControlSet key’s tree. If this was the system’s first
 successful boot, the last known good won’t exist and the system will
 create a new control set for it. If the last known good tree exists,
 the system simply updates it with differences between it and
 CurrentControlSet.
Last known good is helpful in situations in which a change to
 CurrentControlSet, such as the modification of a system
 performance-tuning value under HKLM\SYSTEM\Control or the addition of
 a service or device driver, causes the subsequent boot to fail. Users
 can press F8 early in the boot process to bring up a menu that lets
 them direct the boot to use the last known good control set, rolling
 the system’s registry configuration back to the way it was the last
 time the system booted successfully. Chapter 13 in Part 2 describes in
 more detail the use of last known good and other recovery mechanisms
 for troubleshooting system startup problems.
[image: Control set selection key]

Figure 4-15. Control set selection key

Service Failures

A service can have optional
 FailureActions and
 FailureCommand values in its registry key that
 the SCM records during the service’s startup. The SCM registers with
 the system so that the system signals the SCM when a service process
 exits. When a service process terminates unexpectedly, the SCM
 determines which services ran in the process and takes the recovery
 steps specified by their failure-related registry values.
 Additionally, services are not only limited to requesting failure
 actions during crashes or unexpected service termination, since other
 problems, such as a memory leak, could also result in service
 failure.
If a service enters the SERVICE_STOPPED state and the error code
 returned to the SCM is not ERROR_SUCCESS, the SCM will check whether
 the service has the
 FailureActionsOnNonCrashFailures flag set and
 perform the same recovery as if the service had crashed. To use this
 functionality, the service must be configured via the
 ChangeServiceConfig2 API or the system
 administrator can use the Sc.exe utility with the
 Failureflag parameter to set
 FailureActionsOnNonCrashFailures to
 1. The default value being 0, the SCM will
 continue to honor the same behavior as on earlier versions of Windows
 for all other services.
Actions that a service can configure for the SCM include
 restarting the service, running a program, and rebooting the computer.
 Furthermore, a service can specify the failure actions that take place
 the first time the service process fails, the second time, and
 subsequent times, and it can indicate a delay period that the SCM
 waits before restarting the service if the service asks to be
 restarted. The service failure action of the IIS Admin Service results
 in the SCM running the IISReset application, which performs cleanup
 work and then restarts the service. You can easily manage the recovery
 actions for a service using the Recovery tab of the service’s
 Properties dialog box in the Services MMC snap-in, as shown in Figure 4-16.
[image: Service recovery options]

Figure 4-16. Service recovery options

Service Shutdown

When Winlogon calls the Windows
 ExitWindowsEx function,
 ExitWindowsEx sends a message to Csrss, the
 Windows subsystem process, to invoke Csrss’s shutdown routine. Csrss
 loops through the active processes and notifies them that the system
 is shutting down. For every system process except the SCM, Csrss waits
 up to the number of seconds specified by HKU\.DEFAULT\Control
 Panel\Desktop\WaitToKillAppTimeout (which defaults to 20 seconds) for
 the process to exit before moving on to the next process. When Csrss
 encounters the SCM process, it also notifies it that the system is
 shutting down but employs a timeout specific to the SCM. Csrss
 recognizes the SCM using the process ID Csrss saved when the SCM
 registered with Csrss using the
 RegisterServicesProcess function during system
 initialization. The SCM’s timeout differs from that of other processes
 because Csrss knows that the SCM communicates with services that need
 to perform cleanup when they shut down, so an administrator might need
 to tune only the SCM’s timeout. The SCM’s timeout value resides in the
 HKLM\SYSTEM\CurrentControlSet\Control\WaitToKillServiceTimeout
 registry value, and it defaults to 12 seconds.
The SCM’s shutdown handler is responsible for sending shutdown
 notifications to all the services that requested shutdown notification
 when they initialized with the SCM. The SCM function
 ScShutdownAllServices loops through the SCM
 services database searching for services desiring shutdown
 notification and sends each one a shutdown command. For each service
 to which it sends a shutdown command, the SCM records the value of the
 service’s wait hint, a value that a service also specifies when it
 registers with the SCM. The SCM keeps track of the largest wait hint
 it receives. After sending the shutdown messages, the SCM waits either
 until one of the services it notified of shutdown exits or until the
 time specified by the largest wait hint passes.
If the wait hint expires without a service exiting, the
 SCM determines whether one or more of the services it was waiting on
 to exit have sent a message to the SCM telling the SCM that the
 service is progressing in its shutdown process. If at least one
 service made progress, the SCM waits again for the duration of the
 wait hint. The SCM continues executing this wait loop until either all
 the services have exited or none of the services upon which it’s
 waiting has notified it of progress within the wait hint timeout
 period.
While the SCM is busy telling services to shut down and waiting
 for them to exit, Csrss waits for the SCM to exit. If Csrss’s wait
 ends without the SCM having exited (the WaitToKillServiceTimeout time
 expired), Csrss kills the SCM and continues the shutdown process.
 Thus, services that fail to shut down in a timely manner are killed.
 This logic lets the system shut down in the face of services that
 never complete a shutdown as a result of flawed design, but it also
 means that services that require more than 20 seconds will not
 complete their shutdown operations.
Additionally, because the shutdown order is not deterministic,
 services that might depend on other services to shut down first
 (called shutdown dependencies) have no way to report this to the SCM
 and might never have the chance to clean up either.
To address these needs, Windows implements preshutdown
 notifications and shutdown ordering to combat the problems caused by
 these two scenarios. Preshutdown notifications are sent, using the
 same mechanism as shutdown notifications, to services that have
 requested preshutdown notification via the
 SetServiceStatus API, and the SCM will wait for
 them to be acknowledged.
The idea behind these notifications is to flag services that
 might take a long time to clean up (such as database server services)
 and give them more time to complete their work. The SCM will send a
 progress query request and wait three minutes for a service to respond
 to this notification. If the service does not respond within this
 time, it will be killed during the shutdown procedure; otherwise, it
 can keep running as long as it needs, as long as it continues to
 respond to the SCM.
Services that participate in the preshutdown can also specify a
 shutdown order with respect to other preshutdown services. Services
 that depend on other services to shut down first (for example, the
 Group Policy service needs to wait for Windows Update to finish) can
 specify their shutdown dependencies in the
 HKLM\SYSTEM\CurrentControlSet\Control\PreshutdownOrder registry
 value.

Shared Service Processes

Running every service in its own process instead of having
 services share a process whenever possible wastes system resources.
 However, sharing processes means that if any of the services in the
 process has a bug that causes the process to exit, all the services in
 that process terminate.
Of the Windows built-in services, some run in their own process
 and some share a process with other services. For example, the LSASS
 process contains security-related services—such as the Security
 Accounts Manager (SamSs) service, the Net Logon (Netlogon) service,
 and the Crypto Next Generation (CNG) Key Isolation (KeyIso)
 service.
There is also a generic process named Service Host
 (SvcHost–%SystemRoot%\System32\Svchost.exe) to contain multiple
 services. Multiple instances of SvcHost can be running in different
 processes. Services that run in SvcHost processes include Telephony
 (TapiSrv), Remote Procedure Call (RpcSs), and Remote Access Connection
 Manager (RasMan). Windows implements services that run in SvcHost as
 DLLs and includes an ImagePath definition of the form
 “%SystemRoot%\System32\svchost.exe –k netsvcs” in the service’s
 registry key. The service’s registry key must also have a registry
 value named ServiceDll under a Parameters subkey that points to the
 service’s DLL file.
All services that share a common SvcHost process specify the
 same parameter (“–k netsvcs” in the example in the preceding
 paragraph) so that they have a single entry in the SCM’s image
 database. When the SCM encounters the first service that has a SvcHost
 ImagePath with a particular parameter during service startup, it
 creates a new image database entry and launches a SvcHost process with
 the parameter. The new SvcHost process takes the parameter and looks
 for a value having the same name as the parameter under
 HKLM\SOFTWARE\Microsoft\Windows NT\CurrentVersion\Svchost. SvcHost
 reads the contents of the value, interpreting it as a list of service
 names, and notifies the SCM that it’s hosting those services when
 SvcHost registers with the SCM.
When the SCM encounters a SvcHost service (by checking the
 service type value) during service startup with an ImagePath matching
 an entry it already has in the image database, it doesn’t launch a
 second process but instead just sends a start command for the service
 to the SvcHost it already started for that ImagePath value. The
 existing SvcHost process reads the ServiceDll parameter in the
 service’s registry key and loads the DLL into its process to start the
 service.
Table 4-11 lists all the default
 service groupings on Windows and some of the services that are
 registered for each of them.
Table 4-11. Major Service Groupings
	Service Group
	Services
	Notes

	LocalService
	Network Store Interface, Windows
 Diagnostic Host, Windows Time, COM+ Event System, HTTP
 Auto-Proxy Service, Software Protection Platform UI
 Notification, Thread Order Service, LLDT Discovery, SSL, FDP
 Host, WebClient
	Services that run in the local
 service account and make use of the network on various ports
 or have no network usage at all (and hence no
 restrictions).

	LocalServiceAndNoImpersonation
	UPnP and SSDP, Smart Card, TPM, Font
 Cache, Function Discovery, AppID, qWAVE, Windows Connect Now,
 Media Center Extender, Adaptive Brightness
	Services that run in the local
 service account and make use of the network on a fixed set of
 ports. Services run with a write-restricted
 token.

	LocalServiceNetworkRestricted
	DHCP, Event Logger, Windows Audio,
 NetBIOS, Security Center, Parental Controls, HomeGroup
 Provider
	Services that run in the local
 service account and make use of the network on a fixed set of
 ports.

	LocalServiceNoNetwork
	Diagnostic Policy Engine, Base
 Filtering Engine, Performance Logging and Alerts, Windows
 Firewall, WWAN AutoConfig
	Services that run in the local
 service account but make no use of the network at all.
 Services run with a write-restricted token.

	LocalSystemNetworkRestricted
	DWM, WDI System Host, Network
 Connections, Distributed Link Tracking, Windows Audio
 Endpoint, Wired/WLAN AutoConfig, Pnp-X, HID Access, User-Mode
 Driver Framework Service, Superfetch, Portable Device
 Enumerator, HomeGroup Listener, Tablet Input, Program
 Compatibility, Offline Files
	Services that run in the local
 system account and make use of the network on a fixed set of
 ports.

	NetworkService
	Cryptographic Services, DHCP Client,
 Terminal Services, WorkStation, Network Access Protection,
 NLA, DNS Client, Telephony, Windows Event Collector,
 WinRM
	Services that run in the network
 service account and make use of the network on various ports
 (or have no enforced network restrictions).

	NetworkServiceAndNoImpersonation
	KTM for DTC
	Services that run in the network
 service account and make use of the network on a fixed set of
 ports. Services run with a write-restricted
 token.

	NetworkServiceNetworkRestricted
	IPSec Policy Agent
	Services that run in the network
 service account and make use of the network on a fixed set of
 ports.

EXPERIMENT: Viewing Services Running Inside Processes
The Process Explorer utility shows detailed information about
 the services running within processes. Run Process Explorer, and
 view the Services tab in the Process Properties dialog box for the
 following processes: Services.exe, Lsass.exe, and Svchost.exe.
 Several instances of SvcHost will be running on your system, and you
 can see the account in which each is running by adding the Username
 column to the Process Explorer display or by looking at the Username
 field on the Image tab of a process’ Process Properties dialog box.
 The following screen shows the list of services running within a
 SvcHost executing in the local service account:
[image: image with no caption]

The information displayed includes the service’s name,
 display name, and description, if it has one, which Process Explorer
 shows beneath the service list when you select a service.
 Additionally, the path of the DLL containing the service is shown.
 This information is useful for mapping thread start addresses (shown
 on the Threads tab) to their respective services, which can help in
 cases of service-related problems such as troubleshooting high CPU
 usage.
You can also use the tlist.exe tool from the Debugging Tools
 for Windows or Tasklist, which ships with Windows, to view the list
 of services running within processes from a command prompt. The
 syntax to see services with Tlist is:
tlist /s
The syntax for tasklist is:
tasklist /svc
Note that these utilities do not show service display names or
 descriptions, only service names.

Service Tags

One of the disadvantages of using service-hosting processes is
 that accounting for CPU time and usage, as well as for the usage of
 resources, by a specific service is much harder because each service
 is sharing the memory address space, handle table, and per-process CPU
 accounting numbers with the other services that are part of the same
 service group. Although there is always a thread inside the
 service-hosting process that belongs to a certain service, this
 association might not always be easy to make. For example, the service
 might be using worker threads to perform its operation, or perhaps the
 start address and stack of the thread do not reveal the service’s DLL
 name, making it hard to figure out what kind of work a thread might
 exactly be doing and to which service it might belong.
Windows implements a service attribute called the service tag,
 which the SCM generates by calling
 ScGenerateServiceTag when a service is created or
 when the service database is generated during system boot. The
 attribute is simply an index identifying the service. The service tag
 is stored in the SubProcessTag field of the thread environment block
 (TEB) of each thread (see Chapter 5, for more
 information on the TEB) and is propagated across all threads that a
 main service thread creates (except threads created indirectly by
 thread-pool APIs).
Although the service tag is kept internal to the SCM, several
 Windows utilities, like Netstat.exe (a utility you can use for
 displaying which programs have opened which ports on the network), use
 undocumented APIs to query service tags and map them to service names.
 Because the TCP/IP stack saves the service tag of the threads that
 create TCP/IP end points, when you run Netstat with the –b parameter,
 Netstat can report the service name for end points created by
 services. Another tool you can use to look at service tags is
 ScTagQuery from Winsider Seminars & Solutions Inc.
 (www.winsiderss.com/tools/sctagquery/sctagquery.htm).
 It can query the SCM for the mappings of every service tag and display
 them either systemwide or per-process. It can also show you to which
 services all the threads inside a service-hosting process belong.
 (This is conditional on those threads having a proper service tag associated with them.) This
 way, if you have a runaway service consuming lots of CPU time, you can
 identify the culprit service in case the thread start address or stack
 does not have an obvious service DLL associated with it.

Unified Background Process Manager

Various Windows components have traditionally been in charge of
 managing hosted or background tasks as the operating system has
 increased in complexity in features, from the Service Control Manager
 described earlier to the Task Scheduler, the DCOM Server Launcher, and
 the WMI Provider—all of which are also responsible for the execution of
 out-of-process, hosted code. Today, Windows implements a Unified
 Background Process Manager (UBPM), which handles (at least, for now) two
 of these mechanisms—the SCM and Task Scheduler—providing the ability for
 these components to access UBPM functionality.
UBPM is implemented in Services.exe, in the same location as the
 SCM, but as a separate library providing its own interface over RPC
 (similarly to how the Plug and Play Manager also runs in Services.exe
 but is a separate component). It provides access to that interface
 through a public export DLL, Ubpm.dll, which is exposed to third-party
 service developers through new Trigger APIs that have been added to the
 SCM. The SCM then loads a custom SCM Extension DLL (Scext.dll), which
 calls into Ubpm.dll. This layer of indirection is needed for MinWin
 support, where Scext.dll is not loaded and the SCM provides only minimal
 functionality. Figure 4-17 describes
 this architecture.
[image: Overall UBPM architecture]

Figure 4-17. Overall UBPM architecture

Initialization

UBPM is initialized by the SCM when its UbpmInitialize
 export is called by ScExtInitializeTerminateUbpm
 in the SCM Extension DLL. As such, it is implemented as a DLL running
 within the context of the SCM, not as its own separate process.
UBPM first begins initialization by setting up its internal
 utility library. By leveraging many of the improvements in newer
 versions of Windows, UBPM uses a thread pool to process the many
 incoming events we will later see, which allows it to scale from
 having a single worker thread to having up to 1000 (based on a maximum
 processing of 10,000 consumers).
Next, UBPM initializes its internal tracing support, which can
 be configured in the HKLM\Software\Microsoft\Windows
 NT\CurrentVersion\Tracing\UBPM\Regular key using the Flags value. This
 is useful for debugging and monitoring the behavior of the UBPM using
 the WPP tracing mechanism described in the Windows Driver Kit.
Following that, the event manager is set up, which will be used
 by later components of UBPM to report internal event states. The event
 manager registers a TASKSCHED GUID on which ETW events can be
 consumed, and it logs its state to a TaskScheduler.log file.
The next step, critical to UBPM, is to initialize its own
 real-time ETW consumer, which is the central mechanism used by UBPM to
 perform its job, as almost all the data it receives comes over as ETW
 events. UBPM starts an ETW real-time session in secure mode, meaning
 that it will be the only process capable of receiving its events, and
 it names its session UBPM. It also enables the first built-in provider
 (owned by the kernel) in order to receive notifications related to
 time changes.
It then associates an event callback—UbpmpEventCallback—with
 incoming events and creates a consumer thread, UbpmpConsumeEvents,
 that waits for the SCM’s event used to signify that auto-start events
 have completed (which was named previously). Once this happens, the
 consumer thread calls ProcessTrace, which calls into ETW and blocks
 the thread until the ETW trace is completed (normally, only once UBPM
 exists). The event callback, on the other hand, consumes each ETW
 event as it arrives and processes it according to the algorithm we’ll
 see in the next section.
ETW automatically replays any events that were missed before
 ProcessTrace was called, which means that kernel events during the
 boot will all be incoming at once and processed appropriately. UBPM
 also waits on the SCM’s auto-start event, which makes sure that when
 these events do come in, there will at least have been a couple of
 services that registered for them; otherwise, starting the trace too
 early will result in events with no registered consumers, which will
 cause them to be lost.
Finally, UBPM sets up a local RPC interface to TaskHost—the
 second component of UBPM, which we’ll describe later—and it also sets
 up its own local RPC interface, which exposes the APIs that allows
 services to use UBPM functionality (such as registering trigger
 providers, generating triggers and notifications, and so forth). These
 APIs are implemented in the Ubpm.dll library and use RPC to
 communicate to the RPC interface in the UBPM code of
 Services.exe.
When UBPM exits, the opposite actions in the reverse order are
 performed to reset the system to its previous state.

UBPM API

UBPM enables the following mechanisms to be used by
 having services use the UBPM API:
	Registering and unregistering a trigger provider, as well as
 opening and closing a handle to one

	Generating a notification or a trigger

	Setting and querying the configuration of a trigger
 provider

	Sending a control command to a trigger provider

Provider Registration

Providers are registered through the SCM Extension DLL, which
 uses the ScExtpRegisterProvider function that is
 used by ScExtGenerateNotification. This opens a
 handle to UBPM and calls the
 UbpmRegisterTriggerProvider API. When a service
 registers a provider, it must define a unique name and GUID for the
 provider, as well as the necessary flags to define the provider (for
 example, by using the ETW provider flag). Additionally, providers can
 also have a friendly name as well as a description. Once registration
 is completed, the provider is inserted into UBPM’s provider list, the
 total count of providers is incremented, and, if this is an ETW
 provider that’s not being started with the disabled flag, the
 provider’s GUID is enabled in the real-time ETW trace that UBPM
 activated upon initialization. A provider block is created containing
 all the provider’s information that was captured from the
 registration.
Now that a provider is registered, the open and close API can be
 used to increment the reference count to the provider and return its
 provider block. Furthermore, if the provider was not registered in a
 disabled state, and this is the first reference to it, its GUID is
 enabled in the real-time ETW trace.
Similarly, unregistering a provider will disable its GUID and
 unlink it from the provider list, and as soon as all references are
 closed, the provider block will be deleted.
EXPERIMENT: Viewing UBPM Trigger Providers
You can use the Performance Monitor to see UBPM actively
 monitoring all the ETW providers that have registered with it.
 Follow these instructions to do so:
	Open the Performance Monitor by clicking on the Start
 button, and then choosing Run.

	Type perfmon, and click OK.

	When Performance Monitor launches, expand Data Collector
 Sets on the left sidebar by clicking the arrow.

	Choose Event Trace Sessions from the list, and then double
 click on the UBPM entry.

The following screen shot displays the UBPM trigger
 providers on the author’s machine. You should see a similar
 display.
[image: image with no caption]

As you can see from the large list, dozens of providers are
 registered, each of them capable of generating individual events.
 For example, the BfeTriggerProvider handles Firewall events. In a
 later experiment, you will see a consumer of such an event.

Consumer Registration

Service consumer registration is initially exposed by the
 ScExtRegisterTriggerConsumer callback that the
 SCM Extension DLL provides. Its job is to receive all the
 SCM-formatted trigger information (which service developers provide
 according to the MSDN API documentation, “Service Trigger Events”
 available on MSDN) and convert that information into the raw data
 structures that UBPM internally uses. Once all the processing is
 finished, the SCM Extension DLL packages the trigger and associates it
 with two actions: UBPM Start Service and UBPM Stop Service.
The Scheduled Tasks service, which also leverages UBPM, provides
 similar functionality through an internal UBPM Singleton Class, which
 calls into Ubpm.dll. It allows its internal RegisterTask API to also
 register for trigger consumption, and it does similar processing of
 its input data, with the difference being that it uses the UBPM Start
 EXE action. Next, to actually perform the registration, both open a
 handle to UBPM, check if the consumer is already registered (changes
 to existing consumers are not allowed), and finally register the
 provider through the UbpmRegisterTriggerConsumer
 API.
Trigger consumer registration is done by
 UbpmTriggerProviderRegister, which validates the
 request, adds the provider’s GUID into the list of providers, and
 toggles it to enable the ETW trace to now receive events about this
 provider as well.
EXPERIMENT: Viewing Which Services React to Which
 Triggers
Certain Windows services are already preconfigured to consume
 the appropriate triggers to prevent them from staying resident even
 when they’re not needed, such as the Windows Time Service, the
 Tablet Input Service, and the Computer Browser service. The sc
 command lets you query information about a service’s triggers with
 the qtriggerinfo option.
	Open a command prompt.

	Type the following to see the triggers for the Windows
 Time Service:
sc qtriggerinfo w32time

[SC] QueryServiceConfig2 SUCCESS
SERVICE_NAME: w32time

 START SERVICE
 DOMAIN JOINED STATUS : 1ce20aba-9851-4421-9430-1ddeb766e809
[DOMAIN JOINED]
 STOP SERVICE
 DOMAIN JOINED STATUS : ddaf516e-58c2-4866-9574-c3b615d42ea1
[NOT DOMAIN JOINED]

	Now look at the Tablet Input Service:
sc qtriggerinfo tabletinputservice
[SC] QueryServiceConfig2 SUCCESS
SERVICE_NAME: tabletinputservice

 START SERVICE
 DEVICE INTERFACE ARRIVAL : 4d1e55b2-f16f-11cf-88cb-001111000030
[INTERFACE CLASS GUID]
 DATA : HID_DEVICE_UP:000D_U:0001
 DATA : HID_DEVICE_UP:000D_U:0002
 DATA : HID_DEVICE_UP:000D_U:0003
 DATA : HID_DEVICE_UP:000D_U:0004

	Finally, here is the Computer Browser Service:
sc qtriggerinfo browser
[SC] QueryServiceConfig2 SUCCESS

SERVICE_NAME: browser

 START SERVICE
 FIREWALL PORT EVENT : b7569e07-8421-4ee0-ad10-86915afdad09
[PORT OPEN]
 DATA : 139;TCP;System;
 DATA : 137;UDP;System;
 DATA : 138;UDP;System;
 STOP SERVICE
 FIREWALL PORT EVENT : a144ed38-8e12-4de4-9d96-e64740b1a524
[PORT CLOSE]
 DATA : 139;TCP;System;
 DATA : 137;UDP;System;
 DATA : 138;UDP;System;

In these three cases, note how the Windows Time
 Service is waiting for domain join/exit in order to decide whether
 or not it should run, while the Tablet Input Service is waiting for
 a device with the HID Class ID matching Tablet Device. Finally, the
 Computer Browser Service will run only if the firewall policy allows
 access on ports 137, 138, and 139, which are SMB network ports that
 the browser needs.

Task Host

TaskHost receives commands from UBPM living in the SCM. At
 initialization time, it opens the local RPC interface that was created
 by UBPM during its initialization and loops forever, waiting for
 commands to come through the channel. Four commands are currently
 supported, which are sent over the
 TaskHostSendResponseReceiveCommand RPC
 API:
	Stopping the host

	Starting a task

	Stopping a task

	Terminating a task

Additionally, hosted tasks are supplied with a
 TaskHostReportTaskStatus RPC API, which enables
 them to notify UBPM of their current execution state whenever they
 call UbpmReportTaskStatus.
All task-based commands are actually internally implemented by a
 generic COM Task library, and they essentially result in the creation
 and destruction of COM components.

Service Control Programs

Service control programs are standard Windows applications that
 use SCM service management functions, including
 CreateService, OpenService,
 StartService,
 ControlService,
 QueryServiceStatus, and
 DeleteService. To use the SCM functions, an SCP
 must first open a communications channel to the SCM by calling the
 OpenSCManager function. At the time of the open
 call, the SCP must specify what types of actions it wants to perform.
 For example, if an SCP simply wants to enumerate and display the
 services present in the SCM’s database, it requests enumerate-service
 access in its call to OpenSCManager. During its
 initialization, the SCM creates an internal object that represents the
 SCM database and uses the Windows security functions to
 protect the object with a security descriptor that specifies what
 accounts can open the object with what access permissions. For
 example, the security descriptor indicates that the Authenticated
 Users group can open the SCM object with enumerate-service access.
 However, only administrators can open the object with the access
 required to create or delete a service.
As it does for the SCM database, the SCM implements security for
 services themselves. When an SCP creates a service by using the
 CreateService function, it specifies a security
 descriptor that the SCM associates internally with the service’s entry
 in the service database. The SCM stores the security descriptor in the
 service’s registry key as the Security value, and it reads that value
 when it scans the registry’s Services key during initialization so
 that the security settings persist across reboots. In the same way
 that an SCP must specify what types of access it wants to the SCM
 database in its call to OpenSCManager, an SCP
 must tell the SCM what access it wants to a service in a call to
 OpenService. Accesses that an SCP can request
 include the ability to query a service’s status and to configure,
 stop, and start a service.
The SCP you’re probably most familiar with is the Services MMC
 snap-in that’s included in Windows, which resides in
 %SystemRoot%\System32\Filemgmt.dll. Windows also includes Sc.exe
 (Service Controller tool), a command-line service control program that
 we’ve mentioned multiple times.
SCPs sometimes layer service policy on top of what the SCM
 implements. A good example is the timeout that the Services MMC
 snap-in implements when a service is started manually. The snap-in
 presents a progress bar that represents the progress of a service’s
 startup. Services indirectly interact with SCPs by setting their
 configuration status to reflect their progress as they respond to SCM
 commands such as the start command. SCPs query the status with the
 QueryServiceStatus function. They can tell when a
 service actively updates the status versus when a service appears to
 be hung, and the SCM can take appropriate actions in notifying a user
 about what the service is doing.

Windows Management Instrumentation

Windows Management Instrumentation (WMI) is an implementation of
 Web-Based Enterprise Management (WBEM), a standard that the Distributed
 Management Task Force (DMTF—an industry consortium) defines. The WBEM
 standard encompasses the design of an extensible enterprise
 data-collection and data-management facility that has the flexibility
 and extensibility required to manage local and remote systems that
 comprise arbitrary components.
WMI Architecture

WMI consists of four main components, as shown in Figure 4-18: management applications, WMI
 infrastructure, providers, and managed objects. Management
 applications are Windows applications that access and display or
 process data about managed objects. A simple example of a management
 application is a performance tool replacement that relies on WMI
 rather than the Performance API to obtain performance information. A
 more complex example is an enterprise-management tool that lets administrators perform automated inventories of the
 software and hardware configuration of every computer in their
 enterprise.
[image: WMI architecture]

Figure 4-18. WMI architecture

Developers typically must target management applications to
 collect data from and manage specific objects. An object might
 represent one component, such as a network adapter device, or a
 collection of components, such as a computer. (The computer object
 might contain the network adapter object.) Providers need to define
 and export the representation of the objects that management
 applications are interested in. For example, the vendor of a network
 adapter might want to add adapter-specific properties to the network
 adapter WMI support that Windows includes, querying and setting the
 adapter’s state and behavior as the management applications direct. In
 some cases (for example, for device drivers), Microsoft supplies a
 provider that has its own API to help developers leverage the
 provider’s implementation for their own managed objects with minimal
 coding effort.
The WMI infrastructure, the heart of which is the Common
 Information Model (CIM) Object Manager (CIMOM), is the glue that binds
 management applications and providers. (CIM is described later in this
 chapter.) The infrastructure also serves as the object-class store
 and, in many cases, as the storage manager for persistent object
 properties. WMI implements the store, or repository, as an on-disk
 database named the CIMOM Object Repository. As part of its
 infrastructure, WMI supports several APIs through which management
 applications access object data and providers supply data and class
 definitions.
Windows programs and scripts (such as Windows
 PowerShell) use the WMI COM API, the primary management API, to
 directly interact with WMI. Other APIs layer on top of the COM API and
 include an Open Database Connectivity (ODBC) adapter for the Microsoft
 Access database application. A database developer uses the WMI ODBC
 adapter to embed references to object data in the developer’s
 database. Then the developer can easily generate reports with database
 queries that contain WMI-based data. WMI ActiveX controls support
 another layered API. Web developers use the ActiveX controls to
 construct web-based interfaces to WMI data. Another management API is
 the WMI scripting API, for use in script-based applications and
 Microsoft Visual Basic programs. WMI scripting support exists for all
 Microsoft programming language technologies.
As they are for management applications, WMI COM interfaces
 constitute the primary API for providers. However, unlike management
 applications, which are COM clients, providers are COM or Distributed
 COM (DCOM) servers (that is, the providers implement COM objects that
 WMI interacts with). Possible embodiments of a WMI provider include
 DLLs that load into WMI’s manager process or stand-alone Windows
 applications or Windows services. Microsoft includes a number of
 built-in providers that present data from well-known sources, such as
 the Performance API, the registry, the Event Manager, Active
 Directory, SNMP, and modern device drivers. The WMI SDK lets
 developers develop third-party WMI providers.

Providers

At the core of WBEM is the DMTF-designed CIM specification. The
 CIM specifies how management systems represent, from a systems
 management perspective, anything from a computer to an application or
 device on a computer. Provider developers use the CIM to represent the
 components that make up the parts of an application for which the
 developers want to enable management. Developers use the Managed
 Object Format (MOF) language to implement a CIM representation.
In addition to defining classes that represent objects, a
 provider must interface WMI to the objects. WMI classifies providers
 according to the interface features the providers supply. Table 4-12 lists WMI provider
 classifications. Note that a provider can implement one or more
 features; therefore, a provider can be, for example, both a class and
 an event provider. To clarify the feature definitions in Table 4-12, let’s look at a provider that
 implements several of those features. The Event Log provider supports
 several objects, including an Event Log Computer, an Event Log Record,
 and an Event Log File. The Event Log is an Instance provider because
 it can define multiple instances for several of its classes. One class
 for which the Event Log provider defines multiple instances is the
 Event Log File class (Win32_NTEventlogFile); the Event Log provider
 defines an instance of this class for each of the system’s event logs
 (that is, System Event Log, Application Event Log, and Security Event
 Log).
Table 4-12. Provider Classifications
	Classification
	Description

	Class
	Can supply, modify, delete, and
 enumerate a provider-specific class. It can also support query
 processing. Active Directory is a rare example of a service
 that is a class provider.

	Instance
	Can supply, modify, delete, and
 enumerate instances of system and provider-specific classes.
 An instance represents a managed object. It can also support
 query processing.

	Property
	Can supply and modify individual
 object property values.

	Method
	Supplies methods for a
 provider-specific class.

	Event
	Generates event
 notifications.

	Event consumer
	Maps a physical consumer to a
 logical consumer to support event notification.

The Event Log provider defines the instance data and lets
 management applications enumerate the records. To let management
 applications use WMI to back up and restore the Event Log files, the
 Event Log provider implements backup and restore methods for Event Log
 File objects. Doing so makes the Event Log provider a Method provider.
 Finally, a management application can register to receive notification
 whenever a new record writes to one of the Event Logs. Thus, the Event
 Log provider serves as an Event provider when it uses WMI event
 notification to tell WMI that Event Log records have arrived.

The Common Information Model and the Managed Object Format
 Language

The CIM follows in the steps of object-oriented languages such
 as C++ and C#, in which a modeler designs representations as classes.
 Working with classes lets developers use the powerful modeling
 techniques of inheritance and composition. Subclasses can inherit the
 attributes of a parent class, and they can add their own
 characteristics and override the characteristics they inherit from the
 parent class. A class that inherits properties from another class
 derives from that class. Classes also compose: a developer can build a
 class that includes other classes.
The DMTF provides multiple classes as part of the WBEM standard.
 These classes are CIM’s basic language and represent objects that
 apply to all areas of management. The classes are part of the CIM core
 model. An example of a core class is CIM_ManagedSystemElement. This
 class contains a few basic properties that identify physical
 components such as hardware devices and logical components such as
 processes and files. The properties include a caption, description,
 installation date, and status. Thus, the CIM_LogicalElement and
 CIM_PhysicalElement classes inherit the attributes of the
 CIM_ManagedSystemElement class. These two classes are also part of the
 CIM core model. The WBEM standard calls these classes abstract classes
 because they exist solely as classes that other classes inherit (that
 is, no object instances of an abstract class exist). You can therefore
 think of abstract classes as templates that define properties for use
 in other classes.
A second category of classes represents objects that are
 specific to management areas but independent of a particular
 implementation. These classes constitute the common model and are
 considered an extension of the core model. An example of a
 common-model class is the CIM_FileSystem class, which inherits the
 attributes of CIM_LogicalElement. Because virtually every operating
 system—including Windows, Linux, and other varieties of UNIX—rely on
 file-system-based structured storage, the CIM_FileSystem class is an
 appropriate constituent of the common model.
The final class category, the extended model, comprises
 technology-specific additions to the common model. Windows defines a
 large set of these classes to represent objects specific to the
 Windows environment. Because all operating systems store
 data in files, the CIM common model includes the CIM_LogicalFile
 class. The CIM_DataFile class inherits the CIM_LogicalFile class, and
 Windows adds the Win32_PageFile and Win32_ShortcutFile file classes
 for those Windows file types.
The Event Log provider makes extensive use of inheritance. Figure 4-19 shows a view of the WMI CIM Studio, a
 class browser that ships with the WMI Administrative Tools that you
 can obtain from the Microsoft download center at the Microsoft
 website. You can see where the Event Log provider relies on
 inheritance in the provider’s Win32_NTEventlogFile class, which
 derives from CIM_DataFile. Event Log files are data files that have
 additional Event Log–specific attributes such as a log file name
 (LogfileName) and a count of the number of records that the file
 contains (NumberOfRecords). The tree that the class browser shows
 reveals that Win32_NTEventlogFile is based on several levels of
 inheritance, in which CIM_DataFile derives from CIM_LogicalFile, which
 derives from CIM_LogicalElement, and CIM_LogicalElement derives from
 CIM_ManagedSystemElement.
[image: WMI CIM Studio]

Figure 4-19. WMI CIM Studio

As stated earlier, WMI provider developers write their
 classes in the MOF language. The following output shows the definition
 of the Event Log provider’s Win32_NTEventlogFile, which is selected in
 Figure 4-19. Notice the correlation between the
 properties that the right panel in Figure 4-19
 lists and those properties’ definitions in the MOF file that follows.
 CIM Studio uses yellow arrows to tag the properties that a class
 inherits. Thus, you don’t see those properties specified in
 Win32_NTEventlogFile’s definition.
dynamic: ToInstance, provider("MS_NT_EVENTLOG_PROVIDER"), Locale(1033), UUID("{8502C57B-5FBB-11D2-AAC1-006008C78BC7}")]
class Win32_NTEventlogFile : CIM_DataFile
{
[read] string LogfileName;
[read, write] uint32 MaxFileSize;
[read] uint32 NumberOfRecords;
[read, volatile, ValueMap{"0", "1..365", "4294967295"}] string OverWritePolicy;
[read, write, Units("Days"), Range("0-365 | 4294967295")] uint32 OverwriteOutDated;
[read] string Sources[];
[implemented, Privileges{"SeSecurityPrivilege", "SeBackupPrivilege"}] uint32 ClearEventlog([in]
string ArchiveFileName);
[implemented, Privileges{"SeSecurityPrivilege", "SeBackupPrivilege"}] uint32 BackupEventlog([in]
string ArchiveFileName);
};
One term worth reviewing is dynamic, which is a descriptive
 designator for the Win32_NTEventlogFile class that the MOF file in the
 preceding output shows. “Dynamic” means that the WMI infrastructure
 asks the WMI provider for the values of properties associated with an
 object of that class whenever a management application queries the
 object’s properties. A static class is one in the WMI repository; the
 WMI infrastructure refers to the repository to obtain the values
 instead of asking a provider for the values. Because updating the
 repository is a relatively expensive operation, dynamic providers are
 more efficient for objects that have properties that change
 frequently.
EXPERIMENT: Viewing the MOF Definitions of WMI
 Classes
You can view the MOF definition for any WMI class by using the
 WbemTest tool that comes with Windows. In this experiment, we’ll
 look at the MOF definition for the Win32_NTEventLogFile
 class:
	Run Wbemtest from the Start menu’s Run dialog box.

	Click the Connect button, change the Namespace to
 root\cimv2, and connect.

	Click the Enum Classes button, select the Recursive option
 button, and then click OK.

	Find Win32_NTEventLogFile in the list of classes, and then
 double-click it to see its class properties.

	Click the Show MOF button to open a window that displays
 the MOF text.

After constructing classes in MOF, WMI developers can
 supply the class definitions to WMI in several ways. WDM driver
 developers compile a MOF file into a binary MOF (BMF) file—a more
 compact binary representation than a MOF file—and can choose to
 dynamically give the BMF files to the WDM infrastructure or to
 statically include it in their binary. Another way is for the provider
 to compile the MOF and use WMI COM APIs to give the definitions to the
 WMI infrastructure. Finally, a provider can use the MOF Compiler
 (Mofcomp.exe) tool to give the WMI infrastructure a classes-compiled
 representation directly.
The WMI Namespace

Classes define the properties of objects, and objects are
 class instances on a system. WMI uses a namespace that contains
 several subnamespaces that WMI arranges hierarchically to organize
 objects. A management application must connect to a namespace before
 the application can access objects within the namespace.
WMI names the namespace root directory root. All WMI
 installations have four predefined namespaces that reside beneath
 root: CIMV2, Default, Security, and WMI. Some of these namespaces
 have other namespaces within them. For example, CIMV2 includes the
 Applications and ms_409 namespaces as subnamespaces. Providers
 sometimes define their own namespaces; you can see the WMI namespace
 (which the Windows device driver WMI provider defines) beneath root
 in Windows.
EXPERIMENT: Viewing WMI Namespaces
You can see what namespaces are defined on a system with WMI
 CIM Studio. WMI CIM Studio presents a connection dialog box when
 you run it that includes a namespace browsing button to the right
 of the namespace edit box. Opening the browser and selecting a
 namespace has WMI CIM Studio connect to that namespace. Windows
 defines over a dozen namespaces beneath root, some of which are
 visible here:
[image: image with no caption]

Unlike a file system namespace, which comprises a
 hierarchy of directories and files, a WMI namespace is only one
 level deep. Instead of using names as a file system does, WMI uses
 object properties that it defines as keys to identify the objects.
 Management applications specify class names with key names to locate
 specific objects within a namespace. Thus, each instance of a class
 must be uniquely identifiable by its key values. For example, the
 Event Log provider uses the Win32_NTLogEvent class to represent
 records in an Event Log. This class has two keys: Logfile, a string;
 and RecordNumber, an unsigned integer. A management application that
 queries WMI for instances of Event Log records obtains them from the
 provider key pairs that identify records. The application refers to
 a record using the syntax that you see in this sample object path
 name:
\\DARYL\root\CIMV2:Win32_NTLogEvent.Logfile="Application",
 RecordNumber="1"
The first component in the name (\\DARYL) identifies the
 computer on which the object is located, and the second component
 (\root\CIMV2) is the namespace in which the object resides. The
 class name follows the colon, and key names and their associated
 values follow the period. A comma separates the key values.
WMI provides interfaces that let applications enumerate all
 the objects in a particular class or to make queries that return
 instances of a class that match a query criterion.

Class Association

Many object types are related to one another in some way. For
 example, a computer object has a processor, software, an operating
 system, active processes, and so on. WMI lets providers construct an
 association class to represent a logical connection between two
 different classes. Association classes associate one class with
 another, so the classes have only two properties: a class name and the
 Ref modifier. The following output shows an association in which the
 Event Log provider’s MOF file associates the Win32_NTLogEvent class
 with the Win32_ComputerSystem class. Given an object, a management
 application can query associated objects. In this way, a provider
 defines a hierarchy of objects.
[dynamic: ToInstance, provider("MS_NT_EVENTLOG_PROVIDER"): ToInstance, EnumPrivileges{"Se
SecurityPrivilege"}:
ToSubClass, Locale(1033): ToInstance, UUID("{8502C57F-5FBB-11D2-AAC1-006008C78BC7}"):
ToInstance, Association: DisableOverride ToInstance ToSubClass]
class Win32_NTLogEventComputer
{
 [key, read: ToSubClass] Win32_ComputerSystem ref Computer;
 [key, read: ToSubClass] Win32_NTLogEvent ref Record;
};
Figure 4-20 shows the WMI
 Object Browser (another tool that the WMI Administrative Tools
 includes) displaying the contents of the CIMV2 namespace. Windows
 system components typically place their objects within the CIMV2
 namespace. The Object Browser first locates the Win32_ComputerSystem
 object instance ALEX-LAPTOP, which is the object that represents the
 computer. Then the Object Browser obtains the objects associated with
 Win32_ComputerSystem and displays them beneath ALEX-LAPTOP. The Object
 Browser user interface displays association objects with a
 double-arrow folder icon. The associated class type’s objects display
 beneath the folder.
You can see in the Object Browser that the Event Log provider’s
 association class Win32_NTLogEventComputer is beneath ALEX-LAPTOP and
 that numerous instances of the Win32_NTLogEvent class exist. Refer to
 the preceding output to verify that the MOF file defines the
 Win32_NTLogEventComputer class to associate the Win32_ComputerSystem
 class with the Win32_NTLogEvent class. Selecting an instance of
 Win32_NTLogEvent in the Object Browser reveals that class’ properties
 under the Properties tab in the right pane. Microsoft intended the
 Object Browser to help WMI developers examine their objects, but a
 management application would perform the same operations and display
 properties or collected information more intelligibly.
[image: WMI Object Browser]

Figure 4-20. WMI Object Browser

EXPERIMENT: Using WMI Scripts to Manage Systems
A powerful aspect of WMI is its support for scripting
 languages. Microsoft has generated hundreds of scripts that perform
 common administrative tasks for managing user accounts, files, the
 registry, processes, and hardware devices. The Microsoft TechNet
 Scripting Center website serves as the central location for
 Microsoft scripts. Using a script from the scripting center is as
 easy as copying its text from your Internet browser, storing it in a
 file with a .vbs extension, and running it with the command cscript
 script.vbs, where script is the name you gave the script. Cscript is
 the command-line interface to Windows Script Host (WSH).
Here’s a sample TechNet script that registers to receive
 events when Win32_Process object instances are created, which occurs
 whenever a process starts, and prints a line with the name of the
 process that the object represents:
strComputer = "."
Set objWMIService = GetObject("winmgmts:" _
 & "{impersonationLevel=impersonate}!\\" & strComputer & "\root\cimv2")
Set colMonitoredProcesses = objWMIService. _
 ExecNotificationQuery("select * from __instancecreationevent " _
 & " within 1 where TargetInstance isa 'Win32_Process'")
i = 0
Do While i = 0
 Set objLatestProcess = colMonitoredProcesses.NextEvent
 Wscript.Echo objLatestProcess.TargetInstance.Name
Loop
The line that invokes
 ExecNotificationQuery does so with a parameter
 that includes a “select” statement, which highlights WMI’s support
 for a read-only subset of the ANSI standard Structured Query
 Language (SQL), known as WQL, to provide a flexible way for WMI
 consumers to specify the information they want to extract from WMI
 providers. Running the sample script with Cscript and then starting
 Notepad results in the following output:
C:\>cscript monproc.vbs
Microsoft (R) Windows Script Host Version 5.7
Copyright (C) Microsoft Corporation. All rights reserved.

NOTEPAD.EXE

WMI Implementation

The WMI service runs in a shared Svchost process that executes
 in the local system account. It loads providers into the Wmiprvse.exe
 provider-hosting process, which launches as a child of the RPC service
 process. WMI executes Wmiprvse in the local system, local service, or
 network service account, depending on the value of the HostingModel
 property of the WMI Win32Provider object instance that represents the
 provider implementation. A Wmiprvse process exits after the provider
 is removed from the cache, one minute following the last provider
 request it receives.
EXPERIMENT: Viewing Wmiprvse Creation
You can see Wmiprvse being created by running Process
 Explorer and executing Wmic. A Wmiprvse process will appear beneath
 the Svchost process that hosts the RPC service. If Process Explorer
 job highlighting is enabled, it will appear with the job highlight
 color because, to prevent a runaway provider from consuming all
 virtual memory resources on a system, Wmiprvse executes in a job
 object that limits the number of child processes it can create and
 the amount of virtual memory each process and all the processes of
 the job can allocate. (See Chapter 5 for more
 information on job objects.)
[image: image with no caption]

Most WMI components reside by default in %SystemRoot%\System32
 and %SystemRoot%\System32\Wbem, including Windows MOF files, built-in
 provider DLLs, and management application WMI DLLs. Look in the
 %SystemRoot%\System32\Wbem directory, and you’ll find Ntevt.mof, the
 Event Log provider MOF file. You’ll also find Ntevt.dll, the Event Log
 provider’s DLL, which the WMI service uses.
Directories beneath %SystemRoot%\System32\Wbem store the
 repository, log files, and third-party MOF files. WMI implements the
 repository—named the CIMOM object repository—using a proprietary
 version of the Microsoft JET database engine. The database file, by
 default, resides in %SystemRoot%\System32\Wbem\Repository\.
WMI honors numerous registry settings that the service’s
 HKLM\SOFTWARE\Microsoft\WBEM\CIMOM registry key stores, such as
 thresholds and maximum values for certain parameters.
Device drivers use special interfaces to provide data to and
 accept commands—called the WMI System Control commands—from WMI. These
 interfaces are part of the WDM, which is explained in Chapter 8, “I/O
 System,” in Part 2. Because the interfaces are cross-platform, they
 fall under the \root \WMI namespace.
WMIC
Windows also includes Wmic.exe, a utility that allows
 you to interact with WMI from a WMI-aware command-line shell. All
 WMI objects and their properties, including their methods, are
 accessible through the shell, which makes WMIC an advanced systems
 management console.

WMI Security

WMI implements security at the namespace level. If a management
 application successfully connects to a namespace, the application can
 view and access the properties of all the objects in that namespace.
 An administrator can use the WMI Control application to control which
 users can access a namespace. Internally, this security model is
 implemented by using ACLs and Security Descriptors, part of the
 standard Windows security model that implements Access Checks. (See
 Chapter 6 for more information on access
 checks.)
To start the WMI Control application, from the Start menu,
 select Control Panel. From there, select System And Maintenance,
 Administrative Tools, Computer Management. Next, open the Services And
 Applications branch. Right-click WMI Control, and select Properties to
 launch the WMI Control Properties dialog box, which Figure 4-21 shows. To configure security for
 namespaces, click on the Security tab, select the namespace, and click
 Security. The other tabs in the WMI Control Properties dialog box let
 you modify the performance and backup settings that the registry
 stores.
[image: WMI security properties]

Figure 4-21. WMI security properties

Windows Diagnostic Infrastructure

The Windows Diagnostic Infrastructure (WDI) helps to
 detect, diagnose, and resolve common problem scenarios with minimal user
 intervention. Windows components implement triggers that cause WDI to
 launch scenario-specific troubleshooting modules to detect the
 occurrence of a problem scenario. A trigger can indicate that the system
 is approaching or has reached a problematic state. Once a
 troubleshooting module has identified a root cause, it can invoke a
 problem resolver to address it. A resolution might be as simple as
 changing a registry setting or interacting with the user to perform
 recovery steps or configuration changes. Ultimately, WDI’s main role is
 to provide a unified framework for Windows components to perform the
 tasks involved in automated problem detection, diagnosis, and
 resolution.
WDI Instrumentation

Windows or application components must add instrumentation to
 notify WDI when a problem scenario is occurring. Components can wait
 for the results of diagnosis synchronously or can continue operating
 and let diagnosis proceed asynchronously. WDI implements two different
 types of instrumentation APIs to support these models:
	Event-based diagnosis, which can be used for minimally
 invasive diagnostics instrumentation, can be added to a component
 without requiring any changes to its implementation. WDI supports
 two kinds of event-based diagnosis: simple scenarios and
 start-stop scenarios. In a simple scenario, a single point in code
 is responsible for the failure and an event is raised to trigger
 diagnostics. In a start-stop scenario, an entire code path is
 deemed risky and is instrumented for diagnosis. One event is
 raised at the beginning of the scenario to a real-time Event
 Tracing for Windows (ETW) session named the DiagLog. At the same
 time, a kernel facility called the Scenario Event Mapper (SEM)
 enables a collection of additional ETW traces to the WDI context
 loggers. A second event is raised to signal the end of the
 diagnostic scenario, at which time the SEM disables the verbose
 tracing. This “just-in-time tracing” mechanism keeps the
 performance overhead of detailed tracing low while maintaining
 enough contextual information for WDI to find the root cause
 without a reproduction of the problem, if a failure should
 occur.

	On-demand diagnosis, which allows applications to request
 diagnoses on their own, interact with the diagnostic, receive
 notifications when the diagnostic has completed, and modify its
 behavior based on the results of the diagnosis. On-demand
 instrumentation is particularly useful when diagnosis needs to be
 performed in a privileged security context. WDI facilitates the
 transfer of context across trust and process boundaries and also
 supports impersonation of the caller when necessary.

Diagnostic Policy Service

The Diagnostic Policy Service (DPS,
 %SystemRoot%\System32\Dps.dll) implements most of the WDI scenario
 back end. DPS is a multithreaded service (running in a Svchost) that
 accepts on-demand scenario requests and also monitors and watches for
 diagnostic events delivered via DiagLog. (See Figure 4-22, which shows the
 relationship of DPS to the other key WDI components.) In response to
 these requests, DPS launches the appropriate troubleshooting module,
 which encodes domain-specific knowledge, such as how to find the root
 cause of a network problem. In addition, DPS makes all the contextual
 information related to the scenario available to the modules in the
 form of captured traces. Troubleshooting modules perform an automated
 analysis of the data and can request DPS to launch a secondary module
 called a resolver, which is responsible for fixing the problem,
 silently if possible.
[image: Windows Diagnostic Infrastructure architecture]

Figure 4-22. Windows Diagnostic Infrastructure architecture

DPS controls and enforces Group Policy settings for diagnostic
 scenarios. You can use the Group Policy Editor
 (%SystemRoot%\System32\Gpedit.msc) to configure the settings for the
 diagnostics and automatic recovery options. You can access these
 settings from Computer Configuration, Administrative Templates,
 System, Troubleshooting And Diagnostics, shown in Figure 4-23.
[image: Configuring Diagnostic Policy Service settings]

Figure 4-23. Configuring Diagnostic Policy Service settings

Diagnostic Functionality

Windows implements several built-in diagnostic scenarios
 and utilities. Some examples include:
	Disk diagnostics, which include the presence of
 Self-Monitoring Analysis and Reporting Technology (SMART) code
 inside the storage class driver
 (%SystemRoot%\System32\Driver\Classspnp.sys) to monitor disk
 health. WDI notifies and guides the user through data backup after
 an impending disk failure is detected. In addition, Windows
 monitors application crashes caused by disk corruptions in
 critical system files. The diagnostic uses the Windows File
 Protection mechanism to automatically restore such damaged system
 files from a backup cache when possible. For more information on
 Windows storage management, see Chapter 9, “Storage Management,”
 in Part 2.

	Network diagnostics and troubleshooting extends WDI to
 handle different classes of networking-related problems, such as
 file sharing, Internet access, wireless networks, third-party
 firewalls, and general network connectivity. For more information
 on networking, see Chapter 7.

	Resource exhaustion prevention, which includes Windows
 memory leak diagnosis and Windows resource exhaustion detection
 and resolution. These diagnostics can detect when the commit limit
 is approaching its maximum and alert the user of the situation,
 including the top memory and resource consumers. The user can then
 choose to terminate these applications to attempt to free some
 resources. For more information on the commit limit and virtual
 memory, see Chapter 10, “Memory Management,” in Part 2.

	Windows memory diagnostic tool, which can be manually
 executed by the user from the Boot Manager on startup or
 automatically recommended by Windows Error Reporting (WER) after a
 system crash that was analyzed as potentially the result of faulty
 RAM. For more information on the boot process, see Chapter 13 in
 Part 2.

	Windows startup repair tool, which attempts to automatically
 fix certain classes of errors commonly responsible for users being
 unable to boot the system, such as incorrect BCD settings, damaged
 disk structures such as the MBR or boot sector, and faulty
 drivers. When system boot is unsuccessful, the Boot Manager
 automatically launches the startup repair tool, if it is
 installed, which also includes manual recovery options and access
 to a command prompt. For more information on the startup repair
 tool, see Chapter 13 in Part 2.

	Windows performance diagnostics, which include Windows boot
 performance diagnostics, Windows shutdown performance diagnostics,
 Windows standby/resume performance diagnostics, and Windows system
 responsiveness performance diagnostics. Based on certain timing
 thresholds and the internal behavioral expectations of these
 mechanisms, Windows can detect problems caused by slow performance
 and log them to the Event Log, which in turn is used by WDI to
 provide resolutions and walkthroughs for the user to attempt to
 fix the problem.

	Program Compatibility Assistant (PCA), which enables
 legacy applications to execute on newer Windows versions despite
 compatibility problems. PCA detects application installation
 failures caused by a mismatch during version checks and run-time
 failures caused by deprecated binaries and User Account Control
 (UAC) settings. PCA attempts to recover from these failures by
 applying the appropriate compatibility setting for the
 application, which takes effect during the next run. In addition,
 PCA maintains a database of programs with known compatibility
 issues and informs the users about potential problems at program
 startup.

Conclusion

So far, we’ve examined the overall structure of Windows, the core
 system mechanisms on which the structure is built, and core management
 mechanisms. With this foundation laid, we’re ready to explore the
 individual executive components in more detail, starting with processes
 and threads.

Chapter 5. Processes, Threads, and Jobs

In this chapter, we’ll explain the data structures and
 algorithms that deal with processes, threads, and jobs in the Microsoft
 Windows operating system. The first section focuses on the internal
 structures that make up a process. The second section outlines the steps
 involved in creating a process (and its initial thread). The internals of
 threads and thread scheduling are then described. The chapter concludes
 with a description of jobs.
Because processes and threads touch so many components in Windows, a
 number of terms and data structures (such as working sets, objects and
 handles, system memory heaps, and so on) are referred to in this chapter
 but are explained in detail elsewhere in the book. To fully understand
 this chapter, you need to be familiar with the terms and concepts
 explained in Chapter 1, and Chapter 2, such as the difference between a process
 and a thread, the Windows virtual address space layout, and the difference
 between user mode and kernel mode.

Process Internals

This section describes the key Windows process data structures
 maintained by various parts of the system and describes different ways
 and tools to examine this data.
Data Structures

Each Windows process is represented by an executive process
 (EPROCESS) structure. Besides containing many attributes relating to a
 process, an EPROCESS contains and points to a number of other related
 data structures. For example, each process has one or more threads,
 each represented by an executive thread (ETHREAD) structure. (Thread
 data structures are explained in the section Thread Internals later in this chapter.)
The EPROCESS and most of its related data structures exist in
 system address space. One exception is the process environment block
 (PEB), which exists in the process address space (because it contains
 information accessed by user-mode code). Additionally, some of the
 process data structures used in memory management, such as the working
 set list, are valid only within the context of the current process,
 because they are stored in process-specific system space. (See Chapter
 10, “Memory Management,” in Part 2 for more information on process
 address space.)
For each process that is executing a Win32 program, the Win32
 subsystem process (Csrss) maintains a parallel
 structure called the CSR_PROCESS. Finally, the kernel-mode part of the
 Win32 subsystem (Win32k.sys) maintains a per-process data
 structure, W32PROCESS. The W32PROCESS structure is created the first
 time a thread calls a Windows USER or GDI function that is implemented
 in kernel mode.
With the exception of the idle process, every EPROCESS structure
 is encapsulated as a process object by the executive object manager
 (described in Chapter 3). Because processes
 are not named objects, they are not visible in the WinObj tool. You
 can, however, see the Type object called “Process” in the \ObjectTypes
 directory. A handle to a process provides, through use of the
 process-related APIs, access to some of the data in the EPROCESS
 structure and also in some of its associated structures.
Figure 5-1 is a
 simplified diagram of the process and thread data structures. Each
 data structure shown in the figure is described in detail in this
 chapter.
[image: Data structures associated with processes and threads]

Figure 5-1. Data structures associated with processes and threads

Many other drivers and system components, by registering process
 creation notifications, can choose to create their own data structures
 to track information they store on a per-process basis. When one
 discusses the overhead of a process, the size of such data structures
 must often be taken into consideration, although it is nearly
 impossible to obtain an accurate number.
First let’s focus on the process object. (The thread object is
 covered in the section Thread Internals later in
 the chapter.) Figure 5-2 shows the key
 fields in an EPROCESS structure.
[image: Important fields of the executive process structure and its embedded kernel process structure]

Figure 5-2. Important fields of the executive process structure and its
 embedded kernel process structure

Similar to the way that the kernel’s APIs and components
 are divided into isolated and layered modules with their own naming
 conventions, the data structures for a process follow a similar
 design. As shown in Figure 5-2, the first
 member of the executive process structure is called
 Pcb, for process control
 block. It is a structure of type KPROCESS, for
 kernel process. Although routines in the
 executive store information in the EPROCESS, the dispatcher,
 scheduler, and interrupt/time accounting code—being part of the
 operating system kernel—use the KPROCESS instead. This allows a layer
 of abstraction to exist between the executive’s high-level
 functionality and its underlying low-level implementation of certain
 functions, and it helps prevent unwanted dependencies between the
 layers.
EXPERIMENT: Displaying the Format of an EPROCESS Structure
 and Its Fields
For a list of the fields that make up an EPROCESS structure
 and their offsets in hexadecimal, type dt
 nt!_eprocess in the kernel debugger. (See Chapter 1 for more information on the kernel
 debugger and how to perform kernel debugging on the local system.)
 The output (truncated for the sake of space) on a 32-bit system
 looks like this:
lkd> dt nt!_eprocess
 +0x000 Pcb : _KPROCESS
 +0x080 ProcessLock : _EX_PUSH_LOCK
 +0x088 CreateTime : _LARGE_INTEGER
 +0x090 ExitTime : _LARGE_INTEGER
 +0x098 RundownProtect : _EX_RUNDOWN_REF
 +0x09c UniqueProcessId : Ptr32 Void
...
 +0x0dc ObjectTable : Ptr32 _HANDLE_TABLE
 +0x0e0 Token : _EX_FAST_REF
...
 +0x108 Win32Process : Ptr32 Void
 +0x10c Job : Ptr32 _EJOB
...
 +0x2a8 TimerResolutionLink : _LIST_ENTRY
 +0x2b0 RequestedTimerResolution : Uint4B
 +0x2b4 ActiveThreadsHighWatermark : Uint4B
 +0x2b8 SmallestTimerResolution : Uint4B
 +0x2bc TimerResolutionStackRecord : Ptr32 _PO_DIAG_STACK_RECORD
The first member of this structure (Pcb)
 is an imbedded structure of type KPROCESS. This is where scheduling
 and time-accounting data is stored. You can display the format of
 the kernel process structure in the same way as the EPROCESS:
lkd> dt _kprocess
nt!_KPROCESS
 +0x000 Header : _DISPATCHER_HEADER
 +0x010 ProfileListHead : _LIST_ENTRY
 +0x018 DirectoryTableBase : Uint4B
 ...
 +0x074 StackCount : _KSTACK_COUNT
 +0x078 ProcessListEntry : _LIST_ENTRY
 +0x080 CycleTime : Uint8B
 +0x088 KernelTime : Uint4B
 +0x08c UserTime : Uint4B
 +0x090 VdmTrapcHandler : Ptr32 Void
The dt command also enables you
 to view the specific contents of one field or multiple fields by
 typing their names following the structure name—such as dt nt!_eprocess UniqueProcessId, which
 displays the process ID field. In the case of a field that
 represents a structure—such as the Pcb field of
 EPROCESS, which contains the KPROCESS substructure—adding a period
 after the field name will cause the debugger to display the
 substructure.
For example, an alternative way to see the KPROCESS is to type
 dt nt!_eprocess Pcb. You can
 continue to recurse this way by adding more field names (within
 KPROCESS) and so on. Finally, to recurse through all the
 substructures, the –r switch of the
 dt command allows you to do just that. Adding a
 number after the switch controls the depth of recursion the command
 will follow.
The dt command used as shown earlier
 shows the format of the selected structure, not the contents of any
 particular instance of that structure type. To show an instance of
 an actual process, you can specify the address of an EPROCESS
 structure as an argument to the dt command. You
 can get the addresses of almost all of the EPROCESS structures in
 the system by using the !process 0 0 command
 (the exception being the system idle process). Because the KPROCESS
 is the first thing in the EPROCESS, the address of an EPROCESS will
 also work as the address of a KPROCESS with dt
 _kprocess.

Processes and threads are such integral parts of Windows that
 it’s impossible to talk about them without referring to many other
 parts of the system. To keep the length of this chapter manageable,
 however, those related subjects (such as memory management, security,
 objects, and handles) are covered elsewhere.
EXPERIMENT: Using the Kernel Debugger
 !process Command
The kernel debugger !process command
 displays a subset of the information in a process object and its
 associated structures. This output is arranged in two parts for each
 process. First you see the information about the process, as shown
 here. (When you don’t specify a process address or ID,
 !process lists information for the process
 owning the thread currently running on CPU 0, which will be WinDbg
 itself on a single-processor system.)
lkd> !process
PROCESS 85857160 SessionId: 1 Cid: 0bcc Peb: 7ffd9000 ParentCid: 090c
 DirBase: b45b0820 ObjectTable: b94ffda0 HandleCount: 99.
 Image: windbg.exe
 VadRoot 85a1c8e8 Vads 97 Clone 0 Private 5919. Modified 153. Locked 1.
 DeviceMap 9d32ee50
 Token ebaa1938
 ...
 ' PageFaultCount 37066
 MemoryPriority BACKGROUND
 BasePriority 8
 CommitCharge 6242
After the basic process output comes a list of the
 threads in the process. That output is explained in the EXPERIMENT: Using the Kernel Debugger
 !thread Command section later
 in the chapter.
Other commands that display process information include
 !handle, which dumps the process handle table
 (which is described in more detail in the section Object Handles and the Process Handle Table in Chapter 3). Process and thread security
 structures are described in Chapter 6.
Note that the output gives you the address of the PEB, which
 you can use with the !peb command shown in the
 next experiment to see the PEB of an arbitrary process. However,
 because the PEB is in the user-mode address space, it is valid only
 within the context of its own process. To look at the PEB of another
 process, you must first switch WinDbg to that process. You can do
 this with the .process command, followed by the EPROCESS
 pointer.

The PEB lives in the user-mode address space of the process it
 describes. It contains information needed by the image loader, the
 heap manager, and other Windows components that need to access it from
 user mode. The EPROCESS and KPROCESS structures are accessible only
 from kernel mode. The important fields of the PEB are illustrated in
 Figure 5-3 and are
 explained in more detail later in this chapter.
[image: Fields of the process environment block]

Figure 5-3. Fields of the process environment block

EXPERIMENT: Examining the PEB
You can dump the PEB structure with the
 !peb command in the kernel debugger, which
 displays the PEB of the process that owns the currently running
 thread on CPU 0. By using the information in the previous
 experiment, you can also use the PEB pointer as an argument to the
 command.
lkd> !peb 7ffd9000
PEB at 7ffd9000
 InheritedAddressSpace: No
 ReadImageFileExecOptions: No
 BeingDebugged: No
 ImageBaseAddress: 002a0000
 Ldr 77895d00
...
 WindowTitle: 'C:\Users\Alex Ionescu\Desktop\WinDbg.lnk'
 ImageFile: 'C:\Program Files\Debugging Tools for Windows\windbg.exe'
 CommandLine: '"C:\Program Files\Debugging Tools for Windows\windbg.exe" '
 DllPath: 'C:\Program Files\Debugging Tools for Windows;C:\Windows\
 system32;C:\Windows\system;C:\Windows
 Environment: 001850a8
 ALLUSERSPROFILE=C:\ProgramData
 APPDATA=C:\Users\Alex Ionescu\AppData\Roaming
 ...

The CSR_PROCESS structure contains information about processes
 that is specific to the Windows subsystem
 (Csrss). As such, only Windows applications have
 a CSR_PROCESS structure associated with them (for example,
 Smss does not). Additionally, because each
 session has its own instance of the Windows subsystem, the CSR_PROCESS
 structures are maintained by the Csrss process
 within each individual session. The basic structure of the CSR_PROCESS
 is illustrated in Figure 5-4 and is explained in
 more detail later in this chapter.
[image: Fields of the CSR process structure]

Figure 5-4. Fields of the CSR process structure

EXPERIMENT: Examining the CSR_PROCESS
You can dump the CSR_PROCESS structure with the
 !dp command in the user-mode debugger while
 attached to the Csrss process of the session
 you want to inspect. Use the File, Attach To A Process option to get
 a list of processes, and select the Csrss
 process for the correct session. (You can see the session of the
 process by expanding the tree item for it.) Make sure to select the
 Noninvasive check box to avoid freezing your system.
The !dp command takes as input the PID of
 the process whose CSR_PROCESS structure should be dumped.
 Alternatively, the structure pointer can be given directly as an
 argument. Because !dp already performs a
 dt command internally, there is no need to use
 dt on your own.
0:000> !dp v 0x1c0aa8-8
PCSR_PROCESS @ 001c0aa0:
 +0x000 ClientId : _CLIENT_ID
 +0x008 ListLink : _LIST_ENTRY [0x1d8618 - 0x1b1b10]
 +0x010 ThreadList : _LIST_ENTRY [0x1c0b80 - 0x1c7638]
 +0x018 NtSession : 0x001c0bb8 _CSR_NT_SESSION
...
 +0x054 Luid : _LUID
 +0x05c ServerDllPerProcessData : [1] (null)
Threads:
Thread 001c0b78, Process 001c0aa0, ClientId 198.19c, Flags 0, Ref Count 1
Thread 001c0e78, Process 001c0aa0, ClientId 198.1cc, Flags 0, Ref Count 1
...

The W32PROCESS structure is the final system data
 structure associated with processes that we’ll look at. It contains
 all the information that the Windows graphics and window management
 code in the kernel (Win32k) needs to maintain state information about
 GUI processes (which were defined earlier as processes that have done
 at least one USER/GDI system call). The basic structure of the
 W32PROCESS is illustrated in Figure 5-5 and is explained
 in more detail later in this chapter.
[image: Fields of the Win32k Process structure]

Figure 5-5. Fields of the Win32k Process structure

EXPERIMENT: Examining the W32PROCESS
There is no command provided by the debugger extensions to
 dump the W32PROCESS structure, but it is present in the symbols of
 the Win32k driver. As such, by using the dt
 command with the appropriate symbol name
 win32k!_W32PROCESS, it is possible to dump the
 fields as long as the pointer is known. Because the
 !process command does not actually output this
 pointer (even though it is stored in the EPROCESS object), the field
 must be inspected manually with dt nt!_EPROCESS
 Win32Process followed by an EPROCESS pointer.
In the following example, the W32PROCESS structure for the
 shell, Explorer.exe, is shown:
lkd> dt win32k!_W32PROCESS 0xff991490
 +0x000 Process : 0x84a2b030 _EPROCESS
 +0x004 RefCount : 1
...
 +0x020 W32Pid : 0x590
 +0x024 GDIHandleCount : 383
 +0x028 GDIHandleCountPeak : 0x239
 +0x02c UserHandleCount : 228
 +0x030 UserHandleCountPeak : 0x16c
...
 +0x088 hSecureGdiSharedHandleTable : 0x84a24159
 +0x08c DxProcess : 0xa2c93980
The DxProcess field is a pointer to yet
 another per-process data structure—in this case, maintained by the
 DirectX Video Card Port Driver—but its description is beyond the
 scope of this book.

Protected Processes

In the Windows security model, any process running with a
 token containing the debug privilege (such as an administrator’s
 account) can request any access right that it desires to any other
 process running on the machine—for example, it can read and write
 arbitrary process memory, inject code, suspend and resume threads, and
 query information on other processes. Tools such as Process Explorer and
 Task Manager need and request these access rights to provide their
 functionality to users.
This logical behavior (which helps ensure that administrators will
 always have full control of the running code on the system) clashes with
 the system behavior for digital rights management requirements imposed
 by the media industry on computer operating systems that need to support
 playback of advanced, high-quality digital content such as Blu-ray and
 HD-DVD media. To support reliable and protected playback of such
 content, Windows uses protected processes. These processes exist
 alongside normal Windows processes, but they add significant constraints
 to the access rights that other processes on the system (even when
 running with administrative privileges) can request.
Protected processes can be created by any application; however,
 the operating system will allow a process to be protected only if the
 image file has been digitally signed with a special Windows Media
 Certificate. The Protected Media Path (PMP) in Windows makes use of
 protected processes to provide protection for high-value media, and
 developers of applications such as DVD players can make use of protected
 processes by using the Media Foundation API.
The Audio Device Graph process (Audiodg.exe) is a protected
 process because protected music content can be decoded through it.
 Similarly, the Windows Error Reporting (or WER, discussed in Chapter 3) client process (Werfault.exe) can also
 run protected because it needs to have access to protected processes in
 case one of them crashes. Finally, the System process itself is
 protected because some of the decryption information is generated by the
 Ksecdd.sys driver and stored in its user-mode memory. The System process
 is also protected to protect the integrity of all kernel handles
 (because the System process’ handle table contains all the kernel
 handles on the system).
At the kernel level, support for protected processes is twofold:
 first, the bulk of process creation occurs in kernel mode to avoid
 injection attacks. (The flow for both protected and standard process
 creation is described in detail in the next section.) Second, protected
 processes have a special bit set in their EPROCESS structure that
 modifies the behavior of security-related routines in the process
 manager to deny certain access rights that would normally be granted to
 administrators. In fact, the only access rights that are granted for
 protected processes are PROCESS_QUERY/SET_LIMITED_INFORMATION,
 PROCESS_TERMINATE, and PROCESS_SUSPEND_RESUME. Certain access rights are
 also disabled for threads running inside protected processes; we will
 look at those access rights later in this chapter in the section Thread Internals.
Because Process Explorer uses standard user-mode Windows
 APIs to query information on process internals, it is unable to perform
 certain operations on such processes. On the other hand, a tool like
 WinDbg in kernel-debugging mode, which uses kernel-mode infrastructure
 to obtain this information, will be able to display complete
 information. See the experiment in the Thread Internals section on how Process Explorer behaves
 when confronted with a protected process such as Audiodg.exe.
Note
As mentioned in Chapter 1, to
 perform local kernel debugging, you must boot in debugging mode
 (enabled by using bcdedit /debug on or by using
 the Msconfig advanced boot options). This protects against
 debugger-based attacks on protected processes and the Protected Media
 Path (PMP). When booted in debugging mode, high-definition content
 playback will not work.

Limiting these access rights reliably allows the kernel to sandbox
 a protected process from user-mode access. On the other hand, because a
 protected process is indicated by a flag in the EPROCESS structure, an
 administrator can still load a kernel-mode driver that disables this
 bit. However, this would be a violation of the PMP model and considered
 malicious, and such a driver would likely eventually be blocked from
 loading on a 64-bit system because the kernel-mode, code-signing policy
 prohibits the digital signing of malicious code. Even on 32-bit systems,
 the driver has to be recognized by PMP policy or else the playback will
 be halted. This policy is implemented by Microsoft and not by any kernel
 detection. This block would require manual action from Microsoft to
 identify the signature as malicious and update the kernel.

Flow of CreateProcess

So far, this chapter has shown the various data structures
 involved in process state manipulation and management, and how various
 tools and debugger commands can inspect this information. In this
 section, we’ll see how and when those data structures are created and
 filled out, as well as the overall creation and termination behaviors
 behind processes.
A Windows subsystem process is created when an application calls
 (or eventually ends up in) one of the process-creation functions, such
 as CreateProcess,
 CreateProcessAsUser,
 CreateProcessWithTokenW, or
 CreateProcessWithLogonW. Creating a Windows process
 consists of several stages carried out in three parts of the operating
 system: the Windows client-side library Kernel32.dll (in the case of the
 CreateProcessAsUser,
 CreateProcessWithTokenW, and
 CreateProcessWithLogonW routines, part of the work
 is first done in Advapi32.dll), the Windows executive, and the Windows
 subsystem process (Csrss).
Because of the multiple-environment subsystem architecture
 of Windows, creating an executive process object (which other subsystems
 can use) is separated from the work involved in creating a Windows
 subsystem process. So, although the following description of the flow of
 the Windows CreateProcess function is complicated,
 keep in mind that part of the work is specific to the semantics added by
 the Windows subsystem as opposed to the core work needed to create an
 executive process object.
The following list summarizes the main stages of creating a
 process with the Windows CreateProcess function.
 The operations performed in each stage are described in detail in the
 subsequent sections. Some of these operations might be performed by
 CreateProcess itself (or other helper routines in
 user mode), while others will be performed by
 NtCreateUserProcess or one of its helper routines
 in kernel mode. In our detailed analysis to follow, we will
 differentiate between the two at each step required.
Note
Many steps of CreateProcess are related to
 the setup of the process virtual address space and therefore refer to
 many memory management terms and structures that are defined in
 Chapter 10 in Part 2.

	Validate parameters; convert Windows subsystem flags and
 options to their native counterparts; parse, validate, and convert
 the attribute list to its native counterpart.

	Open the image file (.exe) to be executed inside the
 process.

	Create the Windows executive process object.

	Create the initial thread (stack, context, and Windows
 executive thread object).

	Perform post-creation, Windows-subsystem-specific process
 initialization.

	Start execution of the initial thread (unless the CREATE_
 SUSPENDED flag was specified).

	In the context of the new process and thread, complete the
 initialization of the address space (such as load required DLLs) and
 begin execution of the program.

Figure 5-6 shows an
 overview of the stages Windows follows to create a process.
[image: The main stages of process creation]

Figure 5-6. The main stages of process creation

Stage 1: Converting and Validating Parameters and Flags

Before opening the executable image to run,
 CreateProcess performs the following
 steps.
In CreateProcess, the priority class for
 the new process is specified as independent bits in the
 CreationFlags parameter. Thus, you can specify
 more than one priority class for a single
 CreateProcess call. Windows resolves the question
 of which priority class to assign to the process by choosing the
 lowest-priority class set.
If no priority class is specified for the new process, the
 priority class defaults to Normal unless the priority class of the
 process that created it is Idle or Below Normal, in which case the
 priority class of the new process will have the same priority as the
 creating class.
If a Real-time priority class is specified for the new
 process and the process’ caller doesn’t have the Increase Scheduling
 Priority privilege, the High priority class is used instead. In other
 words, CreateProcess doesn’t fail just because
 the caller has insufficient privileges to create the process in the
 Real-time priority class; the new process just won’t have as high a
 priority as Real-time.
All windows are associated with desktops, the graphical
 representation of a workspace. If no desktop is specified in
 CreateProcess, the process is associated with the
 caller’s current desktop.
If the process is part of a job object, but the creation flags
 requested a separate virtual DOS machine (VDM), the flag is
 ignored.
If the caller is sending a handle to a monitor as an output
 handle instead of a console handle, standard handle flags are
 ignored.
If the creation flags specify that the process will be debugged,
 Kernel32 initiates a connection to the native debugging code in
 Ntdll.dll by calling DbgUiConnectToDbg and gets a
 handle to the debug object from the current thread’s environment block
 (TEB).
Kernel32.dll sets the default hard error mode if the creation
 flags specified one.
The user-specified attribute list is converted from Windows
 subsystem format to native format and internal attributes are added to
 it. The possible attributes that can be added to the attribute list
 are listed in Table 5-1, including their
 documented Windows API counterparts, if any.
Note
The attribute list passed on a
 CreateProcess call permits passing back to the
 caller information beyond a simple status code, such as the TEB
 address of the initial thread or information on the image section.
 This is necessary for protected processes because the parent cannot
 query this information after the child is created.

Table 5-1. Process Attributes
	Native Attribute
	Equivalent Windows
 Attribute
	Type
	Description

	PS_CP_PARENT_PROCESS
	PROC_THREAD_ATTRIBUTE_PARENT_PROCESS. Also
 used when elevating
	Input
	Handle to the parent
 process.

	PS_CP_DEBUG_OBJECT
	N/A – used when using DEBUG_PROCESS
 as a flag
	Input
	Debug object if process is being
 started debugged.

	PS_CP_PRIMARY_TOKEN
	N/A – used when using
 CreateProcessAsUser/WithToken
	Input
	Process token if
 CreateProcessAsUser was
 used.

	PS_CP_CLIENT_ID
	N/A – returned by Win32 API as a
 parameter
	Output
	Returns the TID and PID of the
 initial thread and the process.

	PS_CP_TEB_ADDRESS
	N/A – internally used and not
 exposed
	Output
	Returns the address of the TEB for
 the initial thread.

	PS_CP_FILENAME
	N/A – used as a parameter in
 CreateProcess API.
	Input
	Name of the process that should be
 created.

	PS_CP_IMAGE_INFO
	N/A – internally used and not
 exposed
	Output
	Returns SECTION_IMAGE_INFORMATION,
 which contains information on the version, flags, and
 subsystem of the executable, as well as the stack size and
 entry point.

	PS_CP_MEM_RESERVE
	N/A – internally used by SMSS and
 CSRSS.
	Input
	Array of virtual memory reservations
 that should be made during initial process address space
 creation, allowing guaranteed availability because no other
 allocations have taken place yet.

	PS_CP_PRIORITY_CLASS
	N/A – passed in as a parameter to
 the CreateProcess API.
	Input
	Priority class that the process
 should be given.

	PS_CP_ERROR_MODE
	N/A – passed in through
 CREATE_DEFAULT_ERROR_MODE flag
	Input
	Hard error-processing mode for the
 process.

	PS_CP_STD_HANDLE_INFO
	 	Input
	Specifies if standard handles should
 be duplicated, or if new handles should be
 created.

	PS_CP_HANDLE_LIST
	PROC_THREAD_ATTRIBUTE_HANDLE_LIST
	Input
	List of handles belonging to the
 parent process that should be inherited by the new
 process.

	PS_CP_GROUP_AFFINITY
	PROC_THREAD_ATTRIBUTE_GROUP_AFFINITY
	Input
	Processor group(s) the thread should
 be allowed to run on.

	PS_CP_PREFERRED_NODE
	PROC_THREAD_ATTRIBUTES_PRFERRED_NODE
	Input
	Preferred (ideal) node that should
 be associated with the process. It affects the node on which
 the initial process heap and thread stack will be
 created.

	PS_CP_IDEAL_PROCESSOR
	PROC_THREAD_ATTTRIBUTE_IDEAL_PROCESSOR
	Input
	Preferred (ideal) processor that the
 thread should be scheduled on.

	PS_CP_UMS_THREAD
	PROC_THREAD_ATTRIBUTE_UMS_THREAD
	Input
	Contains the UMS attributes,
 completion list, and context.

	PS_CP_EXECUTE_OPTIONS
	PROC_THREAD_MITIGATION_POLICY
	Input
	Contains information on which
 mitigations (SEHOP, ATL Emulation, NX) should be
 enabled/disabled for the process.

Once these steps are completed,
 CreateProcess performs the initial call to
 NtCreateUserProcess to attempt creation of the
 process. Because Kernel32.dll has no idea at this point whether the
 application image name is a real Windows application or a POSIX,
 16-bit, or DOS application, the call might fail—at which point,
 CreateProcess looks at the error reason and
 attempts to correct the situation.

Stage 2: Opening the Image to Be Executed

As illustrated in Figure 5-7, the first stage in
 NtCreateUserProcess is to find the appropriate
 Windows image that will run the executable file specified by the
 caller and to create a section object to later map it into the address
 space of the new process. If the call failed for any reason, it
 returns to CreateProcess with a failure state
 (see Table 5-2) that
 causes CreateProcess to attempt execution
 again.
If the executable file specified is a Windows .exe,
 NtCreateUserProcess tries to open the file and
 create a section object for it. The object isn’t mapped into memory
 yet, but it is opened. Just because a section object has been successfully created doesn’t
 mean that the file is a valid Windows image, however; it could be a
 DLL or a POSIX executable. If the file is a POSIX executable, the
 image to be run changes to Posix.exe, and
 CreateProcess restarts from the beginning of
 Stage 1. If the file is a DLL, CreateProcess
 fails.
Now that NtCreateUserProcess has found a
 valid Windows executable image, as part of the process creation code
 described in Stage 3 it looks in the registry under
 HKLM\SOFTWARE\Microsoft \Windows NT\CurrentVersion\Image File
 Execution Options to see whether a subkey with the file name and
 extension of the executable image (but without the directory and path
 information—for example, Image.exe) exists there. If it does,
 PspAllocateProcess looks for a value named
 Debugger for that key. If this value is present, the image to be run
 becomes the string in that value and
 CreateProcess restarts at Stage 1.
Tip
You can take advantage of this process creation behavior and
 debug the startup code of Windows services processes before they
 start rather than attach the debugger after starting a service,
 which doesn’t allow you to debug the startup code.

On the other hand, if the image is not a Windows .exe (for
 example, if it’s an MS-DOS, a Win16, or a POSIX application),
 CreateProcess goes through a series of steps to
 find a Windows support image to run it. This process is necessary
 because non-Windows applications aren’t run directly—Windows instead
 uses one of a few special support images that, in turn, are
 responsible for actually running the non-Windows program. For example,
 if you attempt to run a POSIX application,
 CreateProcess identifies it as such and changes
 the image to be run to the Windows executable file Posix.exe. If you
 attempt to run an MS-DOS or a Win16 executable, the image to be run
 becomes the Windows executable Ntvdm.exe. In short, you can’t directly
 create a process that is not a Windows process. If Windows can’t find
 a way to resolve the activated image as a Windows process (as shown in
 Table 5-2),
 CreateProcess fails.
[image: Choosing a Windows image to activate]

Figure 5-7. Choosing a Windows image to activate

Table 5-2. Decision Tree for Stage 1 of
 CreateProcess
	If the Image . . .
	Create State Code
	This Image Will Run . .
 .
	. . . and This Will
 Happen

	Is a POSIX executable
 file
	PsCreateSuccess
	Posix.exe
	CreateProcess
 restarts Stage 1.

	Is an MS-DOS application with an
 .exe, .com, or .pif extension
	PsCreateFailOnSectionCreate
	Ntvdm.exe
	CreateProcess
 restarts Stage 1.

	Is a Win16
 application
	PsCreateFailOnSectionCreate
	Ntvdm.exe
	CreateProcess
 restarts Stage 1.

	Is a Win64 application on a 32-bit
 system (or a PPC, MIPS, or Alpha Binary)
	PsCreateFailMachineMismatch
	N/A
	CreateProcess
 will fail.

	Has a Debugger key with another
 image name
	PsCreateFailExeName
	Name specified in the Debugger
 key
	CreateProcess
 restarts Stage 1.

	Is an invalid or damaged Windows
 EXE
	PsCreateFailExeFormat
	N/A
	CreateProcess
 will fail.

	Cannot be opened
	PsCreateFailOnFileOpen
	N/A
	CreateProcess
 will fail.

	Is a command procedure (application
 with a .bat or .cmd extension)
	PsCreateFailOnSectionCreate
	Cmd.exe
	CreateProcess
 restarts Stage 1.

Specifically, the decision tree that
 CreateProcess goes through to run an image is as
 follows:
	If the image is an MS-DOS application with an .exe, .com, or
 .pif extension, a message is sent to the Windows subsystem to
 check whether an MS-DOS support process (Ntvdm.exe, specified in
 the registry value
 HKLM\SYSTEM\CurrentControlSet\Control\WOW\cmdline) has already
 been created for this session. If a support process has been
 created, it is used to run the MS-DOS application. (The Windows
 subsystem sends the message to the VDM [Virtual DOS Machine]
 process to run the new image.) Then
 CreateProcess returns. If a support process
 hasn’t been created, the image to be run changes to Ntvdm.exe and
 CreateProcess restarts at Stage 1.

	If the file to run has a .bat or .cmd extension, the image
 to be run becomes Cmd.exe, the Windows command prompt, and
 CreateProcess restarts at Stage 1. (The name
 of the batch file is passed as the first parameter to
 Cmd.exe.)

	If the image is a Win16 (Windows 3.1) executable,
 CreateProcess must decide whether a new VDM
 process must be created to run it or whether it should use the
 default sessionwide shared VDM process (which might not yet have
 been created). The CreateProcess flags
 CREATE_SEPARATE_WOW_VDM and CREATE_SHARED_WOW_VDM control this
 decision. If these flags aren’t specified, the registry value
 HKLM\SYSTEM\CurrentControlSet\Control\WOW\DefaultSeparateVDM
 dictates the default behavior. If the application is to be run in
 a separate VDM, the image to be run changes to ntvdm.exe followed
 by some configuration parameters and the 16-bit process’ name and
 CreateProcess restarts at Stage 1. Otherwise,
 the Windows subsystem sends a message to see whether the shared
 VDM process exists and can be used. (If the VDM process is running
 on a different desktop or isn’t running under the same security as the caller, it can’t be used and a new
 VDM process must be created.) If a shared VDM process can be used,
 the Windows subsystem sends a message to it to run the new image
 and CreateProcess returns. If the VDM process
 hasn’t yet been created (or if it exists but can’t be used), the
 image to be run changes to the VDM support image and
 CreateProcess restarts at Stage 1.

Stage 3: Creating the Windows Executive Process Object
 (PspAllocateProcess)

At this point, NtCreateUserProcess has
 opened a valid Windows executable file and created a section object to
 map it into the new process address space. Next it creates a Windows
 executive process object to run the image by calling the internal
 system function PspAllocateProcess. Creating the
 executive process object (which is done by the creating thread)
 involves the following substages:
	Setting up the EPROCESS object

	Creating the initial process address space

	Initializing the kernel process structure(KPROCESS)

	Setting up the PEB

	Concluding the setup of the process address space (which
 includes initializing the working set list and virtual address
 space descriptors and mapping the image into address space)

Note
The only time there won’t be a parent process is during system
 initialization. After that point, a parent process is always
 required to provide a security context for the new process.

Stage 3A: Setting Up the EPROCESS Object

This substage involves the following steps:
	Inherit the affinity of the parent process, unless it was
 explicitly set during process creation (through the attribute
 list).

	Choose the ideal node that was specified in the attribute
 list, if any.

	Inherit the I/O and page priority from the parent process.
 If there is no parent process, the default page priority (5) and
 I/O priority (Normal) are used.

	Set the new process’ exit status to STATUS_PENDING.

	Choose the hard error processing mode selected by the
 attribute list; otherwise, inherit the parent’s processing mode
 if none was given. If no parent exists, use the default
 processing mode which is to display all errors.

	Store the parent process’ process ID in the
 InheritedFromUniqueProcessId field in the
 new process object.

	Query the Image File Execution Options key to check if the
 process should be mapped with large pages. Also, query the key
 to check if NTDLL has been listed as a DLL that should be mapped
 with large pages within this process.

	Query the Image File Execution Options key for a specific
 NUMA node assignment associated with the process. The assignment
 can be either based on inheritance (in which the NUMA node will
 be propagated from the parent) or an explicit NUMA assignment,
 as long as this assignment does not override the initial NUMA
 node specified in the attribute list.

	Disable stack randomization if ASLR was disabled on the
 executable containing the process.

	Attempt to acquire all the privileges required for
 creating the process. Choosing the Real-time process priority
 class, assigning a token to the new process, mapping the process
 with large pages, and creating the process within a new session
 are all operations that require the appropriate
 privilege.

	Create the process’ primary access token (a duplicate of
 its parent’s primary token). New processes inherit the security
 profile of their parents. If the
 CreateProcessAsUser function is being used
 to specify a different access token for the new process, the
 token is then changed appropriately. This change might happen
 only if the parent token’s integrity level dominates the
 integrity level of the access token, and if the access token is
 a true child or sibling of the parent token. Note that if the
 parent has the SeAssignPrimaryToken
 privilege, this will bypass these checks.

	The session ID of the new process token is now checked to
 determine if this is a cross-session create—in which case, the
 parent process temporarily attaches to the target session to
 correctly process quotas and address space creation.

	Set the new process’ quota block to the address of its
 parent process’ quota block, and increment the reference count
 for the parent’s quota block. If the process was created through
 CreateProcessAsUser, this step won’t occur.
 Instead, the default quota is created, or a quota matching the
 user’s profile is selected.

	The process minimum and maximum working set sizes are set
 to the values of PspMinimumWorkingSet and
 PspMaximumWorkingSet, respectively. These
 values can be overridden if performance options were specified
 in the PerfOptions key part of Image File
 Execution Options—in which case, the maximum working set is
 taken from there. Note that the default working set limits are
 soft limits and are essentially hints, while the
 PerfOptions working set maximum is a hard
 limit (that is, the working set will not be allowed to grow past
 that number).

	Initialize the address space of the process. (See Stage
 3B.) Then detach from the target session if it was
 different.

	The group affinity for the process is now chosen
 if group-affinity inheritance was not used. The default group
 affinity either will inherit from the parent, if NUMA node
 propagation was set earlier (the group owning the NUMA node will
 be used) or be assigned round-robin based on the
 PspProcessGroupAssignment seed. If the
 system is in forced group-awareness mode and group 0 was chosen
 by the selection algorithm, group 1 is chosen instead, as long
 as it exists.

	Initialize the KPROCESS part of the process object. (See
 Stage 3C.)

	The token for the process is now set.

	The process’ priority class is set to normal, unless the
 parent was using idle or the Below Normal process priority
 class—in which case, the parent’s priority is inherited. If a
 process priority class was set manually through the attribute
 lists, it is now set.

	The process handle table is initialized. If the inherit
 handles flag is set for the parent process, any inheritable
 handles are copied from the parent’s object handle table into
 the new process. (For more information about object handle
 tables, see Chapter 3.) A process
 attribute can also be used to specify only a subset of handles,
 which is useful when you are using
 CreateProcessAsUser to restrict which
 objects should be inherited by the child process.

	If performance options were specified through the
 PerfOptions key, these are now applied. The
 PerfOptions key includes overrides for the
 working set limit, I/O priority, page priority, and CPU priority
 class of the process.

	The final process priority class and the default quantum
 for its threads are computed and set.

	The second stage of address space setup is completed,
 including the initialization of the PEB (Stage 3D/3E).

	Mitigation options for No-Execute support are now
 set.

	The process PID and creation time is set, although the PID
 is not yet inserted in the PID handle table, nor is the process
 inserted in the process lists (that is the job of the insertion
 stage).

Stage 3B: Creating the Initial Process Address Space

The initial process address space consists of the following
 pages:
	Page directory (and it’s possible there’ll be more than
 one for systems with page tables more than two levels, such as
 x86 systems in PAE mode or 64-bit systems)

	Hyperspace page

	VAD bitmap page

	Working set list

To create these three pages, the following steps are
 taken:
	Page table entries are created in the appropriate page
 tables to map the initial pages.

	The number of pages is deducted from the kernel variable
 MmTotalCommittedPages and added to
 MmProcessCommit.

	The systemwide default process minimum working set size
 (PsMinimumWorkingSet) is deducted from
 MmResidentAvailablePages.

	The page table pages for the global system space (that is,
 other than the process-specific pages we just described, and
 except session-specific memory).

Stage 3C: Creating the Kernel Process Structure

The next stage of PspAllocateProcess is
 the initialization of the KPROCESS structure (the
 Pcb member of the EPROCESS). This work is
 performed by KeInitializeProcess, which
 initializes the following:
	The doubly-linked list which connects all threads part of
 the process (initially empty).

	The initial value (or reset value) of the process default
 quantum (which is described in more detail in the Thread Scheduling section later in the chapter),
 which is hard-coded to 6 until it is initialized later (by
 PspComputeQuantumAndPriority).
Note
The default initial quantum differs between Windows
 client and server systems. For more information on thread
 quantums, turn to their discussion in the section Thread Scheduling.

	The process’ base priority is set based on what was
 computed in Stage 3A.

	The default processor affinity for the threads in the
 process is set, as is the group affinity. The group affinity was
 calculated earlier in Stage 3A or inherited from the
 parent.

	The process swapping state is set to resident.

	The thread seed is based on the ideal processor that the
 kernel has chosen for this process (which is based on the
 previously created process’ ideal processor, effectively
 randomizing this in a round-robin manner). Creating a new
 process will update the seed in KeNodeBlock
 (the initial NUMA node block) so that the next new process will
 get a different ideal processor seed.

Stage 3D: Concluding the Setup of the Process Address
 Space

Setting up the address space for a new process is somewhat
 complicated, so let’s look at what’s involved one step at a time. To
 get the most out of this section, you should have some familiarity
 with the internals of the Windows memory manager, which are
 described in Chapter 10 in Part 2.
	The virtual memory manager sets the value of the
 process’ last trim time to the current time. The working set
 manager (which runs in the context of the balance set manager
 system thread) uses this value to determine when to initiate
 working set trimming.

	The memory manager initializes the process’ working set
 list—page faults can now be taken.

	The section (created when the image file was opened) is
 now mapped into the new process’ address space, and the process
 section base address is set to the base address of the
 image.

	Ntdll.dll is mapped into the process; if this is a Wow64
 process, the 32-bit Ntdll.dll is also mapped.

	A new session, if requested, is now created for the
 process. This special step is mostly implemented for the benefit
 of the Session Manager (SMSS) when initializing a new
 session.

	The standard handles are duplicated, and the new values
 are written in the process parameters structure.

	Any memory reservations listed in the attribute list are
 now processed. Additionally, two flags allow the bulk
 reservation of the first 1 or 16 MB of the address space. These
 flags are used internally for mapping real-mode vectors and ROM
 code, for example (which must be in the low ranges of virtual
 address space, where normally the heap or other process
 structures could be located).

	The user process parameters are written into the process,
 copied, and fixed up (meaning converted from absolute form to a
 relative form so that a single memory block is needed).

	The affinity information is written into the PEB.

	The MinWin API redirection set is
 mapped into the process.

Note
POSIX processes clone the address space of their parents, so
 they don’t have to go through these steps to create a new address
 space. In the case of POSIX applications, the new process’ section
 base address is set to that of its parent process and the parent’s
 PEB is cloned for the new process.

Stage 3E: Setting Up the PEB

NtCreateUserProcess calls
 MmCreatePeb, which first maps the systemwide
 national language support (NLS) tables into the process’ address
 space. It next calls MiCreatePebOrTeb to
 allocate a page for the PEB and then initializes a number of fields,
 most of them based on internal variables that were configured
 through the registry, such as MmHeap* values,
 MmCriticalSectionTimeout, and
 MmMinimumStackCommitInBytes. Some of these
 fields can be overridden by settings in the linked executable image,
 such as the Windows version in the PE header or the affinity mask in
 the load configuration directory of the PE header.
If the image header characteristics
 IMAGE_FILE_UP_SYSTEM_ONLY flag is set (indicating that the image can
 run only on a uniprocessor system), a single CPU
 (MmRotatingUniprocessorNumber) is chosen for
 all the threads in this new process to run on. The selection process
 is performed by simply cycling through the available processors—each
 time this type of image is run, the next processor is used. In this
 way, these types of images are spread evenly across the
 processors.

Stage 3F: Completing the Setup of the Executive Process
 Object (PspInsertProcess)

Before the handle to the new process can be returned, a few
 final setup steps must be completed, which are performed by
 PspInsertProcess and its helper
 functions:
	If systemwide auditing of processes is enabled (either as
 a result of local policy settings or group policy settings from
 a domain controller), the process’ creation is written to the
 Security event log.

	If the parent process was contained in a job, the job is
 recovered from the job level set of the parent and then bound to
 the session of the newly created process. Finally, the new
 process is added to the job.

	PspInsertProcess inserts the new
 process object at the end of the Windows list of active
 processes (PsActiveProcessHead).

	The process debug port of the parent process is copied to
 the new child process, unless the
 NoDebugInherit flag is set (which can be
 requested when creating the process). If a debug port was
 specified, it is attached to the new process at this
 time.

	Because job objects can now specify restrictions on which
 group or groups the threads within the processes part of a job
 can run on, PspInsertProcess must make sure
 that the group affinity associated with the process would not
 violate the group affinity associated with the job. An
 interesting secondary issue to consider is if the job’s
 permissions grant access to modify the process’ affinity
 permissions, because a lesser-privileged job object might
 interfere with the affinity requirements of a more privileged
 process.

	Finally, PspInsertProcess creates a
 handle for the new process by calling
 ObOpenObjectByPointer, and then returns
 this handle to the caller. Note that no process creation
 callback is sent until the first thread within the process is
 created, and the code always sends process callbacks before
 sending object-managed based callbacks.

Stage 4: Creating the Initial Thread and Its Stack and
 Context

At this point, the Windows executive process object is
 completely set up. It still has no thread, however, so it can’t do
 anything yet. It’s now time to start that work. Normally, the
 PspCreateThread routine is responsible for all
 aspects of thread creation and is called by
 NtCreateThread when a new thread is being
 created. However, because the initial thread is created internally by
 the kernel without user-mode input, the two helper routines that
 PspCreateThread relies on are used instead:
 PspAllocateThread and
 PspInsertThread.
PspAllocateThread handles the
 actual creation and initialization of the executive thread object
 itself, while PspInsertThread handles the
 creation of the thread handle and security attributes and the call to
 KeStartThread to turn the executive object into a
 schedulable thread on the system. However, the thread won’t do
 anything yet—it is created in a suspended state and isn’t resumed
 until the process is completely initialized (as described in Stage
 5).
Note
The thread parameter (which can’t be specified in
 CreateProcess but can be specified in
 CreateThread) is the address of the PEB. This
 parameter will be used by the initialization code that runs in the
 context of this new thread (as described in Stage 6).

PspAllocateThread performs the following
 steps:
	It prevents user-mode scheduling (UMS) threads from being
 created in Wow64 processes, as well as preventing user-mode
 callers from creating threads in the system process.

	An executive thread object is created and
 initialized.

	If CPU rate limiting is enabled, the CPU quota block is
 initialized.

	The various lists used by LPC, I/O Management, and the
 Executive are initialized.

	The thread’s create time is set, and its thread ID (TID) is
 created.

	Before the thread can execute, it needs a stack and a
 context in which to run, so these are set up. The stack size for
 the initial thread is taken from the image—there’s no way to
 specify another size. If this is a Wow64 process, the Wow64 thread
 context will also be initialized.

	The thread environment block (TEB) is allocated for the new
 thread.

	The user-mode thread start address is stored in the ETHREAD.
 This is the system-supplied thread startup function in Ntdll.dll
 (RtlUserThreadStart). The user’s specified
 Windows start address is stored in the ETHREAD in a different
 location so that debugging tools such as Process Explorer can
 query the information.

	KeInitThread is called to set up the
 KTHREAD structure. The thread’s initial and current base
 priorities are set to the process’ base priority, and its affinity
 and quantum are set to that of the process. This function also
 sets the initial thread ideal processor. (See the section Ideal and Last Processor for a description of how
 this is chosen.) KeInitThread next allocates
 a kernel stack for the thread and initializes the
 machine-dependent hardware context for the thread, including the
 context, trap, and exception frames. The thread’s context is set
 up so that the thread will start in kernel mode in
 KiThreadStartup. Finally,
 KeInitThread sets the thread’s state to
 Initialized and returns to
 PspAllocateThread.

	If this is a UMS thread,
 PspUmsInitThread is called to initialize the
 UMS state.

Once that work is finished,
 NtCreateUserProcess calls
 PspInsertThread to perform the following
 steps:
	A check is made to ensure that the thread’s group affinity
 does not violate job limitations (which we already described
 earlier). In the process create path, this check is skipped
 because it was already done at the earlier stage.

	Checks are made to ensure that the process hasn’t already
 been terminated, that the thread hasn’t already been terminated,
 or that the thread hasn’t even been able to start running. If any
 of these cases are true, thread creation will fail.

	The KTHREAD part of the thread object is initialized by
 calling KeStartThread. This involves
 inheriting scheduler settings from the owner process, setting the
 ideal node and processor, updating the group affinity, and
 inserting the thread in the process list maintained by KPROCESS (a
 separate list from the one in EPROCESS). Additionally, on x64
 systems, another systemwide list of processes,
 KiProcessListHead, is used by PatchGuard to
 maintain the integrity of the executive’s
 PsActiveProcessHead. Finally, the stack count
 of the process is incremented.

	The thread count in the process object is incremented, and
 the owner process’ I/O priority and page priority are inherited.
 If this is the highest number of threads the process has ever had,
 the thread count high watermark is updated as well. If this was
 the second thread in the process, the primary token is frozen
 (that is, it can no longer be changed, unless the process is a
 POSIX subsystem process).

	If the thread is a UMS thread, the count of UMS threads is
 incremented.

	The thread is inserted in the process’ thread list, and the
 thread is suspended if the creating process requested it.

	If CPU rate limiting is enabled, the rate control APC is
 initialized and the CpuThrottled bit is set
 in the KTHREAD.

	The object is inserted, and any registered thread callbacks
 are called. If this was the first thread in the process (and
 therefore, the operation happened as part of the
 CreateProcess path), the registered kernel
 process callbacks are also called.

	The handle is created with
 ObOpenObjectByPointer.

	The thread is readied for execution by calling
 KeReadyThread. It enters the deferred ready
 queue, the process is paged out, and a page in is
 requested.

Stage 5: Performing Windows Subsystem–Specific
 Post-Initialization

Once NtCreateUserProcess returns with a
 success code, all the necessary executive process and thread objects
 have been created. Kernel32.dll then performs various operations
 related to Windows subsystem–specific operations to finish
 initializing the process.
First of all, various checks are made for whether
 Windows should allow the executable to run. These checks include
 validating the image version in the header and checking whether
 Windows application certification has blocked the process (through a
 group policy). On specialized editions of Windows Server 2008 R2, such
 as Windows Web Server 2008 R2 and Windows HPC Server 2008 R2,
 additional checks are made to see whether the application imports any
 disallowed APIs.
If software restriction policies dictate, a restricted token is
 created for the new process. Afterward, the application-compatibility
 database is queried to see whether an entry exists in either the
 registry or system application database for the process. Compatibility
 shims will not be applied at this point—the information will be stored
 in the PEB once the initial thread starts executing (Stage 6).
At this point, Kernel32.dll sends a message to the Windows
 subsystem so that it can set up SxS information (see the end of this
 section for more information on side-by-side assemblies) such as
 manifest files, DLL redirection paths, and out-of-process execution
 for the new process. It also initializes the Windows subsystem
 structures for the process and initial thread. The message includes
 the following information:
	Process and thread handles

	Entries in the creation flags

	ID of the process’ creator

	Flag indicating whether the process belongs to a Windows
 application (so that Csrss can determine
 whether or not to show the startup cursor)

	UI language information

	DLL redirection and .local flags

	Manifest file information

The Windows subsystem performs the following steps when it
 receives this message:
	CsrCreateProcess duplicates a handle
 for the process and thread. In this step, the usage count of the
 process and the thread is incremented from 1 (which was set at
 creation time) to 2.

	If a process priority class isn’t specified,
 CsrCreateProcess sets it according to the
 algorithm described earlier in this section.

	The Csrss process structure
 (CSR_PROCESS) is allocated.

	The new process’ exception port is set to be the general
 function port for the Windows subsystem so that the Windows
 subsystem will receive a message when a second-chance exception
 occurs in the process. (For further information on exception
 handling, see Chapter 3.)

	The Csrss thread structure (CSR_THREAD)
 is allocated and initialized.

	CsrCreateThread inserts the thread in
 the list of threads for the process.

	The count of processes in this session is
 incremented.

	The process shutdown level is set to 0x280 (the default
 process shutdown level—see
 SetProcessShutdownParameters in the MSDN
 Library documentation for more information).

	The new Csrss process structure is
 inserted into the list of Windows subsystem-wide processes.

	The per-process data structure used by the kernel-mode part
 of the Windows subsystem (W32PROCESS) is allocated and
 initialized.

	The application start cursor is displayed. This cursor is
 the familiar rolling doughnut shape—the way that Windows says to
 the user, “I’m starting something, but you can use the cursor in
 the meantime.” If the process doesn’t make a GUI call after two
 seconds, the cursor reverts to the standard pointer. If the
 process does make a GUI call in the allotted time,
 CsrCreateProcess waits five seconds for the
 application to show a window. After that time,
 CsrCreateProcess resets the cursor
 again.

After Csrss has performed these steps,
 CreateProcess checks whether the process was run
 elevated (which means it was executed through
 ShellExecute and elevated by the AppInfo service
 after the consent dialog box was shown to the user). This includes
 checking whether the process was a setup program. If it was, the
 process’ token is opened, and the virtualization flag is turned on so
 that the application is virtualized. (See the information on UAC and
 virtualization in Chapter 6.) If the
 application contained elevation shims or had a requested elevation
 level in its manifest, the process is destroyed and an elevation
 request is sent to the AppInfo service. (See Chapter 6 for more information on
 elevation.)
Note that most of these checks are not performed for protected
 processes; because these processes must have been designed for Windows
 Vista or later, there’s no reason why they should require elevation,
 virtualization, or application-compatibility checks and processing.
 Additionally, allowing mechanisms such as the shim engine to use its
 usual hooking and memory-patching techniques on a protected process
 would result in a security hole if someone could figure how to insert
 arbitrary shims that modify the behavior of the protected process.
 Additionally, because the Shim Engine is installed by the parent
 process, which might not have access to its child protected process,
 even legitimate shimming cannot work.

Stage 6: Starting Execution of the Initial Thread

At this point, the process environment has been determined,
 resources for its threads to use have been allocated, the process has
 a thread, and the Windows subsystem knows about the new process.
 Unless the caller specified the CREATE_ SUSPENDED flag, the initial
 thread is now resumed so that it can start running and perform the
 remainder of the process initialization work that occurs in the
 context of the new process (Stage 7).

Stage 7: Performing Process Initialization in the Context of
 the New Process

The new thread begins life running the kernel-mode
 thread startup routine KiThreadStartup.
 KiThreadStartup lowers the thread’s IRQL level
 from deferred procedure call (DPC)/dispatch level to APC level and
 then calls the system initial thread routine,
 PspUserThreadStartup. The user-specified thread
 start address is passed as a parameter to this routine.
First, this function disables the ability to swap the primary
 process token at runtime, which is reserved for POSIX support only (to
 emulate setuid behavior). It then sets the Locale
 ID and the ideal processor in the TEB, based on the information
 present in kernel-mode data structures, and then it checks whether
 thread creation actually failed. Next it calls
 DbgkCreateThread, which checks whether image
 notifications were sent for the new process. If they weren’t, and
 notifications are enabled, an image notification is sent first for the
 process and then for the image load of Ntdll.dll. Note that this is
 done in this stage rather than when the images were first mapped
 because the process ID (which is required for the kernel callouts) is
 not yet allocated at that time.
Once those checks are completed, another check is performed to
 see whether the process is a debuggee. If it is,
 PspUserThreadStartup checks whether the debugger
 notifications have already been sent for this process. If not, a
 create process message is sent through the debug object (if one is
 present) so that the process startup debug event
 (CREATE_PROCESS_DEBUG_INFO) can be sent to the appropriate debugger
 process. This is followed by a similar thread startup debug event and
 by another debug event for the image load of Ntdll.dll.
 DbgkCreateThread then waits for a reply from the
 debugger (via the ContinueDebugEvent
 function).
Now that the debugger has been notified,
 PspUserThreadStartup looks at the result of the
 initial check on the thread’s life. If it was killed on startup, the
 thread is terminated. This check is done after the debugger and image
 notifications to be sure that the kernel-mode and user-mode debuggers
 don’t miss information on the thread, even if the thread never got a
 chance to run.
Otherwise, the routine checks whether application prefetching is
 enabled on the system and, if so, calls the prefetcher (and
 Superfetch) to process the prefetch instruction file (if it exists)
 and prefetch pages referenced during the first 10 seconds the last
 time the process ran. (For details on the prefetcher and Superfetch,
 see Chapter 10 in Part 2.)
PspUserThreadStartup then checks whether
 the systemwide cookie in the SharedUserData
 structure has been set up yet. If it hasn’t, it generates it based on
 a hash of system information such as the number of interrupts
 processed, DPC deliveries, and page faults. This systemwide cookie is
 used in the internal decoding and encoding of pointers, such as in the
 heap manager to protect against certain classes of exploitation. (For
 more information on heap manager security, see Chapter 10 in Part
 2.)
Finally, PspUserThreadStartup sets up the
 initial thunk context to run the image-loader initialization routine
 (LdrInitializeThunk in Ntdll.dll), as well as the
 systemwide thread startup stub (RtlUserThreadStart in Ntdll.dll).
 These steps are done by editing the context of the thread in place and
 then issuing an exit from system service operation, which loads the
 specially crafted user context. The
 LdrInitializeThunk routine initializes the
 loader, the heap manager, NLS tables, thread-local storage (TLS) and
 fiber-local storage (FLS) arrays, and critical section structures. It
 then loads any required DLLs and calls the DLL entry points with the
 DLL_PROCESS_ ATTACH function code.
Once the function returns, NtContinue
 restores the new user context and returns to user mode—thread
 execution now truly starts.
RtlUserThreadStart uses the address of the
 actual image entry point and the start parameter and calls the
 application’s entrypoint. These two parameters have also already been
 pushed onto the stack by the kernel. This complicated series of events
 has two purposes. First, it allows the image loader inside Ntdll.dll
 to set up the process internally and behind the scenes so that other
 user-mode code can run properly. (Otherwise, it would have no heap, no
 thread-local storage, and so on.)
Second, having all threads begin in a common routine allows them
 to be wrapped in exception handling so that when they crash, Ntdll.dll
 is aware of that and can call the unhandled exception filter inside
 Kernel32.dll. It is also able to coordinate thread exit on return from
 the thread’s start routine and to perform various cleanup work.
 Application developers can also call
 SetUnhandledExceptionFilter to add their own
 unhandled exception-handling code.
EXPERIMENT: Tracing Process Startup
Now that we’ve looked in detail at how a process starts up and
 the different operations required to begin executing an application,
 we’re going to use Process Monitor to look at some of the file I/O
 and registry keys that are accessed during this process.
Although this experiment will not provide a complete picture
 of all the internal steps we’ve described, you’ll be able to see
 several parts of the system in action, notably prefetch and
 Superfetch, image-file execution options and other compatibility
 checks, and the image loader’s DLL mapping.
We’ll look at a very simple executable—Notepad.exe—and launch
 it from a Command Prompt window (Cmd.exe). It’s important that we
 look both at the operations inside Cmd.exe and those inside
 Notepad.exe. Recall that a lot of the user-mode work is performed by
 CreateProcess, which is called by the parent
 process before the kernel has created a new process object.
To set things up correctly, add two filters to Process
 Monitor: one for Cmd.exe, and one for Notepad.exe—these are the only
 two processes you should include. Be sure that you don’t have any
 currently running instances of these two processes so that you know
 you’re looking at the right events. The filter window should look
 like this:
[image: image with no caption]

Next, make sure that event logging is currently disabled
 (clear File, Capture Events), and then start up the command prompt.
 Enable event logging (using the File menu again, or simply press
 CTRL+E or click the magnifying glass icon on the toolbar), and then
 type Notepad.exe and press Enter.
 On a typical Windows system, you should see anywhere between 500 and
 1500 events appear. Hide the Sequence and Time Of Day columns so
 that you can focus your attention on the columns of interest. Your
 window should look similar to the one shown next.
[image: image with no caption]

Just as described in Stage 1 of the
 CreateProcess flow, one of the first things to
 notice is that just before the process is started and the first
 thread is created, Cmd.exe does a registry read at
 HKLM\SOFTWARE\Microsoft\Windows NT\CurrentVersion\Image File
 Execution Options. Because there were no image-execution options
 associated with Notepad.exe, the process was created as is.
As with this and any other event in Process Monitor’s log, you
 have the ability to see whether each part of the process creation
 flow was performed in user mode or kernel mode, and by which
 routines, by looking at the stack of the event. To do this,
 double-click on the RegOpenKey event and switch
 to the Stack tab. The following screen shows the standard stack on a
 32-bit Windows machine.
[image: image with no caption]

This stack shows that you already reached the part of process
 creation performed in kernel mode (through
 NtCreateUserProcess) and that the helper
 routine PspAllocateProcess is responsible for
 this check.
Going down the list of events after the thread and process
 have been created, you will notice three groups of events. The first
 is a simple check for application-compatibility flags, which will
 let the user-mode process creation code know if checks inside the
 application-compatibility database are required through the shim
 engine.
This check is followed by multiple reads to Side-By-Side,
 Manifest, and MUI/Language keys, which are part of the assembly
 framework mentioned earlier. Finally, you might see file I/O to one
 or more .sdb files, which are the application-compatibility
 databases on the system. This I/O is where additional checks are
 done to see if the shim engine needs to be invoked for this
 application. Because Notepad is a well-behaved Microsoft program, it
 doesn’t require any shims.
The following screen shows the next series of events, which
 happen inside the Notepad process itself. These are actions
 initiated by the user-mode thread startup wrapper in kernel mode,
 which performs the actions described earlier. The first two are the
 Notepad.exe and Ntdll.dll image load debug notification messages,
 which can be generated only now that code is running inside
 Notepad’s process context and not the context for the command
 prompt.
[image: image with no caption]

Next, the prefetcher kicks in, looking for a prefetch database
 file that has already been generated for Notepad. (For more
 information on the prefetcher, see Chapter 10 in Part 2.) On a
 system where Notepad has already been run at least once, this
 database will exist, and the prefetcher will begin executing the
 commands specified inside it. If this is the case, scrolling down
 you will see multiple DLLs being read and queried. Unlike typical
 DLL loading, which is done by the user-mode image loader by looking
 at the import tables or when an application manually loads a DLL,
 these events are being generated by the prefetcher, which is already
 aware of the libraries that Notepad will require. Typical image
 loading of the DLLs required happens next, and you will see events
 similar to the ones shown here:
[image: image with no caption]

These events are now being generated from code running inside
 user mode, which was called once the kernel-mode wrapper function
 finished its work. Therefore, these are the first events coming from
 LdrpInitializeProcess, which we mentioned is
 the internal system wrapper function for any new process, before the
 start address wrapper is called. You can confirm this on your own by looking at the stack of these
 events—for example, the kernel32.dll image load event, which is
 shown in the next screen:
[image: image with no caption]

Further events are generated by this routine and its
 associated helper functions until you finally reach events generated
 by the WinMain function inside Notepad, which
 is where code under the developer’s control is now being executed.
 Describing in detail all the events and user-mode components that
 come into play during process execution would fill up this entire
 chapter, so exploration of any further events is left as an exercise
 for the reader.

Thread Internals

Now that we’ve dissected processes, let’s turn our attention to
 the structure of a thread. Unless explicitly stated otherwise, you can
 assume that anything in this section applies to both user-mode threads
 and kernel-mode system threads (which are described in Chapter 2).
Data Structures

At the operating-system level, a Windows thread is represented
 by an executive thread object. The executive thread object
 encapsulates an ETHREAD structure, which in turn contains a KTHREAD
 structure as its first member. These are illustrated in Figure 5-8. The ETHREAD
 structure and the other structures it points to exist in the system
 address space, with the exception of the thread environment block
 (TEB), which exists in the process address space (again, because
 user-mode components need to access it).
The Windows subsystem process
 (Csrss) maintains a parallel structure for each
 thread created in a Windows subsystem application, called the
 CSR_THREAD. For threads that have called a Windows subsystem USER or
 GDI function, the kernel-mode portion of the Windows subsystem
 (Win32k.sys) maintains a per-thread data structure (called the
 W32THREAD) that the KTHREAD structure points to.
Note
The fact that the executive, high-level, graphics-related,
 Win32k thread structure is pointed to by the KTHREAD, instead of the
 ETHREAD, appears to be a layer violation or oversight in the
 standard kernel’s abstraction architecture—the scheduler and other
 low-level components do not use this field.

[image: Important fields of the executive thread structure and its embedded kernel thread structure]

Figure 5-8. Important fields of the executive thread structure and its
 embedded kernel thread structure

Most of the fields illustrated in Figure 5-8 are
 self-explanatory. The first member of the ETHREAD is called the Tcb,
 for “Thread control block”; this is a structure of type KTHREAD.
 Following that are the thread identification information, the process
 identification information (including a pointer to the owning process
 so that its environment information can be accessed), security
 information in the form of a pointer to the access token and
 impersonation information, and finally, fields relating to
 Asynchronous Local Procedure Call (ALPC) messages and pending I/O
 requests. Some of these key fields are covered in more detail
 elsewhere in this book. For more details on the internal structure of
 an ETHREAD structure, you can use the kernel debugger
 dt command to display its format.
Let’s take a closer look at two of the key thread data
 structures referred to in the preceding text: the KTHREAD and the TEB.
 The KTHREAD structure (which is the Tcb member of
 the ETHREAD) contains information that the Windows kernel needs to
 perform thread scheduling, synchronization, and timekeeping
 functions.
EXPERIMENT: Displaying ETHREAD and KTHREAD Structures
The ETHREAD and KTHREAD structures can be displayed with the
 dt command in the kernel debugger. The
 following output shows the format of an ETHREAD on a 32-bit
 system:
lkd> dt nt!_ethread
nt!_ETHREAD
 +0x000 Tcb : _KTHREAD
 +0x1e0 CreateTime : _LARGE_INTEGER
 +0x1e8 ExitTime : _LARGE_INTEGER
 +0x1e8 KeyedWaitChain : _LIST_ENTRY
 +0x1f0 ExitStatus : Int4B
...
 +0x270 AlpcMessageId : Uint4B
 +0x274 AlpcMessage : Ptr32 Void
 +0x274 AlpcReceiveAttributeSet : Uint4B
 +0x278 AlpcWaitListEntry : _LIST_ENTRY
 +0x280 CacheManagerCount : Uint4B
The KTHREAD can be displayed with a similar command or by
 typing dt nt!_ETHREAD Tcb, as was
 shown in the EPROCESS/KPROCESS experiment earlier:
lkd> dt nt!_kthread
nt!_KTHREAD
 +0x000 Header : _DISPATCHER_HEADER
 +0x010 CycleTime : Uint8B
 +0x018 HighCycleTime : Uint4B
 +0x020 QuantumTarget : Uint8B
...
 +0x05e WaitIrql : UChar
 +0x05f WaitMode : Char
 +0x060 WaitStatus : Int4B

EXPERIMENT: Using the Kernel Debugger
 !thread Command
The kernel debugger !thread
 command dumps a subset of the information in the thread data
 structures. Some key elements of the information the kernel debugger
 displays can’t be displayed by any utility, including the following
 information: internal structure addresses; priority details; stack
 information; the pending I/O request list; and, for threads in a
 wait state, the list of objects the thread is waiting for.
To display thread information, use either the
 !process command (which displays all the
 threads of a process after displaying the process information) or
 the !thread command with the address of a
 thread object to display a specific thread.

EXPERIMENT: Viewing Thread Information
The following output is the detailed display of a process
 produced by using the Tlist utility in the Debugging Tools for
 Windows. Notice that the thread list shows Win32StartAddr. This is
 the address passed to the CreateThread function
 by the application. All the other utilities, except Process
 Explorer, that show the thread start address show the actual start
 address (a function in Ntdll.dll), not the application-specified
 start address.
C:\Program Files\Windows Kits\8.0\Debuggers\x86>tlist winword
3232 WINWORD.EXE 648739_Chap05.docx - Microsoft Word
 CWD: C:\Users\Alex Ionescu\Documents\
 CmdLine: "C:\Program Files\Microsoft Office\Office14\WINWORD.EXE" /n "C:\Users\Alex
Ionescu\Documents\Chapter5.docx
 VirtualSize: 531024 KB PeakVirtualSize: 585248 KB
 WorkingSetSize:122484 KB PeakWorkingSetSize:181532 KB
 NumberOfThreads: 12
 2104 Win32StartAddr:0x2fde10ec LastErr:0x00000000 State:Waiting
 2992 Win32StartAddr:0x7778fd0d LastErr:0x00000000 State:Waiting
 3556 Win32StartAddr:0x3877e970 LastErr:0x00000000 State:Waiting
 2436 Win32StartAddr:0x3877e875 LastErr:0x00000000 State:Waiting
 3136 Win32StartAddr:0x3877e875 LastErr:0x00000000 State:Waiting
 3412 Win32StartAddr:0x3877e875 LastErr:0x00000000 State:Waiting
 1096 Win32StartAddr:0x3877e875 LastErr:0x00000000 State:Waiting
 912 Win32StartAddr:0x74497832 LastErr:0x00000000 State:Waiting
 1044 Win32StartAddr:0x389b0926 LastErr:0x00000583 State:Waiting
 1972 Win32StartAddr:0x694532fb LastErr:0x00000000 State:Waiting
 4056 Win32StartAddr:0x75f9c83e LastErr:0x00000000 State:Waiting
 1124 Win32StartAddr:0x777903e9 LastErr:0x00000000 State:Waiting
 14.0.5123.5000 shp 0x2FDE0000 C:\Program Files\Microsoft Office\Office14\WINWORD.EXE
 6.1.7601.17725 shp 0x77760000 C:\Windows\SYSTEM32\ntdll.dll
 6.1.7601.17651 shp 0x75CE0000 C:\Windows\system32\kernel32.dll

The TEB, illustrated in Figure 5-9, is one of the
 data structures explained in this section that exists in the process
 address space (as opposed to the system space). Internally, it is made
 up of a header called the TIB (Thread Information
 Block), which mainly existed for compatibility with OS/2 and Win9x
 applications. It also allows exception and stack information to be
 kept into a smaller structure when creating new threads by using an
 Initial TIB.
The TEB stores context information for the image loader
 and various Windows DLLs. Because these components run in user mode,
 they need a data structure writable from user mode. That’s why this
 structure exists in the process address space instead of in the system
 space, where it would be writable only from kernel mode. You can find
 the address of the TEB with the kernel debugger
 !thread command.
[image: Fields of the thread environment block]

Figure 5-9. Fields of the thread environment block

EXPERIMENT: Examining the TEB
You can dump the TEB structure with the
 !teb command in the kernel debugger. The output
 looks like this:
kd> !teb
TEB at 7ffde000
 ExceptionList: 019e8e44
 StackBase: 019f0000
 StackLimit: 019db000
 SubSystemTib: 00000000
 FiberData: 00001e00
...
 PEB Address: 7ffd9000
 LastErrorValue: 0
 LastStatusValue: c0000139
 Count Owned Locks: 0
 HardErrorMode: 0

The CSR_THREAD, illustrated in Figure 5-10 is analogous to the data
 structure of CSR_PROCESS, but it’s applied to threads. As you might
 recall, this is maintained by each Csrss process
 within a session and identifies the Windows subsystem threads running
 within it. The CSR_THREAD stores a handle that
 Csrss keeps for the thread, various flags, and a
 pointer to the CSR_PROCESS for the thread. It also stores another copy
 of the thread’s creation time.
[image: Fields of the CSR thread]

Figure 5-10. Fields of the CSR thread

EXPERIMENT: Examining the CSR_THREAD
You can dump the CSR_THREAD structure with the
 !dt command in the user-mode debugger while
 attached to a Csrss process. Follow the
 instructions in the CSR_PROCESS experiment from earlier to safely
 perform this operation. The output looks like this:
0:000> !dt v 001c7630
PCSR_THREAD @ 001c7630:
 +0x000 CreateTime : _LARGE_INTEGER 0x1cb9fb6'00f90498
 +0x008 Link : _LIST_ENTRY [0x1c0ab0 - 0x1c0f00]
 +0x010 HashLinks : _LIST_ENTRY [0x75f19b38 - 0x75f19b38]
 +0x018 ClientId : _CLIENT_ID
 +0x020 Process : 0x001c0aa0 _CSR_PROCESS
 +0x024 ThreadHandle : 0x000005c4
 +0x028 Flags : 0
 +0x02c ReferenceCount : 1
 +0x030 ImpersonateCount : 0

Finally, the W32THREAD structure, illustrated in Figure 5-11, is analogous to the data
 structure of WIN32PROCESS, but it’s applied to threads This structure
 mainly contains information useful for the GDI subsystem (brushes and
 DC attributes) as well as for the User Mode Print Driver framework
 (UMPD) that vendors use to write user-mode printer drivers. Finally,
 it contains a rendering state useful for desktop compositing and
 anti-aliasing.
[image: Fields of the Win32k thread]

Figure 5-11. Fields of the Win32k thread

EXPERIMENT: Examining the W32THREAD
You can dump the W32THREAD structure by looking at the
 output of the !thread command, which gives a
 pointer to it in the Win32Thread output field. Alternatively, if you
 use the dt command, the KTHREAD block has a
 field called Win32Thread that contains the pointer to this
 structure. Recall that only a GUI thread will have a W32THREAD
 structure, so it’s possible that certain threads, such as background
 or worker threads, will not have an associated W32THREAD. Because
 there is no extension to view a W32THREAD, you need to use the
 dt command, as shown here:
dt win32k!_w32thread ffb79dd8
 +0x000 pEThread : 0x83ad4b60 _ETHREAD
 +0x004 RefCount : 1
 +0x008 ptlW32 : (null)
 +0x00c pgdiDcattr : 0x00130740
 +0x010 pgdiBrushAttr : (null)
 +0x014 pUMPDObjs : (null)
 +0x018 pUMPDHeap : (null)
 +0x01c pUMPDObj : (null)
...
 +0x0a8 bEnableEngUpdateDeviceSurface : 0 ''
 +0x0a9 bIncludeSprites : 0 ''
 +0x0ac ulWindowSystemRendering : 0

Birth of a Thread

A thread’s life cycle starts when a program creates a
 new thread. The request filters down to the Windows executive, where
 the process manager allocates space for a thread object and calls the
 kernel to initialize the thread control block (KTHREAD). The steps in
 the following list are taken inside the Windows
 CreateThread function in Kernel32.dll to create a
 Windows thread:
	CreateThread converts the Windows API
 parameters to native flags and builds a native structure
 describing object parameters (OBJECT_ATTRIBUTES). See Chapter 3 for more information.

	CreateThread builds an attribute list
 with two entries: client ID and TEB address. This allows
 CreateThread to receive those values once the
 thread has been created. (For more information on attribute lists,
 see the section Flow of CreateProcess earlier
 in this chapter.)

	NtCreateThreadEx is called to create
 the user-mode context and probe and capture the attribute list. It
 then calls PspCreateThread to create a
 suspended executive thread object. For a description of the steps
 performed by this function, see the descriptions of Stage 3 and
 Stage 5 in the section Flow of CreateProcess.

	CreateThread allocates an activation
 context for the thread used by side-by-side assembly support. It
 then queries the activation stack to see if it requires
 activation, and it does so if needed. The activation stack pointer
 is saved in the new thread’s TEB.

	CreateThread notifies the Windows
 subsystem about the new thread, and the subsystem does some setup
 work for the new thread.

	The thread handle and the thread ID (generated during step
 3) are returned to the caller.

	Unless the caller created the thread with the
 CREATE_SUSPENDED flag set, the thread is now resumed so that it
 can be scheduled for execution. When the thread starts running, it
 executes the steps described in the earlier section Stage 7: Performing Process Initialization in the Context of
 the New Process before
 calling the actual user’s specified start address.

Examining Thread Activity

Examining thread activity is especially important if you are
 trying to determine why a process that is hosting multiple services is
 running (such as Svchost.exe, Dllhost.exe, or Lsass.exe) or why a
 process is hung.
There are several tools that expose various elements of
 the state of Windows threads: WinDbg (in user-process attach and
 kernel-debugging mode), Performance Monitor, and Process Explorer. (The
 tools that show thread-scheduling information are listed in the section
 Thread Scheduling.)
To view the threads in a process with Process Explorer, select a
 process and open the process properties (by double-clicking on the
 process or clicking on the Process, Properties menu item). Then click on
 the Threads tab. This tab shows a list of the threads in the process and
 four columns of information. For each thread, it shows its ID, the
 percentage of CPU consumed (based on the refresh interval configured),
 the number of cycles charged to the thread, and the thread start
 address. You can sort by any of these four columns.
New threads that are created are highlighted in green, and threads
 that exit are highlighted in red. (The highlight duration can be
 configured with the Options, Difference Highlight Duration menu item.)
 This might be helpful to discover unnecessary thread creation occurring
 in a process. (In general, threads should be created at process startup,
 not every time a request is processed inside a process.)
As you select each thread in the list, Process Explorer displays
 the thread ID, start time, state, CPU time counters, number of cycles
 charged, number of context switches, the ideal processor and its group,
 and the base and current priority. There is a Kill button, which will
 terminate an individual thread, but this should be used with extreme
 care. Another option is the Suspend button, which will prevent the
 thread from forward execution and thus prevent a runaway thread from
 consuming CPU time. However, this can also lead to deadlocks and should
 be used with the same care as the Kill button. Finally, the Permissions
 button allows you to view the security descriptor. (See Chapter 6, for more information on security
 descriptors) of the thread.
Unlike Task Manager and all other process/processor monitoring
 tools, Process Explorer uses the clock cycle counter designed for thread
 run-time accounting (as described later in this chapter), instead of the
 clock interval timer, so you will see a significantly different view of
 CPU consumption using Process Explorer. This is because many threads run
 for such a short amount of time that they are seldom (if ever) the
 currently running thread when the clock interval timer interrupt occurs,
 so they are not charged for much of their CPU time, leading clock-based
 tools to perceive a CPU usage of 0%. On the other hand, the total number
 of clock cycles represents the actual number of processor cycles that
 each thread in the process accrued. It is independent of the clock
 interval timer’s resolution because the count is maintained internally
 by the processor at each cycle and updated by Windows at each interrupt
 entry. (A final accumulation is done before a context switch.)
The thread start address is displayed in the form
 “module!function”, where module is the name of the .exe or .dll. The
 function name relies on access to symbol files for the module. (See
 EXPERIMENT: Viewing Process Details with Process
 Explorer in Chapter 1.) If you are unsure what the module is,
 click the Module button. This opens an Explorer file properties window
 for the module containing the thread’s start address (for example, the
 .exe or .dll).
Note
For threads created by the Windows
 CreateThread function, Process Explorer displays
 the function passed to CreateThread, not the
 actual thread start function. That is because all Windows threads
 start at a common thread startup wrapper function
 (RtlUserThreadStart in Ntdll.dll). If Process
 Explorer showed the actual start address, most threads in processes
 would appear to have started at the same address, which would not be
 helpful in trying to understand what code the thread was executing.
 However, if Process Explorer can’t query the user-defined startup
 address (such as in the case of a protected process), it will show the
 wrapper function, so you will see all threads starting at
 RtlUserThreadStart.

However, the thread start address displayed might not be enough
 information to pinpoint what the thread is doing and which component
 within the process is responsible for the CPU consumed by the thread.
 This is especially true if the thread start address is a generic startup
 function (for example, if the function name does not indicate what the
 thread is actually doing). In this case, examining the thread stack
 might answer the question. To view the stack for a thread, double-click
 on the thread of interest (or select it and click the Stack button).
 Process Explorer displays the thread’s stack (both user and kernel, if
 the thread was in kernel mode).
Note
While the user mode debuggers (WinDbg, Ntsd, and Cdb) permit you
 to attach to a process and display the user stack for a thread,
 Process Explorer shows both the user and kernel stack in one easy
 click of a button. You can also examine user and kernel thread stacks
 using WinDbg in local kernel debugging mode.

Viewing the thread stack can also help you determine why a process
 is hung. As an example, on one system, Microsoft Office PowerPoint was
 hanging for one minute on startup. To determine why it was hung, after
 PowerPoint was started, Process Explorer was used to examine the thread
 stack of the one thread in the process. The result is shown in Figure 5-12.
[image: Hung thread stack in PowerPoint]

Figure 5-12. Hung thread stack in PowerPoint

This thread stack shows that PowerPoint (line 10) called a
 function in Mso.dll (the central Microsoft Office DLL), which called the
 OpenPrinterW function in Winspool.drv (a DLL used
 to connect to printers). Winspool.drv then dispatched to a function
 OpenPrinterRPC, which then called a function in the
 RPC runtime DLL, indicating it was sending the request to a remote
 printer. So, without having to understand the internals of PowerPoint, the module and
 function names displayed on the thread stack indicate that the thread
 was waiting to connect to a network printer. On this particular system,
 there was a network printer that was not responding, which explained the
 delay starting PowerPoint. (Microsoft Office applications connect to all
 configured printers at process startup.) The connection to that printer
 was deleted from the user’s system, and the problem went away.
Finally, when looking at 32-bit applications running on 64-bit
 systems as a Wow64 process (see Chapter 3 for
 more information on Wow64), Process Explorer shows both the 32-bit and
 64-bit stack for threads. Because at the time of the system call proper,
 the thread has been switched to a 64-bit stack and context, simply
 looking at the thread’s 64-bit stack would reveal only half the
 story—the 64-bit part of the thread, with Wow64’s thunking code. So,
 when examining Wow64 processes, be sure to take into account both the
 32-bit and 64-bit stacks. An example of a Wow64 thread inside Microsoft
 Office Word 2007 is shown in Figure 5-13. The
 highlighted stack frame and all stack frames below it are the 32-bit
 stack frames from the 32-bit stack. The stack frames above the
 highlighted frame are on the 64-bit stack.
[image: Example Wow64 stack]

Figure 5-13. Example Wow64 stack

Limitations on Protected Process Threads

As we discussed in the process internals section, protected
 processes have several limitations in terms of which access rights
 will be granted, even to the users with the highest privileges on the
 system. These limitations also apply to threads inside such a process.
 This ensures that the actual code running inside the protected process
 cannot be hijacked or otherwise affected through standard Windows
 functions, which require access rights that are not granted for
 protected process threads. In fact, the only permissions granted are
 THREAD_SUSPEND_RESUME and THREAD_SET/QUERY_LIMITED_INFORMATION.
EXPERIMENT: Viewing Protected Process Thread
 Information
In the previous section, we took a look at how Process
 Explorer can be helpful in examining thread activity to determine
 the cause of potential system or application issues. This time,
 we’ll use Process Explorer to look at a protected process and see
 how the different access rights being denied affect its ability and
 usefulness on such a process.
Find the Audiodg.exe service inside the process list. This is
 a process responsible for much of the core work behind the user-mode
 audio stack in Windows, and it requires protection to ensure that
 high-definition decrypted audio content does not leak out to
 untrusted sources. Bring up the process properties view, and take a
 look at the Performance tab. Notice how the numbers for WS Private,
 WS Shareable, and WS Shared are 0, although the total Working Set is
 still displayed. This is an example of the THREAD_QUERY_INFORMATION
 versus THREAD_QUERY_LIMITED_INFORMATION rights.
More importantly, take a look at the Threads tab. As you can
 see here, Process Explorer is unable to show the Win32 thread start
 address and instead displays the standard thread start wrapper
 inside Ntdll.dll. If you try clicking the Stack button, you’ll get
 an error, because Process Explorer needs to read the virtual memory
 inside the protected process, which it can’t do.
[image: image with no caption]

Finally, note that although the Base and Dynamic priorities
 are shown, the I/O and Memory priorities are not, which is another
 example of the limited versus full query information access right.
 As you try to kill a thread inside Audiodg.exe, notice yet another
 access denied error: recall the lack of THREAD_TERMINATE
 access.

Worker Factories (Thread Pools)

Worker factories refer to the internal mechanism used to
 implement user-mode thread pools. The legacy thread pool routines were
 completely implemented in user mode inside the Ntdll.dll library, and
 the Windows API provided various routines to call into the relevant
 routines, which provided waitable timers, wait callbacks, and automatic
 thread creation and deletion, depending on the amount of work being
 done.
Because the kernel can have direct control over thread scheduling,
 creation, and termination without the typical costs associated with
 doing these operations from user mode, most of the functionality
 required to support the user-mode thread pool implementation in Windows
 is now located in the kernel instead, which also simplifies the code
 that developers need to write. For example, creating a worker pool in a
 remote process can be done with a single API call, instead of the
 complex series of virtual memory calls this normally requires. Under
 this model, Ntdll.dll merely provides the interfaces and high-level APIs
 required for interfacing with the worker factory code.
This kernel-managed thread pool functionality in Windows is
 managed by an object manager type called
 TpWorkerFactory, as well as four native system
 calls for managing the factory and its workers
 (NtCreateWorkerFactory,
 NtWorkerFactoryWorkerReady,
 NtReleaseWorkerFactoryWorker,
 NtShutdownWorkerFactory), two query/set native
 calls (NtQueryInformationWorkerFactory and
 NtSetInformationWorkerFactory), and a wait call
 (NtWaitForWorkViaWorkerFactory).
Just like other native system calls, these calls provide user mode
 with a handle to the TpWorkerFactory object, which
 contains information such as the name and object attributes, the desired
 access mask, and a security descriptor. Unlike other system calls
 wrapped by the Windows API, however, thread-pool management is handled
 by Ntdll.dll’s native code, which means that developers work with an
 opaque descriptor (a TP_WORK pointer) owned by Ntdll.dll, in which the
 actual handle is stored.
As its name suggests, the worker factory implementation is
 responsible for allocating worker threads (and calling the given
 user-mode worker thread entry point), maintaining a minimum and maximum
 thread count (allowing for either permanent worker pools or totally
 dynamic pools), as well as other accounting information. This enables
 operations such as shutting down the thread pool to be performed with a
 single call to the kernel, because the kernel has been the only
 component responsible for thread creation and termination.
Because the kernel dynamically creates new threads as needed,
 based on minimum and maximum numbers provided, this also increases the
 scalability of applications using the new thread-pool implementation. A
 worker factory will create a new thread whenever all of the following
 conditions are met:
	The number of available workers is lower than the maximum
 number of workers configured for the factory (default of
 500).

	The worker factory has bound objects (a bound object can be,
 for example, an ALPC port that this worker thread is waiting on) or
 a thread has been activated into the pool.

	There are pending I/O request packets (IRPs; see
 Chapter 8, “I/O System,” in Part 2, for more information) associated
 with a worker thread.

	Dynamic thread creation is enabled.

And it will terminate threads whenever they’ve become idle for
 more than 10 seconds (by default).
Furthermore, while developers have always been able to take
 advantage of as many threads as possible (based on the number of
 processors on the system) through the old implementation, but through
 support for dynamic processors in Windows Server (see the section on
 this topic later in this chapter), it’s now possible for applications
 using thread pools to automatically take advantage of new processors
 added at run time.
Note that the worker factory support is merely a wrapper to manage
 mundane tasks that would otherwise have to be performed in user mode (at
 a loss of performance), and much of the logic of the new thread-pool
 code remains in the Ntdll.dll side of this architecture. (Theoretically,
 by using undocumented functions, a different thread-pool implementation
 can be built around worker factories.) Also, it is not the worker
 factory code that provides the scalability, wait internals, and
 efficiency of work processing. Instead, it is a much older component of
 Windows that we already discussed—I/O completion ports, or more
 correctly, kernel queues (KQUEUE; see Chapter 8 in Part 2 for more
 information).
In fact, when creating a worker factory, an I/O completion port
 must have already been created by user mode, and the handle needs to be
 passed on. It is through this I/O completion port that the user-mode
 implementation will queue work and also wait for work—but by calling the
 worker factory system calls instead of the I/O completion port APIs.
 Internally, however, the “release” worker factory call (which queues
 work) is a wrapper around IoSetIoCompletionEx,
 which increases pending work, while the “wait” call is a wrapper around
 IoRemoveIoCompletion. Both these routines call into
 the kernel queue implementation.
Therefore, the job of the worker factory code is to manage either
 a persistent, static, or dynamic thread pool; wrap the I/O completion
 port model into interfaces that try to prevent stalled worker queues by
 automatically creating dynamic threads; and to simplify global cleanup
 and termination operations during a factory shutdown request (as well as
 to easily block new requests against the factory in such a
 scenario).
Unfortunately, the data structures used by the worker factory
 implementation are not in the public symbols, but it is still possible
 to look at some worker pools, as we’ll show in the next experiment.
 Additionally, the NtQueryInformationWorkerFactory
 API dumps almost every field in the worker factory structure.
EXPERIMENT: Looking at Thread Pools
Because of the advantages of using the thread-pool
 mechanism, many core system components and applications make use of
 it, especially when dealing with resources such as ALPC ports (to
 dynamically process incoming requests at an appropriate and scalable
 level). One of the ways to identify which processes are using a worker
 factory is to look at the handle list in Process Explorer. Follow
 these steps to look at some details behind them:
	Run Process Explorer, and select Show Unnamed Handles And
 Mappings from the View menu. Unfortunately, worker factories
 aren’t named by Ntdll.dll, so you need to take this step in order
 to see the handles.

	Select Lsm.exe from the list of processes, and look at the
 handle table. Make sure that the lower pane is shown (View, Show
 Lower Pane) and is displaying handle table mode (View, Lower Pane
 View, Handles).

	Right-click on the lower pane columns, and then click on
 Select Columns. Make sure that the Type column is selected to be
 shown, and click it to sort by type.

	Now scroll down the handles, looking at the Type column,
 until you find a handle of type
 TpWorkerFactory. You should see something
 like this:
[image: image with no caption]

Notice how the TpWorkerFactory handle
 is immediately preceded by an IoCompletion
 handle (numerically; sort by “Handle” to see this). As was
 described previously, this occurs because before creating a worker
 factory, a handle to an I/O completion port on which work will be
 sent must be created.

	Now double-click Lsm.exe in the list of processes,
 and click on the Threads tab. You should see something similar to
 the image here:
[image: image with no caption]

On this system (with two processors), the worker factory has
 created six worker threads at the request of Lsm.exe (processes
 can define a minimum and maximum number of threads) and based on
 its usage and the count of processors on the machine. These
 threads are identified as TppWorkerThread,
 which is Ntdll.dll’s worker entry point when calling the worker
 factory system calls.

	Ntdll.dll is responsible for its own internal accounting
 inside the worker thread wrapper
 (TppWorkerThread) before calling the worker
 callback that the application has registered. By looking at the
 Wait reason in the State information for each thread, you can get
 a rough idea of what each worker thread might be doing.
 Double-click on one of the threads inside an LPC wait to look at
 its stack. Here’s an example:
[image: image with no caption]

This specific worker thread is being used by Lsm.exe for LPC
 communication. Because the local session manager needs to
 communicate with other components such as
 Smss and Csrss through
 LPC, it makes sense that it would want a number of its threads to
 be busy replying and waiting for LPC messages. (The more threads
 doing this, the less stalling there is on the LPC
 pipeline.)

If you look at other worker threads, you’ll see some are waiting
 for objects such as events. A process can have multiple thread pools,
 and each thread pool can have a variety of threads doing completely
 unrelated tasks. It’s up to the developer to assign work and to call
 the thread pool APIs to register this work through Ntdll.dll.

Thread Scheduling

This section describes the Windows scheduling policies and
 algorithms. The first subsection provides a condensed description of how
 scheduling works on Windows and a definition of key terms. Then Windows
 priority levels are described from both the Windows API and the Windows
 kernel points of view. After a review of the relevant Windows utilities
 and tools that relate to scheduling, the detailed data structures and
 algorithms that make up the Windows scheduling system are presented,
 including a description of common scheduling scenarios and how thread
 selection, as well as processor selection, occurs.
Overview of Windows Scheduling

Windows implements a priority-driven, preemptive scheduling
 system—at least one of the highest-priority runnable (ready) threads
 always runs, with the caveat that certain high-priority threads ready
 to run might be limited by the processors on which they might be
 allowed or preferred to run on, a phenomenon called
 processor affinity. Processor affinity is defined
 based on a given processor group, which collects up to 64 processors.
 By default, threads can run only on any available processors within
 the processor group associated with the process (to maintain
 compatibility with older versions of Windows which supported only 64
 processors), but developers can alter processor affinity by using the
 appropriate APIs or by setting an affinity mask in the image header,
 while users can use tools to change affinity at runtime or at process
 creation. However, although multiple threads in a process can be
 associated with different groups, a thread on its own can run only on
 the processors available within its assigned group. Additionally,
 developers can choose to create group-aware applications, which use
 extended scheduling APIs to associate logical processors on different
 groups with the affinity of their threads. Doing so converts the
 process into a multigroup process that can theoretically run its
 threads on any available processor within the machine.
EXPERIMENT: Viewing Ready Threads
You can view the list of ready threads with the kernel
 debugger !ready command. This command displays
 the thread or list of threads that are ready to run at each priority
 level. In the following example, generated on a 32-bit machine with
 a dual-core processor, two threads are ready to run at priority 8 on
 the first logical processor, and one thread at priority 10, two
 threads at priority 9, and three threads at priority 8 are ready to
 run on the second logical processor. Determining which of these
 threads get to run on their respective processor is a simple matter
 of picking the first thread on top of the highest priority queue
 (thread 857d9030 for logical processor 0, and thread 857c0030 for
 logical processor 1), but why the queues contain the threads they do
 is a complex result at the end of several algorithms that the
 scheduler uses. We will cover this topic later in this
 section.
kd> !ready
Processor 0: Ready Threads at priority 8
 THREAD 857d9030 Cid 0ec8.0e30 Teb: 7ffdd000 Win32Thread: 00000000 READY
 THREAD 855c8300 Cid 0ec8.0eb0 Teb: 7ff9c000 Win32Thread: 00000000 READY
Processor 1: Ready Threads at priority 10
 THREAD 857c0030 Cid 04c8.0378 Teb: 7ffdf000 Win32Thread: fef7f8c0 READY
Processor 1: Ready Threads at priority 9
 THREAD 87fc86f0 Cid 0ec8.04c0 Teb: 7ffd3000 Win32Thread: 00000000 READY
 THREAD 88696700 Cid 0ec8.0ce8 Teb: 7ffa0000 Win32Thread: 00000000 READY
Processor 1: Ready Threads at priority 8
 THREAD 856e5520 Cid 0ec8.0228 Teb: 7ff98000 Win32Thread: 00000000 READY
 THREAD 85609d78 Cid 0ec8.09b0 Teb: 7ffd9000 Win32Thread: 00000000 READY
 THREAD 85fdeb78 Cid 0ec8.0218 Teb: 7ff72000 Win32Thread: 00000000 READY

After a thread is selected to run, it runs for an amount
 of time called a quantum. A quantum is the length of time a thread is
 allowed to run before another thread at the same priority level is
 given a turn to run. Quantum values can vary from system to system and
 process to process for any of three reasons:
	System configuration settings (long or short quantums,
 variable or fixed quantums, and priority separation)

	Foreground or background status of the process

	Use of the job object to alter the quantum

These details are explained in more details in the Quantum section later in the chapter, as well as in the
 Job Objects section).
A thread might not get to complete its quantum, however, because
 Windows implements a preemptive scheduler: if another thread with a
 higher priority becomes ready to run, the currently running thread
 might be preempted before finishing its time slice. In fact, a thread
 can be selected to run next and be preempted before even beginning its
 quantum!
The Windows scheduling code is implemented in the kernel.
 There’s no single “scheduler” module or routine, however—the code is
 spread throughout the kernel in which scheduling-related events occur.
 The routines that perform these duties are collectively called the
 kernel’s dispatcher. The following events might require thread
 dispatching:
	A thread becomes ready to execute—for example, a thread has
 been newly created or has just been released from the wait
 state.

	A thread leaves the running state because its time quantum
 ends, it terminates, it yields execution, or it enters a wait
 state.

	A thread’s priority changes, either because of a system
 service call or because Windows itself changes the priority
 value.

	A thread’s processor affinity changes so that it will no
 longer run on the processor on which it was running.

At each of these junctions, Windows must determine which
 thread should run next on the logical processor that was running the
 thread, if applicable, or on which logical processor the thread should
 now run on. After a logical processor has selected a new thread to
 run, it eventually performs a context switch to it. A context switch
 is the procedure of saving the volatile processor state associated
 with a running thread, loading another thread’s volatile state, and
 starting the new thread’s execution.
As already noted, Windows schedules at the thread granularity.
 This approach makes sense when you consider that processes don’t run
 but only provide resources and a context in which their threads run.
 Because scheduling decisions are made strictly on a thread basis, no
 consideration is given to what process the thread belongs to. For
 example, if process A has 10 runnable threads, process B has 2
 runnable threads, and all 12 threads are at the same priority, each
 thread would theoretically receive one-twelfth of the CPU time—Windows
 wouldn’t give 50 percent of the CPU to process A and 50 percent to
 process B.

Priority Levels

To understand the thread-scheduling algorithms, one must first
 understand the priority levels that Windows uses. As illustrated in
 Figure 5-14, internally Windows uses 32
 priority levels, ranging from 0 through 31. These values divide up as
 follows:
	Sixteen real-time levels (16 through 31)

	Sixteen variable levels (0 through 15), out of which level 0
 is reserved for the zero page thread

[image: Thread priority levels]

Figure 5-14. Thread priority levels

Thread priority levels are assigned from two different
 perspectives: those of the Windows API and those of the Windows
 kernel. The Windows API first organizes processes by the priority
 class to which they are assigned at creation (the numbers represent
 the internal PROCESS_PRIORITY_CLASS_ index recognized by the kernel):
 Real-time (4), High (3), Above Normal (7), Normal (2), Below Normal
 (5), and Idle (1).
It then assigns a relative priority of the individual
 threads within those processes. Here, the numbers represent a priority
 delta that is applied to the process base priority: Time-critical
 (15), Highest (2), Above-normal (1), Normal (0), Below-normal (–1),
 Lowest (–2), and Idle (–15).
Therefore, in the Windows API, each thread has a base priority
 that is a function of its process priority class and its relative
 thread priority. In the kernel, the process priority class is
 converted to a base priority by using the
 PspPriorityTable and the PROCESS_PRIORITY_CLASS
 indices shown earlier, which sets priorities of 4, 8, 13, 24, 6, and
 10, respectively. (This is a fixed mapping that cannot be changed.)
 The relative thread priority is then applied as a differential to this
 base priority. For example, a “Highest” thread will receive a thread
 base priority of two levels higher than the base priority of its
 process.
This mapping from Windows priority to internal Windows numeric
 priority is shown in Table 5-3.
Table 5-3. Mapping of Windows Kernel Priorities to the Windows
 API
	Priority Class Relative
 Priority
	Realtime
	High
	Above Normal
	Normal
	Below Normal
	Idle

	Time Critical (+
 SATURATION)
	31
	15
	15
	15
	15
	15

	Highest (+2)
	26
	15
	12
	10
	8
	6

	Above Normal (+1)
	25
	14
	11
	9
	7
	5

	Normal (0)
	24
	13
	10
	8
	6
	4

	Below Normal (-1)
	23
	12
	9
	7
	5
	3

	Lowest (-2)
	22
	11
	8
	6
	4
	2

	Idle (- SATURATION)
	16
	1
	1
	1
	1
	1

You’ll note that the Time-Critical and Idle relative thread
 priorities maintain their respective values regardless of the process
 priority class (unless it is Realtime). This is because the Windows
 API requests saturation of the priority from the kernel, by actually
 passing in 16 or -16 as the requested relative priority (instead of 15
 or -15). This is then recognized by the kernel as a request for
 saturation, and the Saturation field in KTHREAD is set. This causes,
 for positive saturation, the thread to receive the highest possible
 priority within its priority class (dynamic or real-time), or for
 negative saturation, the lowest possible one. Additionally, future
 requests to change the base priority of the process will no longer
 affect the base priority of these threads, because saturated threads
 are skipped in the processing code.
Whereas a process has only a single base priority value, each
 thread has two priority values: current and base. Scheduling decisions
 are made based on the current priority. As explained in the following
 section on priority boosting, the system under certain circumstances
 increases the priority of threads in the dynamic range (0 through 15)
 for brief periods. Windows never adjusts the priority of threads in
 the real-time range (16 through 31), so they always have the same base
 and current priority.
A thread’s initial base priority is inherited from the
 process base priority. A process, by default, inherits its base
 priority from the process that created it. This behavior can be
 overridden on the CreateProcess function or by
 using the command-line start command. A process priority can also be
 changed after being created by using the
 SetPriorityClass function or various tools that
 expose that function, such as Task Manager and Process Explorer (by
 right-clicking on the process and choosing a new priority class). For
 example, you can lower the priority of a CPU-intensive process so that
 it does not interfere with normal system activities. Changing the
 priority of a process changes the thread priorities up or down, but
 their relative settings remain the same.
Normally, user applications and services start with a normal
 base priority, so their initial thread typically executes at priority
 level 8. However, some Windows system processes (such as the session
 manager, service control manager, and local security authentication
 process) have a base process priority slightly higher than the default
 for the Normal class (8). This higher default value ensures that the
 threads in these processes will all start at a higher priority than
 the default value of 8.
Real-Time Priorities

You can raise or lower thread priorities within the dynamic
 range in any application; however, you must have the increase
 scheduling priority privilege to enter the real-time range. Be aware
 that many important Windows kernel-mode system threads run in the
 real-time priority range, so if threads spend excessive time running
 in this range, they might block critical system functions (such as
 in the memory manager, cache manager, or other device
 drivers).
Using the standard Windows APIs, once a process has entered
 the real-time range, all of its threads (even Idle ones) must run at
 one of the real-time priority levels. It is thus impossible to mix
 real-time and dynamic threads within the same process through
 standard interfaces. This is because the
 SetThreadPriority API calls the native
 NtSetInformationThread API with the
 ThreadBasePriority information class, which
 allows priorities to remain only in the same range. Furthermore,
 this information class allows priority changes only in the
 recognized Windows API deltas of –2 to 2 (or real-time/idle), unless
 the request comes from CSRSS or a real-time process. In other words,
 this means that a real-time process does have the ability to pick
 thread priorities anywhere between 16 and 31, even though the
 standard Windows API relative thread priorities would seem to limit
 its choices based on the table that was shown earlier.
However, by calling this API with the
 ThreadActualBasePriority information class, the
 kernel base priority for the thread can be directly set, including
 in the dynamic range for a real-time process.
Note
As illustrated in Figure 5-15, which shows
 the interrupt request levels (IRQLs), although Windows has a set
 of priorities called real-time, they are not real-time in the
 common definition of the term. This is because Windows doesn’t
 provide true, real-time operating system facilities, such as
 guaranteed interrupt latency or a way for threads to obtain a
 guaranteed execution time.

Interrupt Levels vs. Priority Levels

As illustrated in Figure 5-15 of the
 interrupt request levels (IRQLs) for a 32-bit system, threads
 normally run at IRQL 0 (called passive level,
 because no interrupts are in process and none are blocked) or IRQL 1
 (APC level). (For a description of how Windows uses interrupt
 levels, see Chapter 3.) User-mode code
 always runs at passive level. Because of this, no user-mode thread,
 regardless of its priority, can ever block hardware interrupts
 (although high-priority, real-time threads can block the execution
 of important system threads).
Threads running in kernel mode, although initially scheduled
 at passive level or APC level, can raise IRQL to higher levels—for
 example, while executing a system call that involves thread
 dispatching, memory management, or input/output. If a thread does
 raise IRQL to dispatch level or above, no further thread-scheduling
 behavior will occur on its processor until it lowers IRQL below
 dispatch level. A thread executing at dispatch level or above blocks
 the activity of the thread scheduler and prevents thread context
 switches on its processor.
A thread running in kernel mode can be running at APC level if
 it is running a special kernel APC; or it can temporarily raise IRQL
 to APC level to block the delivery of special kernel APCs. (For more
 information on APCs, see Chapter 3.)
 However, executing at APC level does not alter the scheduling
 behavior of the thread vs. other threads; it affects only the
 delivery of kernel APCs to that thread. In fact, a thread executing
 in kernel mode at APC level can be preempted in favor of a higher
 priority thread running in user mode at passive level.
[image: Thread priorities vs. IRQLs on an x86 system]

Figure 5-15. Thread priorities vs. IRQLs on an x86 system

Using Tools to Interact with Priority

You can change (and view) the base-process priority
 with Task Manager and Process Explorer. You can kill individual
 threads in a process with Process Explorer (which should be done, of
 course, with extreme care).
You can view individual thread priorities with the Performance
 Monitor, Process Explorer, or WinDbg. Although it might be useful to
 increase or lower the priority of a process, it typically does not
 make sense to adjust individual thread priorities within a process,
 because only a person who thoroughly understands the program (in
 other words, typically only the developer himself) would understand
 the relative importance of the threads within the process.
The only way to specify a starting priority class for a
 process is with the start command in the Windows command prompt. If
 you want to have a program start every time with a specific
 priority, you can define a shortcut to use the start command by
 beginning the command with cmd
 /c. This runs the command prompt, executes the command on
 the command line, and terminates the command prompt. For example, to
 run Notepad in the low-process priority, the shortcut is cmd /c start /low Notepad.exe.
EXPERIMENT: Examining and Specifying Process and Thread
 Priorities
Try the following experiment:
	From an elevated command prompt, type start /realtime notepad. Notepad
 should open.

	Run Process Explorer, and select Notepad.exe from the
 list of processes. Double-click on Notepad.exe to show the
 process properties window, and then click on the Threads tab,
 as shown here. Notice that the dynamic priority of the thread
 in Notepad is 24. This matches the
 real-time value shown in the following image.
[image: image with no caption]

	Task Manager can show you similar information. Press
 Ctrl+Shift+Esc to start Task Manager, and click on the
 Processes tab. Right-click on the Notepad.exe process, and
 select the Set Priority option. You can see that Notepad’s
 process priority class is Realtime, as shown in the following
 dialog box:
[image: image with no caption]

Windows System Resource Manager
Windows Server 2008 R2 Standard Edition and higher
 SKUs include an optionally installable component called Windows
 System Resource Manager (WSRM). It permits the administrator to
 configure policies that specify CPU utilization, affinity
 settings, and memory limits (both physical and virtual) for
 processes. In addition, WSRM can generate resource utilization
 reports that can be used for accounting and verification of
 service-level agreements with users.
Policies can be applied for specific applications (by
 matching the name of the image with or without specific
 command-line arguments), users, or groups. The policies can be
 scheduled to take effect at certain periods or can be enabled all
 the time.
After you set a resource-allocation policy to manage
 specific processes, the WSRM service monitors CPU consumption of
 managed processes and adjusts process base priorities when those
 processes do not meet their target CPU allocations.
The physical memory limitation uses the function
 SetProcessWorkingSetSizeEx to set a
 hard-working set maximum. The virtual memory limit is implemented
 by the service checking the private virtual memory consumed by the
 processes. (See Chapter 10 in Part 2 for an explanation of these
 memory limits.) If this limit is exceeded, WSRM can be configured
 to either kill the processes or write an entry to the Event Log.
 This behavior can be used to detect a process with a memory leak
 before it consumes all the available committed memory on the
 system. Note that WSRM memory limits do not apply to Address
 Windowing Extensions (AWE) memory, large page memory, or kernel
 memory (nonpaged or paged pool).

Thread States

Before you can comprehend the thread-scheduling algorithms, you
 need to understand the various execution states that a thread can be
 in. The thread states are as follows:
	Ready. A thread in the ready state is waiting to execute (or
 ready to be in-swapped after completing a wait). When looking
 for a thread to execute, the dispatcher considers only the pool
 of threads in the ready state.

	Deferred ready. This state is used for threads that have been selected to
 run on a specific processor but have not actually started
 running there. This state exists so that the kernel can minimize
 the amount of time the per-processor lock on the scheduling
 database is held.

	Standby. A thread in the standby state has been selected to run
 next on a particular processor. When the correct conditions
 exist, the dispatcher performs a context switch to this thread.
 Only one thread can be in the standby state for each processor
 on the system. Note that a thread can be preempted out of the
 standby state before it ever executes (if, for example, a higher
 priority thread becomes runnable before the standby thread
 begins execution).

	Running. Once the dispatcher performs a context switch to a
 thread, the thread enters the running state and executes. The
 thread’s execution continues until its quantum ends (and another
 thread at the same priority is ready to run), it is preempted by
 a higher priority thread, it terminates, it yields execution, or
 it voluntarily enters the waiting state.

	Waiting. A thread can enter the waiting state in several ways: a
 thread can voluntarily wait for an object to synchronize its
 execution, the operating system can wait on the thread’s behalf
 (such as to resolve a paging I/O), or an environment subsystem
 can direct the thread to suspend itself. When the thread’s wait
 ends, depending on the priority, the thread either begins
 running immediately or is moved back to the ready state.

	Transition. A thread enters the transition state if it is ready for
 execution but its kernel stack is paged out of memory. Once its
 kernel stack is brought back into memory, the thread enters the
 ready state.

	Terminated. When a thread finishes executing, it enters the terminated
 state. Once the thread is terminated, the executive thread
 object (the data structure in a nonpaged pool that describes the
 thread) might or might not be deallocated. (The object manager
 sets the policy regarding when to delete the object.)

	Initialized. This state is used internally while a thread is being
 created.

Table 5-4 describes the
 state transitions for threads, and Figure 5-16 illustrates a
 simplified version. (The numeric values shown represent the value of
 the thread-state performance counter.) In the simplified version, the
 Ready, Standby, and Deferred Ready states are represented as one. This
 reflects the fact that the Standby and Deferred Ready states act as
 temporary placeholders for the scheduling routines. These states are
 almost always very short-lived; threads in these states always
 transition quickly to Ready, Running, or Waiting. More details on what
 happens at each transition are included later in this section.
Table 5-4. Thread States and Transitions
	 	Init
	Ready
	Running
	Standby
	Terminated
	Waiting
	Transition
	Deferred Ready
	
	Init
	 	 	 	 	 	 	 	 	A thread becomes Initialized during
 the first few moments of its creation
 (KeStartThread).

	Ready
	 	 	 	 	 	 	 	A thread is added in the
 dispatcherready database of its ideal
 processor.
	
	Running
	 	Selected by
 KiSearchForNewThread
	 	Picked up for execution by local
 CPU
	 	Preemption after wait
 satisfaction
	 	 	
	Standby
	 	Selected by
 KiSelectNextThread
	 	 	 	 	 	Selected by
 KiDeferredReadyThread for remote CPU
	
	Terminated
	Killed before
 PspInsertThread finished
	 	Killed
	 	 	 	 	 	A thread can kill only itself. It
 must be in the Running state before entering
 KeTerminateThread.

	Waiting
	 	 	Thread enters a wait
	 	 	 	 	 	Only running threads can
 wait.

	Transition
	 	 	 	 	 	Kernel stack no longer
 resident
	 	 	Only waiting threads can
 transition.

	Deferred Ready
	Last step in
 PspInsertThread
	Affinity change
	Thread becomes preempted (if old
 processor is no longer available)
	Affinity change
	 	Wait satisfaction (but no
 preemption)
	Kernel stack swap-in
 completed
	 	

[image: Simplified version of thread states and transitions]

Figure 5-16. Simplified version of thread states and transitions

EXPERIMENT: Thread-Scheduling State Changes
You can watch thread-scheduling state changes with the
 Performance tool in Windows. This utility can be useful when you’re
 debugging a multithreaded application and you’re unsure about the
 state of the threads running in the process. To watch
 thread-scheduling state changes by using the Performance tool,
 follow these steps:
	Run Notepad (Notepad.exe).

	Start the Performance tool by selecting All Programs from
 the Start menu and then selecting Performance Monitor from the
 Administrative Tools menu. Click on the Performance Monitor
 entry under Monitoring Tools.

	Select the chart view if you’re in some other view.

	Right-click on the graph, and choose Properties.

	Click on the Graph tab, and change the chart vertical
 scale maximum to 7. (As you’ll see from the explanation text for
 the performance counter, thread states are numbered from 0
 through 7.) Click OK.

	Click the Add button on the toolbar to bring up the Add
 Counters dialog box.

	Select the Thread performance object, and then select the
 Thread State counter. Select the Show Description check box to
 see the definition of the values:
[image: image with no caption]

	In the Instances box, select <All instances> and
 type Notepad before clicking Search. Scroll down until you see
 the Notepad process (notepad/0); select it,
 and click the Add button.

	Scroll back up in the Instances box to the
 Mmc process (the Microsoft Management
 Console process running the System Monitor), select all the
 threads (mmc/0, mmc/1,
 and so on), and add them to the chart by clicking the Add
 button. Before you click Add, you should see something like the
 dialog box that follows.
[image: image with no caption]

	Now close the Add Counters dialog box by clicking
 OK.

	You should see the state of the Notepad thread (the very
 top line in the following figure) as a 5. As shown in the
 explanation text you saw under step 7, this number represents
 the waiting state (because the thread is waiting for GUI
 input):
[image: image with no caption]

	Notice that one thread in the
 Mmc process (running the Performance tool
 snap-in) is in the running state (number 2). This is the thread
 that’s querying the thread states, so it’s always displayed in
 the running state.

	You’ll never see Notepad in the running state (unless
 you’re on a multiprocessor system) because
 Mmc is always in the running state when it
 gathers the state of the threads you’re monitoring.

Dispatcher Database

To make thread-scheduling decisions, the kernel maintains a set
 of data structures known collectively as the dispatcher database,
 illustrated in Figure 5-17. The dispatcher
 database keeps track of which threads are waiting to execute and which
 processors are executing which threads.
To improve scalability, including thread-dispatching
 concurrency, Windows multiprocessor systems have per-processor
 dispatcher ready queues, as illustrated in Figure 5-17. In this way,
 each CPU can check its own ready queues for the next thread to run
 without having to lock the systemwide ready queues.
The per-processor ready queues, as well as the per-processor
 ready summary, are part of the processor control block (PRCB)
 structure. (To see the fields in the PRCB, type dt nt!_kprcb in the kernel debugger.) The
 names of each component that we will talk about (in italics) are field
 members of the PRCB structure.
The dispatcher ready queues
 (DispatcherReadyListHead) contain the threads
 that are in the ready state, waiting to be scheduled for execution.
 There is one queue for each of the 32 priority levels. To speed up the
 selection of which thread to run or preempt, Windows maintains a
 32-bit bit mask called the ready summary
 (ReadySummary). Each bit set indicates one or
 more threads in the ready queue for that priority level. (Bit 0
 represents priority 0, and so on.)
Instead of scanning each ready list to see whether it is empty
 or not (which would make scheduling decisions dependent on the number
 of different priority threads), a single bit scan is performed as a
 native processor command to find the highest bit set. Regardless of
 the number of threads in the ready queue, this operation takes a
 constant amount of time, which is why you might sometimes see the
 Windows scheduling algorithm referred to as an O(1), or constant time,
 algorithm.
[image: Windows multiprocessor dispatcher database]

Figure 5-17. Windows multiprocessor dispatcher database

The dispatcher database is synchronized by raising IRQL
 to DISPATCH_LEVEL. (For an explanation of interrupt priority levels,
 see the Trap Dispatching section in Chapter 3.) Raising IRQL in this way prevents
 other threads from interrupting thread dispatching on the processor
 because threads normally run at IRQL 0 or 1. However, more is required
 than just raising IRQL, because other processors can simultaneously
 raise to the same IRQL and attempt to operate on their dispatcher
 database. How Windows synchronizes access to the dispatcher database
 is explained in the Multiprocessor Systems section
 later in the chapter.

Quantum

As mentioned earlier in the chapter, a quantum is the amount of
 time a thread gets to run before Windows checks to see whether another
 thread at the same priority is waiting to run. If a thread completes
 its quantum and there are no other threads at its priority, Windows
 permits the thread to run for another quantum.
On client versions of Windows, threads run by default for 2
 clock intervals; on server systems, by default, a thread runs for 12
 clock intervals. (We’ll explain how you can change these values
 later.) The rationale for the longer default value on server systems
 is to minimize context switching. By having a longer quantum, server
 applications that wake up as the result of a client request have a
 better chance of completing the request and going back into a wait
 state before their quantum ends.
The length of the clock interval varies according to the
 hardware platform. The frequency of the clock interrupts is up to the
 HAL, not the kernel. For example, the clock interval for most x86
 uniprocessors is about 10 milliseconds (note that these machines are
 no longer supported by Windows and are only used here for example
 purposes), and for most x86 and x64 multiprocessors it is about 15
 milliseconds. This clock interval is stored in the kernel variable
 KeMaximumIncrement as hundreds of
 nanoseconds.
Because thread run-time accounting is based on processor cycles,
 although threads still run in units of clock intervals, the system
 does not use the count of clock ticks as the deciding factor for how
 long a thread has run and whether its quantum has expired. Instead,
 when the system starts up, a calculation is made whose result is the
 number of clock cycles that each quantum is equivalent to. (This value
 is stored in the kernel variable
 KiCyclesPerClockQuantum.) This calculation is
 made by multiplying the processor speed in Hz (CPU clock cycles per
 second) with the number of seconds it takes for one clock tick to fire
 (based on the KeMaximumIncrement value described
 earlier).
The result of this accounting method is that threads do not
 actually run for a quantum number based on clock ticks; they instead
 run for a quantum target, which represents an estimate of what the
 number of CPU clock cycles the thread has consumed should be when its
 turn would be given up. This target should be equal to an equivalent
 number of clock interval timer ticks because, as you just saw, the
 calculation of clock cycles per quantum is based on the clock interval
 timer frequency, which you can check using the following experiment.
 On the other hand, because interrupt cycles are not charged to the
 thread, the actual clock time might be longer.
EXPERIMENT: Determining the Clock Interval Frequency
The Windows GetSystemTimeAdjustment
 function returns the clock interval. To determine the clock
 interval, download and run the Clockres program from Windows
 Sysinternals (www.microsoft.com/technet/sysinternals).
 Here’s the output from a dual-core 64-bit Windows 7 system:
C:\>clockres

ClockRes v2.0 - View the system clock resolution
Copyright (C) 2009 Mark Russinovich
SysInternals - www.sysinternals.com

Maximum timer interval: 15.600 ms
Minimum timer interval: 0.500 ms
Current timer interval: 15.600 ms

Quantum Accounting

Each process has a quantum reset value in the process control
 block (KPROCESS). This value is used when creating new threads
 inside the process and is duplicated in the thread control block
 (KTHREAD), which is then used when giving a thread a new quantum
 target. The quantum reset value is stored in terms of actual quantum units
 (we’ll discuss what these mean soon), which are then multiplied by
 the number of clock cycles per quantum, resulting in the quantum
 target.
As a thread runs, CPU clock cycles are charged at different
 events (context switches, interrupts, and certain scheduling
 decisions). If at a clock interval timer interrupt, the number of
 CPU clock cycles charged has reached (or passed) the quantum target,
 quantum end processing is triggered. If there is another thread at
 the same priority waiting to run, a context switch occurs to the
 next thread in the ready queue.
Internally, a quantum unit is represented as one third of a
 clock tick. (So one clock tick equals three quantums.) This means
 that on client Windows systems, threads, by default, have a quantum
 reset value of 6 (2 * 3), and that server
 systems have a quantum reset value of 36 (12 * 3). For this reason,
 the KiCyclesPerClockQuantum value is divided by
 three at the end of the calculation previously described, because
 the original value describes only CPU clock cycles per clock
 interval timer tick.
The reason a quantum was stored internally as a fraction of a
 clock tick rather than as an entire tick was to allow for partial
 quantum decay-on-wait completion on versions of Windows prior to
 Windows Vista. Prior versions used the clock interval timer for
 quantum expiration. If this adjustment were not made, it would have
 been possible for threads never to have their quantums reduced. For
 example, if a thread ran, entered a wait state, ran again, and
 entered another wait state but was never the currently running
 thread when the clock interval timer fired, it would never have its
 quantum charged for the time it was running. Because threads now
 have CPU clock cycles charged instead of quantums, and because this
 no longer depends on the clock interval timer, these adjustments are
 not required.
EXPERIMENT: Determining the Clock Cycles per
 Quantum
Windows doesn’t expose the number of clock cycles per
 quantum through any function, but with the calculation and
 description we’ve given, you should be able to determine this on
 your own using the following steps and a kernel debugger such as
 WinDbg in local debugging mode:
	Obtain your processor frequency as Windows has detected
 it. You can use the value stored in the PRCB’s MHz field,
 which can be displayed with the !cpuinfo
 command. Here is a sample output of a dual-core Intel system
 running at 2829 MHz:
lkd> !cpuinfo
CP F/M/S Manufacturer MHz PRCB Signature MSR 8B Signature Features
 0 6,15,6 GenuineIntel 2829 000000c700000000 >000000c700000000<a00f3fff
 1 6,15,6 GenuineIntel 2829 000000c700000000 a00f3fff
 Cached Update Signature 000000c700000000
 Initial Update Signature 000000c700000000

	Convert the number to Hertz (Hz). This is the number of
 CPU clock cycles that occur each second on your system. In
 this case, 2,829,000,000 cycles per second.

	Obtain the clock interval on your system by
 using clockres. This measures how long it
 takes before the clock fires. On the sample system used here,
 this interval was 15.600100 ms.

	Convert this number to the number of times the clock
 interval timer fires each second. One second is 1000 ms, so
 divide the number derived in step 3 by 1000. In this case, the
 timer fires every 0.0156001 seconds.

	Multiply this count by the number of cycles each second
 that you obtained in step 2. In our case, 44,132,682.9 cycles
 have elapsed after each clock interval.

	Remember that each quantum unit is one-third of a clock
 interval, so divide the number of cycles by three. In our
 example, this gives us 14,710,894, or 0xE0786E in hexadecimal.
 This is the number of clock cycles each quantum unit should
 take on a system running at 2829 MHz with a clock interval of
 around 15 ms.

	To verify your calculation, dump the value of
 KiCyclesPerClockQuantum on your system—it
 should match.
lkd> dd nt!KiCyclesPerClockQuantum L1
81d31ae8 00e0786e

Controlling the Quantum

You can change the thread quantum for all processes, but you
 can choose only one of two settings: short (2 clock ticks, which is
 the default for client machines) or long (12 clock ticks, which is
 the default for server systems).
Note
By using the job object on a system running with long
 quantums, you can select other quantum values for the processes in
 the job. For more information on the job object, see the Job Objects section later in the chapter.

To change this setting, right-click on your Computer icon on
 the desktop, or in Windows Explorer, choose Properties, click the
 Advanced System Settings label, click on the Advanced tab, click the
 Settings button in the Performance section, and finally click on the
 Advanced tab. The dialog box displayed is shown in Figure 5-18.
[image: Quantum configuration in the Performance Options dialog box]

Figure 5-18. Quantum configuration in the Performance Options dialog
 box

The Programs setting designates the use of short,
 variable quantums—the default for client versions of Windows. If you
 install Terminal Services on a server system and configure the
 server as an application server, this setting is selected so that
 the users on the terminal server have the same quantum settings that
 would normally be set on a desktop or client system. You might also
 select this manually if you were running Windows Server as your
 desktop operating system.
The Background Services option designates the use of long,
 fixed quantums—the default for server systems. The only reason you
 might select this option on a workstation system is if you were
 using the workstation as a server system. However, because changes
 in this option take effect immediately, it might make sense to use
 it if the machine is about to run a background/server-style
 workload. For example, if a long-running computation, encoding or
 modeling simulation needs to run overnight, Background Services mode
 could be selected at night, and the system put back in Programs mode
 in the morning.
Finally, because Programs mode enables variable quantums, let
 us now explain what controls their variability.

Variable Quantums

When variable quantums are enabled, the variable
 quantum table (PspVariableQuantums) is loaded
 into the PspForegroundQuantum table that is
 used by the PspComputeQuantum function. Its
 algorithm will pick the appropriate quantum index based on whether
 or not the process is a foreground process (that is, whether it
 contains the thread that owns the foreground window on the desktop).
 If this is not the case, an index of zero is chosen, which
 corresponds to the default thread quantum described earlier. If it
 is a foreground process, the quantum index corresponds to the
 priority separation.
This priority separation value determines the priority boost
 (described in a later section of this chapter) that the scheduler
 will apply to foreground threads, and it is thus paired with an
 appropriate extension of the quantum: for each extra priority level
 (up to 2), another quantum is given to the thread. For example, if
 the thread receives a boost of one priority level, it receives an
 extra quantum as well. By default, Windows sets the maximum possible
 priority boost to foreground threads, meaning that the priority
 separation will be 2, therefore selecting quantum index 2 in the
 variable quantum table, leading to the thread receiving two extra
 quantums, for a total of 3 quantums.
Table 5-5 describes the exact quantum
 value (recall that this is stored in a unit representing 1/3rd of a
 clock tick) that will be selected based on the quantum index and
 which quantum configuration is in use.
Table 5-5. Quantum Values
	 	Short Quantum
 Index
	Long Quantum
 Index

	Variable
	6
	12
	18
	12
	24
	36

	Fixed
	18
	18
	18
	36
	36
	36

Thus, when a window is brought into the foreground on a client
 system, all the threads in the process containing the thread that
 owns the foreground window have their quantums tripled: threads in
 the foreground process run with a quantum of 6 clock ticks, whereas
 threads in other processes have the default client quantum of 2
 clock ticks. In this way, when you switch away from a CPU-intensive
 process, the new foreground process will get proportionally more of
 the CPU, because when its threads run they will have a longer turn
 than background threads (again, assuming the thread priorities are
 the same in both the foreground and background processes).

Quantum Settings Registry Value

The user interface to control quantum settings described
 earlier modifies the registry value
 HKLM\SYSTEM\CurrentControlSet\Control\PriorityControl\Win32PrioritySeparation.
 In addition to specifying the relative length of thread quantums
 (short or long), this registry value also defines whether or not
 variable quantums should be used, as well as the priority separation
 (which, as you’ve seen, will determine the quantum index used when
 variable quantums are enabled). This value consists of 6 bits
 divided into the three 2-bit fields shown in Figure 5-19.
[image: Fields of the Win32PrioritySeparation registry value]

Figure 5-19. Fields of the Win32PrioritySeparation registry
 value

The fields shown in Figure 5-19 can be defined
 as follows:
	Short vs.
 Long. A value of 1 specifies long quantums, and 2 specifies
 short ones. A setting of 0 or 3 indicates that the default
 appropriate for the system will be used (short for client
 systems, long for server systems).

	Variable vs.
 Fixed. A setting of 1 means to enable the variable quantum
 table based on the algorithm shown in the Variable Quantums section. A setting of
 0 or 3 means that
 the default appropriate for the system will be used (variable
 for client systems, fixed for server systems).

	Priority
 Separation. This field (stored in the kernel variable
 PsPrioritySeparation) defines the
 priority separation (up to 2) as explained in the Variable Quantums section.

Note that when you’re using the Performance Options dialog box
 (which was shown in Figure 5-18), you can
 choose from only two combinations: short quantums with foreground
 quantums tripled, or long quantums with no quantum changes for
 foreground threads. However, you can select other combinations by
 modifying the Win32PrioritySeparation registry
 value directly.
Note that the threads part of a process running in the idle
 process priority class always receive a single thread quantum (2
 clock ticks), ignoring any sort of quantum configuration settings,
 whether set by default or set through the registry.
On Windows Server systems configured as applications servers,
 the initial value of the
 Win32PrioritySeparation registry value will be
 hex 26, which is identical to the value set by the Optimize
 Performance For Programs option in the Performance Options dialog
 box. This selects quantum and priority boost behavior like that on
 Windows client systems, which is appropriate for a server primarily
 used to host users’ applications.
On Windows client systems and on servers not configured as
 application servers, the initial value of the
 Win32PrioritySeparation registry value will be
 2. This provides values of 0 for the Short vs. Long and Variable vs.
 Fixed bit fields, relying on the default behavior of the system
 (depending on whether it is a client system or a server system) for
 these options, but it provides a value of 2 for the Priority
 Separation field. Once the registry value has been changed by use of
 the Performance Options dialog box, it cannot be restored to this
 original value other than by modifying the registry directly.
EXPERIMENT: Effects of Changing the Quantum
 Configuration
Using a local debugger (Kd or WinDbg), you can see
 how the two quantum configuration settings, Programs and
 Background Services, affect the
 PsPrioritySeparation and
 PspForegroundQuantum tables, as well as
 modify the QuantumReset value of threads on
 the system. Take the following steps:
	Open the System utility in Control Panel (or right-click
 on your computer name’s icon on the desktop, and choose
 Properties). Click the Advanced System Settings label, click
 on the Advanced tab, click the Settings button in the
 Performance section, and finally click on the Advanced tab.
 Select the Programs option, and click Apply. Keep this window
 open for the duration of the experiment.

	Dump the values of
 PsPrioritySeparation and
 PspForegroundQuantum, as shown here. The
 values shown are what you should see on a Windows system after
 making the change in step 1. Notice how the variable, short
 quantum table is being used, and that a priority boost of 2
 will apply to foreground applications:
lkd> dd PsPrioritySeparation L1
81d3101c 00000002
lkd> db PspForegroundQuantum L3
81d0946c 06 0c 12
...

	Now take a look at the QuantumReset
 value of any process on the system. As described earlier, this
 is the default, full quantum of each thread on the system when
 it is replenished. This value is cached into each thread of
 the process, but the KPROCESS structure is easier to look at.
 Notice in this case it is 6, because
 WinDbg, like most other applications, gets the quantum set in
 the first entry of the
 PspForegroundQuantum table:
lkd> .process
Implicit process is now 85b32d90
lkd> dt nt!_KPROCESS 85b32d90 QuantumReset
nt!_KPROCESS
 +0x061 QuantumReset : 6 ''

	Now change the Performance option to Background Services
 in the dialog box you opened in step 1.

	Repeat the commands shown in steps 2 and 3. You should
 see the values change in a manner consistent with our
 discussion in this section:
lkd> dd nt!PsPrioritySeparation L1
81d3101c 00000000
lkd> db nt!PspForegroundQuantum L3
81d0946c 24 24 24 $$$
lkd> dt nt!_KPROCESS 85b32d90 QuantumReset
nt!_KPROCESS
 +0x061 QuantumReset : 36 '$'

Priority Boosts

The Windows scheduler periodically adjusts the current
 priority of threads through an internal priority-boosting mechanism.
 In many cases, it does so for decreasing various latencies (that is,
 to make threads respond faster to the events they are waiting on) and
 increasing responsiveness. In others, it applies these boosts to
 prevent inversion and starvation scenarios. Here are some of the boost
 scenarios that will be described in this section (and their
 purpose):
	Boosts due to scheduler/dispatcher events (latency
 reduction)

	Boosts due to I/O completion (latency reduction)

	Boosts due to UI input (latency
 reduction/responsiveness)

	Boosts due to a thread waiting on an executive resource for
 too long (starvation avoidance)

	Boosts when a thread that’s ready to run hasn’t been running
 for some time (starvation and priority-inversion avoidance)

Like any scheduling algorithms, however, these adjustments
 aren’t perfect, and they might not benefit all applications.
Note
Windows never boosts the priority of threads in the real-time
 range (16 through 31). Therefore, scheduling is always predictable
 with respect to other threads in the real-time range. Windows
 assumes that if you’re using the real-time thread priorities, you
 know what you’re doing.

Client versions of Windows also include another pseudo-boosting
 mechanism that occurs during multimedia playback. Unlike the other
 priority boosts, which are applied directly by kernel code, multimedia
 playback boosts are actually managed by a user-mode service called the
 MultiMedia Class Scheduler Service (MMCSS), but they are not really
 boosts—the service merely sets new base priorities for the threads as
 needed (by calling the user-mode native API to change thread
 priorities). Therefore, none of the rules regarding boosts apply.
 We’ll first cover the typical kernel-managed priority boosts and then
 talk about MMCSS and the kind of “boosting” it performs.
Boosts Due to Scheduler/Dispatcher Events

Whenever a dispatch event occurs, the
 KiExitDispatcher routine is called, whose job
 it is to process the deferred ready list by calling
 KiProcessThreadWaitList and then call
 KiCheckForThreadDispatch to check whether any
 threads on the local processor should not be scheduled. Whenever
 such an event occurs, the caller can also specify which type of
 boost should be applied to the thread, as well as what priority
 increment the boost should be associated with. The following
 scenarios are considered as AdjustUnwait
 dispatch events because they deal with a dispatcher object entering
 a signaled state, which might cause one or more threads to wake
 up:
	An APC is queued to a thread.

	An event is set or pulsed.

	A timer was set, or the system time was changed,
 and timers had to be reset.

	A mutex was released or abandoned.

	A process exited.

	An entry was inserted in a queue, or the queue was
 flushed.

	A semaphore was released.

	A thread was alerted, suspended, resumed, frozen, or
 thawed.

	A primary UMS thread is waiting to switch to a scheduled
 UMS thread.

For scheduling events associated with a public API (such as
 SetEvent), the boost increment applied is
 specified by the caller. Windows recommends certain values to be
 used by developers, which will be described later. For alerts, a
 boost of 2 is applied, because the alert API does not have a
 parameter allowing a caller to set a custom increment.
The scheduler also has two special
 AdjustBoost dispatch events, which are part of
 the lock ownership priority mechanism. These boosts attempt to fix
 situations in which a caller that owns the lock at priority X ends
 up releasing the lock to a waiting thread at priority <= X. In
 this situation, the new owner thread must wait for its turn (if
 running at priority X), or worse, it might not even get to run at
 all if its priority is lower than X. This entails the releasing
 thread continuing its execution, even though it should have caused
 the new owner thread to wake up and take control of the processor.
 The following two dispatcher events cause an
 AdjustBoost dispatcher exit:
	An event is set through the
 KeSetEventBoostPriority interface, which is
 used by the ERESOURCE reader-writer kernel lock

	A gate is set through the
 KeSignalGateBoostPriority interface, which
 is used by various internal mechanisms when releasing a gate
 lock.

Unwait Boosts

Unwait boosts attempt to decrease the latency between a thread
 waking up due to an object being signaled (thus entering the Ready
 state) and the thread actually beginning its execution to process
 the unwait (thus entering the Running state). Because the event that
 the thread is waiting on could give some sort of information about,
 say, the state of available memory at the moment, it is important
 for this state not to change behind the scenes while the thread is
 still stuck in the Ready state—otherwise, it might become irrelevant
 or incorrect once the thread does start running.
The various Windows header files specify recommended values
 that kernel-mode callers of APIs such as
 KeSetEvent and
 KeReleaseSemaphore should use, which correspond
 to definitions such as MUTANT_INCREMENT and EVENT_INCREMENT. These
 definitions have always been set to 1 in the headers, so it is safe
 to assume that most unwaits on these objects result in a boost of 1.
 In the user-mode API, an increment cannot be specified, nor do the
 native system calls such as NtSetEvent have
 parameters to specify such a boost. Instead, when these APIs call
 the underlying Ke interface, they use the
 default _INCREMENT definition automatically. This is also the case
 when mutexes are abandoned or timers are reset due to a system time change: the
 system uses the default boost that normally would’ve been applied
 when the mutex would have been released. Finally, the APC boost is
 completely up to the caller. Soon, you’ll see a specific usage of
 the APC boost related to I/O completion.
Note
Some dispatcher objects don’t have boosts associated with
 them. For example, when a timer is set or expires, or when a
 process is signaled, no boost is applied.

All these boosts of +1 attempt to solve the initial problem by
 making the assumption that both the releasing and waiting threads
 are running at the same priority. By boosting the waiting thread by
 one priority level, the waiting thread should preempt the releasing
 thread as soon as the operation completes. Unfortunately on
 uniprocessor systems, if this assumption does not hold, the boost
 might not do much: if the waiting thread is waiting at priority 4
 vs. the releasing thread at priority 8, waiting at priority 5 won’t
 do much to reduce latency and force preemption. On multiprocessor
 systems, however, due to the stealing and balancing algorithms, this
 higher priority thread may have a higher chance to get picked up by
 another logical processor. This reality is due to a design choice
 made in the initial NT architecture, which is not to track lock
 ownership (except a few locks). That means the scheduler can’t be
 sure who really owns an event, and if it’s really being used as a
 lock. Even with lock ownership tracking, ownership is not usually
 passed in order to avoid convoy issues, other than in the ERESOURCE
 case which we’ll explain below.
However, for certain kinds of lock objects using events or
 gates as their underlying synchronization object, the lock ownership
 boost resolves the dilemma. Also, due to the processor-distribution
 and load-balancing schemes you’ll see later, on a multiprocessor
 machine, the ready thread might get picked up on another processor,
 and its high priority might increase the chances of it running on
 that secondary processor instead.

Lock Ownership Boosts

Because the executive-resource (ERESOURCE) and
 critical-section locks use underlying dispatcher objects, releasing
 these locks results in an unwait boost as described earlier. On the
 other hand, because the high-level implementation of these objects
 does track the owner of the lock, the kernel can make a more
 informed decision as to what kind of boost should be applied, by
 using the AdjustBoost reason. In these kinds of
 boosts, AdjustIncrement is set to the current
 priority of the releasing (or setting) thread, minus any GUI
 foreground separation boost, and before the
 KiExitDispatcher function is called,
 KiRemoveBoostThread is called by the event and
 gate code to return the releasing thread back to its regular
 priority (through the KiComputeNewPriority
 function). This step is needed to avoid a lock convoy situation, in
 which two threads repeatedly passing the lock between one another
 get ever-increasing boosts.
Note that pushlocks, which are unfair locks because ownership
 of the lock in a contended acquisition path is not predictable
 (rather, it’s random, just like a spinlock), do not apply priority
 boosts due to lock ownership. This is because doing so only
 contributes to preemption and priority proliferation, which isn’t
 required because the lock becomes immediately free as soon as it is
 released (bypassing the normal wait/unwait path).
Other differences between the lock ownership boost and
 the unwait boost will be exposed in the way that the scheduler
 actually applies boosting, which is the upcoming topic after this
 section.

Priority Boosting After I/O Completion

Windows gives temporary priority boosts upon completion of
 certain I/O operations so that threads that were waiting for an I/O
 have more of a chance to run right away and process whatever was
 being waited for. Although you’ll find recommended boost values in
 the Windows Driver Kit (WDK) header files (by searching for “#define
 IO” in Wdm.h or Ntddk.h), the actual value for the boost is up to
 the device driver. (These values are listed in Table 5-6.) It is the device driver that
 specifies the boost when it completes an I/O request on its call to
 the kernel function, IoCompleteRequest. In
 Table 5-6, notice that I/O
 requests to devices that warrant better responsiveness have higher
 boost values.
Table 5-6. Recommended Boost Values
	Device
	Boost

	Disk, CD-ROM, parallel,
 video
	1

	Network, mailslot, named pipe,
 serial
	2

	Keyboard, mouse
	6

	Sound
	8

Note
You might intuitively expect “better responsiveness” from
 your video card or disk than a boost of 1, but in fact, the kernel
 is trying to optimize for latency, which some
 devices (as well as human sensory inputs) are more sensitive to
 than others. To give you an idea, a sound card expects data around
 every 1 ms to play back music without perceptible glitches, while
 a video card needs to output at only 24 frames per second, or once
 every 40 ms, before the human eye can notice glitches.

As hinted earlier, these I/O completion boosts rely on the
 unwait boosts seen in the previous section. In Chapter 8 of Part 2,
 the mechanism of I/O completion will be shown in depth. For now, the
 important detail is that the kernel implements the signaling code in
 the IoCompleteRequest API through the use of
 either an APC (for asynchronous I/O) or through an event (for
 synchronous I/O). When a driver passes in, for example,
 IO_DISK_INCREMENT to IoCompleteRequest for an
 asynchronous disk read, the kernel calls
 KeInsertQueueApc with the boost parameter set
 to IO_DISK_INCREMENT. In turn, when the thread’s wait is broken due
 to the APC, it receives a boost of 1.
Be aware that the boost values given in the previous table are
 merely recommendations by Microsoft—driver developers are free to
 ignore them if they choose to do so, and certain specialized drivers
 can use their own values. For example, a driver handling ultrasound
 data from a medical device, which must notify a user-mode
 visualization application of new data, would probably use a boost
 value of 8 as well, to satisfy the same latency
 as a sound card.
In most cases, however, due to the way Windows driver
 stacks are built (again, see Chapter 8, “I/O System,” in Part 2 for
 more information), driver developers often write
 minidrivers, which call into a Microsoft-owned
 driver that supplies its own boost to
 IoCompleteRequest. For example, RAID or SATA
 controller card developers would typically call
 StorPortCompleteRequest to complete processing
 their requests. This call does not have any parameter for a boost
 value, because the Storport.sys driver fills in the right value when
 calling the kernel.
Additionally, in newer versions of Windows, whenever any file
 system driver (identified by setting its device type to
 FILE_DEVICE_DISK_FILE_SYSTEM or FILE_DEVICE_NETWORK_FILE_SYSTEM)
 completes its request, a boost of IO_DISK_INCREMENT is always
 applied if the driver passed in IO_NO_INCREMENT instead. So this
 boost value has become less of a recommendation and more of a
 requirement enforced by the kernel.

Boosts During Waiting on Executive Resources

When a thread attempts to acquire an executive resource
 (ERESOURCE; see Chapter 3 for more
 information on kernel-synchronization objects) that is already owned
 exclusively by another thread, it must enter a wait state until the
 other thread has released the resource. To limit the risk of
 deadlocks, the executive performs this wait in intervals of five
 seconds instead of doing an infinite wait on the resource.
At the end of these five seconds, if the resource is still
 owned, the executive attempts to prevent CPU starvation by acquiring
 the dispatcher lock, boosting the owning thread or threads to 14
 (only if the original owner priority is less than the waiter’s and
 not already 14), resetting their quantums, and performing another
 wait.
Because executive resources can be either shared or exclusive,
 the kernel first boosts the exclusive owner and then checks for
 shared owners and boosts all of them. When the waiting thread enters
 the wait state again, the hope is that the scheduler will schedule
 one of the owner threads, which will have enough time to complete
 its work and release the resource. Note that this boosting mechanism
 is used only if the resource doesn’t have the Disable Boost flag
 set, which developers can choose to set if the priority-inversion
 mechanism described here works well with their usage of the
 resource.
Additionally, this mechanism isn’t perfect. For example, if
 the resource has multiple shared owners, the executive boosts all
 those threads to priority 14, resulting in a sudden surge of
 high-priority threads on the system, all with full quantums.
 Although the initial owner thread will run first (because it was the
 first to be boosted and therefore is first on the ready list), the
 other shared owners will run next, because the waiting thread’s
 priority was not boosted. Only after all the shared owners have had
 a chance to run and their priority has been decreased below the
 waiting thread will the waiting thread finally get its chance to
 acquire the resource. Because shared owners can promote or convert
 their ownership from shared to exclusive as soon as the exclusive
 owner releases the resource, it’s possible for this mechanism not to
 work as intended.

Priority Boosts for Foreground Threads After Waits

As will be shortly described, whenever a thread in the
 foreground process completes a wait operation on a kernel object,
 the kernel boosts its current (not base) priority by the current
 value of PsPrioritySeparation. (The windowing
 system is responsible for determining which process is considered to
 be in the foreground.) As described in the section on quantum
 controls, PsPrioritySeparation reflects the
 quantum-table index used to select quantums for the threads of
 foreground applications. However, in this case, it is being used as
 a priority boost value.
The reason for this boost is to improve the responsiveness of
 interactive applications—by giving the foreground application a
 small boost when it completes a wait, it has a better chance of
 running right away, especially when other processes at the same base
 priority might be running in the background.
EXPERIMENT: Watching Foreground Priority Boosts and
 Decays
Using the CPU Stress tool (downloadable from
 http://live.sysinternals.com/WindowsInternals),
 you can watch priority boosts in action. Take the following
 steps:
	Open the System utility in Control Panel (or right-click
 on your computer name’s icon on the desktop, and choose
 Properties). Click the Advanced System Settings label, click
 on the Advanced tab, click the Settings button in the
 Performance section, and finally click on the Advanced tab.
 Select the Programs option. This causes
 PsPrioritySeparation to get a value of
 2.

	Run Cpustres.exe, and change the activity of thread 1
 from Low to Busy.

	Start the Performance tool by selecting Programs from
 the Start menu and then selecting Performance Monitor from the
 Administrative Tools menu. Click on the Performance Monitor
 entry under Monitoring Tools.

	Click the Add Counter toolbar button (or press Ctrl+I)
 to bring up the Add Counters dialog box.

	Select the Thread object, and then select the %
 Processor Time counter.

	In the Instances box, select <All Instances> and
 click Search. Scroll down until you see the CPUSTRES process.
 Select the second thread (thread 1). (The first thread is the
 GUI thread.) You should see something like this:
[image: image with no caption]

	Click the Add button, and then click OK.

	Select Properties from the Action menu. Change the
 Vertical Scale Maximum to 16 on the Graph
 tab, and set the interval to 1 in Sample
 Every box of the Graph Elements area on the General
 tab.
[image: image with no caption]

	Now bring the CPUSTRES process to the
 foreground. You should see the priority of the CPUSTRES thread
 being boosted by 2 and then decaying back to the base priority
 as follows:
[image: image with no caption]

	The reason CPUSTRES receives a boost of 2 periodically
 is because the thread you’re monitoring is sleeping about 25
 percent of the time and then waking up. (This is the Busy
 Activity level). The boost is applied when the thread wakes
 up. If you set the Activity level to Maximum, you won’t see
 any boosts because Maximum in CPUSTRES puts the thread into an
 infinite loop. Therefore, the thread doesn’t invoke any wait
 functions and, as a result, doesn’t receive any boosts.

	When you’ve finished, exit Performance Monitor and CPU
 Stress.

Priority Boosts After GUI Threads Wake Up

Threads that own windows receive an additional boost of 2 when
 they wake up because of windowing activity such as the arrival of
 window messages. The windowing system (Win32k.sys) applies this
 boost when it calls KeSetEvent to set an event
 used to wake up a GUI thread. The reason for this boost is similar
 to the previous one—to favor interactive applications.
EXPERIMENT: Watching Priority Boosts on GUI Threads
You can also see the windowing system apply its
 boost of 2 for GUI threads that wake up to process window messages
 by monitoring the current priority of a GUI application and moving
 the mouse across the window. Just follow these steps:
	Open the System utility in Control Panel (or right-click
 on your computer name’s icon on the desktop, and choose
 Properties). Click the Advanced System Settings label, click
 on the Advanced tab, click the Settings button in the
 Performance section, and finally click on the Advanced tab. Be
 sure that the Programs option is selected. This causes
 PsPrioritySeparation to get a value of
 2.

	Run Notepad from the Start menu by selecting All
 Programs/Accessories/Notepad.

	Start the Performance tool by selecting Programs from
 the Start menu and then selecting Performance Monitor from the
 Administrative Tools menu. Click on the Performance Monitor
 entry under Monitoring Tools.

	Click the Add Counter toolbar button (or press Ctrl+N)
 to bring up the Add Counters dialog box.

	Select the Thread object, and then select the Priority
 Current counter.

	In the Instances box, type Notepad, and then click Search.
 Scroll down until you see Notepad/0. Click it, click the Add
 button, and then click OK.

	As in the previous experiment, select Properties from
 the Action menu. Change the Vertical Scale Maximum to
 16 on the Graph tab, set the interval to
 1 in Sample Every box of the Graph
 Elements area of the General tab, and click OK.

	You should see the priority of thread 0 in Notepad at 8
 or 10. Because Notepad entered a wait state shortly after it
 received the boost of 2 that threads in the foreground process
 receive, it might not yet have decayed from 10 to 8.

	With Performance Monitor in the foreground, move the
 mouse across the Notepad window. (Make both windows visible on
 the desktop.) You’ll see that the priority sometimes remains
 at 10 and sometimes at 9, for the reasons just explained. (The
 reason you won’t likely catch Notepad at 8 is that it runs so
 little after receiving the GUI thread boost of 2 that it never
 experiences more than one priority level of decay before
 waking up again because of additional windowing activity and
 receiving the boost of 2 again.)

	Now bring Notepad to the foreground. You should see the
 priority rise to 12 and remain there (or drop to 11, because
 it might experience the normal priority decay that occurs for
 boosted threads on the quantum end) because the thread is
 receiving two boosts: the boost of 2 applied to GUI
 threads when they wake up to process windowing input, and an
 additional boost of 2 because Notepad is in the
 foreground.

	If you then move the mouse over Notepad (while it’s
 still in the foreground), you might see the priority drop to
 11 (or maybe even 10) as it experiences the priority decay
 that normally occurs on boosted threads as they complete their
 turn. However, the boost of 2 that is applied because it’s the
 foreground process remains as long as Notepad remains in the
 foreground.

	When you’ve finished, exit Performance Monitor and
 Notepad.

Priority Boosts for CPU Starvation

Imagine the following situation: you have a priority 7 thread
 that’s running, preventing a priority 4 thread from ever receiving
 CPU time; however, a priority 11 thread is waiting for some resource
 that the priority 4 thread has locked. But because the priority 7
 thread in the middle is eating up all the CPU time, the priority 4
 thread will never run long enough to finish whatever it’s doing and
 release the resource blocking the priority 11 thread. What does
 Windows do to address this situation?
You previously saw how the executive code responsible for
 executive resources manages this scenario by boosting the owner
 threads so that they can have a chance to run and release the
 resource. However, executive resources are only one of the many
 synchronization constructs available to developers, and the boosting
 technique will not apply to any other primitive. Therefore, Windows
 also includes a generic CPU starvation-relief mechanism as part of a
 thread called the balance set manager (a system thread that exists
 primarily to perform memory-management functions and is described in
 more detail in Chapter 10 of Part 2).
Once per second, this thread scans the ready queues for any
 threads that have been in the ready state (that is, haven’t run) for
 approximately 4 seconds. If it finds such a thread, the balance-set
 manager boosts the thread’s priority to 15 and sets the quantum
 target to an equivalent CPU clock cycle count of 3 quantum units.
 Once the quantum expires, the thread’s priority decays immediately
 to its original base priority. If the thread wasn’t finished and a
 higher priority thread is ready to run, the decayed thread returns
 to the ready queue, where it again becomes eligible for another
 boost if it remains there for another 4 seconds.
The balance-set manager doesn’t actually scan all of the ready
 threads every time it runs. To minimize the CPU time it uses, it
 scans only 16 ready threads; if there are more threads at that
 priority level, it remembers where it left off and picks up again on
 the next pass. Also, it will boost only 10 threads per pass—if it
 finds 10 threads meriting this particular boost (which indicates an
 unusually busy system), it stops the scan at that point and picks up
 again on the next pass.
Note
We mentioned earlier that scheduling decisions in
 Windows are not affected by the number of threads and that they
 are made in constant time, or O(1). Because the balance-set
 manager needs to scan ready queues manually, this operation
 depends on the number of threads on the system, and more threads
 will require more scanning time. However, the balance-set manager
 is not considered part of the scheduler or its algorithms and is
 simply an extended mechanism to increase reliability.
 Additionally, because of the cap on threads and queues to scan,
 the performance impact is minimized and predictable in a
 worst-case scenario.

Will this algorithm always solve the priority-inversion issue?
 No—it’s not perfect by any means. But over time, CPU-starved threads
 should get enough CPU time to finish whatever processing they were
 doing and re-enter a wait state.
EXPERIMENT: Watching Priority Boosts for CPU
 Starvation
Using the CPU Stress tool, you can watch priority boosts in
 action. In this experiment, you’ll see CPU usage change when a
 thread’s priority is boosted. Take the following steps:
	Run Cpustres.exe. Change the activity level of the
 active thread (by default, Thread 1) from Low to Maximum.
 Change the thread priority from Normal to Below Normal. The
 screen should look like this:
[image: image with no caption]

	Start the Performance tool by selecting Programs from
 the Start menu and then selecting Performance Monitor from the
 Administrative Tools menu. Click on the Performance Monitor
 entry under Monitoring Tools.

	Click the Add Counter toolbar button (or press Ctrl+N)
 to bring up the Add Counters dialog box.

	Select the Thread object, and then select the Priority
 Current counter.

	In the Instances box, type CPUSTRES, and then click
 Search. Scroll down until you see the second thread (thread
 1). (The first thread is the GUI thread.) You should see
 something like this:
[image: image with no caption]

	Click the Add button, and then click OK.

	Raise the priority of Performance Monitor to real time
 by running Task Manager, clicking on the Processes tab, and
 selecting the Mmc.exe process. Right-click the process, select
 Set Priority, and then select Realtime. (If you receive a Task
 Manager Warning message box warning you of system instability,
 click the Yes button.) If you have a multiprocessor system,
 you also need to change the affinity of the process:
 right-click and select Set Affinity. Then clear all other CPUs
 except for CPU 0.

	Run another copy of CPU Stress. In this copy, change the
 activity level of Thread 1 from Low to Maximum.

	Now switch back to Performance Monitor. You should see
 CPU activity every six or so seconds because the thread is
 boosted to priority 15. You can force updates to occur more
 frequently than every second by pausing the display with
 Ctrl+F, and then pressing Ctrl+U, which forces a manual update
 of the counters. Keep Ctrl+U pressed for continual
 refreshes.

When you’ve finished, exit Performance Monitor and the two
 copies of CPU Stress.

EXPERIMENT: “Listening” to Priority Boosting
To “hear” the effect of priority boosting for CPU
 starvation, perform the following steps on a system with a sound
 card:
	Because of MMCSS’ priority boosts (which we will
 describe in the next subsection), you need to stop the
 MultiMedia Class Scheduler Service by opening the Services
 management interface (Start, Programs, Administrative Tools,
 Services).

	Run Windows Media Player (or some other audio-playback
 program), and begin playing some audio content.

	Run Cpustres, and set the activity level of Thread 1 to
 Maximum.

	Use Task Manager to set the affinities of both Windows
 Media Player and Cpustres to a single CPU.

	Raise the priority of Thread 1 of Cpustres from Normal
 to Time Critical.

	You should hear the music playback stop as the
 computer-bound thread begins consuming all available CPU
 time.

	Every so often, you should hear bits of sound as the
 starved thread in the audio playback process gets boosted to
 15 and runs enough to send more data to the sound card.

	Stop Cpustres and Windows Media Player, and start the
 MMCSS service again.

Applying Boosts

Back in KiExitDispatcher, you saw that
 KiProcessThreadWaitList is called to process
 any threads in the deferred ready list. It is here that the boost
 information passed by the caller is processed. This is done by
 looping through each DeferredReady thread,
 unlinking its wait blocks (only Active and Bypassed blocks are
 unlinked), and then setting two key values in the kernel’s thread
 control block: AdjustReason and
 AdjustIncrement. The reason is one of the two
 Adjust possibilities seen earlier, and the increment corresponds to
 the boost value. KiDeferredReadyThread is then
 called, which makes the thread ready for execution, by running two
 algorithms: the quantum and priority selection algorithm, which you
 are about to see in two parts, and the processor selection
 algorithm, which is shown in its respective section later in this
 topic.
Let’s first look at when the algorithm applies boosts, which
 happens only in the cases where a thread is not in the real-time
 priority range.
For an AdjustUnwait boost, it will be
 applied only if the thread is not already experiencing an unusual
 boost and only if the thread has not disabled boosting by calling
 SetThreadPriorityBoost, which sets the
 DisableBoost flag in the KTHREAD. Another
 situation that can disable boosting in this case is if the kernel has realized that the
 thread actually exhausted its quantum (but the clock interrupt did
 not fire to consume it) and the thread came out of a wait that
 lasted less than two clock ticks.
If these situations are not currently true, the new priority
 of the thread will be computed by adding the
 AdjustIncrement to the thread’s current base
 priority. Additionally, if the thread is known to be part of a
 foreground process (meaning that the memory priority is set to
 MEMORY_PRIORITY_FOREGROUND, which is configured by Win32k.sys when
 focus changes), this is where the priorityseparation boost
 (PsPrioritySeparation) is applied by adding its
 value on top of the new priority. This is also known as the
 Foreground Priority boost, which was explained earlier.
Finally, the kernel checks whether this newly computed
 priority is higher than the current priority of the thread, and it
 limits this value to an upper bound of 15 to avoid crossing into the
 real-time range. It then sets this value as the thread’s new current
 priority. If any foreground separation boost was applied, it sets
 this value in the ForegroundBoost field of the
 KTHREAD, which results in a PriorityDecrement
 equal to the separation boost.
For AdjustBoost boosts, the kernel checks
 whether the thread’s current priority is lower than the
 AdjustIncrement (recall this is the priority of
 the setting thread) and whether the thread’s current priority is
 below 13. If so, and priority boosts have not
 been disabled for the thread, the
 AdjustIncrement priority is used as the new
 current priority, limited to a maximum of 13.
 Meanwhile, the UnusualBoost field of the
 KTHREAD contains the boost value, which results in a
 PriorityDecrement equal to the lock ownership
 boost.
In all cases where a PriorityDecrement is
 present, the quantum of the thread is also recomputed to be the
 equivalent of only one clock tick, based on the value of
 KiLockQuantumTarget. This ensures that
 foreground and unusual boosts will be lost after one clock tick
 instead of the usual two (or other configured value), as will be
 shown in the next section. This also happens when an
 AdjustBoost is requested but the thread is
 running at priority 13 or 14 or with boosts disabled.
After this work is complete, AdjustReason
 is now set to AdjustNone.

Removing Boosts

Removing boosts is done in
 KiDeferredReadyThread just as boosts and
 quantum recomputations are being applied (as shown in the previous
 section). The algorithm first begins by checking the type of
 adjustment being done.
For an AdjustNone scenario, which means
 the thread became ready due to perhaps a preemption, the thread’s
 quantum will be recomputed if it already hit its target but the
 clock interrupt has not yet noticed, as long as the thread was
 running at a dynamic priority level. Additionally, the thread’s
 priority will be recomputed. For an
 AdjustUnwait or
 AdjustBoost scenario on a non-real-time thread,
 the kernel checks whether the thread silently exhausted its quantum
 (just as in the prior section). If it did, or if the thread was
 running with a base priority of 14 or higher, or if no
 PriorityDecrement is present and the thread has
 completed a wait that lasted longer than two clock ticks, the
 quantum of the thread is recomputed, as is its priority.
Priority recomputation happens on non-real-time
 threads, and it’s done by taking the thread’s current priority,
 subtracting its foreground boost, subtracting is unusual boost (the
 combination of these last two items is the
 PriorityDecrement), and finally subtracting
 one. Finally, this new priority is bounded with the base priority as
 the lowest bound, and any existing priority decrement is zeroed out
 (clearing unusual and foreground boosts). This means that in the
 case of a lock ownership boost, or any of the unusual boosts
 explained, the entire boost value is now lost. On the other hand,
 for a regular AdjustUnwait boost, the priority
 naturally trickles down by one due to the subtraction by one. This
 lowering eventually stops when the base priority is hit due to the
 lower bound check.
There is another instance where boosts must be removed, which
 goes through the KiRemoveBoostThread function.
 This is a special-case boost removal, which occurs due to the
 lock-ownership boost rule, which specifies that the setting thread
 must lose its boost when donating its current priority to the waking
 thread (to avoid a lock convoy). It is also used to undo the boost
 due to targeted DPC-calls as well as the boost against ERESOURCE
 lock-starvation boost. The only special detail about this routine is
 that when computing the new priority, it takes special care to
 separate the ForegroundBoost vs.
 UnusualBoost components of the
 PriorityDecrement in order to maintain any GUI
 foreground-separation boost that the thread accumulated. This
 behavior, new to Windows 7, ensures that threads relying on the
 lock-ownership boost do not behave erratically when running in the
 foreground, or vice-versa.
Figure 5-20 displays an
 example of how normal boosts are removed from a thread as it
 experiences quantum end.
[image: Priority boosting and decay]

Figure 5-20. Priority boosting and decay

Priority Boosts for Multimedia Applications and Games

As you just saw in the last experiment, although Windows’
 CPU-starvation priority boosts might be enough to get a thread out
 of an abnormally long wait state or potential deadlock, they simply
 cannot deal with the resource requirements imposed by a
 CPU-intensive application such as Windows Media Player or a 3D
 computer game.
Skipping and other audio glitches have been a common
 source of irritation among Windows users in the past, and the
 user-mode audio stack in Windows makes the situation worse because
 it offers even more chances for preemption. To address this, client
 versions of Windows incorporate a service (called MMCSS, described
 earlier in this chapter) whose purpose is to ensure glitch-free
 multimedia playback for applications that register with it.
MMCSS works by defining several tasks, including the
 following:
	Audio

	Capture

	Distribution

	Games

	Playback

	Pro Audio

	Window Manager

Note
You can find the settings for MMCSS, including a lists of
 tasks (which can be modified by OEMs to include other specific
 tasks as appropriate) in the registry keys under
 HKLM\SOFTWARE\Microsoft\Windows
 NT\CurrentVersion\Multimedia\SystemProfile. Additionally, the
 SystemResponsiveness value allows you to
 fine-tune how much CPU usage MMCSS guarantees to low-priority
 threads.

In turn, each of these tasks includes information about the
 various properties that differentiate them. The most important one
 for scheduling is called the Scheduling Category, which is the
 primary factor determining the priority of threads registered with
 MMCSS. Table 5-7 shows the various
 scheduling categories.
Table 5-7. Scheduling Categories
	Category
	Priority
	Description

	High
	23-26
	Pro Audio threads running at a
 higher priority than any other thread on the system except
 for critical system threads

	Medium
	16-22
	The threads part of a foreground
 application such as Windows Media Player

	Low
	8-15
	All other threads that are not
 part of the previous categories

	Exhausted
	1-7
	Threads that have exhausted their
 share of the CPU and will continue running only if no other
 higher priority threads are ready to run

The main mechanism behind MMCSS boosts the priority of threads
 inside a registered process to the priority level matching their
 scheduling category and relative priority within this category for a
 guaranteed period of time. It then lowers those threads to the
 Exhausted category so that other, nonmultimedia threads on the
 system can also get a chance to execute.
By default, multimedia threads get 80 percent of the
 CPU time available, while other threads receive 20 percent (based on
 a sample of 10 ms; in other words, 8 ms and 2 ms, respectively).
 MMCSS itself runs at priority 27 because it needs to preempt any Pro
 Audio threads in order to lower their priority to the Exhausted
 category.
Keep in mind that the kernel still does the actual boosting of
 the values inside the KTHREAD (MMCSS simply makes the same kind of
 system call any other application would), and the scheduler is still
 in control of these threads. It is simply their high priority that
 makes them run almost uninterrupted on a machine, because they are
 in the real-time range and well above threads that most user
 applications run in.
As was discussed earlier, changing the relative thread
 priorities within a process does not usually make sense, and no tool
 allows this because only developers understand the importance of the
 various threads in their programs. On the other hand, because
 applications must manually register with MMCSS and provide it with
 information about what kind of thread this is, MMCSS does have the
 necessary data to change these relative thread priorities (and
 developers are well aware that this will be happening).
EXPERIMENT: “Listening” to MMCSS Priority Boosting
You’ll now perform the same experiment as the prior one but
 without disabling the MMCSS service. In addition, you’ll look at
 the Performance tool to check the priority of the Windows Media
 Player threads.
	Run Windows Media Player (because other playback
 programs might not yet take advantage of the API calls
 required to register with MMCSS), and begin playing some audio
 content.

	If you have a multiprocessor machine, be sure to set the
 affinity of the Wmplayer.exe process so that it runs on only
 one CPU (because you’ll use only one CPUSTRES worker
 thread).

	Start the Performance tool by selecting Programs from
 the Start menu and then selecting Performance Monitor from the
 Administrative Tools menu. Click on the Performance Monitor
 entry under Monitoring Tools.

	Click the Add Counter toolbar button (or press Ctrl+N)
 to bring up the Add Counters dialog box.

	Select the Thread object, and then select the Priority
 Current.

	In the Instances box, type Wmplayer, click Search, and then
 select all its threads. Click the Add button, and then click
 OK.

	As in the previous experiment, select Properties from
 the Action menu. Change the Vertical Scale Maximum to 31 on
 the Graph tab, set the interval to 1 in Sample Every Seconds
 of the Graph Elements area on the General tab, and click
 OK.
You should see one or more priority 21 threads inside
 Wmplayer, which will be constantly running unless there is a
 higher-priority thread requiring the CPU after they are
 dropped to the Exhausted category.

	Run Cpustres, and set the activity level of Thread 1 to
 Maximum.

	Raise the priority of Thread 1 from Normal to Time
 Critical.

	You should notice the system slowing down considerably,
 but the music playback will continue. Every so often, you’ll
 be able to get back some responsiveness from the rest of the
 system. Use this time to stop Cpustres.

	If the Performance tool was unable to capture data
 during the time Cpustres ran, run it again, but use Highest
 instead of Time Critical. This change will slow down the
 system less, but it still requires boosting from MMCSS.
 Because once the multimedia thread is put in the Exhausted
 category there will always be a higher priority thread
 requesting the CPU (CPUSTRES), you should notice Wmplayer’s
 priority 21 thread drop every so often, as shown here:
[image: image with no caption]

MMCSS’ functionality does not stop at simple priority
 boosting, however. Because of the nature of network drivers on
 Windows and the NDIS stack, deferred procedure calls (DPCs) are
 quite common mechanisms for delaying work after an interrupt has
 been received from the network card. Because DPCs run at an IRQL
 level higher than user-mode code (see Chapter 3 for more information on DPCs and
 IRQLs), long-running network card driver code can still interrupt
 media playback during network transfers or when playing a game, for
 example.
Therefore, MMCSS also sends a special command to the network
 stack, telling it to throttle network packets during the duration of
 the media playback. This throttling is designed to maximize playback
 performance, at the cost of some small loss in network throughput
 (which would not be noticeable for network operations usually
 performed during playback, such as playing an online game). The
 exact mechanisms behind it do not belong to any area of the
 scheduler, so we’ll leave them out of this description.
Note
The original implementation of the network throttling code
 had some design issues that caused significant network throughput
 loss on machines with 1000 Mbit network adapters, especially if
 multiple adapters were present on the system (a common feature of
 midrange motherboards). This issue was analyzed by the MMCSS and
 networking teams at Microsoft and later fixed.

Context Switching

A thread’s context and the procedure for context switching vary
 depending on the processor’s architecture. A typical context switch
 requires saving and reloading the following data:
	Instruction pointer

	Kernel stack pointer

	A pointer to the address space in which the thread runs (the
 process’ page table directory)

The kernel saves this information from the old thread by pushing
 it onto the current (old thread’s) kernel-mode stack, updating the
 stack pointer, and saving the stack pointer in the old thread’s
 KTHREAD structure. The kernel stack pointer is then set to the new
 thread’s kernel stack, and the new thread’s context is loaded. If the
 new thread is in a different process, it loads the address of its page
 table directory into a special processor register so that its address
 space is available. (See the description of address translation in
 Chapter 10 in Part 2.) If a kernel APC that needs to be delivered is
 pending, an interrupt at IRQL 1 is requested. (For more information on
 APCs, see Chapter 3.) Otherwise, control
 passes to the new thread’s restored instruction pointer and the new
 thread resumes execution.

Scheduling Scenarios

Windows bases the question of “Who gets the CPU?” on
 thread priority, but how does this approach work in practice? The
 following sections illustrate just how priority-driven preemptive
 multitasking works on the thread level.
Voluntary Switch

First a thread might voluntarily relinquish use of the
 processor by entering a wait state on some object (such as an event,
 a mutex, a semaphore, an I/O completion port, a process, a thread, a
 window message, and so on) by calling one of the Windows wait
 functions (such as WaitForSingleObject or
 WaitForMultipleObjects). Waiting for objects is
 described in more detail in Chapter 3.
Figure 5-21 illustrates a thread
 entering a wait state and Windows selecting a new thread to run. In
 Figure 5-21, the top block (thread) is
 voluntarily relinquishing the processor so that the next thread in
 the ready queue can run (as represented by the halo it has when in
 the Running column). Although it might appear from this figure that
 the relinquishing thread’s priority is being reduced, it’s not—it’s
 just being moved to the wait queue of the objects the thread is
 waiting for.
[image: Voluntary switching]

Figure 5-21. Voluntary switching

Preemption

In this scheduling scenario, a lower-priority thread is
 preempted when a higher-priority thread becomes ready to run. This
 situation might occur for a couple of reasons:
	A higher-priority thread’s wait completes. (The event that
 the other thread was waiting for has occurred.)

	A thread priority is increased or decreased.

In either of these cases, Windows must determine
 whether the currently running thread should still continue to run or
 whether it should be preempted to allow a higher-priority thread to
 run.
Note
Threads running in user mode can preempt threads running in
 kernel mode—the mode in which the thread is running doesn’t
 matter. The thread priority is the determining factor.

When a thread is preempted, it is put at the head of the ready
 queue for the priority it was running at. Figure 5-22 illustrates this
 situation.
[image: Preemptive thread scheduling]

Figure 5-22. Preemptive thread scheduling

In Figure 5-22, a thread
 with priority 18 emerges from a wait state and repossesses the CPU,
 causing the thread that had been running (at priority 16) to be
 bumped to the head of the ready queue. Notice that the bumped thread
 isn’t going to the end of the queue but to the beginning; when the
 preempting thread has finished running, the bumped thread can
 complete its quantum.

Quantum End

When the running thread exhausts its CPU quantum, Windows must
 determine whether the thread’s priority should be decremented and
 then whether another thread should be scheduled on the
 processor.
If the thread priority is reduced, Windows looks for a more
 appropriate thread to schedule. (For example, a more appropriate
 thread would be a thread in a ready queue with a higher priority
 than the new priority for the currently running thread.) If the
 thread priority isn’t reduced and there are other threads in the
 ready queue at the same priority level, Windows selects the next
 thread in the ready queue at that same priority level and moves the
 previously running thread to the tail of that queue (giving it a new
 quantum value and changing its state from running to ready). This
 case is illustrated in Figure 5-23. If no other thread of
 the same priority is ready to run, the thread gets to run for
 another quantum.
[image: Quantum end thread scheduling]

Figure 5-23. Quantum end thread scheduling

As you saw, instead of simply relying on a clock interval
 timer–based quantum to schedule threads, Windows uses an accurate
 CPU clock cycle count to maintain quantum targets. One factor we
 haven’t yet mentioned is that Windows also uses this count to
 determine whether quantum end is currently appropriate for the
 thread—something that might have happened previously and is
 important to discuss.
Using a scheduling model that relies only on the clock
 interval timer, the following situation can occur:
	Threads A and B become ready to run during the middle of
 an interval. (Scheduling code runs not just at each clock
 interval, so this is often the case.)

	Thread A starts running but is interrupted for a while.
 The time spent handling the interrupt is charged to the
 thread.

	Interrupt processing finishes and thread A starts running
 again, but it quickly hits the next clock interval. The
 scheduler can assume only that thread A had been running all
 this time and now switches to thread B.

	Thread B starts running and has a chance to run for a full
 clock interval (barring pre-emption or interrupt
 handling).

In this scenario, thread A was unfairly penalized in two
 different ways. First, the time it spent handling a device interrupt
 was accounted to its own CPU time, even though the thread probably
 had nothing to do with the interrupt. (Recall that interrupts are
 handled in the context of whichever thread was running at the time.)
 It was also unfairly penalized for the time the system was idling
 inside that clock interval before it was scheduled.
Figure 5-24
 represents this scenario.
[image: Unfair time slicing in previous versions of Windows]

Figure 5-24. Unfair time slicing in previous versions of Windows

Because Windows keeps an accurate count of the exact number of
 CPU clock cycles spent doing work that the thread was scheduled to
 do (which means excluding interrupts), and because it keeps a
 quantum target of clock cycles that should have been spent by the
 thread at the end of its quantum, both of the unfair decisions that
 would have been made against thread A will not happen in
 Windows.
Instead, the following situation occurs:
	Threads A and B become ready to run during the middle of
 an interval.

	Thread A starts running but is interrupted for a while.
 The CPU clock cycles spent handling the interrupt are not
 charged to the thread.

	Interrupt processing finishes and thread A starts running
 again, but it quickly hits the next clock interval. The
 scheduler looks at the number of CPU clock cycles charged to the
 thread and compares them to the expected CPU clock cycles that
 should have been charged at quantum end.

	Because the former number is much smaller than it should
 be, the scheduler assumes that thread A started running in the
 middle of a clock interval and might have been additionally
 interrupted.

	Thread A gets its quantum increased by another clock
 interval, and the quantum target is recalculated. Thread A now
 has its chance to run for a full clock interval.

	At the next clock interval, thread A has finished its
 quantum, and thread B now gets a chance to run.

Figure 5-25
 represents this scenario.
[image: Fair time slicing in current versions of Windows]

Figure 5-25. Fair time slicing in current versions of Windows

Termination

When a thread finishes running (either because it
 returned from its main routine, called
 ExitThread, or was killed with
 TerminateThread), it moves from the running
 state to the terminated state. If there are no handles open on the
 thread object, the thread is removed from the process thread list
 and the associated data structures are deallocated and
 released.

Idle Threads

When no runnable thread exists on a CPU, Windows dispatches that
 CPU’s idle thread. Each CPU has its own dedicated idle thread, because
 on a multiprocessor system one CPU can be executing a thread while
 other CPUs might have no threads to execute. Each CPU’s idle thread is
 found via a pointer in that CPU’s PRCB.
All of the idle threads belong to the idle process. The idle
 process and idle threads are special cases in many ways. They are, of
 course, represented by EPROCESS/KPROCESS and ETHREAD/KTHREAD
 structures, but they are not executive manager processes and thread
 objects. Nor is the idle process on the system process list. (This is
 why it does not appear in the output of the kernel debugger’s
 !process 0 0 command.) However, the idle thread
 or threads and their process can be found in other ways.
EXPERIMENT: Displaying the Structures of the Idle Threads and
 Idle Process
The idle thread and process structures can be found in the
 kernel debugger via the !pcr command. “PCR” is
 short for “processor control region.” This command displays a subset
 of information from the PCR and also from the associated PRCB
 (processor control block). !pcr takes a single
 numeric argument, which is the number of the CPU whose PCR is to be
 displayed. The boot processor is processor number 0, and it is
 always present, so !pcr 0 should always work.
 The following output shows the results of this command from a memory
 dump taken from a 64-bit, four-processor system:
3: kd> !pcr 0
KPCR for Processor 0 at fffff800039fdd00:
 Major 1 Minor 1
 NtTib.ExceptionList: fffff80000b95000
 NtTib.StackBase: fffff80000b96080
 NtTib.StackLimit: 000000000008e2d8
 NtTib.SubSystemTib: fffff800039fdd00
 NtTib.Version: 00000000039fde80
 NtTib.UserPointer: fffff800039fe4f0
 NtTib.SelfTib: 000000007efdb000

 SelfPcr: 0000000000000000
 Prcb: fffff800039fde80
 Irql: 0000000000000000
 IRR: 0000000000000000
 IDR: 0000000000000000
 InterruptMode: 0000000000000000
 IDT: 0000000000000000
 GDT: 0000000000000000
 TSS: 0000000000000000

 CurrentThread: fffffa8007aa8060
 NextThread: 0000000000000000
 IdleThread: fffff80003a0bcc0

 DpcQueue:
This output shows that CPU 0 was executing a thread
 other than its idle thread at the time the memory dump was obtained,
 because the CurrentThread and
 IdleThread pointers are different. (If you have
 a multi-CPU system you can try !pcr 1,
 !pcr 2, and so on, until you run out; observe
 that each IdleThread pointer is
 different.)
Now use the !thread command on the
 indicated idle thread address:
3: kd> !thread fffff80003a0bcc0
THREAD fffff80003a0bcc0 Cid 0000.0000 Teb: 0000000000000000 Win32Thread:
0000000000000000
 RUNNING on processor 0
Not impersonating
DeviceMap fffff8a000008aa0
Owning Process fffff80003a0c1c0 Image: Idle
Attached Process fffffa800792a040 Image: System
Wait Start TickCount 50774016 Ticks: 12213 (0:00:03:10.828)
Context Switch Count 1147613282
UserTime 00:00:00.000
KernelTime 8 Days 07:21:56.656
Win32 Start Address nt!KiIdleLoop (0xfffff8000387f910)
Stack Init fffff80000b9cdb0 Current fffff80000b9cd40
Base fffff80000b9d000 Limit fffff80000b97000 Call 0
Priority 16 BasePriority 0 UnusualBoost 0 ForegroundBoost 0 IoPriority 0 PagePriority 0
Child-SP RetAddr : Args to Child [...]: Call Site
fffff800'00b9cd80 00000000'00000000 : fffff800'00b9d000 [...]: nt!KiIdleLoop+0x10d
Finally, use the !process command on the
 “Owning Process” shown in the preceding output. For brevity, we’ll
 add a second parameter value of 3, which causes
 !process to emit only minimal information for
 each thread:
3: kd> !process fffff80003a0c1c0 3
PROCESS fffff80003a0c1c0
 SessionId: none Cid: 0000 Peb: 00000000 ParentCid: 0000
 DirBase: 00187000 ObjectTable: fffff8a000001630 HandleCount: 1338.
 Image: Idle
 VadRoot fffffa8007846c00 Vads 1 Clone 0 Private 1. Modified 0. Locked 0.
 DeviceMap 0000000000000000
 Token fffff8a000004a40
 ElapsedTime 00:00:00.000
 UserTime 00:00:00.000
 KernelTime 00:00:00.000
 QuotaPoolUsage[PagedPool] 0
 QuotaPoolUsage[NonPagedPool] 0
 Working Set Sizes (now,min,max) (6, 50, 450) (24KB, 200KB, 1800KB)
 PeakWorkingSetSize 6
 VirtualSize 0 Mb
 PeakVirtualSize 0 Mb
 PageFaultCount 1
 MemoryPriority BACKGROUND
 BasePriority 0
 CommitCharge 0

THREAD fffff80003a0bcc0 Cid 0000.0000 Teb: 0000000000000000 Win32Thread:
0000000000000000
 RUNNING on processor 0
THREAD fffff8800310afc0 Cid 0000.0000 Teb: 0000000000000000 Win32Thread:
0000000000000000
 RUNNING on processor 1
THREAD fffff8800317bfc0 Cid 0000.0000 Teb: 0000000000000000 Win32Thread:
0000000000000000
 RUNNING on processor 2
THREAD fffff880031ecfc0 Cid 0000.0000 Teb: 0000000000000000 Win32Thread:
0000000000000000
 RUNNING on processor 3
These process and thread addresses can be used with
 dt nt!_EPROCESS, dt
 nt!_KTHREAD, and other such commands as well.

The preceding experiment shows some of the anomalies associated
 with the idle process and its threads. The debugger indicates an
 “Image” name of “Idle” (which comes from the EPROCESS structure’s
 ImageFileName member), but various Windows
 utilities report the idle process using different names. Task Manager
 and Process Explorer call it System Idle Process,
 while Tlist calls it System Processes. The process
 ID and thread IDs (the “client IDs”, or “Cid” in the debugger’s
 output) are zero, as are the PEB and TEB pointers, and there are many
 other fields in the idle process or its threads that might be reported
 as 0. This occurs because the idle process has no user-mode address
 space and its threads execute no user-mode code, so they have no need
 of the various data needed to manage a user-mode environment. Also,
 the idle process is not an object-manager process object, and its idle
 threads are not object-manager thread objects. Instead, the initial
 idle thread and idle process structures are statically allocated and
 used to bootstrap the system before the process manager and the object
 manager are initialized. Subsequent idle thread structures are
 allocated dynamically (as simple allocations from nonpaged pool,
 bypassing the object manager) as additional processors are brought
 online. Once process management initializes, it uses the special
 variable PsIdleProcess to refer to the idle
 process.
Perhaps the most interesting anomaly regarding the idle process
 is that Windows reports the priority of the idle threads as 0 (16 on
 x64 systems, as shown earlier). In reality, however, the values of the
 idle threads’ priority members are irrelevant, because these threads
 are selected for dispatching only when there are no other threads to
 run. Their priority is never compared with that of any other thread,
 nor are they used to put an idle thread on a ready queue; idle threads
 are never part of any ready queues. (Remember, only one thread per Windows
 system is actually running at priority 0—the zero page thread,
 explained in Chapter 10 in Part 2.)
Just as the idle threads are special cases in terms of selection
 for execution, they are also special cases for preemption. The idle
 thread’s routine, KiIdleLoop, performs a number
 of operations that preclude its being preempted by another thread in
 the usual fashion. When no non-idle threads are available to run on a
 processor, that processor is marked as idle in its PRCB. After that,
 if a thread is selected for execution on the idle processor, the
 thread’s address is stored in the NextThread
 pointer of the idle processor’s PRCB. The idle thread checks this
 pointer on each pass through its loop.
Although some details of the flow vary between architectures,
 the basic sequence of operations of the idle thread is as
 follows:
	Enables interrupts briefly, allowing any pending interrupts
 to be delivered, and then disables them again (using the STI and
 CLI instructions on x86 and x64 processors). This is desirable
 because significant parts of the idle thread execute with
 interrupts disabled.

	On the debug build on some architectures, checks whether
 there is a kernel debugger trying to break into the system and, if
 so, gives it access.

	Checks whether any DPCs (described in Chapter 3) are pending on the processor. DPCs
 could be pending if a DPC interrupt was not generated when they
 were queued. If DPCs are pending, the idle loop calls
 KiRetireDpcList to deliver them. This will
 also perform timer expiration, as well as deferred ready
 processing; the latter is explained in the upcoming multiprocessor
 scheduling section. KiRetireDpcList must be
 entered with interrupts disabled, which is why interrupts are left
 disabled at the end of step 1.
 KiRetireDpcList exits with interrupts
 disabled as well.

	Checks whether a thread has been selected to run next on the
 processor and, if so, dispatches that thread. This could be the
 case if, for example, a DPC or timer expiration processed in step
 3 resolved the wait of a waiting thread, or if another processor
 selected a thread for this processor to run while it was already
 in the idle loop.

	If requested, checks for threads ready to run on other
 processors and, if possible, schedules one of them locally. (This
 operation is explained in the upcoming Idle Scheduler section.)

	Calls the registered power management processor idle routine
 (in case any power management functions need to be performed),
 which is either in the processor power driver (such as
 intelppm.sys) or in the HAL if such a driver is
 unavailable.

Thread Selection

Whenever a logical processor needs to pick the next thread to
 run, it calls the KiSelectNextThread scheduler
 function. This can happen in a variety of scenarios:
	A hard affinity change has occurred, making the currently
 running or standby thread ineligible for execution on its selected
 logical processor, so another must be chosen.

	The currently running thread reached its quantum
 end, and the SMT set it was currently running on has now become
 busy, while other SMT sets within the ideal node are fully idle.
 (SMT is the abbreviation for Symmetric Multi-Threading, the
 technical name for the Hyperthreading technology described in
 Chapter 2.) The scheduler performs a
 quantum end migration of the current thread, so another must be
 chosen.

	A wait operation has completed, and there were pending
 scheduling operations in the wait status register (in other words,
 the Priority and/or Affinity bits were set).

In these scenarios, the behavior of the scheduler is as
 follows:
	Call KiSelectReadyThread to find the
 next ready thread that the processor should run, and check whether
 one was found.

	If a ready thread was not found, the idle scheduler is
 enabled, and the idle thread is selected for execution.

	Or, if a ready thread was found, it is put in the Standby
 state and set as the NextThread in the KPRCB
 of the logical processor.

The KiSelectNextThread operation is
 performed only when the logical processor needs to pick, but not yet
 run, the next schedulable thread (which is why the thread will enter
 Standby). Other times, however, the logical processor is interested in
 immediately running the next ready thread or performing another action
 if one is not available (instead of going idle), such as when the
 following occurs:
	A priority change has occurred, making the current standby
 or running thread no longer the highest priority ready thread on
 its selected logical processor, so a higher priority ready thread
 must now run.

	The thread has explicitly yielded with
 YieldProcessor or
 NtYieldExecution, and another thread might be
 ready for execution.

	The quantum of the current thread has expired, and other
 threads at the same priority level need their chance to run as
 well

	A thread has lost its priority boost, causing a similar
 priority change to the scenario just described.

	The idle scheduler is running and needs to check whether a
 ready thread has not appeared in the interval between which idle
 scheduling was requested and the idle scheduler ran.

A simple way to remember the difference between which routine
 runs is to check whether or not the logical processor
 must run a different thread (in which case
 KiSelectNextThread is called) or if it
 should, if possible, run a different thread (in
 which case KiSelectReadyThread is called).
In either case, because each processor has its own database of
 threads that are ready to run (the dispatcher database’s ready queues
 in the KPRCB), KiSelectReadyThread can simply
 check the current LP’s queues, removing the first highest priority
 thread that it finds, unless this priority is lower than the one of
 the currently running thread (depending on whether the current thread
 is still allowed to run, which would not be the case in the
 KiSelectNextThread scenario). If there is no
 higher priority thread (or no threads are ready at all), no thread is
 returned.
Idle Scheduler

Whenever the idle thread runs, it checks whether idle
 scheduling has been enabled, such as in one of the scenarios
 described in the previous section. If so, the idle thread then
 begins scanning other processor’s ready queues for threads it can
 run by calling KiSearchForNewThread. Note that
 the runtime costs associated with this operation are not charged as
 idle thread time, but are instead charged as interrupt and DPC time
 (charged to the processor), so idle scheduling time is considered
 system time. The KiSearchForNewThread
 algorithm, which is based on the functions seen in the Thread Selection section earlier, will be explained in
 the upcoming section.

Multiprocessor Systems

On a uniprocessor system, scheduling is relatively simple: the
 highest-priority thread that wants to run is always running. On a
 multiprocessor system, it is more complex, because Windows attempts to
 schedule threads on the most optimal processor for the thread, taking
 into account the thread’s preferred and previous processors, as well
 as the configuration of the multiprocessor system. Therefore, although
 Windows attempts to schedule the highest-priority runnable threads on
 all available CPUs, it guarantees only to be running one of the
 highest-priority threads somewhere.
Before we describe the specific algorithms used to choose which
 threads run where and when, let’s examine the additional information
 Windows maintains to track thread and processor state on
 multiprocessor systems and the three different types of multiprocessor
 systems supported by Windows (SMT, multicore, and NUMA).
Package Sets and SMT Sets

Windows uses five fields in the KPRCB to determine correct
 scheduling decisions when dealing with logical processor topologies.
 The first field, CoresPerPhysicalProcessor,
 determines whether this logical processor is part of a multicore
 package, and it’s computed from the CPUID returned by the processor
 and rounded to a power of two. The second field,
 LogicalProcessorsPerCore determines whether the
 logical processor is part of an SMT set, such as on an Intel
 processor with HyperThreading enabled, and is
 also queried through CPUID and rounded. Multiplying these two
 numbers yields the number of logical processors per package, or an
 actual physical processor that fits into a socket. With these
 numbers, each PRCB can then populate its
 PackageProcessorSet value, which is the
 affinity mask describing which other logical processors within this
 group (because packages are constrained to a group) belong to the
 same physical processor. Similarly, the
 CoreProcessorSet value connects other logical
 processors to the same core, also called an SMT set. Finally, the
 GroupSetMember value defines which bit mask,
 within the current processor group, identifies this very logical
 processor. For example, the logical processor 3 normally has a
 GroupSetMember of 8 (2^3).
EXPERIMENT: Viewing Logical Processor Information
You can examine the information Windows maintains
 for SMT processors using the !smt command in
 the kernel debugger. The following output is from a dual-core
 Intel Core i5 system with SMT (four logical processors):
SMT Summary:
KeActiveProcessors:
****-- (000000000000000f)
KiIdleSummary:
-*-*-- (000000000000000a)
-- (0000000000000000)
-- (0000000000000000)
-- (0000000000000000)

No PRCB SMT Set APIC Id
 0 fffff8000324ae80 **--
(0000000000000003) 0x00000000
 1 fffff880009e5180 **--
(0000000000000003) 0x00000001
 2 fffff88002f65180 --**--
(000000000000000c) 0x00000002
 3 fffff88002fd7180 --**--
(000000000000000c) 0x00000003
Maximum cores per physical processor: 8
Maximum logical processors per core: 2

NUMA Systems

Another type of multiprocessor system supported by Windows is
 one with a nonuniform memory access (NUMA) architecture. In a NUMA
 system, processors are grouped together in smaller units called
 nodes. Each node has its own processors and memory and is connected
 to the larger system through a cache-coherent interconnect bus.
 These systems are called “nonuniform” because each node has its own
 local high-speed memory. Although any processor in any node can
 access all of memory, node-local memory is much faster to
 access.
The kernel maintains information about each node in a NUMA
 system in a data structure called KNODE. The kernel variable
 KeNodeBlock is an array of pointers to the
 KNODE structures for each node. The format of the KNODE structure
 can be shown using the dt command in the kernel
 debugger, as shown here:
lkd> dt nt!_KNODE
 +0x000 PagedPoolSListHead : _SLIST_HEADER
 +0x008 NonPagedPoolSListHead : [3] _SLIST_HEADER
 +0x020 Affinity : _GROUP_AFFINITY
 +0x02c ProximityId : Uint4B
 +0x030 NodeNumber : Uint2B
...
 +0x060 ParkLock : Int4B
 +0x064 NodePad1 : Uint4B
EXPERIMENT: Viewing NUMA Information
You can examine the information Windows maintains
 for each node in a NUMA system using the
 !numa command in the kernel debugger. The
 following partial output is from a 64-processor NUMA system from
 Hewlett-Packard with four processors per node:
26: kd> !numa
NUMA Summary:

Number of NUMA nodes : 16
Number of Processors : 64
MmAvailablePages : 0x03F55E67

KeActiveProcessors : **
 (ffffffffffffffff)

NODE 0 (E000000084261900):
 ProcessorMask : ****--
...
NODE 1 (E0000145FF992200):
 ProcessorMask : ----****--
...

Applications that want to gain the most performance out of
 NUMA systems can set the affinity mask to restrict a process to the
 processors in a specific node, although Windows already restricts
 nearly all threads to a single NUMA node due to its NUMA-aware
 scheduling algorithms.
How the scheduling algorithms take into account NUMA systems
 will be covered in the upcoming section Processor Selection (and the optimizations in
 the memory manager to take advantage of node-local memory are
 covered in Chapter 10 in Part 2).

Processor Group Assignment

While querying the topology of the system to build the various
 relationships between logical processors, SMT sets, multicore
 packages and physical sockets, Windows assigns processors to an
 appropriate group that will describe their affinity (through the
 extended affinity mask seen earlier). This work is done by the
 KePerformGroupConfiguration routine, which is
 called during initialization before any other Phase 1 work is done.
 Note that regardless of the group assignment steps below, NUMA node
 0 is always assigned to group 0, no matter what.
First, the function queries all detected nodes
 (KeNumberNodes) and computes the capacity of
 each node (that is, how many logical processors can be part of the
 node). This value is stored as the
 MaximumProcessors in the
 KeNodeBlock, which identifies all NUMA nodes on
 the system. If the system supports NUMA Proximity IDs, the proximity
 ID is queried for each node as well and saved in the node block.
 Second, the NUMA distance array is allocated
 (KeNodeDistance), and the distance between each
 NUMA node is computed as was described in Chapter 3.
The next series of steps deal with specific user-configuration
 options that override default NUMA assignments. For example, on a
 system with Hyper-V installed (and the hypervisor configured to
 auto-start), only one processor group will be enabled, and all NUMA
 nodes (that can fit) will be associated with group 0. This means
 that Hyper-V scenarios cannot take advantage of machines with over
 64 processors at the moment.
Next, the function checks whether any static group assignment
 data was passed by the loader (and thus configured by the user).
 This data specifies the proximity information and group assignment
 for each NUMA node.
Note
Users dealing with large NUMA servers that might need custom
 control of proximity information and group assignments for testing
 or validation purposes can input this data through the Group
 Assignment and Node Distance registry values in the HKLM\SYSTEM
 \CurrentControlSet\Control\NUMA registry key. The exact format of
 this data includes a count, followed by an array of proximity IDs
 and group assignments, which are all 32-bit values.

Before treating this data as valid, the kernel queries the
 proximity ID to match the node number and then associates group
 numbers as requested. It then makes sure that NUMA node 0 is
 associated with group 0, and that the capacity for all NUMA nodes is
 consistent with the group size. Finally, the function checks how
 many groups still have remaining capacity.
Next, the kernel dynamically attempts to assign NUMA nodes to
 groups, while respecting any statically configured nodes if
 passed-in as we just described. Normally, the kernel tries to
 minimize the number of groups created, combining as many NUMA nodes
 as possible per group. However, if this behavior is not desired, it
 can be configured differently with the /MAXGROUP loader parameter,
 which is configured through the maxgroup BCD
 option. Turning this value on overrides the default behavior and
 causes the algorithm to spread as many NUMA nodes as possible into
 as many groups as possible (while respecting that the currently
 implemented group limit is 4). If there is only one node, or if all
 nodes can fit into a single group (and maxgroup
 is off), the system performs the default setting of assigning all
 nodes to group 0.
If there is more than one node, Windows checks the static NUMA
 node distances (if any), and then sorts all the nodes by their
 capacity so that the largest nodes come first. In the
 group-minimization mode, by adding up all the capacities, the kernel
 figures out how many maximum processors there can be. By dividing
 that by the number of processors per group, the kernel assumes there
 will be this many total groups on the machine (limited to a maximum
 of 4). In the group-maximization mode, the initial estimate is that
 there will be as many groups as nodes (limited again to 4).
Now the kernel begins the final assignment process. All fixed
 assignments from earlier are now committed, and groups are created
 for those assignments. Next, all the NUMA nodes are reshuffled to
 minimize the distance between the different nodes within a group. In
 other words, closer nodes are put in the same group and sorted by
 distance. Next, the same process is performed for any dynamically
 configured node to group assignments. Finally, any remaining empty
 nodes are assigned to group 0.

Logical Processors per Group

Generally, Windows assigns 64 processors per group as
 explained earlier, but this configuration can also be customized by
 using different load options, such as the /GROUPSIZE option, which
 is configured through the groupsize BCD
 element. By specifying a number that is a power of two, groups can
 be forced to contain fewer processors than normal, for purposes such
 as testing group awareness in the system (for example, a system with
 8 logical processors can be made to appear to have 1, 2, or 4
 groups). To force the issue, the /FORCEGROUPAWARE option (BCD
 element groupaware) furthermore makes the
 kernel avoid group 0 whenever possible, assigning the highest group
 number available in actions such as thread and DPC affinity
 selection and process group assignment. Avoid setting a group size
 of 1, because this will force almost all applications on the system
 to behave as if they’re running on a uniprocessor machine, because
 the kernel sets the affinity mask of a given process to span only
 one group until the application requests otherwise (which most
 applications today will not do).
Note that in the edge case where the number of logical
 processors in a package cannot fit into a single group, Windows
 adjusts these numbers so that a package can fit into a single group,
 shrinking the CoresPerPhysicalProcessor number,
 and if the SMT cannot fit either, doing this as well for
 LogicalProcessorsPerCore. The exception to this
 rule is if the system actually contains multiple NUMA nodes within a
 single package. Although this is not a possibility as of this
 writing, future Multiple-Chip Modules (MCMs, an extension of
 multicore packages) are due to ship from processor manufacturers in
 the future. In these modules, two sets of cores as well as two
 memory controllers are on the same die/package. If the ACPI SRAT
 table defines the MCM as having two NUMA nodes, depending on group
 configuration algorithms, Windows might associate the two nodes with
 two different groups. In this scenario, the MCM package would span
 more than one group.
Other than causing significant driver and application
 compatibility problems (which they are designed to identify and root
 out, when used by developers), these options have an even greater
 impact on the machine: they will force NUMA behaviors even on a
 non-NUMA machine. This is because Windows will never allow a NUMA
 node to span multiple groups, as was shown in the assignment
 algorithms. So, if the kernel is creating artificially small groups,
 those two groups must each have their own NUMA node. For example, on
 a quad-core processor with a group size of two, this will create two
 groups, and thus two NUMA nodes, which will be subnodes of the main
 node. This will affect scheduling and memory-management policies in
 the same way a true NUMA system would, which can be useful for
 testing.

Logical Processor State

In addition to the ready queues and the ready summary, Windows
 maintains two bitmasks that track the state of the processors on the
 system. (How these bitmasks are used is explained in the upcoming
 section Processor Selection.) Following
 are the bitmasks that Windows maintains.
The first one is the active processor mask
 (KeActiveProcessors), which has a bit set for
 each usable processor on the system. This might be fewer than the
 number of actual processors if the licensing limits of the version
 of Windows running supports fewer than the number of available
 physical processors. To check this, use the variable
 KeRegisteredProcessors to see how many
 processors are actually licensed on the machine. In this instance,
 “processors” refers to physical packages. The
 KeMaximumProcessors variable, on the other
 hand, is the maximum number of logical processors, including all
 future possible dynamic processor additions, bounded within the
 licensing limit, and any platform limitations that are queried by
 calling the HAL and checking with the ACPI SRAT table, if
 any.
The idle summary (KiIdleSummary) is
 actually an array of two extended bitmasks. In the first entry,
 called CpuSet, each set bit represents an idle
 processor, while in the second entry, SMTSet,
 each bit describes an idle SMT set.
The nonparked summary
 (KiNonParkedSummary) defines each nonparked
 logical processor through a bit.

Scheduler Scalability

Because on a multiprocessor system one processor might need to
 modify another processor’s per-CPU scheduling data structures (such
 as inserting a thread that would like to run on a certain
 processor), these structures are synchronized by using a per-PRCB
 queued spinlock, which is held at DISPATCH_LEVEL. Thus, thread
 selection can occur while locking only an individual processor’s
 PRCB. If needed, up to one more processor’s PRCB can also be locked,
 such as in scenarios of thread stealing, which will be described
 later. Thread context switching is also synchronized by using a
 finer-grained per-thread spinlock.
There is also a per-CPU list of threads in the deferred ready
 state. These represent threads that are ready to run but have not
 yet been readied for execution; the actual ready operation has been
 deferred to a more appropriate time. Because each processor
 manipulates only its own per-processor deferred ready list, this
 list is not synchronized by the PRCB spinlock. The deferred ready
 thread list is processed by
 KiProcessDeferredReadyList after a function has
 already done modifications to process or thread affinity, priority
 (including due to priority boosting), or quantum values.
This function calls KiDeferredReadyThread
 for each thread on the list, which performs the algorithm shown
 later in the Processor Selection section,
 which could either cause the thread to run immediately; to be put on
 the ready list of the processor; or if the processor is unavailable,
 to be potentially put on a different processor’s deferred ready
 list, in a standby state, or immediately executed. This property is
 used by the Core Parking engine when parking a core: all threads are
 put into the deferred ready list, and it is then processed. Because
 KiDeferredReadyThread skips parked cores (as
 will be shown), it causes all of this processor’s threads to wind up
 on other processors.

Affinity

Each thread has an affinity mask that specifies the processors
 on which the thread is allowed to run. The thread affinity mask is
 inherited from the process affinity mask. By default, all processes
 (and therefore all threads) begin with an affinity mask that is
 equal to the set of all active processors on their assigned group—in other words, the system is
 free to schedule all threads on any available processor within the
 group associated with the process.
However, to optimize throughput, partition workloads to a
 specific set of processors, or both, applications can choose to
 change the affinity mask for a thread. This can be done at several
 levels:
	Calling the SetThreadAffinityMask
 function to set the affinity for an individual thread.

	Calling the SetProcessAffinityMask
 function to set the affinity for all the threads in a process.
 Task Manager and Process Explorer provide a GUI to this function
 if you right-click a process and choose Set Affinity. The Psexec
 tool (from Sysinternals) provides a command-line interface to
 this function. (See the –a switch in its help output.)

	By making a process a member of a job that has a jobwide
 affinity mask set using the
 SetInformationJobObject function. (Jobs are
 described in the upcoming Job Objects
 section.)

	By specifying an affinity mask in the image header when
 compiling the application. (For more information on the detailed
 format of Windows images, search for “Portable Executable and
 Common Object File Format Specification” on www.microsoft.com.)

An image can also have the “uniprocessor” flag set at link
 time. If this flag is set, the system chooses a single processor at
 process creation time
 (MmRotatingProcessorNumber) and assigns that as
 the process affinity mask, starting with the first processor and
 then going round-robin across all the processors within the group.
 For example, on a dual-processor system, the first time an image
 marked as uniprocessor is launched, it is assigned to CPU 0; the
 second time, CPU 1; the third time, CPU 0; the fourth time, CPU 1;
 and so on. This flag can be useful as a temporary workaround for
 programs that have multithreaded synchronization bugs that, as a
 result of race conditions, surface on multiprocessor systems but
 that don’t occur on uniprocessor systems. If an image exhibits such
 symptoms and is unsigned, the flag can be manually added by editing
 the image header with a tool such as Imagecfg.exe. A better
 solution, also compatible with signed executables, is to use the
 Microsoft Application Compatibility Toolkit and add a shim to force
 the compatibility database to mark the image as uniprocessor-only at
 launch time.
EXPERIMENT: Viewing and Changing Process Affinity
In this experiment, you will modify the affinity settings
 for a process and see that process affinity is inherited by new
 processes:
	Run the command prompt (Cmd.exe).

	Run Task Manager or Process Explorer, and find the
 Cmd.exe process in the process list.

	Right-click the process, and select Set
 Affinity. A list of processors should be displayed. For
 example, on a dual-processor system you will see this:
[image: image with no caption]

	Select a subset of the available processors on the
 system, and click OK. The process’ threads are now restricted
 to run on the processors you just selected.

	Now run Notepad.exe from the command prompt (by typing
 Notepad.exe).

	Go back to Task Manager or Process Explorer and find the
 new Notepad process. Right-click it, and choose Affinity. You
 should see the same list of processors you chose for the
 command-prompt process. This is because processes inherit
 their affinity settings from their parent.

Windows won’t move a running thread that could run on a
 different processor from one CPU to a second processor to permit a
 thread with an affinity for the first processor to run on the first
 processor. For example, consider this scenario: CPU 0 is running a
 priority 8 thread that can run on any processor, and CPU 1 is
 running a priority 4 thread that can run on any processor. A
 priority 6 thread that can run on only CPU 0 becomes ready. What
 happens? Windows won’t move the priority 8 thread from CPU 0 to CPU
 1 (preempting the priority 4 thread) so that the priority 6 thread
 can run; the priority 6 thread has to stay in the ready
 state.
Therefore, changing the affinity mask for a process or a
 thread can result in threads getting less CPU time than they
 normally would, because Windows is restricted from running the
 thread on certain processors. Therefore, setting affinity should be
 done with extreme care—in most cases, it is optimal to let Windows
 decide which threads run where.

Extended Affinity Mask

To support more than 64 processors, which is the limit
 enforced by the affinity mask structure (composed of 64 bits on a
 64-bit system), Windows uses an extended affinity mask
 (KAFFINITY_EX) that is an array of affinity masks, one for each
 supported processor group (currently defined to 4). When the
 scheduler needs to refer to a processor in the extended affinity
 masks, it first de-references the correct bitmask by using its group
 number and then accesses the resulting affinity directly. In the
 kernel API, extended affinity masks are not exposed; instead, the
 caller of the API inputs the group number as a parameter, and
 receives the legacy affinity mask for that group. In the Windows
 API, on the other hand, only information about a single group can
 usually be queried, which is the group of the currently running
 thread (which is fixed).
The extended affinity mask and its underlying
 functionality are also how a process can escape the boundaries of
 its original assigned processor group. By using the extended
 affinity APIs, threads in a process can choose affinity masks on
 other processor groups. For example, if a process has 4 threads and
 the machine has 256 processors, thread 1 can run on processor 4,
 thread 2 can run on processor 68, thread 3 on processor 132, and
 thread 4 on processor 196, if each thread set an affinity mask of
 0x10 (0b10000 in binary) on groups 0, 1, 2, and 3. Alternatively,
 the threads can each set an affinity of 0xFFFFFFFF for their given
 group, and the process then can execute its threads on any available
 processor on the system (with the limitation, that each thread is
 restricted to running within its own group only).
Taking advantage of extended affinity must be done at creation
 time, by specifying a group number in the thread attribute list when
 creating a new thread. (See the previous topic on thread creation
 for more information on attribute lists.)

System Affinity Mask

Because Windows drivers usually execute in the context of the
 calling thread or in the context of an arbitrary thread (that is,
 not in the safe confines of the System process), currently running
 driver code might be subject to affinity rules set by the
 application developer, which are not currently relevant to the
 driver code and might even prevent correct processing of interrupts
 and other queued work. Driver developers therefore have a mechanism
 to temporarily bypass user thread affinity settings, by using the
 APIs
 KeSetSystemAffinityThread(Ex)/KeSetSystemGroupAffinityThread
 and
 KeRevertToUserAffinityThread(Ex)/KeRevertToUserGroupAffinityThread.

Ideal and Last Processor

Each thread has three CPU numbers stored in the kernel thread
 control block:
	Ideal processor, or the preferred processor that this
 thread should run on

	Last processor, or the processor on which the thread last
 ran

	Next processor, or the processor that the thread will be,
 or is already, running on

The ideal processor for a thread is chosen when a thread is
 created using a seed in the process control block. The seed is
 incremented each time a thread is created so that the ideal
 processor for each new thread in the process rotates through the
 available processors on the system. For example, the first thread in
 the first process on the system is assigned an ideal processor of 0.
 The second thread in that process is assigned an ideal processor of
 1. However, the next process in the system has its first thread’s
 ideal processor set to 1, the second to 2, and so on. In that way,
 the threads within each process are spread across the
 processors.
Note that this assumes the threads within a process are doing
 an equal amount of work. This is typically not the case in a
 multithreaded process, which normally has one or more housekeeping
 threads and then a number of worker threads. Therefore, a
 multithreaded application that wants to take full advantage of the platform might find it
 advantageous to specify the ideal processor numbers for its threads
 by using the SetThreadIdealProcessor function.
 To take advantage of processor groups, developers should call
 SetThreadIdealProcessorEx instead, which allows
 selection of a group number for the affinity.
64-bit Windows uses the Stride field in the KPRCB to balance
 the assignment of newly created threads within a process. The stride
 is a scalar number that represents the number of affinity bits
 within a given NUMA node that must be skipped to attain a new
 independent logical processor slice, where “independent” means on
 another core (if dealing with an SMT system) or another package (if
 dealing with a non-SMT but multicore system). Because 32-bit Windows
 doesn’t support large processor configuration systems, it doesn’t
 use a stride, and it simply selects the next processor number,
 trying to avoid sharing the same SMT set if possible. For example,
 on a dual-processor SMT system with four logical processors, if the
 ideal processor for the first thread is assigned to logical
 processor 0, the second thread would be assigned to logical
 processor 2, the third thread to logical processor 1, the fourth
 thread to logical process 3, and so forth. In this way, the threads
 are spread evenly across the physical processors.

Ideal Node

On NUMA systems, when a process is created, an ideal node for
 the process is selected. The first process is assigned to node 0,
 the second process to node 1, and so on. Then the ideal processors
 for the threads in the process are chosen from the process’ ideal
 node. The ideal processor for the first thread in a process is
 assigned to the first processor in the node. As additional threads
 are created in processes with the same ideal node, the next
 processor is used for the next thread’s ideal processor, and so
 on.

Thread Selection on Multiprocessor Systems

Before covering multiprocessor systems in more detail, I should
 summarize the algorithms discussed in the Thread Selection section. They either continued executing
 the current thread (if no new candidate was found) or started running
 the idle thread (if the current thread had to block). However, there
 is a third algorithm for thread selection, which was hinted at in the
 Idle Scheduler section earlier, called
 KiSearchForNewThread. This algorithm is called in
 one specific instance: when the current thread is about to block due
 to a wait on an object, including when doing an
 NtDelayExecutionThread call, also known as the
 Sleep API in Windows.
Note
This shows a subtle difference between the commonly used
 Sleep(1) call, which makes the current thread block until the next
 timer tick, and the SwitchToThread() call,
 which was shown earlier. The “sleep” will use the algorithm about to
 be described, while the “yield” uses the previously shown
 logic.

KiSearchForNewThread initially
 checks whether there is already a thread that was selected for this
 processor (by reading the NextThread field); if
 so, it dispatches this thread immediately in the Running state.
 Otherwise, it calls the KiSelectReadyThread
 routine and, if a thread was found, performs the same steps.
If a thread was not found, however, the processor is marked as
 idle (even though the idle thread is not yet executing) and a scan of
 other logical processors queues is initiated (unlike the other
 standard algorithms, which would now give up). Also, because the
 processor is now considered idle, if the Dynamic Fair Share Scheduling
 mode (described in the next topic) is enabled, a thread will be
 released from the idle-only queue if possible and scheduled instead.
 On the other hand, if the processor core is now parked, the algorithm
 will not attempt to check other logical processors, as it is
 preferable to allow the core to enter the parking state instead
 keeping it busy with new work.
Barring these two scenarios, the work-stealing loop now runs.
 This code looks at the current NUMA node and removes any idle
 processors (because they shouldn’t have threads that need stealing).
 Then, starting from the highest numbered processor, the loop calls
 KiFindReadyThread but points it to the remote
 KPRCB instead of the current one, causing this processor to find the
 best ready thread from the other processor’s queue. If this is
 unsuccessful and Dynamic Fair Share Scheduler is enabled, a thread
 from the idle-only queue of the remote logical processor is released
 on the current processor instead, if possible.
If no candidate ready thread is found, the next lower numbered
 logical processor is attempted, and so on, until all logical
 processors have been exhausted on the current NUMA node. In this case,
 the algorithm keeps searching for the next closest node, and so on,
 until all nodes in the current group have been exhausted. (Recall that
 Windows allows a given thread to have affinity only on a single
 group.) If this process fails to find any candidates, the function
 returns NULL and the processor enters the idle thread in the case of a
 wait (which will skip idle scheduling). If this work was already being
 done from the idle scheduler, the processor enters a sleep
 state.

Processor Selection

Up until now, we’ve described how Windows picks a thread when a
 logical processor needs to make a selection (or when a selection must
 be made for a given logical processor) and assumed the various
 scheduling routines have an existing database of ready threads to
 choose from. Now we’ll see how this database gets populated in the
 first place—in other words, how Windows chooses which LP’s ready
 queues a given ready thread will be associated with. Having described
 the types of multiprocessor systems supported by Windows as well as
 the thread affinity and ideal processor settings, we’re now ready to
 examine how this information is used for this purpose.
Choosing a Processor for a Thread When There Are Idle
 Processors

When a thread becomes ready to run, the
 KiDeferredReadyThread scheduler function is
 called, causing Windows to perform two tasks: adjust priorities and
 refresh quantums as needed, as was explained in the Priority Boosts section, and then pick the best logical
 processor for the thread. Windows first looks up the thread’s ideal processor,
 and then it computes the set of idle processors within the thread’s
 hard affinity mask. This set is then pruned as follows:
	Any idle logical processors that have been parked by the
 Core Parking mechanism are removed. (See Chapter 9, “Storage
 Management,” in Part 2 for more information on Core Parking.) If
 this causes no idle processors to remain, idle processor
 selection is aborted, and the scheduler behaves as if no idle
 processors were available (which is described in the upcoming
 section)

	Any idle logical processors that are not on the ideal node
 (defined as the node containing the ideal processor) are
 removed, unless this would cause all idle processors to be
 eliminated.

	On an SMT system, any non-idle SMT sets are removed, even
 if this might cause the elimination of the ideal processor
 itself. In other words, Windows prioritizes a non-ideal, idle
 SMT set over an ideal processor.

	Windows then checks whether the ideal processor is among
 the remaining set of idle processors. If it isn’t, it must then
 find the most appropriate idle processor. It does so by first
 checking whether the processor that the thread last ran on is
 part of the remaining idle set. If so, this processor is
 considered to be a temporary ideal processor and chosen. (Recall
 that the ideal processor attempts to maximize processor cache
 hits, and picking the last processor a thread ran on is a good
 way of doing so.)

	If the last processor is not part of the remaining idle
 set, Windows next checks whether the current processor (that is,
 the processor currently executing this scheduling code) is part
 of this set; if so, it applies the same logic as in the prior
 step.

	If neither the last nor the current processor is idle,
 Windows performs one more pruning operation, by removing any
 idle logical processors that are not on the same SMT set as the
 ideal processor. If there are none left, Windows instead removes
 any processors not on the SMT set of the current processor,
 unless this, too, eliminates all idle processors. In other
 words, Windows prefers idle processors that share the same SMT
 set as the unavailable ideal processor and/or last processor it
 would’ve liked to pick in the first place. Because SMT
 implementations share the cache on the core, this has nearly the
 same effect as picking the ideal or last processor from the
 caching perspective.

	Finally, if this last step results in more than one
 processor remaining in the idle set, Windows picks the lowest
 numbered processor as the thread’s current processor.

Once a processor has been selected for the thread to run on,
 that thread is put in the standby state and the idle processor’s
 PRCB is updated to point to this thread. If the processor is idle,
 but not halted, a DPC interrupt is sent so that the processor
 handles the scheduling operation immediately.
Whenever such a scheduling operation is initiated,
 KiCheckForThreadDispatch is called, which will
 realize that a new thread has been scheduled on the processor and
 cause an immediate context switch if possible (as well as pending
 APC deliveries), or it will cause a DPC interrupt to be sent.

Choosing a Processor for a Thread When There Are No Idle
 Processors

If there are no idle processors when a thread wants to
 run, or if the only idle processors were eliminated by the first
 pruning (which got rid of parked idle processors), Windows first
 checks whether the latter situation has occurred. In this scenario,
 the scheduler calls KiSelectCandidateProcessor
 to ask the Core Parking engine for the best candidate processor. The
 Core Parking engine selects the highest-numbered processor that is
 unparked within the ideal node. If there are no such processors, the
 engine forcefully overrides the park state of the ideal processor
 and causes it to be unparked. Upon returning to the scheduler, it
 will check whether the candidate it received is idle; if so, it will
 pick this processor for the thread, following the same last steps as
 in the previous scenario.
If this fails, Windows compares the priority of the thread
 running (or the one in the standby state) on the thread’s ideal
 processor to determine whether it should preempt that thread.
If the thread’s ideal processor already has a thread selected
 to run next (waiting in the standby state to be scheduled) and that
 thread’s priority is less than the priority of the thread being
 readied for execution, the new thread preempts that first thread out
 of the standby state and becomes the next thread for that CPU. If
 there is already a thread running on that CPU, Windows checks
 whether the priority of the currently running thread is less than
 the thread being readied for execution. If so, the currently running
 thread is marked to be preempted, and Windows queues a DPC interrupt
 to the target processor to preempt the currently running thread in
 favor of this new thread.
If the ready thread cannot be run right away, it is moved into
 the ready state on the priority queue appropriate to its thread
 priority, where it will await its turn to run. As seen in the
 scheduling scenarios earlier, the thread will be inserted either at
 the head or the tail of the queue, based on whether it entered the
 ready state due to preemption.
As such, regardless of the underlying scenario and various
 possibilities, note that threads are always put on their ideal
 processor’s per-processor ready queues, guaranteeing the consistency
 of the algorithms that determine how a logical processor picks a
 thread to run.

Processor Share-Based Scheduling

In the previous section, the standard thread-based scheduling
 implementation of Windows was described, which has served general user
 and server scenarios reliably since its appearance in the first Windows
 NT release (with scalability improvements done throughout each release).
 However, because thread-based scheduling attempts to fairly share the
 processor or processors only among competing threads of same priority,
 it does not take into account higher-level requirements such as the
 distribution of threads to users and the potential for certain users to
 benefit from more overall CPU time at the expense of other users. This
 kind of behavior, as it turns out, is highly sought after in
 terminal-services environments, where dozens of users can be competing
 for CPU time and a single high-priority thread from a given user has the
 potential to starve threads from all users on the machine if only
 thread-based scheduling is used.
Dynamic Fair Share Scheduling

In this section, two alternative scheduling modes
 implemented by recent versions of Windows will be described: the
 session-based Dynamic Fair Share Scheduler (DFSS) and an older, legacy
 SID-based CPU Rate Limit implementation.
DFSS Initialization

During the very last parts of system initialization, as the
 SOFTWARE hive is initialized by Smss, the
 process manager initiates the final post-boot initialization in
 PsBootPhaseComplete, which calls
 PsInitializeCpuQuota. It is here that the
 system decides which of the two CPU quota mechanisms (DFSS or
 legacy) will be employed. For DFSS to be enabled, the
 EnableCpuQuota registry value must be set to 1
 in both of the two quota keys:
 HKLM\SOFTWARE\Policies\Microsoft\Windows\Session Manager\Quota
 System for the policy-based setting (that can be configured through
 the Group Policy Editor under Computer Configuration\Administrative
 Templates\Windows Components \Remote Desktop Services\Remote Desktop
 Session Host\Connections - Turn off Fair Share CPU Scheduling), as
 well as under the system key
 HKLM\SYSTEM\CurrentControlSet\Control\Session Manager\Quota System,
 which determines if the system supports the functionality (which, by
 default, is set to TRUE on Windows Server with the Remote Desktop
 role).
Note
Due to a bug (which you can learn more about at
 http://technet.microsoft.com/en-us/library/ee808941(WS.10).aspx),
 the group policy setting to turn off DFSS is not honored. The
 system setting must be manually turned off.

If DFSS is enabled, the
 PsCpuFairShareEnabled variable is set to
 true, which will instruct the kernel, through
 various scheduling code paths, to behave differently and/or to call
 into the DFSS engine. Additionally, the default quota is set up to
 150 milliseconds for each DFSS cycle, a number called credit that
 will be explained in more detail shortly.
Once DFSS is enabled, the global
 PspCpuQuotaControl data structure is used to
 maintain DFSS information, such as the list of per-session CPU quota
 blocks (as well as a spinlock and count) and the total weight of all
 sessions on the system. It also stores an array of per-processor
 DFSS data structures, which you’ll see next.

Per-Session CPU Quota Blocks

After DFSS is enabled, whenever a new session is created
 (other than Session 0), MiSessionCreate calls
 PsAllocateCpuQuotaBlock to set up the
 per-session CPU quota block. The first time this happens on the
 system (for example, for Session 1), this calls
 PspLazyInitializeCpuQuota to finalize the
 initialization of DFSS.
This results in the allocation of per-CPU DFSS data structures
 mentioned in the previous sections, which contain the DPC used for
 managing the quota (PspCpuQuotaDpcRoutine, seen
 later) and the total number of cycles credited as well as
 accumulated. This structure also keeps the block generation a
 monotonically increasing sequence to guarantee atomicity, as well as
 keeping the idle-only queue lock protecting the list of the same
 name, which is a central element of the DFSS mechanism yet to be
 described. Each per-CPU DFSS data structure, in turn, is connected
 through a sorted doubly-linked list to the various per-session CPU
 quota blocks that were mentioned at the beginning of this
 discussion.
When the first-time initialization of DFSS is complete,
 PsAllocateCpuQuotaBlock can continue, first by
 allocating the actual CPU quota block for this session. This
 structure maintains overall accounting information on the session,
 as well as per-CPU tracking—including the cycles remaining and
 initially allocated, as well as the idle-only queue itself, in a
 per-CPU quota entry structure.
To begin with, the session ID is stored, and the CPU share
 weight is set to its default of 5. You’ll see
 shortly what a weight is, how it can be computed, and its effects on
 the DFSS engine. Because the quota block has just been created, the
 initial cycle values are all set to their maximum value for now.
 Next, this new per-session CPU block must be visible to the system.
 Therefore, the PspCpuQuotaControl data
 structure is updated with the new total weight of all sessions (by
 adding this weight), and the quota block is inserted into the block
 list (sorted by session ID). Finally,
 PspCalculateCpuQuotaBlockCycleCredits
 enumerates every other session’s quota block and captures the new
 total weight of the system.
Once this is done, the per-session CPU quota block is
 finalized, and the memory manager sets it in the
 CpuQuotaBlock field of the MM_SESSION_SPACE
 structure for this session. Likewise, the current EPROCESS (part of
 this new session’s CpuQuotaBlock field) is also
 updated to point to this session’s CPU quota block. Now that the
 process has received a CPU quota block as soon as it became part of
 the session, future threads created by this process (including the
 first thread itself) will be allocated with an extra structure after
 their typical ETHREAD—a per-process CPU Quota APC structure.
 Additionally, the ETHREAD’s RateApcState field
 will be set to PsRateApcContained, indicating
 that this is an embedded Quota APC, as used by the DFSS mechanism
 (rather than the pool-allocated legacy APC). Finally, the
 CpuThrottled bit is set in the KTHREAD’s
 ThreadControlFlags.
At this point, the global quota-control structure contains a
 pointer to the DFSS per-CPU data structure array, which itself is
 linked to all the per-session CPU blocks that have been created for
 each session and associated with the EPROCESS structure of the
 member processes. In turn, each thread part of such a process has
 CPU throttling turned on. There is a per-CPU DPC ready to execute,
 as well as per-thread APCs for each throttled thread.
When the last process in the session loses all its references,
 PsDeleteCpuQuotaBlock is called. It removes the
 block from the list, refreshes the total weights, and calls
 PspCalculateCpuQuotaBlockCycleCredits to update
 all other per-session CPU quota blocks.

Charging of Cycles to Throttled Threads

After everything is set up, the entire DFSS mechanism is
 triggered by the consumption of CPU cycles—something that was
 already explained in the earlier sections. In other words, not only
 are consumed cycles used for quantum accounting and providing
 finer-grained information to thread APIs, but they also can be “charged” against the
 thread (and thus against its quota). This operation is done by the
 PsChargeProcessCpuCycles function that is
 called whenever a thread has completed the accumulation of cycles in
 its current execution timeline.
The first operation involves accumulating the additional
 cycles to the per-CPU DFSS data structure for this processor,
 increasing the TotalCyclesAccumulated value. If
 this accumulation has reached the total credit, the quota DPC is
 immediately queued. Once the DPC ultimately executes, it calls
 PspStartNewFairShareInterval, which updates the
 generation, resets the cycles accumulated, and resets the credit to
 150 ms. Finally, the idle-only queue is flushed on each processor
 associated with a given session. (You’ll see what this queue is and
 what flushing it entails, later.) This part of the algorithm manages
 the 150-ms interval that controls DFSS.
A second possibility is that the generation of the per-CPU
 quota entry contained in the current process’ CPU quota block (owned
 by the session) does not manage the generation of the current
 per-CPU DFSS data structure. This generation mismatch suggests that
 a new interval has been reached and no cycle limits have yet been
 set, so PspReplenishCycleCredit is called to do
 the work. This reads the per-CPU weight and the total weight that
 were captured earlier in
 PspCalculateCpuQuotaBlockCycleCredits, and it
 uses them to set the base cycle allowance for the current per-CPU
 data inside the process’ CPU quota block. To do this, it uses a
 simple formula: the process receives the equivalent of its cycle
 credit (150 ms) divided by the total weight of all sessions on the
 system. Then the amount of cycles it will be permitted to run for
 (CyclesRemaining) is set to the base cycle
 allowance multiplied by the weight of this particular session. In
 other words, the process runs for a fairly-divided chunk of time
 based on the number of other sessions on the system, calculated as a
 percentage based on its relative weight compared to the overall
 system weight. When the computation is completed, the generation is
 set to match.
In all other cases,
 PsChargeProcessCpuCycles merely subtracts the
 amount of cycles from CyclesRemaining and then
 calls PsCheckThreadCpuQuota to see whether
 these cycles have been exhausted (reaching zero). Note that this
 function can sometimes also be called directly from the context
 switch code when control is about to pass to a thread that has CPU
 throttling enabled.
PsCheckThreadCpuQuota recovers the CPU
 quota block for this process (that is, for the session), and then
 further extracts the precise per-CPU information out of it. Once
 again, it checks whether the generation does not match, which would
 indicate this is the first charge for this 150-ms credit cycle, and
 then it calls PspReplenishCycleCredit. Next, it
 checks whether the CPU quota block for the process indicates there
 are no more cycles remaining. If cycles still remain, the function
 returns; otherwise, it prepares to suspend the thread’s
 execution.
Before stopping execution, the function extracts the per-CPU
 DPC, making sure that it (or the associated per-thread APC) is not
 already running. If this operation is happening due to the
 context-switch scenario brought up earlier, the per-thread APC is
 queued, which will preempt the thread’s execution as soon as the
 context switch completes. Otherwise, if this is occurring as result
 of cycle charging (which happens at DISPATCH_LEVEL or higher), the
 per-CPU DPC is queued instead, which will later queue the per-thread
 APC. (This forces a near-immediate response to the CPU quota
 restriction.) In case further cycle accumulation has
 occurred past the 150-ms cycle credit, the DPC also calls
 PspStartNewFairShareInterval, which was
 explained earlier.

CPU Throttling and Quota Enforcement

So far, you’ve seen how DFSS initializes, how CPU quota blocks
 are created for each session (and then associated with member
 processes), and how threads running with the CPU throttling bit
 (implying they are part of processes that are members of a session
 with DFSS enabled) will consume cycles out of their total
 weight-relative allowance, resetting every 150 ms. You also saw how,
 eventually, an APC is queued in all cases where a thread has
 exhausted its allowed cycles. You’ll now see how the APC enforces
 the CPU quota restriction.
The APC first enters an infinite loop, creating a
 stack-allocated Quota Wait Block that contains the current thread
 being restricted, as well as a resume event. It is this event that
 ultimately allows the thread to continue its execution. Next, the
 APC gets the per-CPU DFSS data structure pointer and acquires the
 idle-only queue lock referenced earlier. It then checks whether the
 idle-only queue on the current processor (which comes from the
 per-CPU quota entry contained in the process’ CPU quota block) is
 empty. If the list is empty, it implies that this CPU has never been
 inserted in the sorted block list that is contained in the per-CPU
 DFSS data structure (part of the
 PspCpuQuotaControl global array). The
 PspInsertQuotaBlockCpuEntry function is thus
 called to rectify the situation.
Because the DFSS scheduler itself (which has yet to be
 described) uses this data structure, it must be inserted in the most
 optimal way—in this case, sorted by the base cycle allowance of each
 per-CPU data contained within the per-process CPU quota block.
 Recall that the base cycle allowance is initially the 150-ms credit
 cycle divided by the total weight of the system (that is, a full
 allowance), but you’ll see how the allowance can be later modified
 by the DFSS scheduler.
Next, now that the per-CPU Quota Entry is in the sorted block
 list (or it might already have been if the idle-only queue was not
 empty), this thread is inserted at the end of the idle-only queue,
 and it’s connected by a linked list entry that’s present in the
 Quota Wait Block. Because this wait block contains the resume event
 initialized earlier, the DFSS scheduler is able to control the
 thread when needed.
Finally, the APC enters a wait on this resume event, with the
 wait reason WrCpuRateControl. By using a tool
 such as Sysinternals PsList, or Process Explorer—all of which
 display wait reasons (as well as a kernel debugger)—you can see such
 threads intermittently blocked on a DFSS system.
[image: image with no caption]

Resuming Execution

With more and more threads possibly hitting their CPU
 quota restrictions and block on their respective idle-queues, how
 will they eventually resume execution? One of the possibilities is
 that a new 150-ms interval has started. Recall from the earlier
 discussion that PspStartNewFairShareInterval
 was said to “flush the idle-only queue.” This operation, performed
 by PspFlushProcessorIdleOnlyQueue, essentially
 scans every per-CPU quota entry for this processor (which is located
 in the sorted block list), and then scans the idle-only queue of
 each such processor. Picking every thread in the list, the function
 removes the thread and manually sets the resume event. Thus, any
 blocked thread on the current CPU gets to resume execution after 150
 ms.
Obviously, flushing is not the usual mechanism through which
 the idle-only queue threads are managed. This work typically is done
 by the DFSS scheduler itself, which provides the
 PsReleaseThreadFromIdleOnlyQueue routine as a
 callback that the regular thread scheduler, when the system is about
 to go idle, can use whenever DFSS-related work is required.
 Specifically, it is the KiSearchForNewThread
 function, thoroughly described earlier, that calls DFSS in the
 following two scenarios:
	If KiSelectReadyThread, which is
 called initially, has not found a new thread for the current
 processor, before it checks other processors’ dispatcher ready
 queues, KiSearchForNewThread will ask DFSS
 to release a thread from the idle-only queue.

	Otherwise, as each CPU’s dispatcher ready queues
 are scanned (by looping KiSelectReadyThread
 calls on each PRCB), if once again no thread is found, the DFSS
 scheduler is called to release a thread from the idle-only queue
 on the target processor as well.

Finally, you’ll see what work
 PsReleaseThreadFromIdleOnlyQueue actually does
 and how the DFSS scheduler is implemented.

DFSS Idle-Only Queue Scheduling

PsReleaseThreadFromIdleOnlyQueue
 initially checks whether the sorted block list is empty (which would
 imply there aren’t even any valid per-CPU quota entries), and it
 exits if this is the case. Otherwise, it acquires the idle-only
 queue spinlock from the per-CPU DFSS data structure and calls
 PspFindHighestPriorityThreadToRun. This
 function scans the sorted block list, recovering every per-CPU quota
 entry, and then scans every entry (which, if you recall, points to
 the Quota Wait Block for the thread). Unfortunately, because threads
 are not inserted by priority (such as real dispatcher ready queues),
 the entire idle-only queue must be scanned, and the highest priority
 found to this point is recorded in each iteration. (Because the lock
 is acquired, no new per-CPU quota entries or idle-only queue threads
 can be inserted during the scan.)
Note
Because DFSS is not truly integrated with the regular thread
 scheduler, the reason the threads are not sorted by priority is
 obvious: DFSS is not aware of priority changes after idle-only
 queue threads have been inserted in its lists. A user could still
 modify the priority, and because the thread scheduler does not
 notify DFSS of this, an incorrect thread would be picked.

Additionally, affinity is carefully checked to ensure only
 correctly affinitized threads are scanned. Although each idle-only
 queue contains only threads for the current processor, scenario #2
 in the preceding section showed how remote processor idle-only
 queues can also be scanned. DFSS must ensure that the current CPU
 will run an appropriate remote-CPU, idle-only thread.
Once the highest priority thread has been found on the current
 per-CPU quota entry, it is removed from the idle-only queue and
 returned to the caller. Additionally, if this was the last thread on
 the idle-only queue, the per-CPU entry is removed from the sorted
 block list. Therefore, note that the other per-CPU quota entries are
 not checked unless a runnable highest-priority thread was not found
 on the first per-CPU quota entry (that is, the one with the highest
 base cycle allowance).
Once the thread is found,
 PsReleaseThreadFromIdleOnlyQueue resumes its
 execution and once more queues the DPC responsible for eventually
 launching the per-thread APC from earlier (after making sure the DPC
 is not already running). Thus, the APC is never directly queued in
 this case, because this function runs as part of the thread
 scheduler, already at DISPATCH_LEVEL. Additionally, it wouldn’t make
 sense to queue another per-thread APC just to notify the original
 APC; instead, the DPC itself will wake up the thread.
This is done by a special check in the DPC routine
 that checks whether the
 ThreadWaitBlockForRelease field in the per-CPU
 DFSS data structure is set. If so, the DPC knows that this is a
 wake-up, not a stop, request, and it sets the resume event
 associated with the Quota Wait Block. Additionally, it forces the
 Idle Scheduler on the current CPU to run, by setting the
 IdleSchedule field in the KPRCB that was
 brought up in the earlier idle scheduler section.
One detail has been glossed over, however: once the idle-only
 thread is picked, as soon as a context switch is initiated, the
 cycle accumulation once again detects that the thread has exhausted
 its cycles, and it re-inserts the thread in the idle-only queue.
 Therefore, PsReleaseThreadFromIdleOnlyQueue
 must update the cycles remaining for the current per-CPU quota
 entry, allowing this CPU to run the thread for a little bit longer.
 How much longer exactly is determined by the value of
 KiCyclesPerClockQuantum, which was shown in the
 earlier Quantum section. Therefore, this CPU is
 allowed to run the current thread for an entire quantum, at
 most.
Additionally, the base cycle allowance for this entry must be
 updated, because the quota for the CPU is actually exhausted and no
 longer working on a 150-ms cycle credit. Therefore, the allowance is
 now updated to include an extra
 KiCyclesPerClockQuantum divided by the weight
 of the session cycle. Because the base cycle allowance has changed,
 the sorted block list is reparsed, and the entries are re-sorted
 correctly to account for this change. Thus, this block will now
 migrate to the front of the list and have a higher chance to be
 picked once a future idle-only thread (within this interval) needs
 to be picked.

Session Weight Configuration

So far, the weight associated to sessions has been described
 as its default value of 5. However, this weight can be set to
 anywhere between 1 and 9, and DFSS provides two internal APIs for
 managing weight information:
 PsQueryCpuInformation and its
 Set equivalent.
Given an array of session handles (to session objects) and
 associated weights, the Set API sets the new weight for each
 session, as well as updating the total weight stored in the
 PspCpuQuotaControl global. By calling
 PspCalculateCpuQuotaBlockCycleCredits again,
 the new settings will be propagated. Likewise, the Query API returns
 an array of weights and session IDs. The
 SeIncreaseQuotaPrivilege is required in both
 cases, as well as SESSION_MODIFY_ACCESS for each session whose
 weight is being modified. Accessing these APIs is done through the
 native API function NtQuerySystemInformation,
 with the SystemCpuQuotaInformation call.
This API, although not provided by the Windows API directly,
 is what the Windows System Resource Manager uses when the
 administrator assigns different priorities to different users when
 the Weighted_Remote_Sessions policy is enabled.
 The three priorities—Premium, Standard, and Basic—map to the 1, 5,
 and 9 weights in the internal DFSS scheduler mechanism,
 respectively.

CPU Rate Limits

As part of the hard quota management system in Windows
 (based on the original soft-limit quota support present since the
 first version of Windows NT), support for limiting CPU usage exists in
 the system in three different ways: per-session, per-user, or
 per-system. Unfortunately, there is no tool that is part of the
 operating system that allows you to set these limits—you must modify
 the registry settings manually. Because all the quotas—save one—are
 memory quotas, we will cover those in Chapter 10 in Part 2, which
 deals with the memory manager, and instead focus our attention here on
 the CPU rate limit.
Note
See the topic “CPU rate limits in Windows Server 2008 R2 and
 Windows 7” in the Microsoft Technet Knowledge Articles at
 http://technet.microsoft.com/en-us/library/ff384148(WS.10).aspx
 for further documentation and examples on when to use CPU rate
 limits.

The new quota system can be accessed through the registry key
 HKLM\SYSTEM\CurrentControlSet\Control\Session Manager\QuotaSystem, as
 well as through the standard
 NtSetInformationProcess system call. CPU rate
 limits can therefore be set in one of three ways:
	By creating a new DWORD value called
 CpuRateLimit and entering the rate
 information.

	By creating a new key with the security ID (SID) of the
 account you want to limit, and creating a
 CpuRateLimit DWORD value inside that
 key.

	By calling NtSetInformationProcess and
 giving it the process handle of the process to limit and the CPU
 rate limiting information, if the process is tied to the system
 quota block.

In all three cases, the CPU rate limit data is a straightforward
 value; it is simply a rate limit expressed as a percentage. For
 example, to limit a user’s applications to consume at most 10% of CPU
 time, you set CpuRateLimit to
 10. The process manager, which is responsible for
 enforcing the CPU rate limit, uses various system mechanisms to do its
 job. First, rate limiting works reliably because of the CPU cycle
 count improvements discussed earlier, which allow the process manager
 to accurately determine how much CPU time a process has taken and know
 whether the limit should be enforced. It then uses a combination of
 DPC and APC routines to throttle down DPC and APC CPU usage, which are
 outside the direct control of user-mode developers but still result in
 CPU usage in the system (in the case of a systemwide CPU rate
 limit).
Finally, the main mechanism through which rate limiting works is
 by creating an artificial wait on an event object (making the thread
 uniquely bound to this object and putting it in a wait state, which
 does not consume CPU cycles). Threads that are artificially waiting
 because of CPU rate limits can be observed because their wait reason
 code is set to WrCpuRateControl. This mechanism
 operates through the normal routine of an APC object queued to the
 thread or threads inside the process currently responsible for the
 work. The event is eventually signaled by the DPC routine associated
 with a timer (firing every half a second) responsible for replenishing
 systemwide CPU usage requests.

Dynamic Processor Addition and Replacement

As you’ve seen, developers can fine-tune which threads are
 allowed to (and in the case of the ideal processor, should) run on which
 processor. This works fine on systems that have a constant number of
 processors during their run time. (For example, desktop machines require
 shutting down the computer to make any sort of hardware changes to the
 processor or their count.)
Today’s server systems, however, cannot afford the downtime that
 CPU replacement or addition normally requires. In fact, one example of
 when adding a CPU is required for a server is at times of high load that
 is above what the machine can support at its current level of
 performance. Having to shut down the server during a period of peak
 usage would defeat the purpose. To meet this requirement, the latest
 generation of server motherboards and systems support the addition of
 processors (as well as their replacement) while the machine is still
 running. The ACPI BIOS and related hardware on the machine have been
 specifically built to allow and be aware of this need, but operating
 system participation is required for full support.
Dynamic processor support is provided through the HAL, which
 notifies the kernel of a new processor on the system through the
 function KeStartDynamicProcessor. This routine does
 similar work to that performed when the system detects more than one
 processor at startup and needs to initialize the structures related to
 them. When a dynamic processor is added, various system components
 perform some additional work. For example, the memory manager allocates
 new pages and memory structures optimized for the CPU. It also
 initializes a new DPC kernel stack while the kernel initializes the
 global descriptor table (GDT), the interrupt Dispatch table (IDT), the
 processor control region (PCR), the process control block (PRCB), and
 other related structures for the processor.
Other executive parts of the kernel are also called, mostly to
 initialize the per-processor look-aside lists for the processor that was
 added. For example, the I/O manager, executive look-aside list code,
 cache manager, and object manager all use per-processor look-aside lists
 for their frequently allocated structures.
Finally, the kernel initializes threaded DPC support for the
 processor and adjusts exported kernel variables to report the new
 processor. Different memory-manager masks and process seeds based on
 processor counts are also updated, and processor features need to be
 updated for the new processor to match the rest of the system (for
 example, enabling virtualization support on the newly added processor).
 The initialization sequence completes with the notification to the
 Windows Hardware Error Architecture (WHEA) component that a new
 processor is online.
The HAL is also involved in this process. It is called once to
 start the dynamic processor after the kernel is aware of it, and it is
 called again after the kernel has finished initialization of the
 processor. However, these notifications and callbacks only make the
 kernel aware and respond to processor changes. Although an additional
 processor increases the throughput of the kernel, it does nothing to
 help drivers.
To handle drivers, the system has a new default executive callback
 object, the ProcessorAdd callback, that drivers can
 register with for notifications. Similar to the callbacks that notify
 drivers of power state or system time changes, this callback allows
 driver code to, for example, create a new worker thread if desirable so
 that it can handle more work at the same time.
Once drivers are notified, the final kernel component called is
 the Plug and Play manager, which adds the processor to the system’s
 device node and rebalances interrupts so that the new processor can
 handle interrupts that were already registered for other processors.
 CPU-hungry applications are also able to take advantage of newer
 processors as well.
However, a sudden change of affinity can have potentially breaking
 changes for a running application (especially when going from a
 single-processor to a multiprocessor environment) through the appearance
 of potential race conditions or simply misdistribution of work (because
 the process might have calculated the perfect ratios at startup, based
 on the number of CPUs it was aware of). As a result, applications do not
 take advantage of a dynamically added processor by default—they must
 request it.
The Windows APIs SetProcessAffinityUpdateMode
 and QueryProcessAffinityMode (which use the
 undocumented
 NtSet/QueryInformationProcess
 system call) tell the process manager that these applications should
 have their affinity updated (by setting the
 AffinityUpdateEnable flag in EPROCESS), or that
 they do not want to deal with affinity updates (by setting the
 AffinityPermanent flag in EPROCESS). Once an
 application has told the system that its affinity is permanent, it
 cannot later change its mind and request affinity updates, so this is a
 one-time change.
As part of KeStartDynamicProcessor, a new
 step has been added after interrupts are rebalanced, which is to call
 the process manager to perform affinity updates through
 PsUpdateActiveProcessAffinity. Some Windows core
 processes and services already have affinity updates enabled, while
 third-party software will need to be recompiled to take advantage of the
 new API call. The System process, Svchost
 processes, and Smss are all compatible with dynamic
 processor addition.

Job Objects

A job object is a nameable, securable, shareable kernel object
 that allows control of one or more processes as a group. A job object’s
 basic function is to allow groups of processes to be managed and
 manipulated as a unit. A process can be a member of only one job object.
 By default, its association with the job object can’t be broken and all
 processes created by the process and its descendants are associated with
 the same job object as well. The job object also records basic
 accounting information for all processes associated with the job and for
 all processes that were associated with the job but have since
 terminated.
Jobs can also be associated with an I/O completion port object,
 which other threads might be waiting for, with the Windows
 GetQueuedCompletionStatus function. This allows
 interested parties (typically, the job creator) to monitor for limit
 violation and events that could affect the job’s security (such as a new
 process being created or a process abnormally exiting).
Job Limits

The following are some of the CPU-related and
 memory-related limits you can specify for a job:
	Maximum number of active
 processes. Limits the number of concurrently existing processes in
 the job.

	Jobwide user-mode CPU time
 limit. Limits the maximum amount of user-mode CPU time that the
 processes in the job can consume (including processes that have
 run and exited). Once this limit is reached, by default all the
 processes in the job are terminated with an error code and no
 new processes can be created in the job (unless the limit is
 reset). The job object is signaled, so any threads waiting for
 the job will be released. You can change this default behavior
 with a call to SetInformationJobObject to
 set the EndOfJobTimeAction information
 class and request a notification to be sent through the job’s
 completion port instead.

	Per-process user-mode CPU time
 limit. Allows each process in the job to accumulate only a fixed
 maximum amount of user-mode CPU time. When the maximum is
 reached, the process terminates (with no chance to clean
 up).

	Job processor
 affinity. Sets the processor affinity mask for each process in the
 job. (Individual threads can alter their affinity to any subset
 of the job affinity, but processes can’t alter their process
 affinity setting.)

	Job group
 affinity. Sets a list of groups to which the processes in the job
 can be assigned to. Any affinity changes are then subject to the
 group selection imposed by the limit. This is treated as a
 group-aware version of the job processor affinity limit
 (legacy), and prevents that limit from being used.

	Job process priority
 class. Sets the priority class for each process in the job.
 Threads can’t increase their priority relative to the class (as
 they normally can). Attempts to increase thread priority are
 ignored. (No error is returned on calls to
 SetThreadPriority, but the increase doesn’t
 occur.)

	Default working set minimum and
 maximum. Defines the specified working set minimum and maximum for
 each process in the job. (This setting isn’t jobwide—each
 process has its own working set with the same minimum and
 maximum values.)

	Process and job committed virtual
 memory limit. Defines the maximum amount of virtual address space that
 can be committed by either a single process or the entire
 job.

You can also place security limits on processes in a job. You
 can set a job so that each process runs under the same jobwide access
 token. You can then create a job to restrict processes from
 impersonating or creating processes that have access tokens that
 contain the local administrator’s group. In addition, you can apply
 security filters so that when threads in processes contained in a job
 impersonate client threads, certain privileges and security IDs (SIDs)
 can be eliminated from the impersonation token.
Finally, you can also place user-interface limits on
 processes in a job. Such limits include being able to restrict
 processes from opening handles to windows owned by threads outside the
 job, reading and/or writing to the clipboard, and changing the many
 user-interface system parameters via the Windows
 SystemParametersInfo function. These
 user-interface limits are managed by the Windows subsystem GDI/USER
 driver, Win32k.sys, and are enforced through one of the special
 callouts that it registers with the process manager, the job
 callout.

Job Sets

The job implementation also allows for finer grained control of
 which job object a given process will be associated with by enabling
 the creation of job sets. A job set is an array that associates a job
 member level with each job object that was created by the caller.
 Later, when the process manager attempts to associate a process with a
 job, it picks the correct job object from the set based on the job
 member level that was associated with the newly created process (which
 must be higher than or equal to the parent’s job member level. This
 allows the parent process to have created multiple job objects, and
 for its children to pick the appropriate one depending on which limits
 the parent might want to enforce.
EXPERIMENT: Viewing the Job Object
You can view named job objects with the Performance tool. (See
 the Job Object and Job Object Details performance objects.) You can
 view unnamed jobs with the kernel debugger !job
 or dt nt!_ejob command.
To see whether a process is associated with a job, you can use
 the kernel debugger !process command or Process
 Explorer. Follow these steps to create and view an unnamed job
 object:
	From the command prompt, use the
 runas command to create a process running
 the command prompt (Cmd.exe). For example, type runas
 /user:<domain>\<
 username> cmd. You’ll be
 prompted for your password. Enter your password, and a Command
 Prompt window will appear. The Windows service that executes
 runas commands creates an unnamed job to
 contain all processes (so that it can terminate these processes
 at logoff time).

	From the command prompt, run Notepad.exe.

	Then run Process Explorer, and notice that the Cmd.exe and
 Notepad.exe processes are highlighted as part of a job. (You can
 configure the colors used to highlight processes that are
 members of a job by clicking Options, Configure Colors.) Here is
 a screen shot showing these two processes:
[image: image with no caption]

	Double-click either the Cmd.exe or Notepad.exe process to
 bring up the process properties. You will see a Job tab in the
 process properties dialog box.

	Click the Job tab to view the details about the job. In
 this case, there are no quotas associated with the job, but
 there are two member processes:
[image: image with no caption]

	Now run the kernel debugger on the live system, display
 the process list with !process, and find
 the recently created process running Cmd.exe. Then display the
 process by using !process <process
 ID>, find the address of the job object, and
 finally display the job object with the
 !job command. Here’s some partial debugger
 output of these commands on a live system:
lkd> !process 0 1 cmd.exe
PROCESS 8567b758 SessionId: 1 Cid: 0fc4 Peb: 7ffdf000 ParentCid: 00b0
 DirBase: 1b3fb000 ObjectTable: e18dd7d0 HandleCount: 19.
 Image: Cmd.exe
...
 BasePriority 8
 CommitCharge 636
... Job 85557988

lkd> !job 85557988
Job at 85557988
 TotalPageFaultCount 0
 TotalProcesses 2
 ActiveProcesses 2
 TotalTerminatedProcesses 0
 LimitFlags 0
...

	You can also use the dt command to
 display the job object and see the additional fields shown about
 the job, such as its member level, if it is part of a job
 set:
lkd> dt nt!_ejob 85557988
nt!_EJOB
 +0x000 Event : _KEVENT
...
 +0x0b8 EndOfJobTimeAction : 0
 +0x0bc CompletionPort : 0x87e3d2e8
 +0x0c0 CompletionKey : 0x07a89508
 +0x0c4 SessionId : 1
 +0x0c8 SchedulingClass : 5
...
 +0x120 MemberLevel : 0
 +0x124 JobFlags : 0

	Finally, if the job has UI limits, you can use the
 dt command to display the Win32k job
 structure (tagW32JOB). To do this, you must
 first obtain the W32PROCESS structure pointer as shown in the
 experiment at the beginning of this chapter, and then display
 the pW32Job field within it.

For example, here is the Win32k job structure for a process
 using the Block Access To Global Atom Table UI limitation. The
 structure shows the local atom table this process is using in
 pAtomTable. You can further explore this
 structure with the dt nt!_RTL_ATOM_TABLE
 command and see which atoms are defined:
lkd> ?? ((win32k!tagPROCESSINFO*)(((nt!_EPROCESS*)0x847c4740)->Win32Process))->pW32Job
struct tagW32JOB * 0xfd573300
 +0x000 pNext : 0xff87c5d8 tagW32JOB
 +0x004 Job : 0x8356ab90 _EJOB
 +0x008 pAtomTable : 0x8e03eb18
 +0x00c restrictions : 0xff
 +0x010 uProcessCount : 1
 +0x014 uMaxProcesses : 4
 +0x018 ppiTable : 0xfe5072c0 -> 0xff97db18 tagPROCESSINFO
 +0x01c ughCrt : 0
 +0x020 ughMax : 0
 +0x024 pgh : (null)

Conclusion

In this chapter, we examined the structure of processes and
 threads and jobs, saw how they are created, and looked at how Windows
 decides which threads should run and for how long, and on which
 processor or processors.
In the next chapter, we’ll look at a part of the system that
 sometimes receives more attention than anything else: the Windows
 security reference monitor.

Chapter 6. Security

Preventing unauthorized access to sensitive data is
 essential in any environment in which multiple users have access to the
 same physical or network resources. An operating system, as well as
 individual users, must be able to protect files, memory, and configuration
 settings from unwanted viewing and modification. Operating system security
 includes obvious mechanisms such as accounts, passwords, and file
 protection. It also includes less obvious mechanisms, such as protecting
 the operating system from corruption, preventing less privileged users
 from performing actions (rebooting the computer, for example), and not
 allowing user programs to adversely affect the programs of other users or
 the operating system.
In this chapter, we explain how every aspect of the design and
 implementation of Microsoft Windows was influenced in some way by the
 stringent requirements of providing robust security.

Security Ratings

Having software, including operating systems, rated against
 well-defined standards helps the government, corporations, and home
 users protect proprietary and personal data stored in computer systems.
 The current security rating standard used by the United States and many
 other countries is the Common Criteria (CC). To understand the security
 capabilities designed into Windows, however, it’s useful to know the
 history of the security ratings system that influenced the design of
 Windows, the Trusted Computer System Evaluation Criteria (TCSEC).
Trusted Computer System Evaluation Criteria

The National Computer Security Center (NCSC) was established in
 1981 as part of the U.S. Department of Defense’s (DoD) National
 Security Agency (NSA). One goal of the NCSC was to create a range of
 security ratings, listed in Table 6-1, to
 be used to indicate the degree of protection commercial operating
 systems, network components, and trusted applications offer. These
 security ratings, which can be found at http://csrc.nist.gov/publications/history/dod85.pdf,
 were defined in 1983 and are commonly referred to as “the Orange
 Book.”
The TCSEC standard consists of “levels of trust” ratings, where
 higher levels build on lower levels by adding more rigorous protection
 and validation requirements. No operating system meets the A1, or
 “Verified Design,” rating. Although a few operating systems have
 earned one of the B-level ratings, C2 is considered sufficient and the
 highest rating practical for a general-purpose operating
 system.
Table 6-1. TCSEC Rating Levels
	Rating
	Description

	A1
	Verified Design

	B3
	Security Domains

	B2
	Structured Protection

	B1
	Labeled Security
 Protection

	C2
	Controlled Access
 Protection

	C1
	Discretionary Access Protection
 (obsolete)

	D
	Minimal Protection

In July 1995, Windows NT 3.5 (Workstation and Server) with
 Service Pack 3 was the first version of Windows NT to earn the C2
 rating. In March 1999, Windows NT 4 with Service Pack 3 achieved an E3
 rating from the U.K. government’s Information Technology Security
 (ITSEC) organization, a rating equivalent to a U.S. C2 rating. In
 November 1999, Windows NT 4 with Service Pack 6a earned a C2 rating in
 both stand-alone and networked configurations.
The following were the key requirements for a C2 security
 rating, and they are still considered the core requirements for any
 secure operating system:
	A secure logon facility, which requires that users can be
 uniquely identified and that they must be granted access to the
 computer only after they have been authenticated in some
 way.

	Discretionary access control, which allows the owner of a
 resource (such as a file) to determine who can access the resource
 and what they can do with it. The owner grants rights that permit
 various kinds of access to a user or to a group of users.

	Security auditing, which affords the ability to detect and
 record security-related events or any attempts to create, access,
 or delete system resources. Logon identifiers record the
 identities of all users, making it easy to trace anyone who
 performs an unauthorized action.

	Object reuse protection, which prevents users from seeing
 data that another user has deleted or from accessing memory that
 another user previously used and then released. For example, in
 some operating systems, it’s possible to create a new file of a
 certain length and then examine the contents of the file to see
 data that happens to have occupied the location on the disk where
 the file is allocated. This data might be sensitive information
 that was stored in another user’s file but had been deleted.
 Object reuse protection prevents this potential security hole by
 initializing all objects, including files and memory, before they
 are allocated to a user.

Windows also meets two requirements of B-level security:
	Trusted path functionality, which prevents Trojan horse
 programs from being able to intercept users’ names and passwords
 as they try to log on. The trusted path functionality in Windows
 comes in the form of its Ctrl+Alt+Delete logon-attention sequence,
 which cannot be intercepted by nonprivileged applications. This
 sequence of keystrokes, which is also known as the secure
 attention sequence (SAS), always displays a system-controlled
 Windows security screen (if a user is already logged on) or the
 logon screen so that would-be Trojan horses can easily be
 recognized. (The secure attention sequence can also be sent
 programmatically via the SendSAS API, if
 group policy allows it.) A Trojan horse presenting a fake logon
 dialog box will be bypassed when the SAS is entered.

	Trusted facility management, which requires support for
 separate account roles for administrative functions. For example,
 separate accounts are provided for administration
 (Administrators), user accounts charged with backing up the
 computer, and standard users.

Windows meets all of these requirements through its security
 subsystem and related components.

The Common Criteria

In January 1996, the United States, United Kingdom, Germany,
 France, Canada, and the Netherlands released the jointly developed
 Common Criteria for Information Technology Security Evaluation
 (CCITSE) security evaluation specification. CCITSE, which is usually
 referred to as the Common Criteria (CC), is the recognized
 multinational standard for product security evaluation. The CC home
 page is at www.niap-ccevs.org/cc-scheme/.
The CC is more flexible than the TCSEC trust ratings and has a
 structure closer to the ITSEC standard than to the TCSEC standard. The
 CC includes the concept of a Protection Profile (PP), used to collect
 security requirements into easily specified and compared sets, and the
 concept of a Security Target (ST), which contains a set of security
 requirements that can be made by reference to a PP. The CC also
 defines a range of seven Evaluation Assurance Levels (EALs), which
 indicate a level of confidence in the certification. In this way, the
 CC (like the ITSEC standard before it) removes the link between
 functionality and assurance level that was present in TCSEC and
 earlier certification schemes.
Windows 2000, Windows XP, Windows Server 2003, and Windows Vista
 Enterprise all achieved Common Criteria certification under the
 Controlled Access Protection Profile (CAPP). This is roughly
 equivalent to a TCSEC C2 rating. All received a rating of EAL 4+, the
 “plus” denoting “flaw remediation.” EAL 4 is the highest level
 recognized across national boundaries.
In March 2011, Windows 7 and Windows Server 2008 R2 were
 evaluated as meeting the requirements of the US Government Protection
 Profile for General-Purpose Operating Systems in a Networked
 Environment, version 1.0, 30 August 2010 (GPOSPP) (http://www.commoncriteriaportal.org/files/ppfiles/pp_gpospp_v1.0.pdf).
 The certification includes the Hyper-V hypervisor, and again Windows
 achieved Evaluation Assurance Level 4 with flaw remediation (EAL-4+).
 The validation report can be found at http://www.commoncriteriaportal.org/files/epfiles/st_vid10390-vr.pdf,
 and the description of the security target, giving details of the
 requirements satisfied, can be found at http://www.commoncriteriaportal.org/files/epfiles/st_vid10390-st.pdf.

Security System Components

These are the core components and databases that implement
 Windows security:
	Security reference monitor
 (SRM). A component in the Windows executive
 (%SystemRoot%\System32\Ntoskrnl.exe) that is responsible for
 defining the access token data structure to represent a security
 context, performing security access checks on objects,
 manipulating privileges (user rights), and generating any
 resulting security audit messages.

	Local Security Authority subsystem
 (LSASS). A user-mode process running the image
 %SystemRoot%\System32\Lsass.exe that is responsible for the local
 system security policy (such as which users are allowed to log on
 to the machine, password policies, privileges granted to users and
 groups, and the system security auditing settings), user
 authentication, and sending security audit messages to the Event
 Log. The Local Security Authority service
 (Lsasrv—%SystemRoot%\System32\Lsasrv.dll), a library that LSASS
 loads, implements most of this functionality.

	LSASS policy
 database. A database that contains the local system security policy
 settings. This database is stored in the registry in an
 ACL-protected area under HKLM\SECURITY. It includes such
 information as what domains are entrusted to authenticate logon
 attempts, who has permission to access the system and how
 (interactive, network, and service logons), who is assigned which
 privileges, and what kind of security auditing is to be performed.
 The LSASS policy database also stores “secrets” that include logon
 information used for cached domain logons and Windows service
 user-account logons. (See Chapter 4, for more information on
 Windows services.)

	Security Accounts Manager
 (SAM). A service responsible for managing the database that
 contains the user names and groups defined on the local machine.
 The SAM service, which is implemented as
 %SystemRoot%\System32\Samsrv.dll, is loaded into the LSASS
 process.

	SAM database. A database that contains the defined local users and groups,
 along with their passwords and other attributes. On domain
 controllers, the SAM does not store the domain-defined users, but
 stores the system’s administrator recovery account definition and
 password. This database is stored in the registry under
 HKLM\SAM.

	Active Directory. A directory service that contains a database that stores
 information about objects in a domain. A
 domain is a collection of computers and their
 associated security groups that are managed as a single entity.
 Active Directory stores information about the objects in the
 domain, including users, groups, and computers. Password
 information and privileges for domain users and groups are stored
 in Active Directory, which is replicated across the computers that
 are designated as domain controllers of the domain. The Active
 Directory server, implemented as %SystemRoot%\System32\Ntdsa.dll,
 runs in the LSASS process. For more information on Active
 Directory, see Chapter 7.

	Authentication
 packages. These include dynamic-link libraries (DLLs) that run
 both in the context of the LSASS process and client processes, and
 implement Windows authentication policy. An authentication DLL is
 responsible for authenticating a user, by checking whether a given
 user name and password match, and if so, returning to the LSASS
 information detailing the user’s security identity, which LSASS
 uses to generate a token.

	Interactive logon manager
 (Winlogon). A user-mode process running
 %SystemRoot%\System32\Winlogon.exe that is responsible for
 responding to the SAS and for managing interactive logon sessions.
 Winlogon creates a user’s first process when the user logs on, for
 example.

	Logon user interface
 (LogonUI). A user-mode process running
 %SystemRoot%\System32\LogonUI.exe that presents users with the
 user interface they can use to authenticate themselves on the
 system. LogonUI uses credential providers to query user
 credentials through various methods.

	Credential providers
 (CPs). In-process COM objects that run in the LogonUI process
 (started on demand by Winlogon when the SAS is performed) and used
 to obtain a user’s name and password, smartcard PIN, or biometric
 data (such as a fingerprint). The standard CPs are
 %SystemRoot%\System32\authui.dll and
 %SystemRoot%\System32\SmartcardCredentialProvider.dll.

	Network logon service
 (Netlogon). A Windows service (%SystemRoot%\System32\Netlogon.dll) that
 sets up the secure channel to a domain controller, over which
 security requests—such as an interactive logon (if the domain
 controller is running Windows NT 4) or LAN Manager and NT LAN
 Manager (v1 and v2) authentication validation—are sent. Netlogon
 is also used for Active Directory logons.

	Kernel Security Device Driver
 (KSecDD). A kernel-mode library of functions that implement the
 advanced local procedure call (ALPC) interfaces that other kernel
 mode security components, including the Encrypting File System
 (EFS), use to communicate with LSASS in user mode. KSecDD is
 located in %SystemRoot%\System32\Drivers\Ksecdd.sys.

	AppLocker. A mechanism that allows administrators to specify which
 executable files, DLLs, and scripts can be used by specified users
 and groups. AppLocker consists of a driver
 (%SystemRoot%\System32\Drivers\AppId.sys) and a service
 (%SystemRoot%\System32\AppIdSvc.dll) running in a SvcHost
 process.

Figure 6-1 shows the
 relationships among some of these components and the databases they
 manage.
[image: Windows security components]

Figure 6-1. Windows security components

EXPERIMENT: Looking Inside HKLM\SAM and HKLM\Security
The security descriptors associated with the SAM and
 Security keys in the registry prevent access by any account other than
 the local system account. One way to gain access to these keys for
 exploration is to reset their security, but that can weaken the
 system’s security. Another way is to execute Regedit.exe while running
 as the local system account. This can be done using the PsExec tool
 from Windows Sysinternals with the –s option, as
 shown here:
C:\>psexec –s –i –d c:\windows\regedit.exe
[image: image with no caption]

The SRM, which runs in kernel mode, and LSASS, which runs
 in user mode, communicate using the ALPC facility described in Chapter 3. During system initialization, the SRM
 creates a port, named SeRmCommandPort, to which LSASS connects. When the
 LSASS process starts, it creates an ALPC port named SeLsaCommandPort.
 The SRM connects to this port, resulting in the creation of private
 communication ports. The SRM creates a shared memory section for
 messages longer than 256 bytes, passing a handle in the connect call.
 Once the SRM and LSASS connect to each other during system
 initialization, they no longer listen on their respective connect ports.
 Therefore, a later user process has no way to connect successfully to
 either of these ports for malicious purposes—the connect request will
 never complete.
Figure 6-2 shows
 the communication paths as they exist after system
 initialization.
[image: Communication between the SRM and LSASS]

Figure 6-2. Communication between the SRM and LSASS

Protecting Objects

Object protection and access logging is the essence of
 discretionary access control and auditing. The objects that can be
 protected on Windows include files, devices, mailslots, pipes (named and
 anonymous), jobs, processes, threads, events, keyed events, event pairs,
 mutexes, semaphores, shared memory sections, I/O completion ports, LPC
 ports, waitable timers, access tokens, volumes, window stations,
 desktops, network shares, services, registry keys, printers, Active
 Directory objects, and so on—theoretically, anything managed by the
 executive object manager. In practice, objects that are not exposed to
 user mode (such as driver objects) are usually not protected.
 Kernel-mode code is trusted and usually uses interfaces to the object
 manager that do not perform access checking. Because system resources
 that are exported to user mode (and hence require security validation)
 are implemented as objects in kernel mode, the Windows object manager
 plays a key role in enforcing object security.
We described the object manager in Chapter 3, showing how the object manager maintains
 the security descriptor for objects. This is illustrated in Figure 6-3 using the
 Sysinternals Winobj tool, showing the security descriptor for an event
 object in the user’s session. Although files are the resources most
 commonly associated with object protection, Windows uses the same
 security model and mechanism for executive objects as it does for files
 in the file system. As far as access controls are concerned, executive
 objects differ from files only in the access methods supported by each
 type of object.
[image: image with no caption]

As you will see later, what is shown in Figure 6-3 is actually the
 object’s discretionary access control list, or DACL. We will describe
 DACLs in detail in a later section.
To control who can manipulate an object, the security system must
 first be sure of each user’s identity. This need to guarantee the user’s
 identity is the reason that Windows requires authenticated logon before
 accessing any system resources. When a process requests a handle to an
 object, the object manager and the security system use the caller’s
 security identification and the object’s security descriptor to
 determine whether the caller should be assigned a handle that grants the
 process access to the object it desires.
[image: An executive object and its security descriptor, viewed by Winobj]

Figure 6-3. An executive object and its security descriptor, viewed by
 Winobj

As discussed later in this chapter, a thread can assume a
 different security context than that of its process. This mechanism is
 called impersonation, and when a thread is impersonating, security
 validation mechanisms use the thread’s security context instead of that
 of the thread’s process. When a thread isn’t impersonating, security
 validation falls back on using the security context of the thread’s
 owning process. It’s important to keep in mind that all the threads in a
 process share the same handle table, so when a thread opens an
 object—even if it’s impersonating—all the threads of the process have
 access to the object.
Sometimes, validating the identity of a user isn’t enough for the
 system to grant access to a resource that should be accessible by the
 account. Logically, one can think of a clear distinction between a
 service running under the Alice account and an unknown application that
 Alice downloaded while browsing the Internet. Windows achieves this kind
 of intra-user isolation with the Windows integrity mechanism, which
 implements integrity levels. The Windows integrity mechanism is used by
 User Account Control (UAC) elevations, Protected Mode Internet Explorer
 (PMIE), and User Interface Privilege Isolation (UIPI).
Access Checks

The Windows security model requires that a thread specify up
 front, at the time that it opens an object, what types of actions it
 wants to perform on the object. The object manager calls the SRM to
 perform access checks based on a thread’s desired access, and if the
 access is granted, a handle is assigned to the thread’s process with
 which the thread (or other threads in the process) can perform further
 operations on the object. As explained in Chapter 3, the object manager records the access
 permissions granted for a handle in the process’ handle table.
One event that causes the object manager to perform
 security access validation is when a process opens an existing object
 using a name. When an object is opened by name, the object manager
 performs a lookup of the specified object in the object manager
 namespace. If the object isn’t located in a secondary namespace, such
 as the configuration manager’s registry namespace or a file system
 driver’s file system namespace, the object manager calls the internal
 function ObpCreateHandle once it locates the
 object. As its name implies, ObpCreateHandle
 creates an entry in the process’ handle table that becomes associated
 with the object. ObpCreateHandle first calls
 ObpGrantAccess to see if the thread has
 permission to access the object; if the thread does,
 ObpCreateHandle calls the executive function
 ExCreateHandle to create the entry in the process
 handle table. ObpGrantAccess calls
 ObCheckObjectAccess to initiate the security
 access check.
ObpGrantAccess passes to
 ObCheckObjectAccess the security credentials of
 the thread opening the object, the types of access to the object that
 the thread is requesting (read, write, delete, and so forth), and a
 pointer to the object. ObCheckObjectAccess first
 locks the object’s security descriptor and the security context of the
 thread. The object security lock prevents another thread in the system
 from changing the object’s security while the access check is in
 progress. The lock on the thread’s security context prevents another
 thread (from that process or a different process) from altering the
 security identity of the thread while security validation is in
 progress. ObCheckObjectAccess then calls the
 object’s security method to obtain the security settings of the
 object. (See Chapter 3 for a description of
 object methods.) The call to the security method might invoke a
 function in a different executive component. However, many executive
 objects rely on the system’s default security management
 support.
When an executive component defining an object doesn’t want to
 override the SRM’s default security policy, it marks the object type
 as having default security. Whenever the SRM calls an object’s
 security method, it first checks to see whether the object has default
 security. An object with default security stores its security
 information in its header, and its security method is
 SeDefaultObjectMethod. An object that doesn’t
 rely on default security must manage its own security information and
 supply a specific security method. Objects that rely on default
 security include mutexes, events, and semaphores. A file object is an
 example of an object that overrides default security. The I/O manager,
 which defines the file object type, has the file system driver on
 which a file resides manage (or choose not to implement) the security
 for its files. Thus, when the system queries the security on a file
 object that represents a file on an NTFS volume, the I/O manager file
 object security method retrieves the file’s security using the NTFS
 file system driver. Note, however, that
 ObCheckObjectAccess isn’t executed when files are
 opened, because they reside in secondary namespaces; the system
 invokes a file object’s security method only when a thread explicitly
 queries or sets the security on a file (with the Windows
 SetFileSecurity or
 GetFileSecurity functions, for example).
After obtaining an object’s security information,
 ObCheckObjectAccess invokes the SRM function
 SeAccessCheck. SeAccessCheck
 is one of the functions at the heart of the Windows security model.
 Among the input parameters SeAccessCheck accepts
 are the object’s security information, the security identity of the
 thread as captured by ObCheckObjectAccess, and
 the access that the thread is requesting.
 SeAccessCheck returns True or False, depending on
 whether the thread is granted the access it requested to the
 object.
Another event that causes the object manager to execute
 access validation is when a process references an object using an
 existing handle. Such references often occur indirectly, as when a
 process calls on a Windows API to manipulate an object and passes an
 object handle. For example, a thread opening a file can request read
 permission to the file. If the thread has permission to access the
 object in this way, as dictated by its security context and the
 security settings of the file, the object manager creates a
 handle—representing the file—in the handle table of the thread’s
 process. The types of accesses the process is granted through the
 handle are stored with the handle by the object manager.
Subsequently, the thread could attempt to write to the file
 using the WriteFile Windows function, passing the
 file’s handle as a parameter. The system service
 NtWriteFile, which WriteFile
 calls via Ntdll.dll, uses the object manager function
 ObReferenceObjectByHandle to obtain a pointer to
 the file object from the handle.
 ObReferenceObjectByHandle accepts the access that
 the caller wants from the object as a parameter. After finding the
 handle entry in the process’ handle table,
 ObReferenceObjectByHandle compares the access
 being requested with the access granted at the time the file was
 opened. In this example,
 ObReferenceObjectByHandle will indicate that the
 write operation should fail because the caller didn’t obtain write
 access when the file was opened.
The Windows security functions also enable Windows applications
 to define their own private objects and to call on the services of the
 SRM (through the AuthZ user-mode APIs, described later) to enforce the
 Windows security model on those objects. Many kernel-mode functions
 that the object manager and other executive components use to protect
 their own objects are exported as Windows user-mode APIs. The
 user-mode equivalent of SeAccessCheck is the
 AuthZ API AccessCheck. Windows applications can
 therefore leverage the flexibility of the security model and
 transparently integrate with the authentication and administrative
 interfaces that are present in Windows.
The essence of the SRM’s security model is an equation that
 takes three inputs: the security identity of a thread, the access that
 the thread wants to an object, and the security settings of the
 object. The output is either “yes” or “no” and indicates whether or
 not the security model grants the thread the access it desires. The
 following sections describe the inputs in more detail and then
 document the model’s access-validation algorithm.

Security Identifiers

Instead of using names (which might or might not be unique) to
 identify entities that perform actions in a system, Windows uses
 security identifiers (SIDs). Users have SIDs, and so do local and
 domain groups, local computers, domains, domain members, and services.
 A SID is a variable-length numeric value that consists of a SID
 structure revision number, a 48-bit identifier authority value, and a
 variable number of 32-bit subauthority or relative identifier (RID)
 values. The authority value identifies the agent that issued the SID,
 and this agent is typically a Windows local system or a domain.
 Subauthority values identify trustees relative to the issuing
 authority, and RIDs are simply a way for Windows to create unique SIDs
 based on a common base SID. Because SIDs are long and Windows takes
 care to generate truly random values within each SID, it is virtually
 impossible for Windows to issue the same SID twice on machines or
 domains anywhere in the world.
When displayed textually, each SID carries an S prefix,
 and its various components are separated with hyphens:
	S-1-5-21-1463437245-1224812800-863842198-1128

In this SID, the revision number is 1, the identifier authority
 value is 5 (the Windows security authority), and four subauthority
 values plus one RID (1128) make up the remainder of the SID. This SID
 is a domain SID, but a local computer on the domain would have a SID
 with the same revision number, identifier authority value, and number
 of subauthority values.
When you install Windows, the Windows Setup program issues the
 computer a machine SID. Windows assigns SIDs to local accounts on the
 computer. Each local-account SID is based on the source computer’s SID
 and has a RID at the end. RIDs for user accounts and groups start at
 1000 and increase in increments of 1 for each new user or group.
 Similarly, Dcpromo.exe (Domain Controller Promote), the utility used
 to create a new Windows domain, reuses the computer SID of the
 computer being promoted to domain controller as the domain SID, and it
 re-creates a new SID for the computer if it is ever demoted. Windows
 issues to new domain accounts SIDs that are based on the domain SID
 and have an appended RID (again starting at 1000 and increasing in
 increments of 1 for each new user or group). A RID of 1028 indicates
 that the SID is the twenty-ninth SID the domain issued.
Windows issues SIDs that consist of a computer or domain SID
 with a predefined RID to many predefined accounts and groups. For
 example, the RID for the administrator account is 500, and the RID for
 the guest account is 501. A computer’s local administrator account,
 for example, has the computer SID as its base with the RID of 500
 appended to it:
	S-1-5-21-13124455-12541255-61235125-500

Windows also defines a number of built-in local and domain SIDs
 to represent well-known groups. For example, a SID that identifies any
 and all accounts (except anonymous users) is the Everyone SID:
 S-1-1-0. Another example of a group that a SID can represent is the
 network group, which is the group that represents users who have
 logged on to a machine from the network. The network-group SID is
 S-1-5-2. Table 6-2, reproduced here from
 the Windows SDK documentation, shows some basic well-known SIDs, their
 numeric values, and their use. Unlike users’ SIDs, these SIDs are
 predefined constants, and have the same values on every Windows system
 and domain in the world. Thus, a file that is accessible by members of
 the Everyone group on the system where it was created is also
 accessible to Everyone on any other system or domain to which the hard
 drive where it resides happens to be moved. Users on those systems
 must, of course, authenticate to an account on those systems before
 becoming members of the Everyone group.
Note
See Microsoft Knowledge Base article 243330 for a list of
 defined SIDs at http://support.microsoft.com/kb/243330.

Finally, Winlogon creates a unique logon SID for each
 interactive logon session. A typical use of a logon SID is in an
 access control entry (ACE) that allows access for the duration of a
 client’s logon session. For example, a Windows service can use the
 LogonUser function to start a new logon session.
 The LogonUser function returns an access token
 from which the service can extract the logon SID. The service can then use the SID in an ACE that allows the
 client’s logon session to access the interactive window station and
 desktop. The SID for a logon session is S-1-5-5-0, and the RID is
 randomly generated.
Table 6-2. A Few Well-Known SIDs
	SID
	Group
	Use

	S-1-0-0
	Nobody
	Used when the SID is
 unknown.

	S-1-1-0
	Everyone
	A group that includes all users
 except anonymous users.

	S-1-2-0
	Local
	Users who log on to terminals
 locally (physically) connected to the system.

	S-1-3-0
	Creator Owner ID
	A security identifier to be replaced
 by the security identifier of the user who created a new
 object. This SID is used in inheritable ACEs.

	S-1-3-1
	Creator Group ID
	Identifies a security identifier to
 be replaced by the primary-group SID of the user who created a
 new object. Use this SID in inheritable ACEs.

	S-1-9-0
	Resource Manager
	Used by third-party applications
 performing their own security on internal data (such as
 Microsoft Exchange).

EXPERIMENT: Using PsGetSid and Process Explorer to View
 SIDs
You can easily see the SID representation for any account
 you’re using by running the PsGetSid utility from
 Sysinternals.
PsGetSid’s options allow you to translate machine and user
 account names to their corresponding SIDs and vice versa.
If you run PsGetSid with no options, it prints the SID
 assigned to the local computer. By using the fact that the
 Administrator account always has a RID of 500, you can determine the
 name assigned to the account (in cases where a system administrator
 has renamed the account for security reasons) simply by passing the
 machine SID appended with -500 as PsGetSid’s command-line
 argument.
To obtain the SID of a domain account, enter the user name
 with the domain as a prefix:
c:\>psgetsid redmond\daryl
You can determine the SID of a domain by specifying the
 domain’s name as the argument to PsGetSid:
c:\>psgetsid Redmond
Finally, by examining the RID of your own account, you know at
 least a number of security accounts (equal to the number resulting
 from subtracting 999 from your RID) have been created in your domain
 or on your local machine (depending on whether you are using a
 domain or local machine account). You can determine what accounts
 have been assigned RIDs by passing a SID with the RID you want to
 query to PsGetSid. If PsGetSid reports that no mapping between the
 SID and an account name was possible and the RID is lower than that
 of your account, you know that the account assigned the RID has been
 deleted.
For example, to find out the name of the account
 assigned the twenty-eighth RID, pass the domain SID appended with
 -1027 to PsGetSid:
c:\>psgetsid S-1-5-21-1787744166-3910675280-2727264193-1027
Account for S-1-5-21-1787744166-3910675280-2727264193-1027:
User: redmond\daryl
Process Explorer can also show you information on account and
 group SIDs on your system through its Security tab. This tab shows
 you information such as who owns this process and which groups the
 account is a member of. To view this information, simply
 double-click on any process (for example, Explorer.exe) in the
 Process list, and then click on the Security tab. You should see
 something similar to the following:
[image: image with no caption]

The information displayed in the User field contains the
 friendly name of the account owning this process, while the SID
 field contains the actual SID value. The Group list includes
 information on all the groups that this account is a member of.
 (Groups are described later in this chapter.)

Integrity Levels

As mentioned earlier, integrity levels can override
 discretionary access to differentiate a process and objects running
 as and owned by the same user, offering the ability to isolate code
 and data within a user account. The mechanism of mandatory integrity
 control (MIC) allows the SRM to have more detailed information about
 the nature of the caller by associating it with an integrity level.
 It also provides information on the trust required to access the
 object by defining an integrity level for it. These integrity levels are specified by a SID. Though
 integrity levels can be arbitrary values, the system uses five
 primary levels to separate privilege levels, as described in Table 6-3.
Table 6-3. Integrity Level SIDs
	SID
	Name (Level)
	Use

	S-1-16-0x0
	Untrusted (0)
	Used by processes started by the
 Anonymous group. It blocks most write access.

	S-1-16-0x1000
	Low (1)
	Used by Protected Mode Internet
 Explorer. It blocks write access to most objects (such as
 files and registry keys) on the system.

	S-1-16-0x2000
	Medium (2)
	Used by normal applications being
 launched while UAC is enabled.

	S-1-16-0x3000
	High (3)
	Used by administrative
 applications launched through elevation when UAC is enabled,
 or normal applications if UAC is disabled and the user is an
 administrator.

	S-1-16-0x4000
	System (4)
	Used by services and other
 system-level applications (such as Wininit, Winlogon, Smss,
 and so forth).

EXPERIMENT: Looking at the Integrity Level of
 Processes
You can use Process Explorer from Sysinternals to quickly
 display the integrity level for the processes on your system. The
 following steps demonstrate this functionality.
	Launch Internet Explorer in Protected Mode.

	Open an elevated Command Prompt window.

	Open Microsoft Paint normally (without elevating
 it).

	Now open Process Explorer, right-click on any of the
 columns in the Process list, and then click Select Columns.
 You should see a dialog box similar to the one shown
 here:
[image: image with no caption]

	Select the Integrity Level check box, and click
 OK to close the dialog box and save the change.

	Process Explorer will now show you the integrity level
 of the processes on your system. You should see the Protected
 Mode Internet Explorer process at Low, Microsoft Paint at
 Medium, and the elevated command prompt at High. Also note
 that the services and system processes are running at an even
 higher integrity level, System.
[image: image with no caption]

Every process has an integrity level that is represented in
 the process’ token and propagated according to the following
 rules:
	A process normally inherits the integrity level of its
 parent (which means an elevated command prompt will spawn other
 elevated processes).

	If the file object for the executable image to which the
 child process belongs has an integrity level and the parent
 process’ integrity level is medium or higher, the child process
 will inherit the lower of the two.

	A parent process can create a child process with an
 explicit integrity level lower than its own (for example, when
 launching Protected Mode Internet Explorer from an elevated
 command prompt). To do this, it uses
 DuplicateTokenEx to duplicate its own
 access token, it uses SetTokenInformation
 to change the integrity level in the new token to the desired
 level, and then it calls
 CreateProcessAsUser with that new
 token.

EXPERIMENT: Understanding Protected Mode Internet
 Explorer
As mentioned earlier, one of the users of the
 Windows integrity mechanism is Internet Explorer’s Protected Mode,
 also called Protected Mode Internet Explorer (PMIE). This feature
 was added in Internet Explorer 7 to take advantage of the Windows
 integrity levels. This experiment will show you how PMIE utilizes
 integrity levels to provide a safer Internet experience. To do
 this, we’ll use Process Monitor to trace Internet Explorer’s
 behavior.
	Make sure that you haven’t disabled UAC and PMIE on your
 systems (they are both on by default), and close any running
 instances of Internet Explorer.

	Run Process Monitor, and select Filter, Filter to
 display the filtering dialog box. Add an include filter for
 the process name Iexplore.exe, as shown next:
[image: image with no caption]

	Run Process Explorer, and repeat the previous experiment
 to display the Integrity Level column.

	Now launch Internet Explorer. You should see a flurry of
 events appear in the Process Monitor window and a quick
 succession of events in Process Explorer, showing some
 processes starting and some exiting.

Once Internet Explorer is running, Process Explorer will
 show you two new Iexplore.exe processes, the parent Iexplore.exe
 running at medium integrity level and its child running at low
 integrity level.
Part of the added protection offered by PMIE is that
 Iexplore.exe processes that access websites run at low integrity.
 Because Internet Explorer hosts tabs in multiple processes, if you
 create additional tabs you might see additional instances of
 Iexplore.exe. There is one parent Iexplore.exe process that acts
 as a broker, providing access to parts of the system not
 accessible by those running at low integrity—for example, to save
 or open files from other parts of the file system.

Table 6-3 lists the
 integrity level associated with processes, but what about objects?
 Objects also have an integrity level stored as part of their
 security descriptor, in a structure that is called the mandatory
 label.
To support migrating from previous versions of Windows (whose
 registry keys and files would not include integrity-level
 information), as well as to make it simpler for application
 developers, all objects have an implicit integrity level to avoid
 having to manually specify one. This implicit integrity level is the
 medium level, meaning that the mandatory policy (described shortly)
 on the object will be performed on tokens accessing this object with
 an integrity level lower than medium.
When a process creates an object without specifying an
 integrity level, the system checks the integrity level in the token.
 For tokens with a level of medium or higher, the implicit integrity
 level of the object remains medium. However, when a token contains
 an integrity level lower than medium, the object is created with an
 explicit integrity level that matches the level in the token.
The reason that objects that are created by high or system
 integrity-level processes have a medium integrity level themselves
 is so that users can disable and enable UAC: if object integrity
 levels always inherited their creator’s integrity level, the
 applications of an administrator who disables UAC and subsequently
 re-enables it would potentially fail because the administrator would
 not be able to modify any registry settings or files created when
 running at the high integrity level. Objects can also have an
 explicit integrity level that is set by the system or by the creator
 of the object. For example, the following objects are given an
 explicit integrity level by the kernel when it creates them:
	Processes

	Threads

	Tokens

	Jobs

The reason for assigning an integrity level to these objects
 is to prevent a process for the same user, but one running at a
 lower integrity level, from accessing these objects and modifying
 their content or behavior (for example, DLL injection or code
 modification).
EXPERIMENT: Looking at the Integrity Level of
 Objects
You can use the Accesschk tool from Sysinternals to display
 the integrity level of objects on the system, such as files,
 processes, and registry keys. Here’s an experiment showing the
 purpose of the LocalLow directory in Windows.
	Browse to C:\Users\UserName\ in a command prompt.

	Try running Accesschk on the AppData folder, as
 follows:
C:\Users\UserName> accesschk –v appdata

	Note the differences between Local and LocalLow in your
 output, similar to the one shown here:
C:\Users\UserName\AppData\Local
 Medium Mandatory Level (Default) [No-Write-Up]
 [...]C:\Users\UserName\AppData\LocalLow
 Low Mandatory Level [No-Write-Up]
 [...]
C:\Users\UserName\AppData\Roaming
 Medium Mandatory Level (Default) [No-Write-Up]
 [...]

	Notice that the LocalLow directory has an integrity
 level that is set to Low, while the Local and Roaming
 directories have an integrity level of Medium (Default). The
 default means the system is using an implicit integrity
 level.

	You can pass the –e flag to
 Accesschk so that it displays only explicit integrity levels.
 If you run the tool on the AppData folder again, you’ll notice
 only the LocalLow information is displayed.

The –o (Object),
 –k (Registry Key), and
 –p (Process) flags allow you to specify
 something other than a file or directory.

Apart from an integrity level, objects also have a mandatory
 policy, which defines the actual level of protection that’s applied
 based on the integrity-level check. Three types are possible, shown
 in Table 6-4. The integrity level
 and the mandatory policy are stored together in the same ACE.
Table 6-4. Object Mandatory Policies
	Policy
	Present on, by
 Default
	Description

	No-Write-Up
	Implicit on all
 objects
	Used to restrict write access
 coming from a lower integrity level process to the
 object.

	No-Read-Up
	Only on process
 objects
	Used to restrict read access
 coming from a lower integrity level process to the object.
 Specific use on process objects protects against information
 leakage by blocking address space reads from an external
 process.

	No-Execute-Up
	Only on binaries implementing COM
 classes
	Used to restrict execute access
 coming from a lower integrity level process to the object.
 Specific use on COM classes is to restrict launch-activation
 permissions on a COM class.

Tokens

The SRM uses an object called a token (or access
 token) to identify the security context of a process or thread. A
 security context consists of information that describes the account,
 groups, and privileges associated with the process or thread. Tokens
 also include information such as the session ID, the integrity
 level, and UAC virtualization state. (We’ll describe both privileges
 and UAC’s virtualization mechanism later in this chapter.)
During the logon process (described at the end of this
 chapter), LSASS creates an initial token to represent the user
 logging on. It then determines whether the user logging on is a
 member of a powerful group or possesses a powerful privilege. The
 groups checked for in this step are as follows:
	Built-In Administrators

	Certificate Administrators

	Domain Administrators

	Enterprise Administrators

	Policy Administrators

	Schema Administrators

	Domain Controllers

	Enterprise Read-Only Domain Controllers

	Read-Only Domain Controllers

	Account Operators

	Backup Operators

	Cryptographic Operators

	Network Configuration Operators

	Print Operators

	System Operators

	RAS Servers

	Power Users

	Pre-Windows 2000 Compatible Access

Many of the groups listed are used only on
 domain-joined systems and don’t give users local administrative
 rights directly. Instead, they allow users to modify domainwide
 settings.
The privileges checked for are
	SeBackupPrivilege

	SeCreateTokenPrivilege

	SeDebugPrivilege

	SeImpersonatePrivilege

	SeLabelPrivilege

	SeLoadDriverPrivilege

	SeRestorePrivilege

	SeTakeOwnershipPrivilege

	SeTcbPrivilege

These privileges are described in detail in a later
 section.
If one or more of these groups or privileges are present,
 LSASS creates a restricted token for the user (also called a
 filtered admin token), and it creates a logon session for both. The
 standard user token is attached to the initial process or processes
 that Winlogon starts (by default, Userinit.exe).
Note
If UAC has been disabled, administrators run with a token
 that includes their administrator group memberships and
 privileges.

Because child processes by default inherit a copy of the token
 of their creators, all processes in the user’s session run under the
 same token. You can also generate a token by using the Windows
 LogonUser function. You can then use this token
 to create a process that runs within the security context of the
 user logged on through the LogonUser function
 by passing the token to the Windows
 CreateProcessAsUser function. The
 CreateProcessWithLogon function combines these
 into a single call, which is how the Runas command launches
 processes under alternative tokens.
Tokens vary in size because different user accounts have
 different sets of privileges and associated group accounts. However,
 all tokens contain the same types of information. The most important
 contents of a token are represented in Figure 6-4.
[image: Access tokens]

Figure 6-4. Access tokens

The security mechanisms in Windows use two components
 to determine what objects can be accessed and what secure operations
 can be performed. One component comprises the token’s user account
 SID and group SID fields. The security reference monitor (SRM) uses
 SIDs to determine whether a process or thread can obtain requested
 access to a securable object, such as an NTFS file.
The group SIDs in a token indicate which groups a user’s
 account is a member of. For example, a server application can
 disable specific groups to restrict a token’s credentials when the
 server application is performing actions requested by a client.
 Disabling a group produces nearly the same effect as if the group
 wasn’t present in the token. (It results in a deny-only group,
 described later. Disabled SIDs are used as part of security access
 checks, described later in the chapter.) Group SIDs can also include
 a special SID that contains the integrity level of the process or
 thread. The SRM uses another field in the token, which describes the mandatory integrity
 policy, to perform the mandatory integrity check described later in
 the chapter.
The second component in a token that determines what the
 token’s thread or process can do is the privilege array. A token’s
 privilege array is a list of rights associated with the token. An
 example privilege is the right for the process or thread associated
 with the token to shut down the computer. Privileges are described
 in more detail later in this chapter.
A token’s default primary group field and default
 discretionary access control list (DACL) field are security
 attributes that Windows applies to objects that a process or thread
 creates when it uses the token. By including security information in
 tokens, Windows makes it convenient for a process or thread to
 create objects with standard security attributes, because the
 process or thread doesn’t need to request discrete security
 information for every object it creates.
Each token’s type distinguishes a primary token (a token that
 identifies the security context of a process) from an impersonation
 token (a type of token that threads use to temporarily adopt a
 different security context, usually of another user). Impersonation
 tokens carry an impersonation level that signifies what type of
 impersonation is active in the token. (Impersonation is described
 later in this chapter.)
A token also includes the mandatory policy for the process or
 thread, which defines how MIC will behave when processing this
 token. There are two policies:
	TOKEN_MANDATORY_NO_WRITE_UP, which is enabled by default,
 sets the No-Write-Up policy on this token, specifying that the
 process or thread will not be able to access objects with a
 higher integrity level for write access.

	TOKEN_MANDATORY_NEW_PROCESS_MIN, which is also enabled by
 default, specifies that the SRM should look at the integrity
 level of the executable image when launching a child process and
 compute the minimum integrity level of the parent process and
 the file object’s integrity level as the child’s integrity
 level.

Token flags include parameters that determine the behavior of
 certain UAC and UIPI mechanisms, such as virtualization and user
 interface access. Those mechanisms will be described later in this
 chapter.
Each token can also contain attributes that are assigned by
 the Application Identification service (part of AppLocker) when
 AppLocker rules have been defined. AppLocker and its use of
 attributes in the access token are described later in this
 chapter.
The remaining fields in a token serve informational purposes.
 The token source field contains a short textual description of the
 entity that created the token. Programs that want to know where a
 token originated use the token source to distinguish among sources
 such as the Windows Session Manager, a network file server, or the
 remote procedure call (RPC) server. The token identifier is a
 locally unique identifier (LUID) that the SRM assigns to the token
 when it creates the token. The Windows executive maintains the
 executive LUID, a monotonically increasing counter it uses to assign
 a unique numeric identifier to each token. A LUID is guaranteed to
 be unique only until the system is shut down.
The token authentication ID is another kind of LUID. A
 token’s creator assigns the token’s authentication ID when calling
 the LsaLogonUser function. If the creator
 doesn’t specify a LUID, LSASS obtains the LUID from the executive
 LUID. LSASS copies the authentication ID for all tokens descended
 from an initial logon token. A program can obtain a token’s
 authentication ID to see whether the token belongs to the same logon
 session as other tokens the program has examined.
The executive LUID refreshes the modified ID every time a
 token’s characteristics are modified. An application can test the
 modified ID to discover changes in a security context since the
 context’s last use.
Tokens contain an expiration time field that can be used by
 applications performing their own security to reject a token after a
 specified amount of time. However, Windows itself does not enforce
 the expiration time of tokens.
Note
To guarantee system security, the fields in a token are
 immutable (because they are located in kernel memory). Except for
 fields that can be modified through a specific system call
 designed to modify certain token attributes (assuming the caller
 has the appropriate access rights to the token object), data such
 as the privileges and SIDs in a token can never be modified from
 user mode.

EXPERIMENT: Viewing Access Tokens
The kernel debugger dt _TOKEN command
 displays the format of an internal token object. Although this
 structure differs from the user-mode token structure returned by
 Windows API security functions, the fields are similar. For
 further information on tokens, see the description in the Windows
 SDK documentation.
The following output is from the kernel debugger’s dt
 nt!_TOKEN command:
kd> dt nt!_TOKEN
 +0x000 TokenSource : _TOKEN_SOURCE
 +0x010 TokenId : _LUID
 +0x018 AuthenticationId : _LUID
 +0x020 ParentTokenId : _LUID
 +0x028 ExpirationTime : _LARGE_INTEGER
 +0x030 TokenLock : Ptr32 _ERESOURCE
 +0x034 ModifiedId : _LUID
 +0x040 Privileges : _SEP_TOKEN_PRIVILEGES
 +0x058 AuditPolicy : _SEP_AUDIT_POLICY
 +0x074 SessionId : Uint4B
 +0x078 UserAndGroupCount : Uint4B
 +0x07c RestrictedSidCount : Uint4B
 +0x080 VariableLength : Uint4B
 +0x084 DynamicCharged : Uint4B
 +0x088 DynamicAvailable : Uint4B
 +0x08c DefaultOwnerIndex : Uint4B
 +0x090 UserAndGroups : Ptr32 _SID_AND_ATTRIBUTES
 +0x094 RestrictedSids : Ptr32 _SID_AND_ATTRIBUTES
 +0x098 PrimaryGroup : Ptr32 Void
 +0x09c DynamicPart : Ptr32 Uint4B
 +0x0a0 DefaultDacl : Ptr32 _ACL
 +0x0a4 TokenType : _TOKEN_TYPE
 +0x0a8 ImpersonationLevel : _SECURITY_IMPERSONATION_LEVEL
 +0x0ac TokenFlags : Uint4B
 +0x0b0 TokenInUse : UChar
 +0x0b4 IntegrityLevelIndex : Uint4B
 +0x0b8 MandatoryPolicy : Uint4B
 +0x0bc ProxyData : Ptr32 _SECURITY_TOKEN_PROXY_DATA
 +0x0c0 AuditData : Ptr32 _SECURITY_TOKEN_AUDIT_DATA
 +0x0c4 LogonSession : Ptr32 _SEP_LOGON_SESSION_REFERENCES
 +0x0c8 OriginatingLogonSession : _LUID
 +0x0d0 SidHash : _SID_AND_ATTRIBUTES_HASH
 +0x158 RestrictedSidHash : _SID_AND_ATTRIBUTES_HASH
 +0x1e0 VariablePart : Uint4B
You can examine the token for a process with the
 !token command. You’ll find the address of
 the token in the output of the !process
 command, as shown here:
lkd> !process d6c 1
Searching for Process with Cid == d6c
PROCESS 85450508 SessionId: 1 Cid: 0d6c Peb: 7ffda000 ParentCid: 0ecc
 DirBase: cc9525e0 ObjectTable: afd75518 HandleCount: 18.
 Image: cmd.exe
 VadRoot 85328e78 Vads 24 Clone 0 Private 148. Modified 0. Locked 0.
 DeviceMap a0688138
 Token afd48470
 ElapsedTime 01:10:14.379
 UserTime 00:00:00.000
 KernelTime 00:00:00.000
 QuotaPoolUsage[PagedPool] 42864
 QuotaPoolUsage[NonPagedPool] 1152
 Working Set Sizes (now,min,max) (566, 50, 345) (2264KB, 200KB, 1380KB)
 PeakWorkingSetSize 582
 VirtualSize 22 Mb
 PeakVirtualSize 25 Mb
 PageFaultCount 680
 MemoryPriority BACKGROUND
 BasePriority 8
 CommitCharge 437

lkd> !token afd48470
_TOKEN afd48470
TS Session ID: 0x1
User: S-1-5-21-2778343003-3541292008-524615573-500 (User: ALEX-LAPTOP\Administrator)
Groups:
 00 S-1-5-21-2778343003-3541292008-524615573-513 (Group: ALEX-LAPTOP\None)
 Attributes - Mandatory Default Enabled
 01 S-1-1-0 (Well Known Group: localhost\Everyone)
 Attributes - Mandatory Default Enabled
 02 S-1-5-21-2778343003-3541292008-524615573-1000 (Alias: ALEX-LAPTOP\Debugger Users)
 Attributes - Mandatory Default Enabled
 03 S-1-5-32-544 (Alias: BUILTIN\Administrators)
 Attributes - Mandatory Default Enabled Owner
 04 S-1-5-32-545 (Alias: BUILTIN\Users)
 Attributes - Mandatory Default Enabled
 05 S-1-5-4 (Well Known Group: NT AUTHORITY\INTERACTIVE)
 Attributes - Mandatory Default Enabled
 06 S-1-5-11 (Well Known Group: NT AUTHORITY\Authenticated Users)
 Attributes - Mandatory Default Enabled
 07 S-1-5-15 (Well Known Group: NT AUTHORITY\This Organization)
 Attributes - Mandatory Default Enabled
 08 S-1-5-5-0-89263 (no name mapped)
 Attributes - Mandatory Default Enabled LogonId
 09 S-1-2-0 (Well Known Group: localhost\LOCAL)
 Attributes - Mandatory Default Enabled
 10 S-1-5-64-10 (Well Known Group: NT AUTHORITY\NTLM Authentication)
 Attributes - Mandatory Default Enabled
 11 S-1-16-12288 Unrecognized SID
 Attributes - GroupIntegrity GroupIntegrityEnabled
Primary Group: S-1-5-21-2778343003-3541292008-524615573-513 (Group: ALEX-LAPTOP\None)
Privs:
 05 0x000000005 SeIncreaseQuotaPrivilege Attributes -
 08 0x000000008 SeSecurityPrivilege Attributes -
 09 0x000000009 SeTakeOwnershipPrivilege Attributes -
 10 0x00000000a SeLoadDriverPrivilege Attributes -
 11 0x00000000b SeSystemProfilePrivilege Attributes -
 12 0x00000000c SeSystemtimePrivilege Attributes -
 13 0x00000000d SeProfileSingleProcessPrivilege Attributes -
 14 0x00000000e SeIncreaseBasePriorityPrivilege Attributes -
 15 0x00000000f SeCreatePagefilePrivilege Attributes -
 17 0x000000011 SeBackupPrivilege Attributes -
 18 0x000000012 SeRestorePrivilege Attributes -
 19 0x000000013 SeShutdownPrivilege Attributes -
 20 0x000000014 SeDebugPrivilege Attributes -
 22 0x000000016 SeSystemEnvironmentPrivilege Attributes -
 23 0x000000017 SeChangeNotifyPrivilege Attributes - Enabled Default
 24 0x000000018 SeRemoteShutdownPrivilege Attributes -
 25 0x000000019 SeUndockPrivilege Attributes -
 28 0x00000001c SeManageVolumePrivilege Attributes -
 29 0x00000001d SeImpersonatePrivilege Attributes - Enabled Default
 30 0x00000001e SeCreateGlobalPrivilege Attributes - Enabled Default
 33 0x000000021 SeIncreaseWorkingSetPrivilege Attributes -
 34 0x000000022 SeTimeZonePrivilege Attributes -
 35 0x000000023 SeCreateSymbolicLinkPrivilege Attributes -
Authentication ID: (0,be1a2)
Impersonation Level: Identification
TokenType: Primary
Source: User32 TokenFlags: 0x0 (Token in use)
Token ID: 711076 ParentToken ID: 0
Modified ID: (0, 711081)
RestrictedSidCount: 0 RestrictedSids: 00000000
OriginatingLogonSession: 3e7
You can indirectly view token contents with Process
 Explorer’s Security tab in its process Properties dialog box. The
 dialog box shows the groups and privileges included in the token
 of the process you examine.

EXPERIMENT: Launching a Program at Low Integrity
 Level
When you elevate a program, either by using the Run As
 Administrator option or because the program is requesting it, the
 program is explicitly launched at high integrity level; however,
 it is also possible to launch a program (other than PMIE) at low
 integrity level by using Psexec from Sysinternals:
	Launch Notepad at low integrity level by using the
 following command:
c:\psexec –l notepad.exe

	Try opening a file (such as one of the .XML files) in
 the %SystemRoot%\System32 directory. Notice that you can
 browse the directory and open any file contained within
 it.

	Now use Notepad’s File | New command, enter some text in
 the window, and try saving it in the %SystemRoot%\System32
 directory. Notepad should present a message box indicating a
 lack of permissions and recommend saving the file in the
 Documents folder.

	Accept Notepad’s suggestion. You will get the same
 message box again, and repeatedly for each attempt.
[image: image with no caption]

	Now try saving the file in the LocalLow directory of
 your user profile, shown in an experiment earlier in the
 chapter.

In the previous experiment, saving a file in the LocalLow
 directory worked because Notepad was running with low integrity
 level, and only the LocalLow directory also had low integrity
 level. All the other locations where you tried to write the file
 had an implicit medium integrity level. (You can verify this with
 Accesschk.) However, reading from the %SystemRoot%\System32
 directory, as well as opening files within it, did work, even
 though the directory and its file also have an implicit medium
 integrity level.

Impersonation

Impersonation is a powerful feature Windows uses
 frequently in its security model. Windows also uses impersonation in
 its client/server programming model. For example, a server
 application can provide access to resources such as files, printers,
 or databases. Clients wanting to access a resource send a request to
 the server. When the server receives the request, it must ensure
 that the client has permission to perform the desired operations on
 the resource. For example, if a user on a remote machine tries to
 delete a file on an NTFS share, the server exporting the share must
 determine whether the user is allowed to delete the file. The
 obvious way to determine whether a user has permission is for the
 server to query the user’s account and group SIDs and scan the
 security attributes on the file. This approach is tedious to
 program, prone to errors, and wouldn’t permit new security features
 to be supported transparently. Thus, Windows provides impersonation
 services to simplify the server’s job.
Impersonation lets a server notify the SRM that the server is
 temporarily adopting the security profile of a client making a
 resource request. The server can then access resources on behalf of
 the client, and the SRM carries out the access validations, but it
 does so based on the impersonated client security context. Usually,
 a server has access to more resources than a client does and loses
 some of its security credentials during impersonation. However, the
 reverse can be true: the server can gain security credentials during
 impersonation.
A server impersonates a client only within the thread that
 makes the impersonation request. Thread-control data structures
 contain an optional entry for an impersonation token. However, a
 thread’s primary token, which represents the thread’s real security
 credentials, is always accessible in the process’ control
 structure.
Windows makes impersonation available through several
 mechanisms. For example, if a server communicates with a client
 through a named pipe, the server can use the
 ImpersonateNamedPipeClient Windows API function
 to tell the SRM that it wants to impersonate the user on the other
 end of the pipe. If the server is communicating with the client
 through Dynamic Data Exchange (DDE) or RPC, it can make similar
 impersonation requests using
 DdeImpersonateClient and
 RpcImpersonateClient. A thread can create an
 impersonation token that’s simply a copy of its process token with
 the ImpersonateSelf function. The thread can
 then alter its impersonation token, perhaps to disable SIDs or
 privileges. A Security Support Provider Interface (SSPI) package can
 impersonate its clients with
 ImpersonateSecurityContext. SSPIs implement a
 network authentication protocol such as LAN Manager version 2 or
 Kerberos. Other interfaces such as COM expose impersonation through
 APIs of their own, such as
 CoImpersonateClient.
After the server thread finishes its task, it reverts to its
 primary security context. These forms of impersonation are
 convenient for carrying out specific actions at the request of a
 client and for ensuring that object accesses are audited correctly.
 (For example, the audit that is generated gives the identity of the
 impersonated client rather than that of the server process.) The
 disadvantage to these forms of impersonation is that they can’t
 execute an entire program in the context of a client. In addition,
 an impersonation token can’t access files or printers on network
 shares unless it is a delegation-level impersonation (described
 shortly) and has sufficient credentials to authenticate to the
 remote machine, or the file or printer share supports null sessions.
 (A null session is one that results from an anonymous logon.)
If an entire application must execute in a client’s
 security context or must access network resources without using
 impersonation, the client must be logged on to the system. The
 LogonUser Windows API function enables this
 action. LogonUser takes an account name, a
 password, a domain or computer name, a logon type (such as
 interactive, batch, or service), and a logon provider as input, and
 it returns a primary token. A server thread can adopt the token as
 an impersonation token, or the server can start a program that has
 the client’s credentials as its primary token. From a security
 standpoint, a process created using the token returned from an
 interactive logon via LogonUser, such as with
 the CreateProcessAsUser API, looks like a
 program a user starts by logging on to the machine interactively.
 The disadvantage to this approach is that a server must obtain the
 user’s account name and password. If the server transmits this
 information across the network, the server must encrypt it securely
 so that a malicious user snooping network traffic can’t capture
 it.
To prevent the misuse of impersonation, Windows doesn’t let
 servers perform impersonation without a client’s consent. A client
 process can limit the level of impersonation that a server process
 can perform by specifying a security quality of service (SQOS) when
 connecting to the server. For instance, when opening a named pipe, a
 process can specify SECURITY_ANONYMOUS, SECURITY_IDENTIFICATION,
 SECURITY_IMPERSONATION, or SECURITY_DELEGATION as flags for the
 Windows CreateFile function. Each level lets a
 server perform different types of operations with respect to the
 client’s security context:
	SecurityAnonymous is the most restrictive level of
 impersonation—the server can’t impersonate or identify the
 client.

	SecurityIdentification lets the server obtain the identity
 (the SIDs) of the client and the client’s privileges, but the
 server can’t impersonate the client.

	SecurityImpersonation lets the server identify and
 impersonate the client on the local system.

	SecurityDelegation is the most permissive level of
 impersonation. It lets the server impersonate the client on
 local and remote systems.

Other interfaces such as RPC use different constants with
 similar meanings (for example, RPC_C_IMP_LEVEL_IMPERSONATE).
If the client doesn’t set an impersonation level, Windows
 chooses the SecurityImpersonation level by default. The
 CreateFile function also accepts
 SECURITY_EFFECTIVE_ONLY and SECURITY_CONTEXT_TRACKING as modifiers
 for the impersonation setting:
	SECURITY_EFFECTIVE_ONLY prevents a server from enabling or
 disabling a client’s privileges or groups while the server is
 impersonating.

	SECURITY_CONTEXT_TRACKING specifies that any changes a
 client makes to its security context are reflected in a server
 that is impersonating it. If this option isn’t specified, the
 server adopts the context of the client at the time of the
 impersonation and doesn’t receive any changes. This option is
 honored only when the client and server processes are on the
 same system.

To prevent spoofing scenarios in which a low integrity
 process could create a user interface that captured user credentials
 and then used LogonUser to obtain that user’s
 token, a special integrity policy applies to impersonation
 scenarios: a thread cannot impersonate a token of higher integrity
 than its own. For example, a low-integrity application cannot spoof
 a dialog box that queries administrative credentials and then
 attempt to launch a process at a higher privilege level. The
 integrity-mechanism policy for impersonation access tokens is that
 the integrity level of the access token that is returned by
 LsaLogonUser must be no higher than the
 integrity level of the calling process.

Restricted Tokens

A restricted token is created from a primary or impersonation
 token using the CreateRestrictedToken function.
 The restricted token is a copy of the token it’s derived from, with
 the following possible modifications:
	Privileges can be removed from the token’s privilege
 array.

	SIDs in the token can be marked as deny-only. These SIDs
 remove access to any resources for which the SID’s access is
 denied by using a matching access-denied ACE that would
 otherwise be overridden by an ACE granting access to a group
 containing the SID earlier in the security descriptor.

	SIDs in the token can be marked as restricted. These SIDs
 are subject to a second pass of the access-check algorithm,
 which will parse only the restricted SIDs in the token. The
 results of both the first pass and the second pass must grant
 access to the resource or no access is granted to the
 object.

Restricted tokens are useful when an application wants to
 impersonate a client at a reduced security level, primarily for
 safety reasons when running untrusted code. For example, the
 restricted token can have the shutdown-system privilege removed from
 it to prevent code executed in the restricted token’s security
 context from rebooting the system.

Filtered Admin Token

As you saw earlier, restricted tokens are also used by UAC to
 create the filtered admin token that all user applications will
 inherit. A filtered admin token has the following
 characteristics:
	The integrity level is set to medium.

	The administrator and administrator-like SIDs mentioned
 previously are marked as deny-only to prevent a security hole if
 the group was removed altogether. For example, if a file had an
 access control list (ACL) that denied the Administrators group
 all access but granted some access to another group the user
 belongs to, the user would be granted access if the
 Administrators group was absent from the token, which would give
 the standard user version of the user’s identity more access
 than the user’s administrator identity.

	All privileges are stripped except Change Notify,
 Shutdown, Undock, Increase Working Set, and Time Zone.

EXPERIMENT: Looking at Filtered Admin Tokens
You can make Explorer launch a process with either
 the standard user token or the administrator token by following
 these steps on a Windows machine with UAC enabled:
	Log on to an account that’s a member of the
 Administrators group.

	Click Start, Programs, Accessories, Command Prompt,
 right-click on the shortcut, and then select Run As
 Administrator. You will see a command prompt with the word
 Administrator in the title bar.

	Now repeat the process, but simply click on the
 shortcut—this will launch a second command prompt without
 administrative privileges.

	Run Process Explorer, and view the Security tab in the
 Properties dialog boxes for the two command prompt processes
 you launched. Note that the standard user token contains a
 deny-only SID and a Medium Mandatory Label, and that it has
 only a couple of privileges. The properties on the right in
 the following screen shot are from a command prompt running
 with an administrator token, and the properties on the left
 are from one running with the filtered administrative
 token:
[image: image with no caption]

[image: image with no caption]

Virtual Service Accounts

Windows provides a specialized type of account known as
 a virtual service account (or simply virtual account) to improve the
 security isolation and access control of Windows services with minimal
 administrative effort. (See Chapter 4
 for more information on Windows services.) Without this mechanism,
 Windows services must run either under one of the accounts defined by
 Windows for its built-in services (such as Local Service or Network
 Service) or under a regular domain account. The accounts such as Local
 Service are shared by many existing services and so offer limited
 granularity for privilege and access control; furthermore, they cannot
 be managed across the domain. Domain accounts require periodic
 password changes for security, and the availability of services during
 a password change cycle might be affected. Furthermore, for best
 isolation, each service should run under its own account, but with
 ordinary accounts this multiplies the management effort.
With virtual service accounts, each service runs under its own
 account with its own security ID. The name of the account is always
 “NT SERVICE\” followed by the internal name of the service. Virtual
 service accounts can appear in access control lists and can be
 associated with privileges via Group Policy like any other account
 name. They cannot, however, be created or deleted through the usual
 account management tools, nor assigned to groups.
Windows automatically sets and periodically changes the password
 of the virtual service account. Similar to the “Local System and other
 service accounts” account, there is a password, but the password is
 unknown to the system administrators
EXPERIMENT: Using Virtual Service Accounts
You can create a service that runs under a virtual service
 account by using the Sc (service control) tool by following these
 steps:
	In an Administrator command prompt, use the create command
 of the command-line tool Sc (service control) to create a
 service and a virtual account in which it will run. This example
 uses the “srvany” service from an earlier Windows Resource
 Kit:
C:\Windows\system32>sc create srvany obj= "NT SERVICE\srvany" binPath= "d:\a\
test\srvany.exe"
[SC] CreateService SUCCESS

	The previous command created the service (in the registry
 and also in the service controller manager’s internal list) and
 also created the virtual service account. Now Run the Services
 MMC snap-in (services.msc), select the new service, and look at
 the Log On tab in the Properties dialog.
[image: image with no caption]

[image: image with no caption]

	You can also use the service properties dialog to create a
 virtual service account for an existing service. To do so,
 change the account name to “NT SERVICE\servicename and clear
 both password fields. Note, however, that existing services
 might not run correctly under a virtual service account, because
 that account might not have access to files or other resources
 needed by the service.

	If you run Process Explorer and view the Security tab in
 the Properties dialog boxes for a service that uses a virtual
 account, you can observe the virtual account name and its
 security ID (SID).
[image: image with no caption]

	The virtual service account can appear in an
 access control entry for any object (such as a file) the service
 needs to access. If you open the Properties dialog’s Security
 tab for a file and create an ACL that references the virtual
 service account, you will find that the account name you typed
 (for example, NT SERVICE\srvany) is changed to simply the
 service name (srvany) by the Check Names function, and it
 appears in the access control list in this shortened
 form.
[image: image with no caption]

	The virtual service account can be granted
 permissions (or user rights) via Group Policy. In this example,
 the virtual account for the srvany service has been granted the
 right to create a pagefile.
[image: image with no caption]

	You won’t see the virtual service account in user
 administration tools like lusrmgr.msc because it is not stored
 in the SAM registry hive. However, if you examine the registry
 within the context of the built-in System account (as described
 previously), you will see evidence of the account in the
 HKLM\Security\Policy\Secrets key:
C:\>psexec –s –i –d c:\windows\regedit.exe
[image: image with no caption]

Security Descriptors and Access Control

Tokens, which identify a user’s credentials, are only
 part of the object security equation. Another part of the equation is
 the security information associated with an object, which specifies
 who can perform what actions on the object. The data structure for
 this information is called a security descriptor. A security
 descriptor consists of the following attributes:
	Revision
 number. The version of the SRM security model used to create the
 descriptor.

	Flags. Optional modifiers that define the behavior or
 characteristics of the descriptor. These flags are listed in
 Table 6-5.

	Owner SID. The owner’s security ID.

	Group SID. The security ID of the primary group for the object (used
 only by POSIX).

	Discretionary access control list
 (DACL). Specifies who has what access to the object.

	System access control list
 (SACL). Specifies which operations by which users should be logged
 in the security audit log and the explicit integrity level of an
 object.
Table 6-5. Security Descriptor Flags
	Flag
	Meaning

	SE_OWNER_DEFAULTED
	Indicates a security descriptor
 with a default owner security identifier (SID). Use this
 bit to find all the objects that have default owner
 permissions set.

	SE_GROUP_DEFAULTED
	Indicates a security descriptor
 with a default group SID. Use this bit to find all the
 objects that have default group permissions
 set.

	SE_DACL_PRESENT
	Indicates a security descriptor
 that has a DACL. If this flag is not set, or if this flag
 is set and the DACL is NULL, the security descriptor
 allows full access to everyone.

	SE_DACL_DEFAULTED
	Indicates a security descriptor
 with a default DACL. For example, if an object creator
 does not specify a DACL, the object receives the default
 DACL from the access token of the creator. This flag can
 affect how the system treats the DACL, with respect to
 access control entry (ACE) inheritance. The system ignores
 this flag if the SE_DACL_PRESENT flag is not
 set.

	SE_SACL_PRESENT
	Indicates a security descriptor
 that has a system access control list
 (SACL).

	SE_SACL_DEFAULTED
	Indicates a security descriptor
 with a default SACL. For example, if an object creator
 does not specify an SACL, the object receives the default
 SACL from the access token of the creator. This flag can
 affect how the system treats the SACL with respect to ACE
 inheritance. The system ignores this flag if the
 SE_SACL_PRESENT flag is not set.

	SE_DACL_UNTRUSTED
	Indicates that the ACL pointed
 to by the DACL of the security descriptor was provided by
 an untrusted source. If this flag is set and a compound
 ACE is encountered, the system will substitute known valid
 SIDs for the server SIDs in the ACEs.

	SE_SERVER_SECURITY
	Requests that the provider for
 the object protected by the security descriptor should be
 a server ACL based on the input ACL, regardless of its
 source (explicit or defaulting). This is done by replacing
 all the GRANT ACEs with compound ACEs granting the current
 server access. This flag is meaningful only if the subject
 is impersonating.

	SE_DACL_AUTO_INHERIT_REQ
	Requests that the provider for
 the object protected by the security descriptor
 automatically propagate the DACL to existing child
 objects. If the provider supports automatic inheritance,
 the DACL is propagated to any existing child objects, and
 the SE_DACL_AUTO_INHERITED bit in the security descriptor
 of the parent and child objects is set.

	SE_SACL_AUTO_INHERIT_REQ
	Requests that the provider for
 the object protected by the security descriptor
 automatically propagate the SACL to existing child
 objects. If the provider supports automatic inheritance,
 the SACL is propagated to any existing child objects, and
 the SE_SACL_AUTO_INHERITED bit in the security descriptors
 of the parent object and child objects is
 set.

	SE_DACL_AUTO_INHERITED
	Indicates a security descriptor
 in which the DACL is set up to support automatic
 propagation of inheritable ACEs to existing child objects.
 The system sets this bit when it performs the automatic
 inheritance algorithm for the object and its existing
 child objects.

	SE_SACL_AUTO_INHERITED
	Indicates a security descriptor
 in which the SACL is set up to support automatic
 propagation of inheritable ACEs to existing child objects.
 The system sets this bit when it performs the automatic
 inheritance algorithm for the object and its existing
 child objects.

	SE_DACL_PROTECTED
	Prevents the DACL of a security
 descriptor from being modified by inheritable
 ACEs.

	SE_SACL_PROTECTED
	Prevents the SACL of a security
 descriptor from being modified by inheritable
 ACEs.

	SE_RM_CONTROL_VALID
	Indicates that the resource
 control manager bits in the security descriptor are valid.
 The resource control manager bits are 8 bits in the
 security descriptor structure that contains information
 specific to the resource manager accessing the
 structure.

	SE_SELF_RELATIVE
	Indicates a security descriptor
 in self-relative format, with all the security information
 in a contiguous block of memory. If this flag is not set,
 the security descriptor is in absolute
 format.

An access control list (ACL) is made up of a header and zero or
 more access control entry (ACE) structures. There are two types of
 ACLs: DACLs and SACLs. In a DACL, each ACE contains a SID and an
 access mask (and a set of flags, explained shortly), which typically
 specifies the access rights (Read, Write, Delete, and so forth) that
 are granted or denied to the holder of the SID. There are nine types
 of ACEs that can appear in a DACL: access allowed, access denied,
 allowed object, denied object, allowed callback, denied callback,
 allowed object callback, denied-object callback, and conditional
 claims. As you would expect, the access-allowed ACE grants access to a
 user, and the access-denied ACE denies the access rights specified in
 the access mask. The callback ACEs are used by applications that make
 use of the AuthZ API (described later) to register a callback that
 AuthZ will call when it performs an access check involving this
 ACE.
The difference between allowed object and access allowed, and
 between denied object and access denied, is that the object types are
 used only within Active Directory. ACEs of these types have a GUID
 (globally unique identifier) field that indicates that the ACE applies
 only to particular objects or subobjects (those that have GUID
 identifiers). In addition, another optional GUID indicates what type
 of child object will inherit the ACE when a child is created within an
 Active Directory container that has the ACE applied to it. (A GUID is
 a 128-bit identifier guaranteed to be universally unique.) The
 conditional claims ACE is stored in a *-callback type ACE structure
 and is described in the section on the AuthZ APIs.
The accumulation of access rights granted by individual
 ACEs forms the set of access rights granted by an ACL. If no DACL is
 present (a null DACL) in a security descriptor, everyone has full
 access to the object. If the DACL is empty (that is, it has zero
 ACEs), no user has access to the object.
The ACEs used in DACLs also have a set of flags that control and
 specify characteristics of the ACE related to inheritance. Some object
 namespaces have containers and objects. A container can hold other
 container objects and leaf objects, which are its child objects.
 Examples of containers are directories in the file system namespace
 and keys in the registry namespace. Certain flags in an ACE control
 how the ACE propagates to child objects of the container associated
 with the ACE. Table 6-6,
 reproduced in part from the Windows SDK, lists the inheritance rules
 for ACE flags.
Table 6-6. Inheritance Rules for ACE Flags
	Flag
	Inheritance Rule

	CONTAINER_INHERIT_ACE
	Child objects that are containers,
 such as directories, inherit the ACE as an effective ACE. The
 inherited ACE is inheritable unless the
 NO_PROPAGATE_INHERIT_ACE bit flag is also set.

	INHERIT_ONLY_ACE
	This flag indicates an inherit-only
 ACE that doesn’t control access to the object it’s attached
 to. If this flag is not set, the ACE controls access to the
 object to which it is attached.

	INHERITED_ACE
	This flag indicates that the ACE was
 inherited. The system sets this bit when it propagates an
 inheritable ACE to a child object.

	NO_PROPAGATE_INHERIT_ACE
	If the ACE is inherited by a child
 object, the system clears the OBJECT_INHERIT_ACE and
 CONTAINER_INHERIT_ACE flags in the inherited ACE. This action
 prevents the ACE from being inherited by subsequent
 generations of objects.

	OBJECT_INHERIT_ACE
	Noncontainer child objects inherit
 the ACE as an effective ACE. For child objects that are
 containers, the ACE is inherited as an inherit-only ACE unless
 the NO_PROPAGATE_INHERIT_ACE bit flag is also
 set.

A SACL contains two types of ACEs, system audit ACEs and system
 audit-object ACEs. These ACEs specify which operations performed on
 the object by specific users or groups should be audited. Audit
 information is stored in the system Audit Log. Both successful and
 unsuccessful attempts can be audited. Like their DACL object-specific
 ACE cousins, system audit-object ACEs specify a GUID indicating the
 types of objects or subobjects that the ACE applies to and an optional
 GUID that controls propagation of the ACE to particular child object
 types. If a SACL is null, no auditing takes place on the object.
 (Security auditing is described later in this chapter.) The
 inheritance flags that apply to DACL ACEs also apply to system audit
 and system audit-object ACEs.
Figure 6-5 is a
 simplified picture of a file object and its DACL.
[image: Discretionary access control list (DACL)]

Figure 6-5. Discretionary access control list (DACL)

As shown in Figure 6-5, the first ACE
 allows USER1 to query the file. The second ACE allows members of the
 group TEAM1 to have read and write access to the file, and the third
 ACE grants all other users (Everyone) execute access.
EXPERIMENT: Viewing a Security Descriptor
Most executive subsystems rely on the object manager’s default
 security functionality to manage security descriptors for their
 objects. The object manager’s default security functions use the
 security descriptor pointer to store security descriptors for such
 objects. For example, the process manager uses default security, so
 the object manager stores process and thread security descriptors in
 the object headers of process and thread objects, respectively. The
 security descriptor pointer of events, mutexes, and semaphores also
 store their security descriptors. You can use live kernel debugging
 to view the security descriptors of these objects once you locate
 their object header, as outlined in the following steps. (Note that
 both Process Explorer and AccessChk can also show security
 descriptors for processes.)
	Start the kernel debugger.

	Type !process 0 0
 explorer.exe to obtain process information about
 Explorer:
lkd> !process 0 0 explorer.exe
PROCESS 85a3e030 SessionId: 1 Cid: 0aa4 Peb: 7ffd4000 ParentCid: 0a84
 DirBase: 0f419000 ObjectTable: 952cdd18 HandleCount: 1046.
 Image: explorer.exe

	Type !object with the
 address following the word PROCESS in the output of the previous
 command as the argument to show the object data
 structure:
lkd> !object 85a3e030
Object: 85a3e030 Type: (842339e0) Process
 ObjectHeader: 85a3e018 (new version)
 HandleCount: 8 PointerCount: 497

	Type dt _OBJECT_HEADER
 and the address of the object header field from the previous
 command’s output to show the object header data structure,
 including the security descriptor pointer value:
lkd> dt _OBJECT_HEADER 85a3e018
nt!_OBJECT_HEADER
 +0x000 PointerCount : 0n497
 +0x004 HandleCount : 0n8
 +0x004 NextToFree : 0x00000008 Void
 +0x008 Lock : _EX_PUSH_LOCK
 +0x00c TypeIndex : 0x7 ''
 +0x00d TraceFlags : 0 ''
 +0x00e InfoMask : 0x8 ''
 +0x00f Flags : 0 ''
 +0x010 ObjectCreateInfo : 0x8577e940 _OBJECT_CREATE_INFORMATION
 +0x010 QuotaBlockCharged : 0x8577e940 Void
 +0x014 SecurityDescriptor : 0x97ed0b94 Void
 +0x018 Body : _QUAD

	Finally, use the debugger’s !sd command to dump the security
 descriptor. The security descriptor pointer in the object header
 uses some of the low-order bits as flags, and these must be
 zeroed before following the pointer. On 32-bit systems there are
 three flag bits, so use & –8 with the
 security descriptor address displayed in the object header
 structure, as follows. On 64-bit systems there are four flag
 bits, so you use & –10 instead.
lkd> !sd 0x97ed0b94 & -8
->Revision: 0x1
->Sbz1 : 0x0
->Control : 0x8814
 SE_DACL_PRESENT
 SE_SACL_PRESENT
 SE_SACL_AUTO_INHERITED
 SE_SELF_RELATIVE
->Owner : S-1-5-21-1488595123-1430011218-1163345924-1000
->Group : S-1-5-21-1488595123-1430011218-1163345924-513
->Dacl :
->Dacl : ->AclRevision: 0x2
->Dacl : ->Sbz1 : 0x0
->Dacl : ->AclSize : 0x5c
->Dacl : ->AceCount : 0x3
->Dacl : ->Sbz2 : 0x0
->Dacl : ->Ace[0]: ->AceType: ACCESS_ALLOWED_ACE_TYPE
->Dacl : ->Ace[0]: ->AceFlags: 0x0
->Dacl : ->Ace[0]: ->AceSize: 0x24
->Dacl : ->Ace[0]: ->Mask : 0x001fffff
->Dacl : ->Ace[0]: ->SID: S-1-5-21-1488595123-1430011218-1163345924-1000

->Dacl : ->Ace[1]: ->AceType: ACCESS_ALLOWED_ACE_TYPE
->Dacl : ->Ace[1]: ->AceFlags: 0x0
->Dacl : ->Ace[1]: ->AceSize: 0x14
->Dacl : ->Ace[1]: ->Mask : 0x001fffff
->Dacl : ->Ace[1]: ->SID: S-1-5-18

->Dacl : ->Ace[2]: ->AceType: ACCESS_ALLOWED_ACE_TYPE
->Dacl : ->Ace[2]: ->AceFlags: 0x0
->Dacl : ->Ace[2]: ->AceSize: 0x1c
->Dacl : ->Ace[2]: ->Mask : 0x00121411
->Dacl : ->Ace[2]: ->SID: S-1-5-5-0-178173

->Sacl :
->Sacl : ->AclRevision: 0x2
->Sacl : ->Sbz1 : 0x0
->Sacl : ->AclSize : 0x1c
->Sacl : ->AceCount : 0x1
->Sacl : ->Sbz2 : 0x0
->Sacl : ->Ace[0]: ->AceType: SYSTEM_MANDATORY_LABEL_ACE_TYPE
->Sacl : ->Ace[0]: ->AceFlags: 0x0
->Sacl : ->Ace[0]: ->AceSize: 0x14
->Sacl : ->Ace[0]: ->Mask : 0x00000003
->Sacl : ->Ace[0]: ->SID: S-1-16-8192

The security descriptor contains three access-allowed
 ACEs: one for the current user
 (S-1-5-21-1488595123-1430011218-1163345924-1000), one for the System
 account (S-1-5-18), and the last for the Logon SID
 (S-1-5-5-0-178173). The system access control list has one entry
 (S-1-16-8192) labeling the process as medium integrity level.

ACL Assignment

To determine which DACL to assign to a new object, the
 security system uses the first applicable rule of the following four
 assignment rules:
	If a caller explicitly provides a security descriptor when
 creating the object, the security system applies it to the
 object. If the object has a name and resides in a container
 object (for example, a named event object in the
 \BaseNamedObjects object manager namespace directory), the
 system merges any inheritable ACEs (ACEs that might propagate
 from the object’s container) into the DACL unless the security
 descriptor has the SE_DACL_PROTECTED flag set, which prevents
 inheritance.

	If a caller doesn’t supply a security descriptor and the
 object has a name, the security system looks at the security
 descriptor in the container in which the new object name is
 stored. Some of the object directory’s ACEs might be marked as
 inheritable, meaning that they should be applied to new objects
 created in the object directory. If any of these inheritable
 ACEs are present, the security system forms them into an ACL,
 which it attaches to the new object. (Separate flags indicate
 ACEs that should be inherited only by container objects rather
 than by objects that aren’t containers.)

	If no security descriptor is specified and the object
 doesn’t inherit any ACEs, the security system retrieves the
 default DACL from the caller’s access token and applies it to
 the new object. Several subsystems on Windows have hard-coded
 DACLs that they assign on object creation (for example,
 services, LSA, and SAM objects).

	If there is no specified descriptor, no inherited ACEs,
 and no default DACL, the system creates the object with no DACL,
 which allows everyone (all users and groups) full access to the
 object. This rule is the same as the third rule, in which a
 token contains a null default DACL.

The rules the system uses when assigning a SACL to a new
 object are similar to those used for DACL assignment, with some
 exceptions. The first is that inherited system audit ACEs don’t
 propagate to objects with security descriptors marked with the
 SE_SACL_PROTECTED flag (similar to the SE_DACL_PROTECTED flag, which
 protects DACLs). Second, if there are no specified security audit
 ACEs and there is no inherited SACL, no SACL is applied to the
 object. This behavior is different from that used to apply default
 DACLs because tokens don’t have a default SACL.
When a new security descriptor containing inheritable ACEs is
 applied to a container, the system automatically propagates the
 inheritable ACEs to the security descriptors of child objects. (Note
 that a security descriptor’s DACL doesn’t accept inherited DACL ACEs
 if its SE_DACL_PROTECTED flag is enabled, and its SACL doesn’t inherit SACL ACEs if the
 descriptor has the SE_SACL_PROTECTED flag set.) The order in which
 inheritable ACEs are merged with an existing child object’s security
 descriptor is such that any ACEs that were explicitly applied to the
 ACL are kept ahead of ACEs that the object inherits. The system uses
 the following rules for propagating inheritable ACEs:
	If a child object with no DACL inherits an ACE, the result
 is a child object with a DACL containing only the inherited
 ACE.

	If a child object with an empty DACL inherits an ACE, the
 result is a child object with a DACL containing only the
 inherited ACE.

	For objects in Active Directory only, if an inheritable
 ACE is removed from a parent object, automatic inheritance
 removes any copies of the ACE inherited by child objects.

	For objects in Active Directory only, if automatic
 inheritance results in the removal of all ACEs from a child
 object’s DACL, the child object has an empty DACL rather than no
 DACL.

As you’ll soon discover, the order of ACEs in an ACL is an
 important aspect of the Windows security model.
Note
Inheritance is generally not directly supported by the
 object stores, such as file systems, the registry, or Active
 Directory. Windows APIs that support inheritance, including
 SetEntriesInAcl, do so by invoking
 appropriate functions within the security inheritance support DLL
 (%SystemRoot%\System32\Ntmarta.dll) that know how to traverse
 those object stores.

Determining Access

Two methods are used for determining access to an
 object:
	The mandatory integrity check, which determines whether
 the integrity level of the caller is high enough to access the
 resource, based on the resource’s own integrity level and its
 mandatory policy.

	The discretionary access check, which determines the
 access that a specific user account has to an object.

When a process tries to open an object, the integrity check
 takes place before the standard Windows DACL check in the kernel’s
 SeAccessCheck function because it is faster to
 execute and can quickly eliminate the need to perform the full
 discretionary access check. Given the default integrity policies in
 its access token (TOKEN_MANDATORY_NO_WRITE_UP and
 TOKEN_MANDATORY_NEW_PROCESS_MIN, described previously), a process
 can open an object for write access if its integrity level is equal
 to or higher than the object’s integrity level and the DACL also
 grants the process the accesses it desires. For example, a
 low-integrity-level process cannot open a medium-integrity-level
 process for write access, even if the DACL grants the process write
 access.
With the default integrity policies, processes can
 open any object—with the exception of process, thread, and token
 objects—for read access as long as the object’s DACL grants them
 read access. That means a process running at low integrity level can
 open any files accessible to the user account in which it’s running.
 Protected Mode Internet Explorer uses integrity levels to help
 prevent malware that infects it from modifying user account
 settings, but it does not stop malware from reading the user’s
 documents.
Recall that process and thread objects are exceptions because
 their integrity policy also includes No-Read-Up. That means a
 process integrity level must be equal to or higher than the
 integrity level of the process or thread it wants to open, and the
 DACL must grant it the accesses it wants for an attempt to open it
 to succeed. Assuming the DACLs allow the desired access, Figure 6-6 shows the
 types of access that the processes running at medium or low have to
 other processes and objects.
[image: Access to processes versus objects for medium and low integrity level processes]

Figure 6-6. Access to processes versus objects for medium and low
 integrity level processes

User Interface Privilege Isolation
The Windows messaging subsystem also honors integrity levels
 to implement User Interface Privilege Isolation (UIPI). The
 subsystem does this by preventing a process from sending window
 messages to the windows owned by a process having a higher
 integrity level, with the following informational messages being
 exceptions:
	WM_NULL

	WM_MOVE

	WM_SIZE

	WM_GETTEXT

	WM_GETTEXTLENGTH

	WM_GETHOTKEY

	WM_GETICON

	WM_RENDERFORMAT

	WM_DRAWCLIPBOARD

	WM_CHANGECBCHAIN

	WM_THEMECHANGED

This use of integrity levels prevents standard user
 processes from driving input into the windows of elevated
 processes or from performing a shatter attack
 (such as sending the process malformed messages that trigger
 internal buffer overflows, which can lead to the execution of code
 at the elevated process’ privilege level). UIPI also blocks window
 hooks from affecting the windows of higher integrity level
 processes so that a standard user process can’t log the keystrokes
 the user types into an administrative application, for example.
 Journal hooks are also blocked in the same way to prevent lower
 integrity level processes from monitoring the behavior of higher
 integrity level processes.
Processes can choose to allow additional messages to pass
 the guard by calling the
 ChangeWindowMessageEx API. This function is
 typically used to add messages required by custom controls to
 communicate outside native common controls in Windows. An older
 API, ChangeWindowMessageFilter performs a
 similar function, but it is per-process rather than per-window.
 With ChangeWindowMessageFilter it is possible
 for two custom controls inside the same process to be using the
 same internal window messages, which could lead to one control’s
 potentially malicious window message to be allowed through, simply
 because it happens to be a query-only message for the other custom
 control.
Because accessibility applications such as the On-Screen
 Keyboard (Osk.exe) are subject to UIPI’s restrictions (which would
 require the accessibility application to be executed for each kind
 of visible integrity-level process on the desktop), these
 processes can enable UI Access. This flag can be present in the
 manifest file of the image and will run the process at a slightly
 higher integrity level than medium (between 0x2000 and 0x3000) if
 launched from a standard user account, or at high integrity level
 if launched from an administrator account. Note that in the second
 case, an elevation request won’t actually be displayed. For a
 process to set this flag, its image must also be signed and in one
 of several secure locations, including %SystemRoot% and
 %ProgramFiles%.

After the integrity check is complete, and assuming the
 mandatory policy allows access to the object based on the caller’s
 integrity, one of two algorithms is used for the discretionary check
 to an object, which will determine the final outcome of the access
 check:
	Determine the maximum access allowed to the object, a form
 of which is exported to user mode with the Windows
 GetEffectiveRightsFromAcl function. This is
 also used when a program specifies a desired access of MAXIMUM_ALLOWED,
 which is what the legacy APIs that don’t have a desired access
 parameter use.

	Determine whether a specific desired access is allowed,
 which can be done with the Windows
 AccessCheck function or the
 AccessCheckByType function.

The first algorithm examines the entries in the DACL as
 follows:
	If the object has no DACL (a null DACL), the object has no
 protection and the security system grants all access.

	If the caller has the take-ownership privilege, the
 security system grants write-owner access before examining the
 DACL. (Take-ownership privilege and write-owner access are
 explained in a moment.)

	If the caller is the owner of the object, the system looks
 for an OWNER_RIGHTS SID and uses that SID as the SID for the
 next steps. Otherwise, read-control and write-DACL access rights
 are granted.

	For each access-denied ACE that contains a SID that
 matches one in the caller’s access token, the ACE’s access mask
 is removed from the granted-access mask.

	For each access-allowed ACE that contains a SID that
 matches one in the caller’s access token, the ACE’s access mask
 is added to the granted-access mask being computed, unless that
 access has already been denied.

When all the entries in the DACL have been examined, the
 computed granted-access mask is returned to the caller as the
 maximum allowed access to the object. This mask represents the total
 set of access types that the caller will be able to successfully
 request when opening the object.
The preceding description applies only to the kernel-mode form
 of the algorithm. The Windows version implemented by
 GetEffectiveRightsFromAcl differs in that it
 doesn’t perform step 2, and it considers a single user or group SID
 rather than an access token.
Owner Rights
Because owners of an object can normally override the
 security of an object by always being granted read-control and
 write-DACL rights, a specialized method of controlling this
 behavior is exposed by Windows: the Owner Rights SID.
The Owner Rights SID exists for two main reasons: improving
 service hardening in the operating system, and allowing more
 flexibility for specific usage scenarios. For example, suppose an
 administrator wants to allow users to create files and folders but
 not to modify the ACLs on those objects. (Users could
 inadvertently or maliciously grant access to those files or
 folders to unwanted accounts.) By using an inheritable Owner
 Rights SID, the users can be prevented from editing or even
 viewing the ACL on the objects they create. A second usage
 scenario relates to group changes. Suppose an employee has been
 part of some confidential or sensitive group, has created several files while a member of that
 group, and has now been removed from the group for business
 reasons. Because that employee is still a user, he could continue
 accessing the sensitive files.
As mentioned, Windows also uses the Owner Rights SID to
 improve service hardening. Whenever a service creates an object at
 run time, the Owner SID associated with that object is the account
 the service is running in (such as local system or local service)
 and not the actual service SID. This means that any other service
 in the same account would have access to the object by being an
 owner. The Owner Rights SID prevents that unwanted
 behavior.

The second algorithm is used to determine whether a specific
 access request can be granted, based on the caller’s access token.
 Each open function in the Windows API that deals with securable
 objects has a parameter that specifies the desired access mask,
 which is the last component of the security equation. To determine
 whether the caller has access, the following steps are
 performed:
	If the object has no DACL (a null DACL), the object has no
 protection and the security system grants the desired
 access.

	If the caller has the take-ownership privilege, the
 security system grants write-owner access if requested and then
 examines the DACL. However, if write-owner access was the only
 access requested by a caller with take-ownership privilege, the
 security system grants that access and never examines the
 DACL.

	If the caller is the owner of the object, the system looks
 for an OWNER_RIGHTS SID and uses that SID as the SID for the
 next steps. Otherwise, read-control and write-DACL access rights
 are granted. If these rights were the only access rights that
 the caller requested, access is granted without examining the
 DACL

	Each ACE in the DACL is examined from first to last. An
 ACE is processed if one of the following conditions is
 satisfied:
	The ACE is an access-deny ACE, and the SID in the ACE
 matches an enabled SID (SIDs can be enabled or disabled) or
 a deny-only SID in the caller’s access token.

	The ACE is an access-allowed ACE, and the SID in the
 ACE matches an enabled SID in the caller’s token that isn’t
 of type deny-only.

	It is the second pass through the descriptor for
 restricted-SID checks, and the SID in the ACE matches a
 restricted SID in the caller’s access token.

	The ACE isn’t marked as inherit-only.

	If it is an access-allowed ACE, the rights in the
 access mask in the ACE that were requested are granted; if all
 the requested access rights have been granted, the access check
 succeeds. If it is an access-denied ACE and any of the requested
 access rights are in the denied-access rights, access is denied
 to the object.

	If the end of the DACL is reached and some of the
 requested access rights still haven’t been granted, access is
 denied.

	If all accesses are granted but the caller’s access token
 has at least one restricted SID, the system rescans the DACL’s
 ACEs looking for ACEs with access-mask matches for the accesses
 the user is requesting and a match of the ACE’s SID with any of
 the caller’s restricted SIDs. Only if both scans of the DACL
 grant the requested access rights is the user granted access to
 the object.

The behavior of both access-validation algorithms depends on
 the relative ordering of allow and deny ACEs. Consider an object
 with only two ACEs, where one ACE specifies that a certain user is
 allowed full access to an object and the other ACE denies the user
 access. If the allow ACE precedes the deny ACE, the user can obtain
 full access to the object, but if the order is reversed, the user
 cannot gain any access to the object.
Several Windows functions, such as
 SetSecurityInfo and
 SetNamedSecurityInfo, apply ACEs in the
 preferred order of explicit deny ACEs preceding explicit allow ACEs.
 Note that the security editor dialog boxes with which you edit
 permissions on NTFS files and registry keys, for example, use these
 functions. SetSecurityInfo and
 SetNamedSecurityInfo also apply ACE inheritance
 rules to the security descriptor on which they are applied.
Figure 6-7 shows an example
 access validation demonstrating the importance of ACE ordering. In
 the example, access is denied a user wanting to open a file even
 though an ACE in the object’s DACL grants the access because the ACE
 denying the user access (by virtue of the user’s membership in the
 Writers group) precedes the ACE granting access.
As we stated earlier, because it wouldn’t be efficient for the
 security system to process the DACL every time a process uses a
 handle, the SRM makes this access check only when a handle is
 opened, not each time the handle is used. Thus, once a process
 successfully opens a handle, the security system can’t revoke the
 access rights that have been granted, even if the object’s DACL
 changes. Also keep in mind that because kernel-mode code uses
 pointers rather than handles to access objects, the access check
 isn’t performed when the operating system uses objects. In other
 words, the Windows executive trusts itself (and all loaded drivers)
 in a security sense.
The fact that an object’s owner is always granted write-DACL
 access to an object means that users can never be prevented from
 accessing the objects they own. If, for some reason, an object had
 an empty DACL (no access), the owner would still be able to open the
 object with write-DACL access and then apply a new DACL with the
 desired access permissions.
[image: Access validation example]

Figure 6-7. Access validation example

A Warning Regarding the GUI Security Editors
When you use the GUI permissions editors to modify
 security settings on a file, a registry, or an Active Directory
 object, or on another securable object, the main security dialog
 box shows you a potentially misleading view of the security that’s
 applied to the object. If you allow Full Control to the Everyone
 group and deny the Administrator group Full Control, the list
 might lead you to believe that the Everyone group access-allowed
 ACE precedes the Administrator deny ACE because that’s the order
 in which they appear. However, as we’ve said, the editors place
 deny ACEs before allow ACEs when they apply the ACL to the
 object.
[image: image with no caption]

[image: image with no caption]

The Permissions tab of the Advanced Security
 Settings dialog box shows the order of ACEs in the DACL. However,
 even this dialog box can be confusing because a complex DACL can
 have deny ACEs for various accesses followed by allow ACEs for
 other access types.
[image: image with no caption]

The only definitive way to know what accesses a particular
 user or group will have to an object (other than having that user
 or a member of the group try to access the object) is to use the
 Effective Permissions tab of the dialog box that is displayed when
 you click the Advanced button in the Properties dialog box. Enter the name
 of the user or group you want to check, and the dialog box shows
 you what permissions they are allowed for the object.
[image: image with no caption]

The AuthZ API

The AuthZ Windows API provides authorization functions and
 implement the same security model as the security reference monitor, but
 it implements the model totally in user mode in the
 %SystemRoot%\System32\Authz.dll library. This gives applications that
 want to protect their own private objects, such as database tables, the
 ability to leverage the Windows security model without incurring the
 cost of user mode to kernel mode transitions that they would make if
 they relied on the security reference monitor.
The AuthZ API uses standard security descriptor data structures,
 SIDs, and privileges. Instead of using tokens to represent clients,
 AuthZ uses AUTHZ_CLIENT_CONTEXT. AuthZ includes user-mode equivalents of
 all access-check and Windows security functions—for example,
 AuthzAccessCheck is the AuthZ version of the
 AccessCheck Windows API that uses the
 SeAccessCheck security reference monitor
 function.
Another advantage available to applications that use AuthZ is that
 they can direct AuthZ to cache the results of security checks to improve
 subsequent checks that use the same client context and security
 descriptor. AuthZ is fully documented in the Windows SDK.
The discretionary access control security mechanisms
 described previously have been part of the Windows NT family since the
 beginning, and they work well enough in a static, controlled
 environment. This type of access checking, using a security ID (SID) and
 security group membership, is known as identity-based access
 control (IBAC), and it requires that the security system
 knows the identity of every possible accessor when the DACL is placed in
 an object’s security descriptor.
Windows includes support for Claims Based Access Control (CBAC),
 where access is granted not based upon the accessor’s identity or group
 membership, but upon arbitrary attributes assigned to the accessor and
 stored in the accessor’s access token. Attributes are supplied by an
 attribute provider, such as AppLocker. The CBAC mechanism provides many
 benefits, including the ability to create a DACL for a user whose
 identity is not yet known or dynamically-calculated user attributes. The
 CBAC ACE (also known as a conditional ACE) is stored in a *-callback ACE
 structure, which is essentially private to AuthZ and is ignored by the
 system SeAccessCheck API. The kernel-mode routine
 SeSrpAccessCheck does not understand conditional
 ACEs, so only applications calling the AuthZ APIs can make use of CBAC.
 The only system component that makes use of CBAC is AppLocker, for
 setting attributes such as path, or publisher. Third-party applications
 can make use of CBAC by taking advantage of the CBAC AuthZ APIs.
Using CBAC security checks allows powerful management policies,
 such as the following:
	Run only applications approved by the corporate IT
 department.

	Allow only approved applications to access your Microsoft
 Outlook contacts or calendar.

	Allow only people on a particular building’s floor to access
 printers on that floor.

	Allow access to an intranet website only to full-time
 employees (as opposed to contractors).

Attributes can be referenced in what is known as a conditional
 ACE, where the presence, absence, or value of one or more attributes is
 checked. An attribute name can contain any alphanumeric Unicode
 characters, as well as “:/._”. The value of an attribute can be one of
 the following: 64-bit integer, Unicode string, byte string, or
 array.
Conditional ACEs

The format of SDDL (Security Descriptor Definition Language)
 strings has been expanded to support ACEs with conditional
 expressions. The new format of an SDDL string is this:
 AceType;AceFlags;Rights;ObjectGuid;InheritObjectGuid;AccountSid;(ConditionalExpression).
The AceType for a conditional ACE is either XA (for
 SDDL_CALLBACK_ACCESS_ALLOWED) or XD (for SDDL_CALLBACK_ACCESS_DENIED).
 Note that ACEs with conditional expressions are used for claims-type
 authorization (specifically, the AuthZ APIs and AppLocker) and are not
 recognized by the object manager or file systems.
A conditional expression can include any of the elements shown
 in Table 6-7.
Table 6-7. Acceptable Elements for a Conditional Expression
	Expression Element
	Description

	AttributeName
	Tests whether the specified
 attribute has a nonzero value.

	exists
 AttributeName
	Tests whether the specified
 attribute exists in the client context.

	AttributeName Operator
 Value
	Returns the result of the specified
 operation. The following operators are defined for use in
 conditional expressions to test the values of attributes. All
 of these are binary operators (as opposed to unary) and are
 used in the form AttributeName Operator
 Value. Operators: Contains any_of , ==, !=, <,
 <=, >, >=

	ConditionalExpression||ConditionalExpression
	Tests whether either of the
 specified conditional expressions is true.

	ConditionalExpression
 && ConditionalExpression
	Tests whether both of the specified
 conditional expressions are true.

	!(ConditionalExpression)
	The inverse of a conditional
 expression.

	Member_of{SidArray}
	Tests whether the SID_AND_ATTRIBUTES
 array of the client context contains all of the security
 identifiers (SIDs) in the comma-separated list specified by
 SidArray.

A conditional ACE can contain any number of conditions, and it
 is either ignored if the resultant evaluation of the condition is
 false or applied if the result is true. A conditional ACE can be added
 to an object using the AddConditionalAce API and
 checked using the AuthzAccessCheck API.
A conditional ACE could specify that access to certain data
 records within a program should be granted only to a user who meets
 the following criteria:
	Holds the Role attribute, with a value
 of Architect, Program Manager, or Development Lead, and the
 Division attribute with a value of Windows

	Whose ManagementChain attribute
 contains the value John Smith

	Whose CommissionType attribute is
 Officer and whose PayGrade attribute is greater than 6 (that is,
 the rank of General Officer in the US military)

Windows does not include tools to view or edit conditional
 ACEs.

Account Rights and Privileges

Many operations performed by processes as they execute cannot be
 authorized through object access protection because they do not involve
 interaction with a particular object. For example, the ability to bypass
 security checks when opening files for backup is an attribute of an
 account, not of a particular object. Windows uses both privileges and
 account rights to allow a system administrator to control what accounts
 can perform security-related operations.
A privilege is the right of an account to perform a particular
 system-related operation, such as shutting down the computer or changing
 the system time. An account right grants or denies the account to which
 it’s assigned the ability to perform a particular type of logon, such as
 a local logon or interactive logon, to a computer.
A system administrator assigns privileges to groups and
 accounts using tools such as the Active Directory Users and Groups MMC
 snap-in for domain accounts or the Local Security Policy Editor
 (%SystemRoot%\System32\secpol.msc). You access the Local Security Policy
 Editor in the Administrative Tools folder of the Control Panel or the
 Start menu (if you’ve configured your Start menu to contain an
 Administrative Tools link). Figure 6-8 shows the User
 Rights Assignment configuration in the Local Security Policy Editor,
 which displays the complete list of privileges and account rights
 available on Windows. Note that the tool makes no distinction between
 privileges and account rights. However, you can differentiate between
 them because any user right that does not contain the words log on is an
 account privilege.
[image: Local Security Policy Editor user rights assignment]

Figure 6-8. Local Security Policy Editor user rights assignment

Account Rights

Account rights are not enforced by the security
 reference monitor, nor are they stored in tokens. The function
 responsible for logon is LsaLogonUser. Winlogon,
 for example, calls the LogonUser API when a user
 logs on interactively to a computer, and
 LogonUser calls
 LsaLogonUser. LogonUser
 takes a parameter that indicates the type of logon being performed,
 which includes interactive, network, batch, service, and Terminal
 Server client.
In response to logon requests, the Local Security Authority
 (LSA) retrieves account rights assigned to a user from the LSA policy
 database at the time that a user attempts to log on to the system. LSA
 checks the logon type against the account rights assigned to the user
 account logging on and denies the logon if the account does not have
 the right that permits the logon type or it has the right that denies
 the logon type. Table 6-8 lists the
 user rights defined by Windows.
Windows applications can add and remove user rights from an
 account by using the LsaAddAccountRights and
 LsaRemoveAccountRights functions, and they can
 determine what rights are assigned to an account with
 LsaEnumerateAccountRights.
Table 6-8. Account Rights
	User Right
	Role

	Deny logon locally,

 Allow logon locally
	Used for interactive logons that
 originate on the local machine

	Deny logon over the network,

 Allow logon over the network
	Used for logons that originate from
 a remote machine

	Deny logon through Terminal
 Services,
 Allow logon through Terminal
 Services
	Used for logons through a Terminal
 Server client

	Deny logon as a service,

 Allow logon as a service
	Used by the service control manager
 when starting a service in a particular user
 account

	Deny logon as a batch job,

 Allow logon as a batch job
	Used when performing a logon of type
 batch

Privileges

The number of privileges defined by the operating system has
 grown over time. Unlike user rights, which are enforced in one place
 by the LSA, different privileges are defined by different components
 and enforced by those components. For example, the debug privilege,
 which allows a process to bypass security checks when opening a handle
 to another process with the OpenProcess Windows
 API, is checked for by the process manager. Table 6-9 is a full list of privileges, and it
 describes how and when system components check for them.
When a component wants to check a token to see whether a
 privilege is present, it uses the PrivilegeCheck
 or LsaEnumerateAccountRights APIs if running in
 user mode and SeSinglePrivilegeCheck or
 SePrivilegeCheck if running in kernel mode. The
 privilege-related APIs are not account-right aware, but the
 account-right APIs are privilege-aware.
Unlike account rights, privileges can be enabled and
 disabled. For a privilege check to succeed, the privilege must be in
 the specified token and it must be enabled. The idea behind this
 scheme is that privileges should be enabled only when their use is
 required so that a process cannot inadvertently perform a privileged
 security operation.
EXPERIMENT: Seeing a Privilege Get Enabled
By following these steps, you can see that the Date and Time
 Control Panel applet enables the SeTimeZonePrivilege privilege in
 response to you using its interface to change the time zone of the
 computer:
	Run Process Explorer, and set the refresh rate to
 Paused.

	Open the Date And Time item by right-clicking on the clock
 in the system tray region of the taskbar, and then select Adjust
 Date/Time. A new Rundll32 process will appear with a green
 highlight when you force a refresh with F5.

	Hover the mouse over the Rundll32 process, and verify that
 the target contains the text “Time Date Control Panel Applet” as
 well as a path to Timedate.cpl. The presence of this argument
 tells Rundll32, which is a Control Panel DLL hosting process, to
 load the DLL that implements the user interface that enables you
 to change the time and date.
[image: image with no caption]

	View the Security tab of the process Properties dialog box
 for your Rundll32 process. You should see that the
 SeTimeZonePrivilege privilege is disabled.
[image: image with no caption]

	Now click the Change Time Zone button in the Control Panel
 item, close the process Properties dialog box, and then open it
 again. On the Security tab, you should now see that the
 SeTimeZonePrivilege privilege is enabled.
[image: image with no caption]

Table 6-9. Privileges
	Privilege
	User Right
	Privilege Usage

	SeAssignPrimaryTokenPrivilege
	Replace a process-level
 token
	Checked for by various components,
 such as NtSetInformationJob, that set a
 process’ token.

	SeAuditPrivilege
	Generate security
 audits
	Required to generate events for the
 Security event log with the ReportEvent
 API.

	SeBackupPrivilege
	Back up files and
 directories
	Causes NTFS to grant the following
 access to any file or directory, regardless of the security
 descriptor that’s present: READ_CONTROL,
 ACCESS_SYSTEM_SECURITY, FILE_GENERIC_READ,
 FILE_TRAVERSE
 Note that when opening a file for
 backup, the caller must specify the FILE_FLAG_BACKUP_SEMANTICS
 flag.
 Also allows corresponding access to
 registry keys when using
 RegSaveKey.

	SeChangeNotifyPrivilege
	Bypass traverse
 checking
	Used by NTFS to avoid checking
 permissions on intermediate directories of a multilevel
 directory lookup. Also used by file systems when applications
 register for notification of changes to the file system
 structure.

	SeCreateGlobalPrivilege
	Create global objects
	Required for a process to create
 section and symbolic link objects in the directories of the
 object manager namespace that are assigned to a different
 session than the caller.

	SeCreatePagefilePrivilege
	Create a pagefile
	Checked for by
 NtCreatePagingFile, which is the function
 used to create a new paging file.

	SeCreatePermanentPrivilege
	Create permanent shared
 objects
	Checked for by the object manager
 when creating a permanent object (one that doesn’t get
 deallocated when there are no more references to
 it).

	SeCreateSymbolicLinkPrivilege
	Create symbolic links
	Checked for by NTFS when creating
 symbolic links on the file system with the
 CreateSymbolicLink API.

	SeCreateTokenPrivilege
	Create a token object
	NtCreateToken,
 the function that creates a token object, checks for this
 privilege.

	SeDebugPrivilege
	Debug programs
	If the caller has this privilege
 enabled, the process manager allows access to any process or
 thread using NtOpenProcess or
 NtOpenThread, regardless of the process’
 or thread’s security descriptor (except for protected
 processes).

	SeEnableDelegationPrivilege
	Enable computer and user accounts to
 be trusted for delegation
	Used by Active Directory services to
 delegate authenticated credentials.

	SeImpersonatePrivilege
	Impersonate a client after
 authentication
	The process manager checks for this
 when a thread wants to use a token for impersonation and the
 token represents a different user than that of the thread’s
 process token.

	SeIncreaseBasePriorityPrivilege
	Increase scheduling
 priority
	Checked for by the process manager
 and is required to raise the priority of a
 process.

	SeIncreaseQuotaPrivilege
	Adjust memory quotas for a
 process
	Enforced when changing a process’
 working set thresholds, a process’ paged and nonpaged pool
 quotas, and a process’ CPU rate quota.

	SeIncreaseWorkingSetPrivilege
	Increase a process working
 set
	Required to call
 SetProcessWorkingSetSize to increase the
 minimum working set. This indirectly allows the process to
 lock up to the minimum working set of memory using
 VirtualLock.

	SeLoadDriverPrivilege
	Load and unload device
 drivers
	Checked for by the
 NtLoadDriver and
 NtUnloadDriver driver
 functions.

	SeLockMemoryPrivilege
	Lock pages in memory
	Checked for by
 NtLockVirtualMemory, the kernel
 implementation of
 VirtualLock.

	SeMachineAccountPrivilege
	Add workstations to the
 domain
	Checked for by the Security Accounts
 Manager on a domain controller when creating a machine account
 in a domain.

	SeManageVolumePrivilege
	Perform volume maintenance
 tasks
	Enforced by file system drivers
 during a volume open operation, which is required to perform
 disk checking and defragmenting activities.

	SeProfileSingleProcessPrivilege
	Profile single
 process
	Checked by Superfetch and the
 prefetcher when requesting information for an individual
 process through the
 NtQuerySystemInformation
 API.

	SeRelabelPrivilege
	Modify an object
 label
	Checked for by the SRM when raising
 the integrity level of an object owned by another user, or
 when attempting to raise the integrity level of an object
 higher than that of the caller’s token.

	SeRemoteShutdownPrivilege
	Force shutdown from a remote
 system
	Winlogon checks that remote callers
 of the InitiateSystemShutdown function
 have this privilege.

	SeRestorePrivilege
	Restore files and
 directories
	This privilege causes NTFS to grant
 the following access to any file or directory, regardless of
 the security descriptor that’s present:

 WRITE_DAC
 WRITE_OWNER

 ACCESS_SYSTEM_SECURITY

 FILE_GENERIC_WRITE
 FILE_ADD_FILE

 FILE_ADD_SUBDIRECTORY
 DELETE

 Note that when opening a file for restore, the caller
 must specify the FILE_FLAG_BACKUP_SEMANTICS flag.

 Allows corresponding access to registry keys when using
 RegSaveKey.

	SeSecurityPrivilege
	Manage auditing and security
 log
	Required to access the SACL of a
 security descriptor, and to read and clear the security event
 log.

	SeShutdownPrivilege
	Shut down the system
	This privilege is checked for by
 NtShutdownSystem and
 NtRaiseHardError, which presents a system
 error dialog box on the interactive console.

	SeSyncAgentPrivilege
	Synchronize directory service
 data
	Required to use the LDAP directory
 synchronization services. It allows the holder to read all
 objects and properties in the directory, regardless of the
 protection on the objects and properties.

	SeSystemEnvironmentPrivilege
	Modify firmware environment
 variables
	Required by
 NtSetSystemEnvironmentValue and
 NtQuerySystemEnvironmentValue to modify
 and read firmware environment variables using the hardware
 abstraction layer (HAL).

	SeSystemProfilePrivilege
	Profile system
 performance
	Checked for by
 NtCreateProfile, the function used to
 perform profiling of the system. This is used by the Kernprof
 tool, for example.

	SeSystemtimePrivilege
	Change the system
 time
	Required to change the time or
 date.

	SeTakeOwnershipPrivilege
	Take ownership of files and other
 objects
	Required to take ownership of an
 object without being granted discretionary
 access.

	SeTcbPrivilege
	Act as part of the operating
 system
	Checked for by the security
 reference monitor when the session ID is set in a token, by
 the Plug and Play manager for Plug and Play event creation and
 management, by BroadcastSystemMessageEx
 when called with BSM_ALLDESKTOPS, by
 LsaRegisterLogonProcess, and when
 specifying an application as a VDM with
 NtSetInformationProcess.

	SeTimeZonePrivilege
	Change the time zone
	Required to change the time
 zone.

	SeTrustedCredManAccessPrivilege
	Access credential manager as a
 trusted caller
	Checked by the credential manager to
 verify that it should trust the caller with credential
 information that can be queried in plain text. It is granted
 only to Winlogon by default.

	SeUndockPrivilege
	Remove computer from a docking
 station
	Checked for by the user-mode Plug
 and Play manager when either a computer undock is initiated or
 a device eject request is made.

	SeUnsolicitedInputPrivilege
	Receive unsolicited data from a
 terminal device
	This privilege isn’t currently used
 by Windows.

EXPERIMENT: The Bypass Traverse Checking Privilege
If you are a systems administrator, you must be aware of the
 Bypass Traverse Checking privilege (internally called
 SeNotifyPrivilege) and its implications. This
 experiment demonstrates that not understanding its behavior can lead
 to improperly applied security.
	Create a folder and, within that folder, a new text file
 with some sample text.

	Navigate in Explorer to the new file, and go to the
 Security tab of its Properties dialog box. Click the Advanced
 button, and clear the check box that controls inheritance.
 Select Copy when you are prompted as to whether you want to
 remove or copy inherited permissions.

	Next, modify the security of the new folder so that your
 account does not have any access to the folder. Do this by
 selecting your account and selecting all the Deny boxes in the
 permissions list.

	Run Notepad, and browse using the File, Open dialog box to
 the new directory. You should be denied access to the
 directory.

	In the File Name field of the Open dialog box, type the
 full path of the new file. The file should open.

If your account does not have the Bypass Traverse Checking
 privilege, NTFS performs an access check on each directory of the
 path to a file when you try to open a file, which results in you
 being denied access to the file in this example.

Super Privileges

Several privileges are so powerful that a user to which
 they are assigned is effectively a “super user” who has full control
 over a computer. These privileges can be used in an infinite number of
 ways to gain unauthorized access to otherwise off-limit resources and
 to perform unauthorized operations. However, we’ll focus on using the
 privilege to execute code that grants the user privileges not assigned
 to the user, with the knowledge that this capability can be leveraged
 to perform any operation on the local machine that the user
 desires.
This section lists the privileges and discusses the ways that
 they can be exploited. Other privileges, such as Lock Pages In
 Physical Memory, can be exploited for denial-of-service attacks on a
 system, but these are not discussed. Note that on systems with UAC
 enabled, these privileges will be granted only to applications running
 at high integrity level or higher, even if the account possesses
 them:
	Debug programs. A user with this privilege can open any process on the
 system (except for a Protected Process) without regard to the
 security descriptor present on the process. The user could
 implement a program that opens the LSASS process, for example,
 copy executable code into its address space, and then inject a
 thread with the CreateRemoteThread Windows
 API to execute the injected code in a more-privileged security
 context. The code could grant the user additional privileges and
 group memberships.

	Take ownership. This privilege allows a holder to take ownership of any
 securable object (even protected processes and threads) by
 writing his own SID into the owner field of the object’s
 security descriptor. Recall that an owner is always granted
 permission to read and modify the DACL of the security
 descriptor, so a process with this privilege could modify the
 DACL to grant itself full access to the object and then close
 and reopen the object with full access. This would allow the
 owner to see sensitive data and to even replace system files
 that execute as part of normal system operation, such as LSASS,
 with his own programs that grant a user elevated
 privileges.

	Restore files and
 directories. A user assigned this privilege can replace any file on the
 system with her own. She could exploit this power by replacing
 system files as described in the preceding paragraph.

	Load and unload device
 drivers. A malicious user could use this privilege to load a device
 driver into the system. Device drivers are considered trusted
 parts of the operating system that can execute within it with
 System account credentials, so a driver could launch privileged
 programs that assign the user other rights.

	Create a token
 object. This privilege can be used in the obvious way to generate
 tokens that represent arbitrary user accounts with arbitrary
 group membership and privilege assignment.

	Act as part of operating
 system. LsaRegisterLogonProcess, the function
 a process calls to establish a trusted connection to LSASS,
 checks for this privilege. A malicious user with this privilege
 can establish a trusted-LSASS connection and then execute
 LsaLogonUser, a function used to create new
 logon sessions. LsaLogonUser requires a
 valid user name and password and accepts an optional list of
 SIDs that it adds to the initial token created for a new logon
 session. The user could therefore use her own user name and
 password to create a new logon session that includes the SIDs of
 more privileged groups or users in the resulting token.

Note that the use of an elevated privilege does not extend past
 the machine boundary to the network, because any interaction with
 another computer requires authentication with a domain controller and
 validation of domain passwords. Domain passwords are not stored on a
 computer either in plain text or encrypted form, so they are not
 accessible to malicious code.

Access Tokens of Processes and Threads

Figure 6-9 brings
 together the concepts covered so far in this chapter by illustrating the
 basic process and thread security structures. In the figure, notice that
 the process object and the thread objects have ACLs, as do the access
 token objects themselves. Also in this figure, thread 2 and thread 3
 each have an impersonation token, whereas thread 1 uses the default
 process access token.
[image: Process and thread security structures]

Figure 6-9. Process and thread security structures

Security Auditing

The object manager can generate audit events as a result
 of an access check, and Windows functions available to user applications
 can generate them directly. Kernel-mode code is always allowed to
 generate an audit event. Two privileges, SeSecurityPrivilege and
 SeAuditPrivilege, relate to auditing. A process must have the
 SeSecurityPrivilege privilege to manage the security Event Log and to
 view or set an object’s SACL. Processes that call audit system services,
 however, must have the SeAuditPrivilege privilege to successfully
 generate an audit record.
The audit policy of the local system controls the decision to
 audit a particular type of security event. The audit policy, also called
 the local security policy, is one part of the security policy LSASS
 maintains on the local system, and it is configured with the Local
 Security Policy Editor as shown in Figure 6-10.
The audit policy configuration (both the basic settings under
 Local Policies and the Advanced Audit Policy Configuration to be
 described later) is stored in the registry as a bitmapped value in the
 key HKEY_LOCAL_MACHINE\SECURITY\Policy\PolAdtEv.
[image: Local Security Policy Editor audit policy configuration]

Figure 6-10. Local Security Policy Editor audit policy configuration

LSASS sends messages to the SRM to inform it of the auditing
 policy at system initialization time and when the policy changes. LSASS
 is responsible for receiving audit records generated based on the audit
 events from the SRM, editing the records, and sending them to the Event
 Logger. LSASS (instead of the SRM) sends these records because it adds
 pertinent details, such as the information needed to more completely
 identify the process that is being audited.
The SRM sends audit records via its ALPC connection to LSASS. The
 Event Logger then writes the audit record to the security Event Log. In
 addition to audit records the SRM passes, both LSASS and the SAM
 generate audit records that LSASS sends directly to the Event Logger,
 and the AuthZ APIs allow for applications to generate
 application-defined audits. Figure 6-11 depicts this overall
 flow.
[image: Flow of security audit records]

Figure 6-11. Flow of security audit records

Audit records are put on a queue to be sent to the LSA as
 they are received—they are not submitted in batches. The audit records
 are moved from the SRM to the security subsystem in one of two ways. If
 the audit record is small (less than the maximum ALPC message size), it
 is sent as an ALPC message. The audit records are copied from the
 address space of the SRM to the address space of the LSASS process. If
 the audit record is large, the SRM uses shared memory to make the
 message available to LSASS and simply passes a pointer in an ALPC
 message.
Object Access Auditing

An important use of the auditing mechanism in many environments
 is to maintain a log of accesses to secured objects, files in
 particular. To do this, the Audit Object Access policy must be
 enabled, and there must be audit ACEs in System Access Control Lists
 that enable auditing for the objects in question.
When an accessor attempts to open a handle to an object, the
 security reference monitor first determines whether the attempt is
 allowed or denied. If object access auditing is enabled, the SRM then
 scans the System ACL of the object. There are two types of audit ACEs,
 access allowed and access denied. An audit ACE must match any of the
 security IDs held by the accessor, it must match any of the access
 methods requested, and its type (access allowed or access denied) must
 match the result of the access check in order to generate an object
 access audit record.
Object access audit records include not just the fact of access
 allowed or denied, but also the reason for the success or failure.
 This “reason for access” reporting generally takes the form of an
 access control entry, specified in SDDL (Security Descriptor
 Definition Language), in the audit record. This allows for a diagnosis
 of scenarios in which an object to which you believe access should be
 denied is being permitted, or vice versa, by identifying
 the specific access control entry that caused the attempted access to
 succeed or fail.
As can be seen in Figure 6-10, object access
 auditing is disabled by default (as are all other auditing
 policies).
EXPERIMENT: Object Access Auditing
You can demonstrate object access auditing by following these
 steps:
	In Explorer, navigate to a file to which you would
 normally have access. In its Properties dialog box, click on the
 Security tab and then select the Advanced settings. Click on the
 Auditing tab, and click through the administrative privileges
 warning. The resulting dialog box allows you to add auditing of
 access control entries to the file’s System Access Control
 List.
[image: image with no caption]

	Click the Add button. In the resulting Select User Or
 Group dialog box, enter your own user name or a group to which
 you belong, such as Everyone, and click Check Names and then OK.
 This presents a dialog box for creating an Auditing Access
 Control Entry for this user or group for this file.
[image: image with no caption]

	In the Successful column, select Full control (which will
 cause all of the other access methods to be selected as well).
 Click OK four times to close the file Properties dialog
 box.

	In Explorer, double-click on the file to open it with its
 associated program.

	In Event Viewer, navigate to the Security log. Note that
 there is no entry for access to the file. This is because the
 audit policy for object access is not yet configured.

	In the Local Security Policy Editor, navigate to Local
 Policies, Audit Policy. Double-click on Audit Object Access, and
 then click Success to enable auditing of successful access to
 files.

	In Event Viewer, click Action, Refresh. Note that the
 changes to audit policy resulted in audit records.

	In Explorer, double-click on the file to open it
 again.

	In Event Viewer, click Action, Refresh. Note that several
 file access audit records are now present.

Find one of the file access audit records for Event ID 4656,
 This shows up as “a handle to an object was requested.” Scroll down
 in the text box to find the Access Reasons section. The following
 example shows that two access methods, READ_CONTROL and
 ReadAttributes, were requested. The former was granted because the
 accessor was the owner of the file, and the latter was granted
 because of the indicated Access Control Entry. The ACE includes the
 SID of the user who attempted the access and includes the
 designation A:FA, indicating that this SID is Allowed (A) all file
 access methods (FA) to the file.
[image: image with no caption]

Global Audit Policy

In addition to object-access ACEs on individual objects,
 a global audit policy can be defined for the system that enables
 object access auditing for all file system objects, for all registry
 keys, or for both. A security auditor can therefore be certain that
 the desired auditing will be performed, without having to set or
 examine SACLs on all of the individual objects of interest.
An administrator can set or query the global audit policy via
 the AuditPol command with the /resourceSACL option. This can also be
 done with a program calling the
 AuditSetGlobalSacl and
 AuditQueryGlobalSacl APIs. As with changes to
 objects’ SACLs, changing these global SACLs requires
 SeSecurityPrivilege.
EXPERIMENT: Setting Global Audit Policy
You can use the AuditPol command to enable global audit
 policy.
	If not already done in the previous experiment, in the
 Local Security Policy Editor, navigate to the Audit Policy
 settings (as shown in Figure 6-10),
 double-click Audit Object Access, and enable auditing for both
 success and failure. Note that on most systems, SACLs specifying
 object access auditing are uncommon, so few if any object access
 audit records will be produced at this point.

	In an elevated command prompt window, enter the
 following command:
C:\> auditpol /resourceSACL
This will produce a summary of the commands for setting
 and querying global audit policy.

	In the same elevated command prompt window, enter the
 following commands:
C:\> auditpol /resourceSACL /type:File /view
C:\> auditpol /resourceSACL /type:Key /view
On a typical system, each of these commands will report
 that no Global SACL exists for the respective resource type.
 (Note that the keywords “File” and “Key” are
 case-sensitive.)

	In the same elevated command prompt window, enter the
 following command:
C:\> auditpol /resourceSACL /set /type:File /user:yourusername /success /failure /access:FW
This will set a global audit policy such that all attempts
 to open files for write access (FW) by the indicated user will
 result in audit records, whether the open attempts succeed or
 fail. The user name can be a specific user name on the system, a
 group such as Everyone, a domain-qualified user name such as
 domainname\username, or a SID.

	While running under the user name indicated, use Explorer
 or other tools to open a file. Then look at the security log in
 the system Event Log to find the audit records.

	At the end of the experiment, use the auditpol command to
 remove the global SACL you created in step 4, as follows:
C:\> auditpol /resourceSACL /remove /type:File /user:yourusername

The global audit policy is stored in the registry as a pair of
 system access control lists in
 HKEY_LOCAL_MACHINE\SECURITY\Policy\GlobalSaclNameFile and
 HKEY_LOCAL_MACHINE\SECURITY\Policy\GlobalSaclNameKey. These keys can
 be examined by running Regedit.exe under the System account, as
 described earlier in the Security System Components
 section. These keys will not exist until the corresponding global
 SACLs have been set at least once.
The global audit policy cannot be overridden by SACLs on
 objects, but object-specific SACLs can allow for additional auditing.
 For example, global audit policy could require auditing of read access
 by all users to all files, but SACLs on individual files could add
 auditing of write access to those files by specific users or by more
 specific user groups.
Global audit policy can also be configured via the Local
 Security Policy Editor in the Advanced Audit Policy settings,
 described in the next subsection.

Advanced Audit Policy Settings

In addition to the Audit Policy settings described
 previously, the Local Security Policy Editor offers a much more
 fine-grained set of audit controls under the Advanced Audit Policy
 Configuration heading, as shown in Figure 6-12.
[image: Local Security Policy Editor Advanced Audit Policy Configuration settings]

Figure 6-12. Local Security Policy Editor Advanced Audit Policy
 Configuration settings

Each of the nine audit policy settings under Local Policies, as
 illustrated previously in Figure 6-10, maps to a group
 of settings here that provide more detailed control. For example,
 while the Audit Object Access settings under Local Policies allow
 access to all objects to be audited, the settings here allow auditing
 of access to various types of objects to be controlled individually.
 Enabling one of the audit policy settings under Local Policies
 implicitly enables all of the corresponding advanced audit policy
 events, but if finer control over the contents of the audit log is
 desired, the advanced settings can be set individually. The standard
 settings then become a product of the advanced settings; however, this
 is not visible in the Local Security Policy Editor. Attempts to
 specify audit settings by using both the basic and the advanced
 options can cause unexpected results.
The Global Object Access Auditing option under the Advanced
 Audit Policy Configuration item can be used to configure the Global
 SACLs described in the previous section, using a graphical interface
 identical to that seen in Explorer or the Registry Editor for security
 descriptors in the file system or the registry.

Logon

Interactive logon (as opposed to network logon) occurs
 through the interaction of the logon process (Winlogon), the logon user
 interface process (LogonUI) and its credential providers, LSASS, one or
 more authentication packages, and the SAM or Active Directory.
 Authentication packages are DLLs that perform authentication checks.
 Kerberos is the Windows authentication package for interactive logon to
 a domain, and MSV1_0 is the Windows authentication package for
 interactive logon to a local computer, for domain logons to trusted
 pre–Windows 2000 domains, and for times when no domain controller is
 accessible.
Winlogon is a trusted process responsible for managing
 security-related user interactions. It coordinates logon, starts the
 user’s first process at logon, handles logoff, and manages various other
 operations relevant to security, including launching LogonUI for
 entering passwords at logon, changing passwords, and locking and
 unlocking the workstation. The Winlogon process must ensure that
 operations relevant to security aren’t visible to any other active
 processes. For example, Winlogon guarantees that an untrusted process
 can’t get control of the desktop during one of these operations and thus
 gain access to the password.
Winlogon relies on the credential providers installed on the
 system to obtain a user’s account name or password. Credential providers
 are COM objects located inside DLLs. The default providers are
 %SystemRoot%\System32\authui.dll and
 %SystemRoot%\System32\SmartcardCredentialProvider.dll, which support
 both password and smartcard PIN authentication. Allowing other
 credential providers to be installed allows Windows to use different
 user-identification mechanisms. For example, a third party might supply
 a credential provider that uses a thumbprint recognition device to
 identify users and extract their passwords from an encrypted
 database.
To protect Winlogon’s address space from bugs in credential
 providers that might cause the Winlogon process to crash (which, in
 turn, will result in a system crash, because Winlogon is considered a
 critical system process), a separate process, LogonUI.exe, is used to
 actually load the credential providers and display the Windows logon
 interface to users. This process is started on demand whenever Winlogon
 needs to present a user interface to the user, and it exits after the
 action has finished. It also allows Winlogon to simply restart a new
 LogonUI process should it crash for any reason.
Winlogon is the only process that intercepts logon requests from
 the keyboard, which are sent through an RPC message from Win32k.sys.
 Winlogon immediately launches the LogonUI application to display the
 user interface for logon. After obtaining a user name and password from
 credential providers, Winlogon calls LSASS to authenticate the user
 attempting to log on. If the user is authenticated, the logon process
 activates a logon shell on behalf of that user. The interaction between
 the components involved in logon is illustrated in Figure 6-13.
[image: Components involved in logon]

Figure 6-13. Components involved in logon

In addition to supporting alternative credential
 providers, LogonUI can load additional network provider DLLs that need
 to perform secondary authentication. This capability allows multiple
 network providers to gather identification and authentication
 information all at one time during normal logon. A user logging on to a
 Windows system might simultaneously be authenticated on a UNIX server.
 That user would then be able to access resources of the UNIX server from
 the Windows machine without requiring additional authentication. Such a
 capability is known as one form of single sign-on.
Winlogon Initialization

During system initialization, before any user applications are
 active, Winlogon performs the following steps to ensure that it
 controls the workstation once the system is ready for user
 interaction:
	Creates and opens an interactive window station (for
 example, \Sessions\1\Windows\WindowStations\WinSta0 in the object
 manager namespace) to represent the keyboard, mouse, and monitor.
 Winlogon creates a security descriptor for the station that has
 one and only one ACE containing only the System SID. This unique
 security descriptor ensures that no other process can access the
 workstation unless explicitly allowed by Winlogon.

	Creates and opens two desktops: an application desktop
 (\Sessions\1\Windows\WinSta0\Default, also known as the
 interactive desktop) and a Winlogon desktop
 (\Sessions\1\Windows\WinSta0\Winlogon, also known as the secure
 desktop). The security on the Winlogon desktop is created so that
 only Winlogon can access that desktop. The other desktop allows
 both Winlogon and users to access it. This arrangement means that
 any time the Winlogon desktop is active, no other process has
 access to any active code or data associated with the desktop. Windows uses this
 feature to protect the secure operations that involve passwords
 and locking and unlocking the desktop.

	Before anyone logs on to a computer, the visible desktop is
 Winlogon’s. After a user logs on, pressing Ctrl+Alt+Delete
 switches the desktop from Default to Winlogon and launches
 LogonUI. (This explains why all the windows on your interactive
 desktop seem to disappear when you press Ctrl+Alt+Delete, and then
 return when you dismiss the Windows Security dialog box.) Thus,
 the SAS always brings up a secure desktop controlled by
 Winlogon.

	Establishes an ALPC connection with LSASS’s
 LsaAuthenticationPort. This connection will be used for exchanging
 information during logon, logoff, and password operations and is
 made by calling
 LsaRegisterLogonProcess.

	Registers the Winlogon RPC message server, which listens for
 SAS, logoff, and workstation lock notifications from Win32k. This
 measure prevents Trojan horse programs from gaining control of the
 screen when the SAS is entered.

Note
The Wininit process performs steps similar to steps 1 and 2 to
 allow legacy interactive services running on session 0 to display
 windows, but it does not perform any other steps because session 0
 is not available for user logon. (See Chapter 3 for more information on Wininit and
 session isolation.)

How SAS Is Implemented
The SAS is secure because no application can intercept the
 Ctrl+Alt+Delete keystroke combination or prevent Winlogon from
 receiving it. Win32k.sys reserves the Ctrl+Alt+Delete key
 combination so that whenever the Windows input system (implemented
 in the raw input thread in Win32k) sees the combination, it sends an
 RPC message to Winlogon’s message server, which listens for such
 notifications. The keystrokes that map to a registered hot key are
 otherwise not sent to any process other than the one that registered
 it, and only the thread that registered a hot key can unregister it,
 so a Trojan horse application cannot deregister Winlogon’s ownership
 of the SAS.
A Windows function, SetWindowsHook,
 enables an application to install a hook procedure that’s invoked
 every time a keystroke is pressed, even before hot keys are
 processed, and it allows the hook to squash keystrokes. However, the
 Windows hot key processing code contains a special case for
 Ctrl+Alt+Delete that disables hooks so that the keystroke sequence
 can’t be intercepted. In addition, if the interactive desktop is
 locked, only hot keys owned by Winlogon are processed.

Once the Winlogon desktop is created during initialization, it
 becomes the active desktop. When the Winlogon desktop is active, it is
 always locked. Winlogon unlocks its desktop only to switch to the
 application desktop or the screen-saver desktop. (Only
 the Winlogon process can lock or unlock a desktop.)

User Logon Steps

Logon begins when a user presses the SAS (Ctrl+Alt+Delete).
 After the SAS is pressed, Winlogon starts LogonUI, which calls the
 credential providers to obtain a user name and password. Winlogon also
 creates a unique local logon SID for this user that it assigns to this
 instance of the desktop (keyboard, screen, and mouse). Winlogon passes
 this SID to LSASS as part of the LsaLogonUser
 call. If the user is successfully logged on, this SID will be included
 in the logon process token—a step that protects access to the desktop.
 For example, another logon to the same account but on a different
 system will be unable to write to the first machine’s desktop because
 this second logon won’t be in the first logon’s desktop token.
When the user name and password have been entered, Winlogon
 retrieves a handle to a package by calling the LSASS function
 LsaLookupAuthenticationPackage. Authentication
 packages are listed in the registry under
 HKLM\SYSTEM\CurrentControlSet\Control\Lsa. Winlogon passes logon
 information to the authentication package via
 LsaLogonUser. Once a package authenticates a
 user, Winlogon continues the logon process for that user. If none of
 the authentication packages indicates a successful logon, the logon
 process is aborted.
Windows uses two standard authentication packages for
 interactive logons: Kerberos and MSV1_0. The default authentication
 package on a stand-alone Windows system is MSV1_0
 (%SystemRoot%\System32\Msv1_0.dll), an authentication package that
 implements LAN Manager 2 protocol. LSASS also uses MSV1_0 on
 domain-member computers to authenticate to pre–Windows 2000 domains
 and computers that can’t locate a domain controller for
 authentication. (Computers that are disconnected from the network fall
 into this latter category.) The Kerberos authentication package,
 %SystemRoot%\System32\Kerberos.dll, is used on computers that are
 members of Windows domains. The Windows Kerberos package, with the
 cooperation of Kerberos services running on a domain controller,
 supports the Kerberos protocol. This protocol is based on Internet RFC
 1510. (Visit the Internet Engineering Task Force [IETF]
 website, www.ietf.org, for
 detailed information on the Kerberos standard.)
The MSV1_0 authentication package takes the user name and a
 hashed version of the password and sends a request to the local SAM to
 retrieve the account information, which includes the hashed password,
 the groups to which the user belongs, and any account restrictions.
 MSV1_0 first checks the account restrictions, such as hours or type of
 accesses allowed. If the user can’t log on because of the restrictions
 in the SAM database, the logon call fails and MSV1_0 returns a failure
 status to the LSA.
MSV1_0 then compares the hashed password and user name to that
 obtained from the SAM. In the case of a cached domain logon, MSV1_0
 accesses the cached information by using LSASS functions that store
 and retrieve “secrets” from the LSA database (the SECURITY hive of the
 registry). If the information matches, MSV1_0 generates a LUID for the
 logon session and creates the logon session by calling LSASS,
 associating this unique identifier with the session and passing the
 information needed to ultimately create an access token for the
 user. (Recall that an access token includes the user’s SID, group
 SIDs, and assigned privileges.)
Note
MSV1_0 does not cache a user’s entire password hash in the
 registry because that would enable someone with physical access to
 the system to easily compromise a user’s domain account and gain
 access to encrypted files and to network resources the user is
 authorized to access. Instead, it caches half of the hash. The
 cached half-hash is sufficient to verify that a user’s password is
 correct, but it isn’t sufficient to gain access to EFS keys and to
 authenticate as the user on a domain because these actions require
 the full hash.

If MSV1_0 needs to authenticate using a remote system, as when a
 user logs on to a trusted pre–Windows 2000 domain, MSV1_0 uses the
 Netlogon service to communicate with an instance of Netlogon on the
 remote system. Netlogon on the remote system interacts with the MSV1_0
 authentication package on that system, passing back authentication
 results to the system on which the logon is being performed.
The basic control flow for Kerberos authentication is the same
 as the flow for MSV1_0. However, in most cases, domain logons are
 performed from member workstations or servers (rather than on a domain
 controller), so the authentication package must communicate across the
 network as part of the authentication process. The package does so by
 communicating via the Kerberos TCP/IP port (port 88) with the Kerberos
 service on a domain controller. The Kerberos Key Distribution Center
 service (%SystemRoot%\System32\Kdcsvc.dll), which implements the
 Kerberos authentication protocol, runs in the LSASS process on domain
 controllers.
After validating hashed user name and password information with
 Active Directory’s user account objects (using the Active Directory
 server %SystemRoot%\System32\Ntdsa.dll), Kdcsvc returns domain
 credentials to LSASS, which returns the result of the authentication
 and the user’s domain logon credentials (if the logon was successful)
 across the network to the system where the logon is taking
 place.
Note
This description of Kerberos authentication is highly
 simplified, but it highlights the roles of the various components
 involved. Although the Kerberos authentication protocol plays a key
 role in distributed domain security in Windows, its details are
 outside the scope of this book.

After a logon has been authenticated, LSASS looks in the local
 policy database for the user’s allowed access, including interactive,
 network, batch, or service process. If the requested logon doesn’t
 match the allowed access, the logon attempt will be terminated. LSASS
 deletes the newly created logon session by cleaning up any of its data
 structures and then returns failure to Winlogon, which in turn
 displays an appropriate message to the user. If the requested access
 is allowed, LSASS adds the appropriate additional security IDs (such
 as Everyone, Interactive, and the like). It then checks its policy
 database for any granted privileges for all the SIDs for this user and
 adds these privileges to the user’s access token.
When LSASS has accumulated all the necessary
 information, it calls the executive to create the access token. The
 executive creates a primary access token for an interactive or service
 logon and an impersonation token for a network logon. After the access
 token is successfully created, LSASS duplicates the token, creating a
 handle that can be passed to Winlogon, and closes its own handle. If
 necessary, the logon operation is audited. At this point, LSASS
 returns success to Winlogon along with a handle to the access token,
 the LUID for the logon session, and the profile information, if any,
 that the authentication package returned.
EXPERIMENT: Listing Active Logon Sessions
As long as at least one token exists with a given logon
 session LUID, Windows considers the logon session to be active. You
 can use the LogonSessions tool from Sysinternals, which uses the
 LsaEnumerateLogonSessions function (documented
 in the Windows SDK) to list the active logon sessions:
C:\>logonsessions
Logonsesions v1.21
Copyright (C) 2004-2010 Bryce Cogswell and Mark Russinovich
Sysinternals - wwww.sysinternals.com

[0] Logon session 00000000:000003e7:
 User name: KERNELS\LAPT8$
 Auth package: NTLM
 Logon type: (none)
 Session: 0
 Sid: S-1-5-18
 Logon time: 2012-01-16 22:03:38
 Logon server:
 DNS Domain:
 UPN:

[1] Logon session 00000000:0000cf19:
 User name:
 Auth package: NTLM
 Logon type: (none)
 Session: 0
 Sid: (none)
 Logon time: 2012-01-16 22:03:38
 Logon server:
 DNS Domain:
 UPN:

[2] Logon session 00000000:000003e4:
 User name: KERNELS\LAPT8$
 Auth package: Negotiate
 Logon type: Service
 Session: 0
 Sid: S-1-5-20
 Logon time: 2012-01-16 22:03:40
 Logon server:
 DNS Domain:
 UPN:

[3] Logon session 00000000:000003e5:
 User name: NT AUTHORITY\LOCAL SERVICE
 Auth package: Negotiate
 Logon type: Service
 Session: 0
 Sid: S-1-5-19
 Logon time: 2012-01-16 22:03:40
 Logon server:
 DNS Domain:
 UPN:

[4] Logon session 00000000:00021ed2:
 User name: NT AUTHORITY\ANONYMOUS LOGON
 Auth package: NTLM
 Logon type: Network
 Session: 0
 Sid: S-1-5-7
 Logon time: 2012-01-16 22:03:46
 Logon server:
 DNS Domain:
 UPN:

[5] Logon session 00000000:000882c2:
 User name: LAPT8\jeh
 Auth package: NTLM
 Logon type: Interactive
 Session: 1
 Sid: S-1-5-21-1488595123-1430011218-1163345924-1000
 Logon time: 2012-01-17 01:34:46
 Logon server: LAPT8
 DNS Domain:
 UPN:

[6] Logon session 00000000:000882e3:
 User name: LAPT8\jeh
 Auth package: NTLM
 Logon type: Interactive
 Session: 1
 Sid: S-1-5-21-1488595123-1430011218-1163345924-1000
 Logon time: 2012-01-17 01:34:46
 Logon server: LAPT8
 DNS Domain:
 UPN:
Information reported for a session includes the SID and name
 of the user associated with the session, as well as the session’s
 authentication package and logon time. Note that the Negotiate
 authentication package, seen in logon session 2 in the preceding
 output, will attempt to authenticate via Kerberos or NTLM, depending
 on which is most appropriate for the authentication request.
The LUID for a session is displayed on the “Logon Session”
 line of each session block, and using the Handle utility (also from
 Sysinternals), you can find the tokens that represent a particular logon session. For example, to find the
 tokens for logon session 5 in the example output just shown, you
 could enter this command:
C:\Windows\system32>handle -a 882c2

Handle v3.46
Copyright (C) 1997-2011 Mark Russinovich
Sysinternals - www.sysinternals.com

System pid: 4 type: Directory D60: \Sessions\0\DosDevices\00000000-000882c2
winlogon.exe pid: 440 type: Event DC:
 \BaseNamedObjects\00000000000882c2_WlballoonSmartCardUnlockNotificationEventName
winlogon.exe pid: 440 type: Event E4:
 \BaseNamedObjects\00000000000882c2_WlballoonKerberosNotificationEventName
winlogon.exe pid: 440 type: Event 1D4:
 \BaseNamedObjects\00000000000882c2_WlballoonAlternateCredsNotificationEventName
lsass.exe pid: 492 type: Token 508: LAPT8\jeh:882c2
lsass.exe pid: 492 type: Token 634: LAPT8\jeh:882c2
svchost.exe pid: 892 type: Token 7C4: LAPT8\jeh:882c2
svchost.exe pid: 960 type: Token E70: LAPT8\jeh:882c2
svchost.exe pid: 960 type: Token 1034: LAPT8\jeh:882c2
svchost.exe pid: 960 type: Token 1194: LAPT8\jeh:882c2
svchost.exe pid: 960 type: Token 1384: LAPT8\jeh:882c2

Winlogon then looks in the registry at the value
 HKLM\SOFTWARE\Microsoft\Windows NT\Current Version\Winlogon\Userinit
 and creates a process to run whatever the value of that string is.
 (This value can be several .EXEs separated by commas.) The default
 value is Userinit.exe, which loads the user profile settings and then
 creates a process to run whatever the value of
 HKCU\SOFTWARE\Microsoft\Windows NT\Current Version\Winlogon\Shell is,
 if that value exists. That value does not exist by default. If it
 doesn’t exist, Userinit.exe does the same for
 HKLM\SOFTWARE\Microsoft\Windows NT\Current Version\Winlogon\Shell,
 which defaults to Explorer.exe. Userinit then exits (which is why
 Explorer.exe shows up as having no parent when examined in Process
 Explorer). For more information on the steps followed during the user
 logon process, see Chapter 13, “Startup and Shutdown,” in Part
 2.

Assured Authentication

A fundamental problem with password-based authentication is that
 passwords can be revealed, or stolen, and used by malicious third
 parties. New in Windows 7 and Windows Server 2008/R2 is a mechanism
 that tracks the authentication strength of how a user authenticated
 with the system, which allows objects to be protected from access if a
 user did not authenticate securely. (Smartcard authentication is
 considered to be a stronger form of authentication than password
 authentication.)
On systems that are joined to a domain, the domain administrator
 can specify a mapping between an Object Identifier (OID), which is a
 unique numeric string representing a specific object type, on a
 certificate used for authenticating a user (such as on a smartcard or
 hardware security token) and a Security ID (SID) that is placed into the user’s access
 token when the user successfully authenticates with the system. An ACE
 in a DACL on an object can specify such a SID be part of a user’s
 token in order for the user to gain access to the object. Technically,
 this is known as a group claim. In other words, the user is claiming
 membership in a particular group, which is allowed certain access
 rights on specific objects, with the claim based upon the
 authentication mechanism. This feature is not enabled by default, and
 it must be configured by the domain administrator in a domain with
 certificate-based authentication.
Assured Authentication builds upon existing Windows security
 features in a way that provides a great deal of flexibility to IT
 administrators and anyone concerned with enterprise IT security. The
 enterprise decides which OIDs to embed in the certificates it uses for
 authenticating users and the mapping of particular OIDs to Active
 Directory universal groups (SIDs). A user’s group membership can be
 used to identify whether a certificate was used during the logon
 operation. Different certificates can have different issuance policies
 and, thus, different levels of security, which can be used to protect
 highly sensitive objects (such as files or anything else that might
 have a security descriptor).
Authentication protocols (APs) retrieve OIDs from certificates
 during certificate-based authentication. These OIDs must be mapped to
 SIDs, which are in turn processed during group membership expansion,
 and placed in the access token. The mapping of OID to universal group
 is specified in Active Directory.
As an example, an organization might have several certificate
 issuance policies with the names Contractor, Full Time Employee, and
 Senior Management, which map to the universal groups Contractor-Users,
 FTE-Users, and SM-Users, respectively. A user named Abby has a
 smartcard with a certificate issued using the Senior Management
 issuance policy, and when she logs in using her smartcard, she
 receives an additional group membership (which is represented by a SID
 in her access token) indicating that she is a member of the SM-Users
 group. Permissions can be set on objects (using an ACL) such that only
 members of the FTE-Users or SM-Users group (identified by their SIDs
 within an ACE) are granted access. If Abby logs in using her
 smartcard, she can access those objects, but if she logs in with just
 her user name and password (without the smartcard), she cannot access
 those objects because she will not have either the FTE-Users or
 SM-Users group in her access token. A user named Toby who logs in with
 a smartcard that has a certificate issued using the Contractor
 issuance policy would not be able to access an object that has an ACE
 requiring FTE-Users or SM-Users group membership.

Biometric Framework for User Authentication

Windows provides a standardized mechanism for supporting certain
 types of biometric devices—specifically, fingerprint scanners—to
 support user identification via a fingerprint swipe. Like many other
 such frameworks, the Windows Biometric Framework was developed to
 isolate the various functions involved in supporting such devices, so
 as to minimize the code required to implement a new device.
The primary components of the Windows Biometric
 Framework are shown in Figure 6-14. Except as noted
 in the following list, all of these components are supplied by
 Windows:
	The Windows Biometric Service
 (%SystemRoot%\System32\Wbiosrvc.dll. This provides the process execution environment in which
 one or more biometric service providers can execute.

	The Windows Biometric
 API. This allows existing Windows components such as WinLogon
 and LoginUI to access the biometric service. Third-party
 applications have access to the biometric API and can use the
 biometric scanner for functions other than logging in to
 Windows. An example of a function in this API is
 WinBioEnumServiceProviders. The Biometric
 API is exposed by %SystemRoot%\System32\Winbio.dll.

	The Fingerprint Biometric Service
 Provider. This wraps the functions of biometric-type-specific
 adapters so as to present a common interface, independent of the
 type of biometric, to the Windows Biometric Service. In the
 future, additional types of biometrics, such as retinal scans or
 voiceprint analyzers, might be supported by additional Biometric
 Service Providers. The Biometric Service Provider in turn uses
 three adapters, which are user-mode DLLs:
	The sensor adapter exposes the data-capture
 functionality of the scanner. The sensor adapter will usually
 use Windows I/O calls to access the scanner hardware. Windows
 provides a sensor adapter that can be used with simple
 sensors, those for which a Windows Biometric Device Interface
 (WBDI) driver exists. For more complex sensors, the sensor
 adapter is written by the sensor vendor.

	The engine adapter exposes processing and comparison
 functionality specific to the scanner’s raw data format and
 other features. The actual processing and comparison might be
 performed within the engine adapter DLL, or the DLL might
 communicate with some other module. The engine adapter is
 always provided by the sensor vendor.

	The storage adapter exposes a set of secure storage
 functions. These are used to store and retrieve templates
 against which scanned biometric data is matched by the engine
 adapter. Windows provides a storage adapter using Windows
 cryptography services and standard disk file storage. A sensor
 vendor might provide a different storage adapter.

	The Windows Biometric Driver
 Interface. This is a set of interface definitions (IRP major function
 codes, DeviceIoControl codes, and so forth)
 to which any driver for a biometric scanner device must conform
 if it is to be compatible with the Windows Biometric Service.
 WBDI is described in the Windows Driver Kit documentation. The
 Windows Driver Kit includes a sample WBDI driver.

	The functional device driver for
 the actual biometric scanner device. This exposes the WBDI at its upper edge, and it usually
 uses the services of a lower-level bus driver, such as the USB
 bus driver, to access the scanner device. It can be a User-Mode
 Driver Framework (UMDF) driver, a Kernel-Mode Driver Framework
 (KMDF) driver, or a Windows Driver Model (WDM) driver. This
 driver is always provided by the sensor vendor. Microsoft
 recommends the use of UMDF and a USB hardware interface for the
 scanner.

[image: Windows Biometric Framework components and architecture]

Figure 6-14. Windows Biometric Framework components and
 architecture

A typical sequence of operations to support logging in
 via a fingerprint scan might be as follows:
	After initialization, the sensor adapter receives from the
 service provider a request for capture data. The sensor adapter in
 turn sends a DeviceIoControl request with the
 IOCTL_BIOMETRIC_CAPTURE_DATA control code to the WBDI driver for
 the fingerprint scanner device.

	The WBDI driver puts the scanner into capture mode and
 queues the IOCTL_BIOMETRIC_CAPTURE_DATA request until a
 fingerprint scan occurs.

	A prospective user swipes a finger across the scanner. The
 WBDI driver receives notification of this, obtains the raw scan
 data from the sensor, and returns this data to the sensor driver
 in a buffer associated with the IOCTL_BIOMETRIC_CAPTURE_DATA
 request.

	The sensor adapter provides the data to the Fingerprint
 Biometric Service Provider, which in turn passes the data to the
 engine adapter.

	The engine adapter processes the raw data into a form
 compatible with its template storage.

	The Fingerprint Biometric Service Provider uses the storage
 adapter to obtain templates and corresponding security IDs from
 secure storage. It invokes the engine adapter to compare each
 template to the processed scan data. The engine adapter returns a
 status indicating whether it’s a match or not a match.

	If a match is found, the Biometric Service notifies
 WinLogon, via a credential provider DLL, of a successful login and
 passes it the security ID of the identified user. This
 notification is sent via an Advanced Local Procedure Call message,
 providing a path that cannot be spoofed

User Account Control and Virtualization

UAC is meant to enable users to run with standard user
 rights, as opposed to administrative rights. Without administrative
 rights, users cannot accidentally (or deliberately) modify system
 settings, malware can’t normally alter system security settings or
 disable antivirus software, and users can’t compromise the sensitive
 information of other users on shared computers. Running with standard
 user rights can thus mitigate the impact of malware and protect
 sensitive data on shared computers.
UAC had to address several problems to make it practical for a
 user to run with a standard user account. First, because the Windows
 usage model has been one of assumed administrative rights, software
 developers assumed their programs would run with those rights and so
 could access and modify any file, registry key, or operating system
 setting. The second problem UAC had to address was that users sometimes
 need administrative rights to perform such operations as installing
 software, changing the system time, and opening ports in the
 firewall.
The UAC solution to these problems is to run most applications
 with standard user rights, even though the user is logged in to an
 account with administrative rights; but at the same time, UAC makes it
 possible for standard users to access administrative rights when they
 need them—whether for legacy applications that require them or for
 changing certain system settings.
As described previously, UAC accomplishes this by creating a
 filtered admin token as well as the normal admin token when a user logs
 in to an administrative account. All processes created under the user’s
 session will normally have the filtered admin token in effect so that
 applications that can run with standard user rights will do so. However,
 the administrative user can run a program or perform other functions
 that require full administrator rights by performing UAC
 Elevation.
Windows also allows certain tasks that were previously considered
 reserved for administrators to be performed by standard users, enhancing
 the usability of the standard user environment. For example, Group
 Policy settings exist that can enable standard users to install printer
 and other device drivers approved by IT administrators and to install
 ActiveX controls from administrator-approved sites.
Finally, when software developers test in the UAC environment,
 they are encouraged to develop applications that can run without
 administrative rights. Fundamentally, nonadministrative programs should
 not need to run with Administrator privileges; programs that often
 require Administrator privileges are typically legacy programs using old
 APIs or techniques, and they should be updated.
Together, these changes obviate the need for users to run with
 administrative rights all the time.
File System and Registry Virtualization

Although some software legitimately requires administrative
 rights, many programs needlessly store user data in system-global
 locations. When an application executes, it can be running in
 different user accounts, and it should therefore store user-specific
 data in the per-user %AppData% directory and save per-user settings in
 the user’s registry profile under HKEY_CURRENT_USER\Software. Standard
 user accounts don’t have write access to the
 %ProgramFiles% directory or HKEY_LOCAL_MACHINE\Software, but because
 most Windows systems are single-user and most users have been
 administrators until UAC was implemented, applications that
 incorrectly saved user data and settings to these locations worked
 anyway.
Windows enables these legacy applications to run in standard
 user accounts through the help of file system and registry namespace
 virtualization. When an application modifies a system-global location
 in the file system or registry and that operation fails because access
 is denied, Windows redirects the operation to a per-user area. When
 the application reads from a system-global location, Windows first
 checks for data in the per-user area and, if none is found, permits
 the read attempt from the global location.
Windows will always enable this type of virtualization
 unless
	The application is 64-bit. Because virtualization is purely
 an application-compatibility technology meant to help legacy
 applications, it is enabled only for 32-bit applications. The
 world of 64-bit applications is relatively new and developers
 should follow the development guidelines for creating standard
 user-compatible applications.

	The application is already running with administrative
 rights. In this case, there is no need for any
 virtualization.

	The operation came from a kernel-mode caller.

	The operation is being performed while the caller is
 impersonating. For example, any operations not originating from a
 process classified as legacy according to this definition,
 including network file-sharing accesses, are not
 virtualized.

	The executable image for the process has a UAC-compatible
 manifest (specifying a
 requestedExecutionLevel setting, described in
 the next section).

	The administrator does not have write access to the file or
 registry key. This exception exists to enforce backward
 compatibility, because the legacy application would have failed
 before UAC was implemented even if the application was run with
 administrative rights.

	Services are never virtualized.

You can see the virtualization status (as discussed previously,
 the process’ virtualization status is stored as a flag in its token)
 of a process by adding the UAC Virtualization column to Task Manager’s
 Processes page, as shown in Figure 6-15. Most Windows
 components—including the Desktop Window Manager (Dwm.exe), the Client
 Server Run-Time Subsystem (Csrss.exe), and Explorer—have
 virtualization disabled because they have a UAC-compatible manifest or
 are running with administrative rights and so do not allow
 virtualization. Internet Explorer (Iexplore.exe) has virtualization
 enabled because it can host multiple ActiveX controls and scripts and
 must assume that they were not written to operate correctly with
 standard user rights.
In addition to file system and registry virtualization, some
 applications require additional help to run correctly with standard
 user rights. For example, an application that tests the account in
 which it’s running for membership in the Administrators group might
 otherwise work, but it won’t run if it’s not in that group. Windows defines a number of
 application-compatibility shims to enable such applications to work
 anyway. The shims most commonly applied to legacy applications for
 operation with standard user rights are shown in Table 6-10. Note that, if required,
 virtualization can be completely disabled for a system using a local
 security policy setting.
[image: Using Task Manager to view virtualization status]

Figure 6-15. Using Task Manager to view virtualization status

Table 6-10. UAC Virtualization Shims
	Flag
	Meaning

	ElevateCreateProcess
	Changes
 CreateProcess to handle
 ERROR_ELEVATION_REQUIRED errors by calling the application
 information service to prompt for elevation

	ForceAdminAccess
	Spoofs queries of Administrator
 group membership

	VirtualizeDeleteFile
	Spoofs successful deletion of global
 files and directories

	LocalMappedObject
	Forces global section objects into
 the user’s namespace

	VirtualizeHKCRLite
	Redirects global registration of COM
 objects to a per-user location

	VirtualizeRegisterTypeLib
	Converts per-machine
 typelib registrations to per-user
 registrations

File Virtualization

The file system locations that are virtualized for legacy
 processes are %ProgramFiles%, %ProgramData%, and %SystemRoot%,
 excluding some specific subdirectories. However, any file with an
 executable extension—including .exe, .bat, .scr, .vbs, and others—is
 excluded from virtualization. This means that programs that update
 themselves from a standard user account fail instead of creating
 private versions of their executables that aren’t visible to an
 administrator running a global updater.
Note
To add additional extensions to the exception list,
 enter them in the
 HKEY_LOCAL_MACHINE\System\CurrentControlSet\Services\Luafv\Parameters\ExcludedExtensionsAdd
 registry key and reboot. Use a multistring type to delimit
 multiple extensions, and do not include a leading dot in the
 extension name.

Modifications to virtualized directories by legacy processes
 are redirected to the user’s virtual root directory,
 %LocalAppData%\VirtualStore. The Local component of the path
 highlights the fact that virtualized files don’t roam with the rest
 of the profile when the account has a roaming profile. If you
 navigate in Explorer to a directory containing virtualized files,
 Explorer displays a button labeled Compatibility Files in its
 toolbar, as shown in Figure 6-16. Clicking the
 button takes you to the corresponding VirtualStore subdirectory to
 show you the virtualized files.
[image: Virtualized files are displayed here]

Figure 6-16. Virtualized files are displayed here

The UAC File Virtualization Filter Driver
 (%SystemRoot%\System32\Drivers\Luafv.sys) implements file system
 virtualization. Because this is a file system filter driver, it sees
 all local file system operations, but it implements functionality
 only for operations from legacy processes. As shown in Figure 6-17, the filter
 driver changes the target file path for a legacy process that
 creates a file in a system-global location but does not for a
 nonvirtualized process with standard user rights. Default
 permissions on the \Windows directory deny access to the application
 written with UAC support, but the legacy process acts as though the
 operation succeeds, when it really created the file in a location
 fully accessible by the user.
[image: UAC File Virtualization Filter Driver operation]

Figure 6-17. UAC File Virtualization Filter Driver operation

EXPERIMENT: File Virtualization Behavior
In this experiment, we will enable and disable
 virtualization on the command prompt and see several behaviors to
 demonstrate UAC file virtualization:
	Open a nonelevated command prompt (you must have UAC
 enabled for this to work), and enable virtualization for it.
 You can change the virtualization status of a process by
 selecting UAC Virtualization from the shortcut menu that
 appears when you right-click the process in Task
 Manager.

	Navigate to the C:\Windows directory, and use the
 following command to write a file:
echo hello-1 > test.txt

	Now list the contents of the directory:
dir test.txt
You’ll see that the file appears.

	Now disable virtualization by right-clicking on the
 process on the Processes page in Task Manager and deselecting
 UAC Virtualization, and then list the directory as in step 3.
 Notice that the file is gone. However, a directory listing of
 the VirtualStore directory will reveal the file:
dir %LOCALAPPDATA%\VirtualStore\Windows\test.txt

	Enable virtualization again for this
 process.

	To take a look at a more complex scenario, create a new
 command prompt window, but elevate it this time, and then
 repeat steps 2 and 3 using the string “hello-2”.

	Examine the text inside these files by using the
 following command in both command prompts:
echo test.txt
The following two screen shots show the expected
 output.
[image: image with no caption]

[image: image with no caption]

	Finally, from your elevated command prompt, delete the
 test.txt file:
del test.txt

	Repeat step 6 of the experiment. Notice that the
 elevated command prompt cannot find the file anymore, while
 the standard user command prompt shows the old contents of the
 file again. This demonstrates the failover mechanism described
 earlier—read operations will look in the per-user virtual
 store location first, but if the file doesn’t exist, read
 access to the system location will be granted.

Registry Virtualization

Registry virtualization is implemented slightly differently
 from file system virtualization. Virtualized registry keys include
 most of the HKEY_LOCAL_MACHINE\Software branch, but there are
 numerous exceptions, such as the following:
	HKLM\Software\Microsoft\Windows

	HKLM\Software\Microsoft\Windows NT

	HKLM\Software\Classes

Only keys that are commonly modified by legacy applications,
 but that don’t introduce compatibility or interoperability problems,
 are virtualized. Windows redirects modifications of virtualized keys
 by a legacy application to a user’s registry virtual root at HKEY_
 CURRENT_USER\Software\Classes\VirtualStore. The key is located in
 the user’s Classes hive,
 %LocalAppData%\Microsoft\Windows\UsrClass.dat, which, like any other
 virtualized file data, does not roam with a roaming user profile.
 Instead of maintaining a fixed list of virtualized locations as
 Windows does for the file system, the virtualization status of a key
 is stored as a combination of flags, shown in Table 6-11.
Table 6-11. Registry Virtualization Flags
	Flag
	Meaning

	REG_KEY_DONT_VIRTUALIZE
	Specifies whether virtualization
 is enabled for this key. If the flag is set, virtualization
 is disabled.

	REG_KEY_DONT_SILENT_FAIL
	If the REG_KEY_DONT_VIRTUALIZE
 flag is set (virtualization is disabled), this key specifies
 that a legacy application that would be denied access
 performing an operation on the key is instead granted
 MAXIMUM_ALLOWED rights to the key (any access the account is
 granted), instead of the rights the application requested.
 If this flag is set, it implicitly disables virtualization
 as well.

	REG_KEY_RECURSE_FLAG
	Determines whether the
 virtualization flags will propagate to the child keys
 (subkeys) of this key.

You can use the Reg.exe utility included in Windows, with the
 flags option, to display the current virtualization state for a key
 or to set it. In Figure 6-18, note that the
 HKLM\Software key is fully virtualized, but the Windows subkey (and
 all its children) have only silent failure enabled.
[image: UAC registry virtualization flags on the Software and Windows keys]

Figure 6-18. UAC registry virtualization flags on the Software and
 Windows keys

Unlike file virtualization, which uses a filter driver,
 registry virtualization is implemented in the configuration manager.
 (See Chapter 4 for more information
 on the registry and the configuration manager.) As with file system
 virtualization, a legacy process creating a subkey of a virtualized key is redirected
 to the user’s registry virtual root, but a UAC-compatible process is
 denied access by default permissions. This is shown in Figure 6-19.
[image: UAC registry virtualization operation]

Figure 6-19. UAC registry virtualization operation

Elevation

Even if users run only programs that are compatible with
 standard user rights, some operations still require administrative
 rights. For example, the vast majority of software installations
 require administrative rights to create directories and registry keys
 in system-global locations or to install services or device drivers.
 Modifying system-global Windows and application settings also requires
 administrative rights, as does the parental controls feature. It would
 be possible to perform most of these operations by switching to a
 dedicated administrator account, but the inconvenience of doing so
 would likely result in most users remaining in the administrator
 account to perform their daily tasks, most of which do not require
 administrative rights.
It’s important to be aware that UAC elevations are conveniences
 and not security boundaries. A security boundary requires that
 security policy dictate what can pass through the boundary. User
 accounts are an example of a security boundary in Windows, because one
 user can’t access the data belonging to another user without having
 that user’s permission.
Because elevations aren’t security boundaries, there’s no
 guarantee that malware running on a system with standard user rights
 can’t compromise an elevated process to gain administrative rights.
 For example, elevation dialog boxes only identify the executable that
 will be elevated; they say nothing about what it will do when it
 executes.
Running with Administrator Rights

Windows includes enhanced “run as” functionality so
 that standard users can conveniently launch processes with
 administrative rights. This functionality requires giving
 applications a way to identify operations for which the system can
 obtain administrative rights on behalf of the application, as
 necessary. (We’ll say more on this topic shortly.)
To enable users acting as system administrators to run with
 standard user rights but not have to enter user names and passwords
 every time they want to access administrative rights, Windows makes
 use of a mechanism called Admin Approval Mode (AAM). This feature
 creates two identities for the user at logon: one with standard user
 rights and another with administrative rights. Since every user on a
 Windows system is either a standard user or acting for the most part
 as a standard user in AAM, developers must assume that all Windows
 users are standard users, which will result in more programs working
 with standard user rights without virtualization or shims.
Granting administrative rights to a process is called
 elevation. When elevation is performed by a standard user account
 (or by a user who is part of an administrative group but not the
 actual Administrators group), it’s referred to as an
 over-the-shoulder (OTS) elevation because it requires the entry of
 credentials for an account that’s a member of the Administrators
 group, something that’s usually completed by a user typing over the
 shoulder of a standard user. An elevation performed by an AAM user
 is called a consent elevation because the user simply has to approve
 the assignment of his administrative rights.
Stand-alone systems, which are typically home computers, and
 domain-joined systems treat AAM access by remote users differently
 because domain-connected computers can use domain administrative
 groups in their resource permissions. When a user accesses a
 stand-alone computer’s file share, Windows requests the remote
 user’s standard user identity, but on domain-joined systems, Windows
 honors all the user’s domain group memberships by requesting the
 user’s administrative identity. Executing an image that requests
 administrative rights causes the application information service
 (AIS, contained in %SystemRoot%\System32\Appinfo.dll), which runs
 inside a service host process (%SystemRoot%\System32\Svchost.exe),
 to launch Consent.exe (%SystemRoot%\System32\Consent.exe). Consent
 captures a bitmap of the screen, applies a fade effect to it,
 switches to a desktop that’s accessible only to the local system
 account (the secure desktop), paints the bitmap as the background,
 and displays an elevation dialog box that contains information about
 the executable. Displaying this dialog box on a separate desktop
 prevents any application present in the user’s account from
 modifying the appearance of the dialog box.
If an image is a Windows component digitally signed by
 Microsoft and the image is in the Windows system directory, the
 dialog box displays a blue stripe across the top, as shown at the
 top of Figure 6-20,
 with a blue and gold shield at the left end of the stripe. If the
 image is signed by someone other than Microsoft, or if it is signed
 by Microsoft but resides in a directory tree other than the Windows
 directory tree, the shield becomes solid blue with a question mark
 over it. If the image is unsigned, the shield background and the
 stripe both become orange, the shield has an exclamation point over
 it, and the prompt stresses the unknown origin of the image. The
 elevation dialog box shows the image’s icon, description, and
 publisher for digitally signed images, but it shows only the file
 name and “Unknown publisher” for unsigned images. This difference
 makes it harder for malware to mimic the appearance of legitimate
 software. The Details button at the bottom of the dialog box expands
 it to show the command line that will be passed to the executable if
 it launches.
[image: AAC UAC elevation dialog boxes based on image signature]

Figure 6-20. AAC UAC elevation dialog boxes based on image
 signature

The OTS consent dialog box, shown in Figure 6-21, is similar, but prompts for
 administrator credentials. It will list any accounts with
 administrator rights.
[image: OTS consent dialog box]

Figure 6-21. OTS consent dialog box

If a user declines an elevation, Windows returns an
 access-denied error to the process that initiated the launch. When a
 user agrees to an elevation by either entering administrator
 credentials or clicking Continue, AIS calls
 CreateProcessAsUser to launch the process with
 the appropriate administrative identity. Although AIS is technically
 the parent of the elevated process, AIS uses new support in the
 CreateProcessAsUser API that sets the process’
 parent process ID to that of the process that originally launched
 it. (See Chapter 5,
 for more information on processes and this mechanism.) That’s why
 elevated processes don’t appear as children of the AIS
 service-hosting process in tools such as Process Explorer that show
 process trees. Figure 6-22 shows the
 operations involved in launching an elevated process from a standard
 user account.
[image: Launching an administrative application as a standard user]

Figure 6-22. Launching an administrative application as a standard
 user

Requesting Administrative Rights

There are a number of ways the system and applications
 identify a need for administrative rights. One that shows up in the
 Explorer user interface is the Run As Administrator context menu
 command and shortcut option. These items also include a blue and
 gold shield icon that should be placed next to any button or menu
 item that will result in an elevation of rights when it is selected.
 Choosing the Run As Administrator command causes Explorer to call
 the ShellExecute API with the “runas”
 verb.
The vast majority of installation programs require
 administrative rights, so the image loader, which initiates the
 launch of an executable, includes installer-detection code to
 identify likely legacy installers. Some of the heuristics it uses are as
 simple as detecting internal version information or whether the
 image has the words setup, install, or update in its file name. More
 sophisticated means of detection involve scanning for byte sequences
 in the executable that are common to third-party installation
 wrapper utilities. The image loader also calls the application
 compatibility library to see if the target executable requires
 administrator rights. The library looks in the application
 compatibility database to see whether the executable has the
 RequireAdministrator or
 RunAsInvoker compatibility flag associated with
 it.
The most common way for an executable to request
 administrative rights is for it to include a
 requestedExecutionLevel tag in its application
 manifest file. The element’s level attribute can have one of the
 three values shown in Table 6-12.
Table 6-12. Requested Elevation Levels
	Elevation Level
	Meaning
	Usage

	As Invoker
	No need for administrative rights;
 never ask for elevation.
	Typical user applications that
 don’t need administrative privileges—for example,
 Notepad.

	Highest Available
	Request approval for highest
 rights available. If the user is logged on as a standard
 user, the process will be launched as invoker; otherwise, an
 AAM elevation prompt will appear, and the process will run
 with full administrative rights.
	Applications that can function
 without full administrative rights but expect users to want
 full access if it’s easily accessible. For example, the
 Registry Editor, Microsoft Management Console, and the Event
 Viewer use this level.

	Require
 Administrator
	Always request administrative
 rights—an OTS elevation dialog box prompt will be shown for
 standard users; otherwise, AAM.
	Applications that require
 administrative rights to work, such as the Firewall Settings
 editor, which affects systemwide security.

The presence of the trustInfo element in
 a manifest (which you can see in the excerpted string dump of
 eventvwr.exe discussed next) denotes an executable that was written
 with support for UAC and the
 requestedExecutionLevel element nests within
 it. The uiAccess attribute is where
 accessibility applications can use the UIPI bypass functionality
 mentioned earlier.
C:\>strings c:\Windows\System32\eventvwr.exe
...
<trustInfo xmlns="urn:schemas-microsoft-com:asm.v3">
 <security>
 <requestedPrivileges>
 <requestedExecutionLevel
 level="highestAvailable"
 uiAccess="false"
 />
 </requestedPrivileges>
 </security>
</trustInfo>
<asmv3:application>
 <asmv3:windowsSettings xmlns="http://schemas.microsoft.com/SMI/2005/WindowsSettings">
 <autoElevate>true</autoElevate>
 </asmv3:windowsSettings>
</asmv3:application>
...
An easier way to determine the values specified by an
 executable is to view its manifest with the Sysinternals Sigcheck
 utility, like this:
sigcheck –m <executable>
EXPERIMENT: Using Application-Compatibility Flags
In this experiment, we will use an application-compatibility
 flag to run the Registry Editor as a standard user process. This
 will bypass the RequireAdministrator manifest
 flag and force virtualization on Regedit.exe, allowing you to make
 changes to the virtualized registry directly.
	Navigate to your %SystemRoot% directory, and copy the
 Regedit.exe file to another path on your system (such as C:\
 or your Desktop folder).

	Go to the HKLM\Software\Microsoft\Windows
 NT\CurrentVersion\AppCompatFlags\Layers registry key, and
 create a new string value whose name is the path where you
 copied Regedit.exe, such as c:\regedit.exe

	Set the value of this key to RUNASINVOKER.

	Now start Regedit.exe from its location. (Be sure to
 close any running copies of the Registry Editor first.) You
 will not see the typical AAM dialog box, and Regedit.exe will
 now run with standard user rights. You will also be subject to
 the virtualized view of the registry, meaning you can now see
 what legacy applications see when accessing the
 registry.

Auto-Elevation

In the default configuration (see the next section for
 information on changing this), most Windows executables and control
 panel applets do not result in elevation prompts for administrative
 users, even if they need administrative rights to run. This is
 because of a mechanism called auto-elevation. Auto-elevation is
 intended to preclude administrative users from seeing elevation
 prompts for most of their work; the programs will automatically run
 under the user’s full administrative token.
Auto-elevation has several requirements. The executable in
 question must be considered as a Windows executable. This means it
 must be signed by the Windows publisher (not just by Microsoft), and
 it must be in one of several directories considered secure:
 %SystemRoot%\System32 and most of its subdirectories,
 %Systemroot%\Ehome, and a small number of directories under
 %ProgramFiles%—for example, those containing Windows Defender and
 Windows Journal.
There are additional requirements, depending on the type of
 executable.
.exe files other than Mmc.exe auto-elevate if they are
 requested via an autoElevate element in their
 manifest. The string dump of EventVwr.exe in the previous section
 illustrates this.
Windows also includes a short internal list of
 executables that are auto-elevated without the autoElevate element.
 Two examples are Spinstall.exe, the service pack installer, and
 Pkgmgr.exe, the package manager. They are handled this way because
 they are also supplied external to Windows 7; they must be able to
 run on earlier versions of Windows where the autoExecute element in
 their manifest might cause an error. These executables must still
 meet the signing and directory requirements for Windows executables
 as described previously.
Mmc.exe is treated as a special case, because whether it
 should auto-elevate or not depends on which system management
 snap-ins it is to load. Mmc.exe is normally invoked with a command
 line specifying an .msc file, which in turn specifies which snap-ins
 are to be loaded. When Mmc.exe is run from a protected administrator
 account (one running with the limited administrator token), it asks
 Windows for administrative rights. Windows validates that Mmc.exe is
 a Windows executable and then checks the .msc. The .msc must also
 pass the tests for a Windows executable, and furthermore must be on
 an internal list of auto-elevate .msc’s. This list includes nearly
 all .msc files in Windows.
Finally, COM objects can request administrative rights within
 their registry key. To do so requires a subkey named Elevation with
 a REG_DWORD value named Enabled, having a value of 1. Both the COM
 object and its instantiating executable must meet the Windows
 executable requirements, though the executable need not have
 requested auto-elevation.

Controlling UAC Behavior

UAC can be modified via the dialog box shown in Figure 6-23. This dialog box is
 available under Control Panel, Action Center, Change User Account
 Control Settings. Figure 6-23
 shows the control in its default position for Windows 7.
[image: User Account Control settings]

Figure 6-23. User Account Control settings

The four possible settings have the effects described
 in Table 6-13.
Table 6-13. User Account Control Options
	Slider Position
	When
 administrative user not running with administrative
 rights...
	Remarks

	 	...attempts to change Windows
 settings, for example, use certain Control Panel
 applets
	...attempts to install
 software, or run a program whose manifest calls for
 elevation, or uses Run As Administrator
	
	Highest position (“Always
 notify”)
	UAC elevation prompt appears on
 the secure desktop
	UAC elevation prompt appears on
 the secure desktop
	This was the Windows Vista
 behavior

	Second position
	UAC elevation occurs automatically
 with no prompt or notification
	UAC elevation prompt appears on
 the secure desktop
	Windows 7 default
 setting

	Third position
	UAC elevation occurs automatically
 with no prompt or notification
	UAC elevation prompt appears on
 the user’s normal desktop
	Not recommended

	Lowest position (“Never
 notify”)
	UAC is turned off for
 administrative users
	UAC is turned off for
 administrative users
	Not recommended.

The third position is not recommended because the UAC
 elevation prompt appears not on the secure desktop but on the normal
 user’s desktop. This could allow a malicious program running in the
 same session to change the appearance of the prompt. It is intended
 for use only in systems where the video subsystem takes a long time
 to dim the desktop or is otherwise unsuitable for the usual UAC
 display.
The lowest position is strongly discouraged because it turns
 UAC off completely as far as administrative accounts are concerned.
 All processes run by a user with an administrative account will be
 run with the user’s full administrative rights in effect; there is
 no filtered admin token. Registry and file system virtualization are
 disabled as well for these accounts, and the Protected mode of
 Internet Explorer is disabled. However, virtualization is still in
 effect for nonadministrative accounts, and nonadministrative
 accounts will still see an OTS elevation prompt when they attempt to
 change Windows settings, run a program that requires elevation, or
 use the Run As Administrator context menu option in Explorer.
The UAC setting is stored in four values in the registry under
 HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windows\CurrentVersion\Policies\System,
 as shown in Table 6-14.
 ConsentPromptBehaviorAdmin controls the UAC elevation prompt for
 administrators running with a filtered admin token, and
 ConsentPromptBehaviorUser controls the UAC prompt for users other
 than administrators.
Table 6-14. User Account Control Registry Values
	Slider Position
	ConsentPrompt
 BehaviorAdmin
	ConsentPrompt
 BehaviorUser
	EnableLUA
	PromptOnSecureDesktop

	Highest position (“Always
 notify”)
	2 (display AAC UAC elevation
 prompt)
	3 (display OTS UAC elevation
 prompt)
	1 (enabled)
	1 (enabled)

	Second position
	5 (display AAC UAC elevation
 prompt, except for changes to Windows
 settings)
	3
	1
	1

	Third position
	5
	3
	1
	0 (disabled; UAC prompt appears on
 user’s normal desktop)

	Lowest position (“Never
 notify”)
	0
	3
	0 (disabled. Logins to
 administrative accounts do not create a restricted admin
 access token)
	0

Application Identification (AppID)

Historically, security decisions in Windows have been based upon a
 user’s identity (in the form of the user’s SID and group membership),
 but a growing number of security components (AppLocker, firewall,
 antivirus, antimalware, Rights Management Services, and others) need to
 make security decisions based upon what code is to be run. In the past,
 each of these security components used their own proprietary method for
 identifying applications, which led to inconsistent and
 overly-complicated policy authoring. The purpose of AppID is to bring
 consistency to how the security components recognize applications by
 providing a single set of APIs and data structures.
Note
This is not the same as the AppID used by DCOM/COM+
 applications, where a GUID represents a process that is shared by
 multiple CLSIDs, nor is it the AppID used by Windows Live
 applications.

Just as a user is identified when she logs in, an application is
 identified just before it is started by generating the main program’s
 AppID. An AppID can be generated from any of the following attributes of
 the application: Fields within a code-signing certificate embedded
 within the file allow for different combinations of publisher name,
 product name, file name, and version. APPID://FQBN is a Fully Qualified
 Binary Name, and it is a string in the following form:
 {Publisher\Product\Filename,Version}. The Publisher name is the Subject
 field of the x.509 certificate used to sign the code, using the
 following fields: O = Organization, L = Locality, S = State or Province,
 and C = Country.
File hash. There are several methods that can be used for
 hashing. The default is APPID://SHA256HASH. However, for backward
 compatibility with SRP and most x.509 certificates, SHA-1
 (APPID://SHA1HASH) is still supported. APPID://SHA256HASH specifies the
 SHA-256 hash of the file.
The partial or complete path to the file. APPID://Path specifies a
 path with optional wildcard characters (“*”).
Note
An AppID does not serve as a means for certifying the quality or
 security of an application. An AppID is simply a way of identifying an
 application so that administrators can reference the application in
 security policy decisions.

The AppID is stored in the process’s access token, allowing any
 security component to make authorization decisions based upon a single,
 consistent identification. AppLocker uses conditional ACEs (described
 earlier) for specifying whether a particular program is allowed to be
 run by the user.
When an AppID is created for a signed file, the certificate from
 the file is cached and verified to a trusted root certificate. The
 certificate path is re-verified daily to ensure the certificate path
 remains valid. Certificate caching and verification are recorded in the
 system event log. See Figure 6-24.
[image: Event Viewer showing AppID service verifying signature of a program.]

Figure 6-24. Event Viewer showing AppID service verifying signature of a
 program.

AppLocker

New to Windows 7 and Windows Server 2008/R2 (Enterprise
 and Ultimate editions) is a feature known as AppLocker, which allows an
 administrator to lockdown a system to prevent unauthorized programs from
 being run. Windows XP introduced Software Restriction Policies (SRP),
 which was the first step toward this capability, but SRP suffered from
 being difficult to manage, and it couldn’t be applied to specific users
 or groups. (All users were affected by SRP rules.) AppLocker is a
 replacement for SRP, and yet coexists alongside SRP, with AppLocker’s
 rules being stored separately from SRP’s rules. If both AppLocker and
 SRP rules are in the same Group Policy object (GPO), only the AppLocker
 rules will be applied. Another feature that makes AppLocker superior to
 SRP is AppLocker’s auditing mode, which allows an administrator to
 create an AppLocker policy and examine the results (stored in the system
 event log) to determine whether the policy will perform as
 expected—without actually performing the restrictions. AppLocker
 auditing mode can be used to monitor which applications are being used
 by one, or more, users on a system.
AppLocker allows an administrator to restrict the following types
 of files from being run:
	Executable images (.EXE and .COM)

	Dynamic-Link Libraries (.DLL and .OCX)

	Microsoft Software Installer (.MSI and .MSP) for both install
 and uninstall

	Scripts

	Windows PowerShell (.PS1)

	Batch (.BAT and .CMD)

	VisualBasic Script (.VBS)

	Java Script (.JS)

AppLocker provides a simple GUI rule-based mechanism, which is
 very similar to network firewall rules, for determining which
 applications or scripts are allowed to be run by specific users and
 groups, using conditional ACEs and AppID attributes. There are two types
 of rules in AppLocker:
	Allow the specified files to run, denying everything
 else.

	Deny the specified files from being run, allowing everything
 else. “Deny” rules take precedence over “allow” rules.

Each rule can also have a list of exceptions to exclude files from
 the rule. Using an exception, you could create a rule to “Allow
 everything in the C:\Windows or C:\Program Files directories to be run,
 except the built-in games.”
AppLocker rules can be associated with a specific user or group.
 This allows an administrator to support compliance requirements by
 validating and enforcing which users can run specific applications. For
 example, you can create a rule to “Allow users in the Finance security
 group to run the finance line-of-business applications.” This blocks
 everyone who is not in the Finance security group from running finance applications (including
 administrators) but still provides access for those that have a business
 need to run the applications. Another useful rule would be to prevent
 users in the Receptionists group from installing or running unapproved
 software.
AppLocker rules depend upon conditional ACEs and attributes
 defined by AppID. Rules can be created using the following
 criteria:
	Fields within a code-signing certificate embedded within the
 file, allowing for different combinations of publisher name, product
 name, file name, and version. For example, a rule could be created
 to “Allow all versions greater than 9.0 of Contoso Reader to run” or
 “Allow anyone in the graphics group to run the installer or
 application from Contoso for GraphicsShop as long as the version is
 14.*”. For example, the following SDDL string denies execute access
 to any signed programs published by Contoso for the user account
 RestrictedUser (identified by the user’s SID):
D:(XD;;FX;;;S-1-5-21-3392373855-1129761602-2459801163-1028;((Exists APPID://FQBN)
&& ((APPID://FQBN) >= ({"O=CONTOSO, INCORPORATED, L=REDMOND,
S=CWASHINGTON, C=US**",0}))))

	Directory path, allowing only files within a particular
 directory tree to run. This can also be used to identify specific
 files. For example, the following SDDL string denies execute access
 to the programs in the directory C:\Tools for the user account
 RestrictedUser (identified by the user’s SID):
D:(XD;;FX;;;S-1-5-21-3392373855-1129761602-2459801163-1028;(APPID://PATH
Contains "%OSDRIVE%\TOOLS*"))

	File hash. Using a hash will also detect if a file has been
 modified and prevent it from running, which can also be a weakness
 if files are changed frequently, because the hash rule will need to
 be updated frequently. File hashes are often used for scripts
 because few scripts are signed. For example, this SDDL string denies
 execute access to programs with the specified hash values for the
 user account RestrictedUser (identified by the user’s SID):
D:(XD;;FX;;;S-1-5-21-3392373855-1129761602-2459801163-1028;(APPID://SHA256HASH
Any_of {#7a334d2b99d48448eedd308dfca63b8a3b7b44044496ee2f8e236f5997f1b647,
#2a782f76cb94ece307dc52c338f02edbbfdca83906674e35c682724a8a92a76b}))

AppLocker rules can be defined on the local machine using the
 Security Policy MMC snap-in (%SystemRoot%\System32\secpol.msc) or a
 Windows PowerShell script, or they can be pushed to machines within a
 domain using group policy. AppLocker rules are stored in multiple
 locations within the registry:
	HKLM\Software\Policies\Microsoft\Windows\SrpV2. This key is also mirrored to
 HKLM\SOFTWARE\Wow6432Node\Policies\Microsoft\Windows\SrpV2. The
 rules are stored in XML format.

	HKLM\SYSTEM\CurrentControlSet\Control\Srp\Gp\Exe. The rules are stored as SDDL and a binary
 ACE.

	HKEY_CURRENT_USER\Software\Microsoft\Windows\CurrentVersion\Group
 Policy
 Objects\{GUID}Machine\Software\Policies\Microsoft\Windows\SrpV2. AppLocker policy pushed down from a domain as part of a
 Group Policy Object (GPO) are stored here in XML format.

Certificates for files that have been run are cached in the
 registry under the key
 HKLM\SYSTEM\CurrentControlSet\Control\AppID\CertStore. AppLocker also
 builds a certificate chain (stored in
 HKLM\SYSTEM\CurrentControlSet\Control\AppID\CertChainStore) from the
 certificate found in a file back to a trusted root certificate. See
 Figure 6-25.
[image: AppLocker configuration page in Local Security Policy]

Figure 6-25. AppLocker configuration page in Local Security Policy

There are also AppLocker-specific PowerShell commands (also known
 as cmdlets) to enable deployment and testing via scripting. Figure 6-26 demonstrates using
 PowerShell commands to determine which files in a directory tree have
 been signed, saving the current AppLocker policy in an XML file, and
 displaying which executable files in a directory tree could be run by a
 user named RestrictedUser.
[image: Powershell cmdlets used to examine executables for signatures, save AppLocker policies in an XML file, and test the ability of a user to run the executables]

Figure 6-26. Powershell cmdlets used to examine executables for signatures,
 save AppLocker policies in an XML file, and test the ability of a user
 to run the executables

The AppID and SRP services co-exist in the same binary
 (%SystemRoot%\System32\AppIdSvc.dll), which runs within an SvcHost
 process. The service requests a registry change notification to monitor
 any changes under that key, which is written by either a GPO or the
 AppLocker UI in the Local Security Policy MMC snap-in. When a change is
 detected, the AppID service triggers a user-mode task
 (%SystemRoot%\System32\AppIdPolicyConverter.exe), which reads the new
 XML rules and translates them into binary format ACEs and SDDL strings,
 which are understandable by both the user-mode and kernel-mode AppID and
 AppLocker components. The task stores the translated rules under
 HKLM\SYSTEM\CurrentControlSet\Control\Srp\Gp. This key is writable only
 by SYSTEM and Administrators, and it is marked read-only for
 authenticated users. Both user-mode and kernel-mode AppID components
 read the translated rules from the registry directly. The service also
 monitors the local machine trusted root certificate store, and it
 invokes a user-mode task (%SystemRoot%\System32\AppIdCertStoreCheck.exe)
 to reverify the certificates at least once per day and whenever there is
 a change to the certificate store. The AppID kernel-mode driver
 (%SystemRoot%\System32\drivers\AppId.sys) is notified about rule changes
 by the AppID service through an APPID_POLICY_CHANGED DeviceIoControl
 request. See Figure 6-27.
[image: Scheduled task that runs every day to convert software restriction policies stored in XML to binary format]

Figure 6-27. Scheduled task that runs every day to convert software
 restriction policies stored in XML to binary format

An administrator can track which applications are being
 allowed or denied by looking at the system Event Log using the event
 viewer (once AppLocker has been configured and the service started). See
 Figure 6-28.
[image: Event Viewer showing AppLocker allowing and denying access to various applications. Event ID 8004 is “denied”; 8002 is “allowed.”]

Figure 6-28. Event Viewer showing AppLocker allowing and denying access to
 various applications. Event ID 8004 is “denied”; 8002 is
 “allowed.”

The implementations of AppID, AppLocker, and SRP are
 somewhat blurred and violate strict layering, with various logical
 components co-existing within the same executables, and the naming is
 not as consistent as one would like.
The AppID service runs as LocalService so that it has access to
 the Trusted Root Certificate Store on the system. This also enables it
 to perform certificate verification. The AppID service is responsible
 for the following:
	Verification of publisher certificates

	Adding new certificates to the cache

	Detecting AppLocker rule updates, and notifying the AppID
 driver

The AppID driver performs the majority of the AppLocker
 functionality and relies upon communication (via
 DeviceIoControl requests) from the AppID service,
 so its device object is protected by an ACL, granting access only to the
 NT SERVICE\AppIDSvc, NT SERVICE\LOCAL SERVICE and BUILTIN\Administrators
 groups. Thus, the driver cannot be spoofed by malware.
When the AppID driver is first loaded, it requests a process
 creation callback (CreateProcessNotifyEx) by
 calling PsSetCreateProcessNotifyRoutineEx. When the
 CreateProcessNotifyEx routine is called, it is
 passed a PPS_CREATE_NOTIFY_INFO structure (describing the process being
 created). It then gathers the AppID attributes that identify the
 executable image and writes them to the process’ access token. Then it
 calls the undocumented routine SeSrpAccessCheck,
 which examines the process token and the conditional ACE AppLocker
 rules, and determines whether the process should be allowed to run. If
 the process should not be allowed to run, the driver writes
 STATUS_ACCESS_DISABLED_BY_POLICY_OTHER to the Status field of the
 PPS_CREATE_NOTIFY_INFO structure, which causes the process creation to
 be canceled (and sets the process’ final completion status).
To perform DLL restriction, the image loader will send a
 DeviceIoControl request to the AppID driver
 whenever it loads a DLL into a process. The driver then checks the DLL’s
 identity against the AppLocker conditional ACEs, just like it would for
 an executable.
Note
Performing these checks for every DLL load is time consuming and
 might be noticeable to end users. For this reason, DLL rules are
 normally disabled, and they must be specifically enabled via the
 Advanced tab in the AppLocker properties page in the Local Security
 Policy snap-in.

The scripting engines and the MSI installer have been modified to
 call the user-mode SRP APIs whenever they open a file, to check whether
 a file is allowed to be opened. The user-mode SRP APIs call the AuthZ
 APIs to perform the conditional ACE access check.

Software Restriction Policies

Windows also contains a user-mode mechanism called
 Software Restriction Policies that enables administrators to control
 what images and scripts execute on their systems. The Software
 Restriction Policies node of the Local Security Policy Editor, shown in
 Figure 6-29, serves as
 the management interface for a machine’s code execution policies,
 although per-user policies are also possible using domain group
 policies.
Several global policy settings appear beneath the Software
 Restriction Policies node:
	The Enforcement policy configures whether restriction policies
 apply to libraries, such as DLLs, and whether policies apply to
 users only or to administrators as well.

	The Designated File Types policy records the extensions for
 files that are considered executable code.

	Trusted Publishers control who can select which certificate
 publishers are trusted.

[image: Software Restriction Policy configuration]

Figure 6-29. Software Restriction Policy configuration

When configuring a policy for a particular script or image, an
 administrator can direct the system to recognize it using its path, its
 hash, its Internet Zone (as defined by Internet Explorer), or its
 cryptographic certificate, and she can specify whether it is associated
 with the Disallowed or Unrestricted security policy.
Enforcement of Software Restriction Policies takes place within
 various components where files are treated as containing executable
 code. Some of these components are listed here:
	The user-mode Windows CreateProcess
 function in %SystemRoot%\System32\Kernel32.dll enforces it for
 executable images.

	The DLL loading code of Ntdll
 (%SystemRoot%\System32\Ntdll.dll) enforces it for DLLs.

	The Windows command prompt (%SystemRoot%\System32\Cmd.exe)
 enforces it for batch file execution.

	Windows Scripting Host components that start
 scripts—%SystemRoot%\System32\Cscript.exe (for command-line
 scripts), %SystemRoot%\System32\Wscript.exe (for UI scripts), and
 %SystemRoot%\System32\Scrobj.dll (for script objects)—enforce it for
 script execution.

Each of these components determines whether the restriction
 policies are enabled by reading the registry value
 HKEY_LOCAL_MACHINE\Software\Microsoft\Policies\Windows\Safer\CodeIdentifiers\TransparentEnabled,
 which if set to 1 indicates that policies are in effect. Then it
 determines whether the code it’s about to execute matches one of the
 rules specified in a subkey of the CodeIdentifiers key and, if so,
 whether or not the execution should be allowed. If there is no match,
 the default policy, as specified in the DefaultLevel value of the
 CodeIdentifiers key, determines whether the execution is allowed.
Software Restriction Policies are a powerful tool for preventing
 the unauthorized access of code and scripts, but only if properly
 applied. Unless the default policy is set to disallow execution, a user
 can make minor changes to an image that’s been marked as disallowed so
 that he can bypass the rule and execute it. For example, a user can
 change an innocuous byte of a process image so that a hash rule fails to
 recognize it, or copy a file to a different location to avoid a
 path-based rule.
EXPERIMENT: Watching Software Restriction Policy
 Enforcement
You can indirectly see Software Restriction Policies being
 enforced by watching accesses to the registry when you attempt to
 execute an image that you’ve disallowed.
	Run secpol.msc to open the Local Security Policy Editor, and
 navigate to the Software Restriction Policies node.

	Choose Create New Policies from the context menu if no
 policies are defined.

	Create a path-based disallow restriction policy for
 %SystemRoot%\System32\Notepad.exe.

	Run Process Monitor, and set an include filter for Safer.
 (See Chapter 4 for a description of
 Process Monitor.)

	Open a command prompt, and run Notepad from the
 prompt.

Your attempt to run Notepad should result in a message telling
 you that you cannot execute the specified program, and Process Monitor
 should show the command prompt (cmd.exe) querying the local machine
 restriction policies.

Conclusion

Windows provides an extensive array of security functions that
 meet the key requirements of both government agencies and commercial
 installations. In this chapter, we’ve taken a brief tour of the internal
 components that are the basis of these security features. In the next
 chapter, we’ll look at the I/O system.

Chapter 7. Networking

Microsoft Windows was designed with networking in mind, and
 it includes broad networking support that is integrated with the I/O
 system and the Windows APIs. The four basic types of network software
 components are services, APIs, protocols, and drivers for network
 adapters—with each component layered on top of the next to form a network
 stack. Windows has well-defined interfaces for each layer, so in addition
 to using the wide variety of APIs, protocols, and network adapter device
 drivers that ship with Windows, third parties can extend the operating
 system’s networking capabilities by developing their own
 components.
In this chapter, we take you from the top of the Windows networking
 stack to the bottom. First, we present the mapping between the Windows
 networking software components and the Open Systems Interconnection (OSI)
 reference model. Then we briefly describe the networking APIs available on
 Windows and explain how they are implemented. You’ll learn how multiple
 redirector support and name resolution work, see how to access and cache
 remote files, and learn how a multitude of drivers interact to form a
 network protocol stack. After looking at the implementation of network
 adapter device drivers, we examine binding, which is
 the glue that connects services, protocol stacks, and network
 adapters.

Windows Networking Architecture

The goal of network software is to take a request (in the form of
 an I/O request) from an application on one machine, pass it to another
 machine, execute the request on the remote machine, and return the
 results to the first machine. In the course of this process, the request
 must be transformed several times. A high-level request, such as “read
 x number of bytes from file y
 on machine z,” requires software that can determine
 how to get to machine z and what communication
 software that machine understands. Then the request must be altered for
 transmission across a network—for example, divided into short packets of
 information. When the request reaches the other side, it must be checked
 for completeness, decoded, and sent to the correct operating system
 component for execution. Finally, the reply must be encoded for sending
 back across the network.
The OSI Reference Model

To help different computer manufacturers standardize and
 integrate their networking software, in 1984 the International
 Organization for Standardization (ISO) defined a software model for
 sending messages between machines. The result was the Open
 Systems Interconnection (OSI) reference
 model. The model defines six layers of software and one
 physical layer of hardware, as shown in Figure 7-1.
[image: OSI reference model]

Figure 7-1. OSI reference model

The OSI reference model is an idealized scheme that few systems
 implement precisely, but it’s often used to frame discussions of
 networking principles. Each layer on one machine assumes that it is
 “talking to” the same layer on the other machine. Both machines
 “speak” the same language, or protocol, at the same level. In reality,
 however, a network transmission must pass down each layer on the
 client machine, be transmitted across the network, and then pass up
 the layers on the destination machine until it reaches a layer that
 can understand and implement the request.
The purpose of each layer in the OSI model is to provide
 services to higher layers and to abstract how the services are
 implemented at lower layers. Describing the details of each layer is
 beyond the scope of this book, but following is a brief description of
 each layer in the OSI model.
Note
Most network descriptions start with the top-most layer and
 work down to the lowest layer; however, here the description of the
 layers will start at the bottom and work toward the top, to
 demonstrate how each layer builds upon the services provided by the
 layer beneath it.

	Physical. This is the lowest layer in the OSI model, and it
 exchanges signals between cooperating network entities over some
 physical medium (wire, radio, fiber, or other type). The
 physical layer specifies the mechanical, electrical, functional,
 and procedural standards for accessing the medium, such as
 connectors, cabling, signaling, and so on. Common examples are
 Ethernet (IEEE 802.3) and Wi-Fi (IEEE 802.11).

	Datalink. This layer exchanges data frames (also called
 packets) between physically
 adjacent network entities (known as
 stations) using the services provided by
 the physical layer. By its nature, the datalink layer is tightly
 tied to the physical layer and is really more of an
 architectural abstraction than the other layers within the
 model. The datalink layer provides each station with its own unique address on the network, and it
 provides point-to-point communications between stations (such as
 between two systems connected to the same Ethernet). The
 capabilities of the datalink layer vary considerably, depending
 upon the physical layer. Typically, transmit and receive errors
 are detected by the datalink layer, and in some instances, the
 error might be corrected. A datalink layer can be connection
 oriented, which is typically used in wide area networks (WANs),
 or connectionless, which is typically used in local area
 networks (LANs). The IEEE (Institute of Electrical and
 Electronics Engineers) 802 committee is responsible for the
 majority of the LAN architectures used throughout the world, and
 they specify the physical and datalink layers of most networking
 equipment. They divide the datalink layer into two sublayers:
 the Logical Link Control (LLC) and the Medium Access Control
 (MAC). The LLC layer provides a single access method for the
 network layer to communicate with any 802.x MAC, insulating the
 network layer from the physical LAN type. The MAC layer provides
 access-control functions to the shared network medium, and it
 specifies signaling, the sharing protocol, address recognition,
 frame generation, CRC generation, and so on. The datalink layer
 does not guarantee that frames will be delivered to their
 destination.

	Network. The network layer implements node addresses and routing
 functions to allow packets to traverse multiple datalinks. This
 layer understands the network topology (hiding it from the
 transport layer) and knows how to direct packets to the nearest
 router. Any network entity containing the network, datalink, and
 physical layers is considered to be a node,
 and the network layer can transfer data between any two nodes on
 the network. There are two types of nodes implemented by the
 network layer: end nodes, which are the source or destination of
 data, and intermediate nodes (usually referred to as
 routers), which route packets between end
 nodes. Network-layer service can be either connection oriented,
 where all packets traveling between the end nodes follow the
 same path through the network, or connectionless, where each
 packet is routed independently. The network layer does not
 guarantee that packets will be delivered to their
 destination.

	Transport. The transport layer provides a transparent data-transfer
 mechanism between end nodes. On the sending side, the transport
 layer receives an unstructured stream of data from the layer
 above and segments the data into discrete packets, which can be
 sent across the network, using the services of the network layer
 beneath it. On the receiving side, the transport layer
 reassembles the packets received from the network layer into a
 stream of data and provides it to the layer above. This layer
 provides reliable data transfer and will
 re-transmit lost or corrupted packets to ensure that the data
 stream received is identical to the data stream that was
 sent.

	Session. This layer implements a connection or
 pipe between cooperating applications. Each
 connection endpoint has its own address (often called a
 port), which is unique on that system.
 There are a variety of communications services provided by
 session layers, such as two-way simultaneous (full-duplex),
 two-way alternate (single-duplex), or one-way. Once a connection
 is established, the systems typically send periodic messages to
 each other to ensure that each end of the connection is
 functioning. If an uncorrectable transmission error is detected
 over a connection, the connection is typically terminated and
 disconnected.

	Presentation. The presentation layer is responsible for
 preserving the information content of data sent over the
 network. It handles data formatting, including issues such as
 whether lines end in a carriage return/line feed (CR/LF) or just
 a carriage return (CR), whether data is to be compressed or
 encrypted, converting binary data from little-endian to
 big-endian, and so on. This layer is not present in most network
 protocol stacks, so its functionality is implemented at the
 application layer.

	Application. This is a layer that handles the information transfer
 between two network applications, including functions such as
 security checks, identification of the participating machines,
 and initiation of the data exchange. This is the protocol that
 is used by two communicating applications, and is application
 specific.

The gray lines in Figure 7-1
 represent protocols used in transmitting a request to a remote
 machine. As stated earlier, each layer of the hierarchy assumes that
 it is speaking to the same layer on another machine and uses a common
 protocol. The collection of protocols through which a request passes
 on its way down and back up the layers of the network is called a
 protocol stack.
Not all network protocol suites implement all the layers in the
 OSI model. (The presentation layer is rarely provided.) In particular,
 the TCP/IP protocol stack (which predates the OSI model) matches
 poorly to the abstractions of OSI. As data travels down the network
 stack, each layer adds a header (and possibly a trailer) to the data
 payload, building up a structure that is very similar to the layers of
 an onion. When this structure is received on a remote node, it travels
 up the network stack, with each layer stripping off its header (and
 trailer) until the data payload is delivered to the receiving
 application.

Windows Networking Components

Figure 7-2
 provides an overview of the components of Windows networking, showing
 how each component fits into the OSI reference model and which
 protocols are used between layers. The mapping between OSI layers and
 networking components isn’t precise, which is the reason that some
 components cross layers. The various components include the
 following:
	Networking APIs provide a
 protocol-independent way for applications to communicate across a
 network. Networking APIs can be implemented in user mode or in
 both user mode and kernel mode. In some cases, they are wrappers
 around another networking API that implements a specific
 programming model or provides additional services. (Note that the
 term networking API also describes any
 programming interfaces provided by networking-related
 software.)

	Transport Driver Interface (TDI)
 clients are legacy kernel-mode device drivers that
 usually implement the kernel-mode portion of a networking API’s
 implementation. TDI clients get their name from the fact that the
 I/O request packets (IRPs) they send to protocol drivers are
 formatted according to the Windows Transport Driver Interface
 standard (documented in the Windows Driver Kit). This standard
 specifies a common programming interface for kernel-mode device
 drivers. (See Chapter 8, “I/O System,” in Part 2 for more
 information about IRPs.) The TDI interface is deprecated and will
 be removed in a future version of Windows. The TDI interface is now being exported by the TDI Extension
 (TDX) Driver. Kernel-mode network clients should now use the
 Winsock Kernel (WSK) interface for accessing the network
 stack.

	TDI transports (also known as
 transports) and Network Driver Interface
 Specification (NDIS) protocol drivers (or protocol drivers) are
 kernel-mode network protocol drivers. They accept IRPs from TDI
 clients and process the requests these IRPs represent. This
 processing might require network communications with a peer,
 prompting the TDI transport to add protocol-specific headers (for
 example, TCP, UDP, and/or IP) to data passed in the IRP, and to
 communicate with adapter drivers using NDIS functions (also
 documented in the Windows Driver Kit). TDI transports generally
 facilitate application network communications by transparently
 performing message operations such as segmentation and reassembly,
 sequencing, acknowledgment, and retransmission.

	Microsoft has decided that TCP/IP has won the network
 protocol wars, so it has re-architected the network protocol
 portion of the network stack from being protocol-neutral to being
 TCP/IP-centric. The interface between the TCP/IP protocol driver
 and Winsock is known as the Transport Layer Network
 Provider Interface (TLNPI) and is currently
 undocumented.

	Winsock Kernel (WSK) is a
 transport-independent, kernel-mode networking API that replaces
 the legacy TDI. WSK provides network communication by using
 socket-like programming semantics similar to user-mode Winsock,
 while also providing unique features such as asynchronous I/O
 operations built on IRPs and event callbacks. WSK also natively
 supports IP version 6 (IPv6) functionality in the Next Generation
 TCP/IP network stack in Windows.

	The Windows Filtering Platform (WFP) is
 a set of APIs and system services that provide the ability to
 create network filtering applications. The WFP allows applications
 to interact with packet processing at different levels of the
 Windows networking stack, much like file system filters.
 Similarly, network data can be traced, filtered, and also modified
 before it reaches its destination.

	WFP callout drivers are kernel-mode
 drivers that implement one or more callouts,
 which extend the capabilities of the WFP by processing
 TCP/IP-based network data in ways that extend the basic
 functionality provided by the WFP.

	The NDIS library (Ndis.sys) provides an
 abstraction mechanism that encapsulates Network Interface Card
 (NIC) drivers (also known as NDIS miniports),
 hiding from them the specifics of the Windows kernel-mode
 environment. The NDIS library exports functions for use by TCP/IP
 and legacy TDI transports.

	NDIS miniport drivers are kernel-mode
 drivers that are responsible for interfacing the network stack to
 a particular NIC. NDIS miniport drivers are written so that they
 are wrapped by the Windows NDIS library. NDIS miniport drivers
 don’t process IRPs; rather, they register a call-table interface
 to the NDIS library that contains pointers to functions that
 perform simple operations on the NIC, such as sending a packet or
 querying properties. NDIS miniport drivers communicate with
 network adapters by using NDIS library functions that resolve to
 hardware abstraction layer (HAL) functions.

As Figure 7-2 shows, the OSI
 layers don’t correspond to actual software. WSK transport providers,
 for example, frequently cross several boundaries. In fact, the bottom
 three layers of software and the hardware layer are often referred to
 collectively as the transport. Software
 components residing in the upper three layers are referred to as
 users or clients of the
 transport.”
[image: OSI model and Windows networking components]

Figure 7-2. OSI model and Windows networking components

In the remainder of this chapter, we’ll examine the networking
 components shown in Figure 7-2 (as well as
 others not shown in the figure), looking at how they fit together and
 how they relate to Windows as a whole.

Networking APIs

Windows implements multiple networking APIs to provide
 support for legacy applications and compatibility with industry
 standards. In this section, we’ll briefly look at the networking APIs
 and describe how applications use them. Keep in mind that the decision
 about which API an application uses depends on characteristics of the
 API, such as which protocols the API can layer over, whether the API
 supports reliable (or bidirectional) communication, and the API’s
 portability to other Windows platforms the application might run on.
 We’ll discuss the following networking APIs:
	Windows Sockets (Winsock)

	Winsock Kernel (WSK)

	Remote procedure call (RPC)

	Web access APIs

	Named pipes and mailslots

	NetBIOS

	Other networking APIs

Windows Sockets

The original Windows Sockets (Winsock) (version 1.0) was
 Microsoft’s implementation of BSD (Berkeley Software Distribution)
 Sockets, a programming API that became the standard by which UNIX
 systems have communicated over the Internet since the 1980s. Support
 for sockets on Windows makes the task of porting UNIX networking
 applications to Windows relatively straightforward. The modern
 versions of Winsock include most of the functionality of BSD Sockets
 but also include Microsoft-specific enhancements, which continue to
 evolve. Winsock supports reliable, connection-oriented communication
 as well as unreliable, connectionless communication. (“Reliable,” in
 this sense, indicates whether the sender is notified of any problems
 in the delivery of data to the receiver.) Windows provides Winsock
 2.2, which adds numerous features beyond the BSD Sockets
 specification, such as functions that take advantage of Windows
 asynchronous I/O, to offer far better performance and scalability than
 straight BSD Sockets programming.
Winsock includes the following features:
	Support for scatter-gather and asynchronous application
 I/O.

	Quality of Service (QoS) conventions so that applications
 can negotiate latency and bandwidth requirements when the
 underlying network supports QoS.

	Extensibility so that Winsock can be used with third-party
 protocols (deprecated).

	Support for integrated namespaces with third-party namespace
 providers. A server can publish its name in Active Directory, for
 example, and by using namespace extensions, a client can look up
 the server’s address in Active Directory.

	Support for multicast messages, where messages
 transmit from a single source to multiple receivers.

We’ll examine typical Winsock operation and then describe ways
 that Winsock can be extended.
Winsock Client Operation

The first step a Winsock application takes is to initialize
 the Winsock API with a call to an initialization function. A Winsock
 application’s next step is to create a socket
 that will represent a communications endpoint. The application
 obtains the address of the server to which it wants to connect by
 calling getaddrinfo (and later calling
 freeaddrinfo to release the information). The
 getaddrinfo function returns the list of
 protocol-specific addresses assigned to the server, and the client
 attempts to connect to each one in turn until it is able to
 establish a connection with one of them. This ensures that a client
 that supports both IP version 4 (IPv4) and IPv6 will connect to the
 appropriate and/or most efficient address on a server that might
 have both IPv4 and IPv6 addresses assigned to it. (IPv6 is preferred
 over IPv4.) Winsock is a protocol-independent API, so an address can
 be specified for any protocol installed on the system over which
 Winsock operates. After obtaining the server address, a
 connection-oriented client attempts to connect to the server by
 using connect and specifying the server
 address.
When a connection is established, the client can send and
 receive data over its socket using the recv and
 send APIs. A connectionless client specifies
 the remote address with connectionless APIs, such as the
 connectionless equivalents of send and
 recv, and sendto and
 recvfrom. Clients can also use the
 select and WSAPoll APIs to
 wait on or poll multiple sockets for synchronous I/O operations, or
 to check their state.

Winsock Server Operation

The sequence of steps for a server application differs from
 that of a client. After initializing the Winsock API, the server
 creates a socket and then binds it to a local address by using
 bind. Again, the address family
 specified—whether it’s TCP/IPv4, TCP/IPv6, or some other address
 family—is up to the server application.
If the server is connection oriented, it performs a
 listen operation on the socket, indicating the
 backlog, or the number of connections the
 server asks Winsock to hold until the server is able to accept them.
 Then it performs an accept operation to allow a
 client to connect to the socket. If there is a pending connection
 request, the accept call completes immediately;
 otherwise, it completes when a connection request arrives. When a
 connection is made, the accept function returns
 a new socket that represents the server’s end of the connection.
 (The original socket used for listening is not used for
 communications, only for receiving connection requests.) The server
 can perform receive and send operations by using functions such as
 recv and send. Like
 Winsock clients, servers can use the select and
 WSAPoll functions to query the state of one or
 more sockets; however, the Winsock
 WSAEventSelect function and overlapped
 (asynchronous) I/O extensions are preferred for better scalability.
 Figure 7-3 shows
 connection-oriented communication between a Winsock client and
 server.
[image: Connection-oriented Winsock operation]

Figure 7-3. Connection-oriented Winsock operation

After binding an address, a connectionless server is
 no different from a connectionless client: it can send and receive
 data over the socket simply by specifying the remote address with
 each operation. Most connectionless protocols are unreliable and, in
 general, will not know whether the destination actually received the
 sent data packets (which are known as
 datagrams). Datagram protocols are ideal for
 quick message passing, where the overhead of establishing a
 connection is too much and reliability is not required (although an
 application can build reliability on top of the protocol).

Winsock Extensions

In addition to supporting functions that correspond directly
 to those implemented in BSD Sockets, Microsoft has added a handful
 of functions that aren’t part of the BSD standard. Two of these
 functions, AcceptEx (the
 Ex suffix is short for
 Extended) and
 TransmitFile, are worth describing because many
 Web servers on Windows use them to achieve high performance.
 AcceptEx is a version of the
 accept function that, in the process of
 establishing a connection with a client, returns the client’s
 address and the client’s first message.
 AcceptEx allows the server application to queue
 multiple accept operations so that high volumes of incoming
 connection requests can be handled. With this function, a web server
 avoids executing multiple Winsock functions that would otherwise be
 required.
After establishing a connection with a client, a web server
 frequently sends a file, such as a web page, to the client. The
 TransmitFile function’s implementation is
 integrated with the Windows cache manager so that a file can be sent
 directly from the file system cache. Sending data in this way is
 called zero-copy because the server doesn’t
 have to read the file data to send it; it simply specifies a handle
 to a file and the byte range (offset and length) of the file to
 send. In addition, TransmitFile allows a server
 to add prefix or suffix data to the file’s data so that the server
 can send header information, trailer information, or both, which
 might include the name of the web server and a field that indicates
 to the client the size of the message the server is sending.
 Internet Information Services (IIS), which is included with Windows,
 uses both AcceptEx and
 TransmitFile to achieve better
 performance.
Windows also supports a handful of other multifunction APIs,
 including ConnectEx,
 DisconnectEx, and
 TransmitPackets. ConnectEx
 establishes a connection and sends the first message on the
 connection. DisconnectEx closes a connection
 and allows the socket handle representing the connection to be
 reused in a call to AcceptEx or
 ConnectEx. Finally,
 TransmitPackets is similar to
 TransmitFile, except that it allows for the
 sending of in-memory data in addition to, or in lieu of, file data.
 Finally, by using the WSAImpersonateSocketPeer
 and WSARevertImpersonation functions, Winsock
 servers can perform impersonation (described in Chapter 6) to perform authorization or to gain
 access to resources based on the client’s security
 credentials.

Extending Winsock

Winsock is an extensible API on Windows because third parties
 can add a transport service provider that
 interfaces Winsock with other protocols, or layers on top of
 existing protocols, to provide functionality such as proxying. Third
 parties can also add a namespace service
 provider to augment Winsock’s name-resolution facilities.
 Service providers plug in to Winsock by using the Winsock
 service provider interface (SPI). When a
 transport service provider is registered with Winsock, Winsock uses
 the transport service provider to implement socket functions, such
 as connect and accept, for
 the address types that the provider indicates it implements. There
 are no restrictions on how the transport service provider implements
 the functions, but the implementation usually involves communicating
 with a transport driver in kernel mode.
Note
Layered service providers are not secure and can be
 bypassed; secure network protocol layering must be done in kernel
 mode. Installing itself as a Winsock layered service provider
 (LSP) is a technique used frequently by malware and
 spyware.

A requirement of any Winsock client/server application is for
 the server to make its address available to clients so that the
 clients can connect to the server. Standard services that execute on
 the TCP/IP protocol use well-known addresses to
 make their addresses available. As long as a browser knows the name
 of the computer a Web server is running on, it can connect to the
 web server by specifying the well-known web server address (the IP
 address of the server concatenated with :80, the port number used
 for HTTP). Namespace service providers make it possible for servers
 to register their presence in other ways. For example, one namespace
 service provider might on the server side register the server’s
 address in Active Directory and on the client side look up the
 server’s address in Active Directory. Namespace service providers
 supply this functionality to Winsock by implementing standard
 Winsock name-resolution functions such as
 getaddrinfo and
 getnameinfo.
EXPERIMENT: Looking at Winsock Service and Namespace
 Providers
The Network Shell (Netsh.exe) utility included with Windows
 is able to show the registered Winsock transport and namespace
 providers by using the netsh winsock show
 catalog command. For example, if there are two TCP/IP
 transport service providers, the first one listed is the default
 provider for Winsock applications using the TCP/IP protocol.
 Here’s sample output from Netsh showing the registered transport
 service providers:
C:\Users\Toby>netsh winsock show catalog

Winsock Catalog Provider Entry
--
Entry Type: Base Service Provider
Description: MSAFD Tcpip [TCP/IP]
Provider ID: {E70F1AA0-AB8B-11CF-8CA3-00805F48A192}
Provider Path: %SystemRoot%\system32\mswsock.dll
Catalog Entry ID: 1001
Version: 2
Address Family: 2
Max Address Length: 16
Min Address Length: 16
Socket Type: 1
Protocol: 6
Service Flags: 0x20066
Protocol Chain Length: 1

Winsock Catalog Provider Entry
--
Entry Type: Base Service Provider
Description: MSAFD Tcpip [UDP/IP]
Provider ID: {E70F1AA0-AB8B-11CF-8CA3-00805F48A192}
Provider Path: %SystemRoot%\system32\mswsock.dll
Catalog Entry ID: 1002
Version: 2
Address Family: 2
Max Address Length: 16
Min Address Length: 16
Socket Type: 2
Protocol: 17
Service Flags: 0x20609
Protocol Chain Length: 1

Winsock Catalog Provider Entry
--
Entry Type: Base Service Provider
Description: MSAFD Tcpip [RAW/IP]
Provider ID: {E70F1AA0-AB8B-11CF-8CA3-00805F48A192}
Provider Path: %SystemRoot%\system32\mswsock.dll
Catalog Entry ID: 1003
Version: 2
Address Family: 2
Max Address Length: 16
Min Address Length: 16
Socket Type: 3
Protocol: 0
Service Flags: 0x20609
Protocol Chain Length: 1
.
.
.
Name Space Provider Entry
--
Description: Network Location Awareness Legacy (NLAv1) Namespace
Provider ID: {6642243A-3BA8-4AA6-BAA5-2E0BD71FDD83}
Name Space: 15
Active: 1
Version: 0

Name Space Provider Entry
--
Description: E-mail Naming Shim Provider
Provider ID: {964ACBA2-B2BC-40EB-8C6A-A6DB40161CAE}
Name Space: 37
Active: 1
Version: 0

Name Space Provider Entry
--
Description: PNRP Cloud Namespace Provider
Provider ID: {03FE89CE-766D-4976-B9C1-BB9BC42C7B4D}
Name Space: 39
Active: 1
Version: 0
.
.
.
You can also use the Autoruns utility from Windows
 Sysinternals (www.microsoft.com/technet/sysinternals)
 to view namespace and transport providers, as well as to disable
 or delete those that might be causing problems or unwanted
 behavior on the system.

Winsock Implementation

Winsock’s implementation is shown in Figure 7-4. Its application
 interface consists of an API DLL, Ws2_32.dll
 (%SystemRoot%\System32\Ws2_32.dll), which provides applications
 access to Winsock functions. Ws2_32.dll calls on the services of
 namespace and transport service providers to carry out name and
 message operations. The Mswsock.dll
 (%SystemRoot%\System32\mswsock.dll) library acts as a transport
 service provider for the protocols supported by Microsoft and uses
 Winsock Helper libraries that are protocol
 specific to communicate with kernel-mode protocol drivers. For
 example, Wshtcpip.dll (%SystemRoot%\System32\wshtcpip.dll) is the
 TCP/IP helper. Mswsock.dll implements the Microsoft Winsock
 extension functions, such as TransmitFile,
 AcceptEx, and
 WSARecvEx.
Windows ships with helper DLLs for TCP/IPv4, TCPv6, Bluetooth,
 NetBIOS, IrDA (Infrared Data Association), and PGM (Pragmatic
 General Multicast). It also includes namespace service providers for
 DNS (TCP/IP), Active Directory (NTDS), NLA (Network Location
 Awareness), PNRP (Peer Name Resolution Protocol), and
 Bluetooth.
Like the named-pipe and mailslot APIs (described later in this
 chapter), Winsock integrates with the Windows I/O model and uses
 file handles to represent sockets. This support requires the aid of
 a kernel-mode driver, so Msafd.dll (%SystemRoot%\System32\msafd.dll)
 uses the services of the Ancillary Function Driver
 (AFD—%SystemRoot%\System32\Drivers\Afd.sys) to implement
 socket-based functions. AFD is a Transport Layer Network Provider
 Interface (TLNPI) client and executes network socket operations,
 such as sending and receiving messages. TLNPI is the undocumented
 interface between AFD and the TCP/IP protocol stack. If a legacy
 protocol driver is installed, Windows will use the TDI-TLNPI
 translation driver TDX (%SystemRoot%\System32\Drivers\tdx.sys) to
 map TDI IRPs to TLNPI requests.
[image: Winsock implementation]

Figure 7-4. Winsock implementation

Winsock Kernel

To enable kernel-mode drivers and modules to have access
 to networking API interfaces similar to those available to user-mode
 applications, Windows implements a socket-based networking programming
 interface called Winsock Kernel (WSK). WSK replaces the legacy TDI API
 interface present on older versions of Windows but maintains the TDI
 API interface for transport providers. Compared to TDI, WSK provides
 better performance, better security, better scalability, and a much
 easier programming paradigm, because it relies less on internal kernel
 behavior and more on socket-based semantics. Additionally, WSK was
 written to take full advantage of the latest technologies in the
 Windows TCP/IP stack, which TDI was not originally anticipated to
 support. As shown in Figure 7-5, WSK makes use of
 the Network Module Registrar (NMR) component of Windows (part of
 %SystemRoot%\System32\drivers\NetIO.sys) to attach and detach from
 transport protocols, and it can be used, just like Winsock, to support
 many types of network clients—for example, the Http.sys driver for the
 HTTP Server API (mentioned later in the chapter) is a WSK client.
 Using NMR with WSK is rather complicated, so registration-support APIs
 are provided to register with WSK (WskRegister,
 WskDeregister, WskCaptureProviderNPI, and
 WskReleaseProviderNPI).
Note
The Raw transport protocol is not really a protocol and does
 not perform any encapsulation of the user data. This allows the
 client to directly control the contents of the frames transmitted
 and received by the network interface.

WSK enhances security by restricting address
 sharing—which allows multiple sockets to use the same transport
 (TCP/IP) address—through the use of nondefault sharing and security
 descriptors on addresses. WSK uses the security descriptor specified
 by the first socket for an address, and it checks the owning process
 and thread for each subsequent attempt to use that address.
[image: WSK overview]

Figure 7-5. WSK overview

WSK Implementation

WSK’s implementation is shown in Figure 7-6. At its core is the WSK
 subsystem itself, which uses the Next Generation TCP/IP Stack
 (%SystemRoot%\System32\Drivers\Tcpip.sys) and the NetIO support
 library (%SystemRoot%\System32\Drivers\NetIO.sys) but is actually
 implemented in AFD. The subsystem is responsible for the provider
 side of the WSK API. The subsystem interfaces with the TCP/IP
 transport protocols (shown at the bottom of Figure 7-5). Attached to the WSK subsystem are WSK
 clients, which are kernel-mode drivers that implement the
 client-side WSK API in order to perform network operations. The WSK
 subsystem calls WSK clients to notify them of asynchronous
 events.
[image: WSK implementation]

Figure 7-6. WSK implementation

WSK clients are bound to the WSK subsystem through the NMR or
 through the WSK’s registration functions, which allow WSK clients to
 dynamically detect when the WSK subsystem becomes available and then
 load their own dispatch table to describe the provider and
 client-side implementations of the WSK API. These implementations
 provide the standard WSK socket-based functions, such as
 WskSocket, WskAccept,
 WskBind, WskConnect,
 WskReceive, and WskSend,
 which have similar semantics (but not necessarily similar
 parameters) as their user-mode Winsock counterparts. However, unlike
 user-mode Winsock, the WSK subsystem defines four
 kinds of socket categories, which identify
 which functions and events are available:
	Basic sockets, which are used only to get and set
 information on the transport. They cannot be used to send or
 receive data or be bound to an address.

	Listening sockets, which are used for sockets that accept
 only incoming connections.

	Datagram sockets, which are used solely for sending and
 receiving datagrams.

	Connection-oriented sockets, which support all the
 functionality required to send and receive network traffic over
 an established connection.

Apart from the socket functions described, WSK also provides
 events through which clients are notified of network status. Unlike
 the model for socket functions, in which a client controls the
 connection, events allow the subsystem to control the connection and
 merely notify the client. These include the
 WskAcceptEvent,
 WskInspectEvent,
 WskAbortEvent,
 WskReceiveFromEvent,
 WskReceiveEvent,
 WskDisconnectEvent, and
 WskSendBacklogEvent routines.
Finally, like user-mode Winsock, WSK can be extended through
 extension interfaces that clients can associate
 with sockets. These extensions can enhance the default functionality
 provided by the WSK subsystem.

Remote Procedure Call

Remote procedure call (RPC) is a network programming standard
 originally developed in the early 1980s. The Open Software Foundation
 (now The Open Group) made RPC part of the distributed computing
 environment (DCE) distributed computing standard. Although there is a
 second RPC standard, SunRPC, the Microsoft RPC implementation is
 compatible with the OSF/DCE standard. RPC builds on other networking
 APIs, such as named pipes or Winsock, to provide an alternate
 programming model that in some respects hides the details of
 networking programming from an application developer. Fundamentally,
 RPC provides a mechanism for creating programs that are distributed
 across a network, with portions of the application running
 transparently on one or more systems.
RPC Operation

An RPC facility is one that allows a programmer to create an
 application consisting of any number of procedures, some that
 execute locally and others that execute on remote computers via a
 network. It provides a procedural view of networked operations
 rather than a transport-centered view, thus simplifying the
 development of distributed applications.
Networking software is traditionally structured around an I/O
 model of processing. In Windows, for example, a network operation is
 initiated when an application issues an I/O request. The operating
 system processes the request accordingly by forwarding it to a
 redirector, which acts as a remote file system
 by making the client interaction with the remote file system
 invisible to the client. The redirector passes the operation to the
 remote file system, and after the remote system fulfills the request
 and returns the results, the local network card
 interrupts. The kernel handles the interrupt, and the original I/O
 operation completes, returning results to the caller.
RPC takes a different approach altogether. RPC applications
 are like other structured applications, with a main program that
 calls procedures or procedure libraries to perform specific tasks.
 The difference between RPC applications and regular applications is
 that some of the procedure libraries in an RPC application are
 stored and execute on remote computers, as shown in Figure 7-7, whereas others execute
 locally.
To the RPC application, all the procedures appear to execute
 locally. In other words, instead of making a programmer actively
 write code to transmit computational or I/O-related requests across
 a network, handle network protocols, deal with network errors, wait
 for results, and so forth, RPC software handles these tasks
 automatically. And the Windows RPC facility can operate over any
 available transport protocols loaded into the system.
[image: RPC operation]

Figure 7-7. RPC operation

To write an RPC application, the programmer decides which
 procedures will execute locally and which will execute remotely. For
 example, suppose an ordinary workstation has a network connection to
 a supercomputer (a very fast machine usually designed for high-speed
 vector operations). If the programmer were writing an application
 that manipulated large matrices, it would make sense from a
 performance perspective to offload the mathematical calculations to
 the supercomputer by writing the program as an RPC
 application.
RPC applications work like this: As an application runs, it
 calls local procedures as well as procedures that aren’t present on
 the local machine. To handle the latter case, the application is
 linked to a local library or DLL that contains stub
 procedures, one for each remote procedure. For simple
 applications, the stub procedures are statically linked with the
 application, but for bigger components the stubs are included in
 separate DLLs. In DCOM, covered later in the chapter, the latter
 method is typically used. The stub procedures have the same name and
 use the same interface as the remote procedures, but instead of
 performing the required operations, the stub takes the parameters
 passed to it and marshals them for transmission
 across the network. Marshaling parameters means ordering and
 packaging them in a particular way to suit a network link, such as
 resolving references and picking up a copy of any data structures
 that a pointer refers to.
The stub then calls RPC run-time procedures that
 locate the computer where the remote procedure resides, determines
 which network transport mechanisms that computer uses, and sends the
 request to it using local transport software. When the remote server
 receives the RPC request, it unmarshals the
 parameters (the reverse of marshaling), reconstructs the original
 procedure call, and calls the procedure with the parameters passed
 from the calling system. When the server finishes, it performs the
 reverse sequence to return results to the caller.
In addition to the synchronous function-call-based interface
 described here, Windows RPC also supports asynchronous
 RPC. Asynchronous RPC lets an RPC application execute a
 function but not wait until the function completes to continue
 processing. Instead, the application can execute other code and
 later, when a response has arrived from the server, the RPC runtime
 notifies the client that the operation has completed. The RPC
 runtime uses the notification mechanism requested by the client. If
 the client uses an event synchronization object for notification, it
 waits for the signaling of the event object by calling either
 WaitForSingleObject or
 WaitForMultipleObjects. If the client provides
 an asynchronous procedure call (APC), the runtime queues the
 execution of the APC to the thread that executed the RPC function.
 (The APC will not be delivered until the requesting thread enters an
 alertable wait state. See Chapter 3, for more information on APCs.) If
 the client program uses an I/O completion port as its notification
 mechanism, it must call
 GetQueuedCompletionStatus to learn of the
 function’s completion. Alternatively, a client can poll for
 completion by calling
 RpcAsyncGetCallStatus.
In addition to the RPC runtime, Microsoft’s RPC facility
 includes a compiler, called the Microsoft Interface
 Definition Language (MIDL) compiler. The MIDL compiler
 simplifies the creation of an RPC application by generating the
 necessary stub routines. The programmer writes a series of ordinary
 function prototypes (assuming a C or C++ application) that describe
 the remote routines and then places the routines in a file. The
 programmer then adds some additional information to these
 prototypes, such as a network-unique identifier for the package of
 routines and a version number, plus attributes that specify whether
 the parameters are input, output, or both. The embellished
 prototypes form the developer’s Interface Definition Language (IDL)
 file.
Once the IDL file is created, the programmer compiles it with
 the MIDL compiler, which produces client-side and server-side stub
 routines (mentioned previously), as well as header files to be
 included in the application. When the client-side application is
 linked to the stub routines file, all remote procedure references
 are resolved. The remote procedures are then installed, using a
 similar process, on the server machine. A programmer who wants to
 call an existing RPC application need only write the client side of
 the software and link the application to the local RPC run-time
 facility.
The RPC runtime uses a generic RPC transport
 provider interface to talk to a transport protocol. The
 provider interface acts as a thin layer between the RPC facility and
 the transport, mapping RPC operations onto the functions provided by
 the transport. The Windows RPC facility implements transport
 provider DLLs for named pipes, HTTP, TCP/IP, and UDP. In a similar
 fashion, the RPC facility is designed to work with different network
 security facilities.
Most of the Windows networking services are RPC applications,
 which means that both local applications and applications on remote
 computers might call them. Thus, a remote client computer might call
 the server service to list shares, open files, write to print
 queues, or activate users on your server, all subject to security constraints, of
 course. The majority of client-management APIs are implemented using
 RPC.
Server name publishing, which is the
 ability of a server to register its name in a location accessible
 for client lookup, is in RPC and is integrated with Active
 Directory. If Active Directory isn’t installed, the RPC name locator
 services fall back on NetBIOS broadcast. This behavior allows RPC to
 function on stand-alone servers and workstations.

RPC Security

Windows RPC includes integration with security support
 providers (SSPs) so that RPC clients and servers can use
 authenticated or encrypted communications. When an RPC server wants
 secure communication, it tells the RPC runtime what authentication
 service to add to the list of available authentication
 services. When a client wants to use secure
 communication, it binds to the server. At that time, it must tell
 the RPC runtime the authentication service and
 authentication level it wants. Various
 authentication levels exist to ensure that only authorized clients
 connect to a server, verify that each message a server receives
 originates at an authorized client, check the integrity of RPC
 messages to detect manipulation, and even encrypt RPC message data.
 Obviously, higher authentication levels require more processing. The
 client can also optionally specify the server principal
 name. A principal is an entity that the RPC security
 system recognizes. The server must register its SSP-specific
 principal name with an SSP.
An SSP handles the details of performing network communication
 authentication and encryption, not only for RPC but also for
 Winsock. Windows includes a number of built-in SSPs, including a
 Kerberos SSP to implement Kerberos version 5 authentication
 (including AES support) and Secure Channel (SChannel), which
 implements Secure Sockets Layer (SSL) and the Transport Layer
 Security (TLS) protocols. SChannel also supports TLS and SSL
 extensions, which allow you to use the AES cipher as well as
 elliptic curve cryptographic (ECC) ciphers on top of the protocols.
 Also, because it supports an open cryptographic
 interface (OCI) and crypto-agile capabilities, SChannel
 allows an administrator to replace or add to the existing
 cryptographic algorithms. In the absence of a specified SSP, RPC
 software uses the built-in security of the underlying transport.
 Some transports, such as named pipes or local RPC, have built-in
 security. Others, like TCP, do not, and in this case RPC makes
 unsecure calls in the absence of a specified SSP.
Note
The use of unencrypted RPC might pose serious security
 issues for your organization.

Another feature of RPC security is the ability of a server to
 impersonate the security identity of a client with the
 RpcImpersonateClient function. After a server
 has finished performing impersonated operations on behalf of a
 client, it returns to its own security identity by calling
 RpcRevertToSelf or
 RpcRevertToSelfEx. (See Chapter 6 for more information on
 impersonation.)

RPC Implementation

RPC implementation is depicted in Figure 7-8, which shows that an
 RPC-based application links with the RPC run-time DLL
 (%SystemRoot%\System32\Rpcrt4.dll). The RPC run-time DLL provides
 marshaling and unmarshaling functions for use by an application’s
 RPC function stubs as well as functions for sending and receiving
 marshaled data. The RPC run-time DLL includes support routines to
 handle RPC over a network as well as a form of RPC called
 local RPC. Local RPC can be used for
 communication between two processes located on the same system, and
 the RPC run-time DLL uses the advanced local procedure call (ALPC)
 facilities in kernel mode as the local networking API. (See Chapter 3 for more information on ALPCs.) When
 RPC is based on nonlocal communication mechanisms, the RPC run-time
 DLL uses the Winsock or named pipe APIs.
[image: RPC implementation]

Figure 7-8. RPC implementation

The RPC subsystem (RPCSS—%SystemRoot%\System32\Rpcss.dll) is
 implemented as a Windows service. RPCSS is itself an RPC application
 that communicates with instances of itself on other systems to
 perform name lookup, registration, and dynamic endpoint mapping.
 (For clarity, Figure 7-8 doesn’t
 show RPCSS linked with the RPC run-time DLL.)
Windows also includes support for RPC in kernel mode through
 the kernel-mode RPC driver
 (%SystemRoot%\System32\Drivers\Msrpc.sys). Kernel-mode RPC is for
 internal use by the system and is implemented on top of ALPC.
 Winlogon includes an RPC server with a documented set of interfaces
 that user-mode RPC clients might call, while Win32k.sys includes an
 RPC client that communicates with Winlogon for internal
 notifications, such as the secure attention sequence (SAS). (See
 Chapter 6 for more information.) The
 TCP/IP stack in Windows (as well as the WFP) also uses kernel-mode
 RPC to communicate with the Network Storage Interface
 (NSI) service, which handles network configuration
 information.

Web Access APIs

To ease the development of Internet applications,
 Windows provides both client and server Internet APIs. By using the
 APIs, applications can provide HTTP services and use FTP and HTTP
 services without knowledge of the intricacies of the corresponding
 protocols. The client APIs include Windows
 Internet, also known as WinInet, which
 enables applications to interact with the FTP and HTTP protocols, and
 WinHTTP, which enables applications to interact with the HTTP protocol
 and is more suitable than WinInet in certain situations (Windows
 services and middle-tier applications). HTTP Server is a server-side
 API that enables the development of web server applications.
WinInet

WinInet supports the HTTP, FTP, and Gopher protocols. The APIs
 break down into sub-API sets specific to each protocol. Using the
 FTP-related APIs—such as InternetConnect to
 connect to an HTTP server, followed by
 HttpOpenRequest to open an HTTP request handle,
 HttpSendRequestEx to send a request to the
 sever and receive a response, InternetWriteFile
 to send a file, and InternetReadFileEx to
 receive a file—an application developer avoids the details of
 establishing a connection and formatting TCP/IP messages to the
 various protocols. The HTTP-related APIs also provide cookie
 persistence, client-side file caching, and automatic credential
 dialog handling. WinInet is used by core Windows components such as
 Windows Explorer and Internet Explorer.
Note
WinINet does not support server implementations or use by
 services. For these types of usage, use WinHTTP instead.

WinHTTP provides an abstraction of the HTTP v1.1 protocol for
 HTTP client applications similar to what the WinInet HTTP-related
 APIs provide. However, whereas the WinInet HTTP API is intended for
 user-interactive, client-side applications, the WinHTTP API is
 designed for server applications that communicate with HTTP servers.
 Server applications are often implemented as Windows services that
 do not provide a user interface and so do not desire the dialog
 boxes that WinInet APIs display. In addition, the WinHTTP APIs are
 more scalable (such as supporting uploads of greater than 4 GB) and
 offer security functionality, such as thread impersonation, that is
 not available from the WinInet APIs.

HTTP

Using the HTTP Server API implemented by Windows, server
 applications can register to receive HTTP requests for particular
 URLs, receive HTTP requests, and send HTTP responses. The HTTP
 Server API includes SSL support so that applications can exchange
 data over secure HTTP connections. The API includes server-side
 caching capabilities, synchronous and asynchronous I/O models, and
 both IPv4 and IPv6 addressing. The HTTP server APIs are used by IIS
 and other Windows services that rely on HTTP as a transport.
The HTTP Server API, which applications access through
 %SystemRoot%\System32\Httpapi.dll, relies on the kernel-mode
 %SystemRoot%\System32\Drivers\Http.sys driver. Http.sys starts on
 demand the first time any application on the system calls
 HttpInitialize. Applications then call
 HttpCreateServerSession to initialize a server
 session for the HTTP Server API. Next they use
 HttpCreateRequestQueue to create a private request queue and
 HttpCreateUrlGroup to create a URL group,
 specifying the URLs that they want to handle requests for with
 HttpAddUrlToUrlGroup. Using the request queues
 and their registered URLs (which they associate by using
 HttpSetUrlGroupProperty), Http.sys allows more
 than one application to service HTTP requests on a given port (port
 80 for example), with each servicing HTTP requests to different
 parts of the URL namespace, as shown in Figure 7-9.
[image: HTTP request queues and URL groups]

Figure 7-9. HTTP request queues and URL groups

HttpReceiveHttpRequest receives incoming
 requests directed at registered URLs, and
 HttpSendHttpResponse sends HTTP responses. Both
 functions offer asynchronous operation so that an application can
 use GetOverlappedResult or I/O completion ports
 to determine when an operation is completed.
Applications can use Http.sys to cache data in nonpaged
 physical memory by calling
 HttpAddFragmentToCache and associating a
 fragment name (specified as a URL prefix) with
 the cached data. Http.sys invokes the memory manager function
 MmAllocatePagesForMdlEx to allocate unmapped
 physical pages. (For large requests, Http.sys also attempts to use
 large pages to optimize access to the buffered data.) When Http.sys
 requires a virtual address mapping for the physical memory described
 by an entry in the cache—for instance, when it copies data to the
 cache or sends data from the cache—it uses
 MmMapLockedPagesSpecifyCache and then
 MmUnmapLockedPages after it completes its
 access. Http.sys maintains cached data until an application
 invalidates it or an optional application-specified timeout
 associated with the data expires. Http.sys also trims cached data in
 a worker thread that wakes up when the low-memory notification event
 is signaled. (See Chapter 10, “Memory Management,” in Part 2 for
 information on the low-memory notification event.) When an
 application specifies one or more fragment names in a call to
 HttpSendHttpResponse, Http.sys passes a pointer to the cached data in
 physical memory to the TCP/IP driver and avoids a copy operation.
 Http.sys also contains code for performing server-side
 authentication, including full SSL support, which removes the need
 to call back to the user-mode API to perform encryption and
 decryption of traffic.
Finally, the HTTP Server API contains many configuration
 options that clients can use to set functionality, such as
 authentication policies, bandwidth throttling, logging, connection
 limits, server state, response caching, and SSL certificate
 binding.

Named Pipes and Mailslots

Named pipes and mailslots are programming APIs for interprocess
 communication. Named pipes provide for reliable bidirectional
 communications, whereas mailslots provide unreliable, unidirectional
 data transmission. An advantage of mailslots is that they support
 broadcast capability. In Windows, both APIs make use of standard
 Windows security authentication and authorization mechanisms, which
 allow a server to control precisely which clients can connect to
 it.
The names that servers assign to named pipes and clients conform
 to the Windows Universal Naming Convention (UNC), which is a
 protocol-independent way to identify resources on a Windows network.
 The implementation of UNC names is described later in the
 chapter.
Named-Pipe Operation

Named-pipe communication consists of a named-pipe server and a
 named-pipe client. A named-pipe server is an application that
 creates a named pipe to which clients can connect. A named pipe’s
 name has the format \\Server\Pipe\PipeName. The
 Server component of the name specifies the
 computer on which the named-pipe server is executing. (A named-pipe
 server can’t create a named pipe on a remote system.) The name can
 be a DNS name (for example,
 mspress.microsoft.com), a NetBIOS name
 (mspress), or an IP address (131.107.0.1). The
 Pipe component of the name must be the string
 “Pipe”, and PipeName is the unique name
 assigned to a named pipe. The unique portion of the named pipe’s
 name can include subdirectories; an example of a named-pipe name
 with a subdirectory is
 \\MyComputer\Pipe\MyServerApp\ConnectionPipe.
A named-pipe server uses the
 CreateNamedPipe Windows function to create a
 named pipe. One of the function’s input parameters is a pointer to
 the named-pipe name, in the form \\.\Pipe\PipeName. The “\\.\” is a
 Windows-defined alias for “this system,” because a pipe must be
 created on the local system (although it can be accessed from a
 remote system). Other parameters the function accepts include an
 optional security descriptor that protects access to the named pipe,
 a flag that specifies whether the pipe should be bidirectional or
 unidirectional, a value indicating the maximum number of
 simultaneous connections the pipe supports, and a flag specifying
 whether the pipe should operate in byte mode or
 message mode.
Most networking APIs operate only in byte mode, which means
 that a message sent with one send function might require the
 receiver to perform multiple receive operations, building up the
 complete message from fragments. A named pipe operating in
 message mode simplifies the implementation of a receiver because
 there is a one-to-one correspondence between send and receive
 requests. A receiver therefore obtains an entire message each time
 it completes a receive operation and doesn’t have to concern itself
 with keeping track of message fragments.
The first call to CreateNamedPipe for a
 particular name creates the first instance of that name and
 establishes the behavior of all named-pipe instances having that
 name. A server creates additional instances, up to the maximum
 specified in the first call, with additional calls to
 CreateNamedPipe. After creating at least one
 named-pipe instance, a server executes the
 ConnectNamedPipe Windows function, which
 enables the named pipe the server created to establish connections
 with clients. ConnectNamedPipe can be executed
 synchronously or asynchronously, and it doesn’t complete until a
 client establishes a connection with the instance (or an error
 occurs).
A named-pipe client uses the Windows
 CreateFile or
 CallNamedPipe function, specifying the name of
 the pipe a server has created, to connect to a server. If the server
 has performed a ConnectNamedPipe call, the
 client’s security profile and the access it requests to the pipe
 (read, write) are validated against the named pipe’s security
 descriptor. (See Chapter 6 for more
 information on the security-check algorithms Windows uses.) If the
 client is granted access to a named pipe, it receives a handle
 representing the client side of a named-pipe connection and the
 server’s call to ConnectNamedPipe
 completes.
After a named-pipe connection is established, the client and
 server can use the ReadFile and
 WriteFile Windows functions to read from and
 write to the pipe. Named pipes support both synchronous and
 asynchronous operations for message transmittal, depending upon how
 the handle to the pipe was opened. Figure 7-10 shows a server and client
 communicating through a named-pipe instance.
[image: Named-pipe communications]

Figure 7-10. Named-pipe communications

Another characteristic of the named-pipe networking API is
 that it allows a server to impersonate a client by using the
 ImpersonateNamedPipeClient function. See the
 Impersonation section in Chapter 6 for a discussion of how impersonation
 is used in client/server applications. A second advanced area of
 functionality of the named-pipe API is that it allows for atomic
 send and receive operations through the
 TransactNamedPipe API, which behaves according
 to a simple transactional model in which a message is both sent and
 received in the same operation. In other words, it combines a write
 operation and a read operation into a single operation by not
 completing a write request until it has been read by the
 recipient.

Mailslot Operation

Mailslots provide an unreliable, unidirectional,
 multicast network transport. Multicast is a
 term used to describe a sender sending a message on the network to
 one or more specific listeners, which is different from a
 broadcast, which all systems would receive. One
 example of an application that can use this type of communication is
 a time-synchronization service, which might send a source time
 across the domain every few seconds. Such a message would be
 received by all applications listening on the particular mailslot.
 Receiving the source-time message isn’t crucial for every computer
 on the network (because time updates are sent relatively
 frequently); therefore, a source-time message is a good example for
 the use of mailslots, because the loss of a message will not cause
 any harm.
Like named pipes, mailslots are integrated with the Windows
 API. A mailslot server creates a mailslot by using the
 CreateMailslot function.
 CreateMailslot accepts a UNC name of the form
 “\\.\Mailslot\MailslotName” as an input parameter. Again like named
 pipes, a mailslot server can create mailslots only on the machine
 it’s executing on, and the name it assigns to a mailslot can include
 subdirectories. CreateMailslot also takes a
 security descriptor that controls client access to the mailslot. The
 handles returned by CreateMailslot are
 overlapped, which means that operations
 performed on the handles, such as sending and receiving messages,
 are asynchronous.
Because mailslots are unidirectional and unreliable,
 CreateMailslot doesn’t take many of the
 parameters that CreateNamedPipe does. After it
 creates a mailslot, a server simply listens for incoming client
 messages by executing the ReadFile function on
 the handle representing the mailslot.
Mailslot clients use a naming format similar to that used by
 named-pipe clients but with variations that make it possible to send
 messages to all the mailslots of a given name within the client’s
 domain or a specified domain. To send a message to a particular
 instance of a mailslot, the client calls
 CreateFile, specifying the computer-specific
 name. An example of such a name is “\\Server\Mailslot\MailslotName”.
 (The client can specify “\\.\” to represent the local computer.) If
 the client wants to obtain a handle representing all the mailslots
 of a given name on the domain it’s a member of, it specifies the
 name in the format “*\Mailslot\MailslotName”, and if the client
 wants to broadcast to all the mailslots of a given name within a
 different domain, the format it uses is
 “\\DomainName\Mailslot\MailslotName”.
After obtaining a handle representing the client side of a
 mailslot, the client sends messages by calling
 WriteFile. Because of the way mailslots are
 implemented, only messages smaller than 424 bytescan be sent. If a
 message is larger than 424 bytes, the mailslot implementation uses a
 reliable communications mechanism that requires a one-to-one
 client/server connection, which precludes multicast capability. This
 limitation makes mailslots generally unsuitable for messages larger
 than 424 bytes. Figure 7-11 shows an
 example of a client broadcasting to multiple mailslot servers within
 a domain.
[image: Mailslot broadcast]

Figure 7-11. Mailslot broadcast

Named Pipe and Mailslot Implementation

As evidence of their tight integration with Windows,
 named-pipe and mailslot functions are all implemented in the
 Kernel32.dll Windows client-side DLL. ReadFile
 and WriteFile, which are the functions
 applications use to send and receive messages using named pipes or
 mailslots, are the primary Windows I/O routines. The
 CreateFile function, which a client uses to
 open either a named pipe or a mailslot, is also a standard Windows
 I/O routine. However, the names specified by named-pipe and mailslot
 applications specify file-system namespaces managed by the
 named-pipe file-system driver
 (%SystemRoot%\System32\Drivers\Npfs.sys) and the mailslot
 file-system driver (%SystemRoot%\System32\Drivers\Msfs.sys), as
 shown in Figure 7-12.
The name- pipe file-system driver creates a device object
 named \Device\NamedPipe and a symbolic link to that object named
 \Global??\Pipe. The mailslot file-system driver creates a device
 object named \Device\Mailslot and a symbolic link named
 “\Global??\Mailslot”, which points to that device object. (See Chapter 3 for an explanation of the \Global??
 object manager directory.) Names passed to
 CreateFile of the form “\\.\Pipe\...” and
 “\\.\Mailslot\...” have their prefix of “\\.\” translated to
 “\Global??\” so that the names resolve through a symbolic link to a
 device object. The special functions
 CreateNamedPipe and
 CreateMailslot use the corresponding native
 functions NtCreateNamedPipeFile and
 NtCreateMailslotFile, which ultimately call
 IoCreateFile.
[image: Named-pipe and mailslot implementation]

Figure 7-12. Named-pipe and mailslot implementation

Later in the chapter, we’ll discuss how the redirector
 file system driver is involved when a name that specifies a remote
 named pipe or mailslot resolves to a remote system. However, when a
 named pipe or mailslot is created by a server or opened by a client,
 the appropriate file-system driver (FSD) on the machine where the
 named pipe or mailslot is located is eventually invoked. The reason
 that named pipes and mailslots are implemented as FSDs is that they
 can take advantage of the existing infrastructure in the object
 manager, the I/O manager, the redirector (covered later in this
 chapter), and the Server Message Block (SMB) protocol. (For more
 information about SMB, see Chapter 12, “File Systems,” in Part 2.)
 This integration results in several benefits:
	The FSDs use kernel-mode security functions to implement
 standard Windows security for named pipes and mailslots.

	Applications can use CreateFile to
 open a named pipe or mailslot because FSDs integrate with the
 object manager namespace.

	Applications can use Windows functions such as
 ReadFile and WriteFile
 to interact with named pipes and mailslots.

	The FSDs rely on the object manager to track handle and
 reference counts for file objects representing named pipes and
 mailslots.

	The FSDs can implement their own named pipe and mailslot
 namespaces, complete with subdirectories.

EXPERIMENT: Listing the Named-Pipe Namespace and Watching
 Named-Pipe Activity
It’s not possible to use the Windows API to open the root of
 the named-pipe FSD and perform a directory listing, but you can do
 this by using native API services. The PipeList tool from
 Sysinternals shows you the names of the named pipes defined on a
 computer as well as the number of instances that have been created
 for a name and the maximum number of instances as defined by a
 server’s call to CreateNamedPipe. Here’s an
 example of PipeList output:
C:\>pipelist

PipeList v1.01
by Mark Russinovich
http://www.sysinternals.com

Pipe Name Instances Max Instances
--------- --------- -------------
InitShutdown 3 -1
lsass 6 -1
protected_storage 3 -1
ntsvcs 3 -1
scerpc 3 -1
net\NtControlPipe1 1 1
plugplay 3 -1
net\NtControlPipe2 1 1
Winsock2\CatalogChangeListener-394-0 1 1
epmapper 3 -1
Winsock2\CatalogChangeListener-25c-0 1 1
LSM_API_service 3 -1
net\NtControlPipe3 1 1
eventlog 3 -1
net\NtControlPipe4 1 1
Winsock2\CatalogChangeListener-3f8-0 1 1
net\NtControlPipe5 1 1
net\NtControlPipe6 1 1
net\NtControlPipe0 1 1
atsvc 3 -1
Winsock2\CatalogChangeListener-438-0 1 1
Winsock2\CatalogChangeListener-2c8-0 1 1
net\NtControlPipe7 1 1
net\NtControlPipe8 1 1
net\NtControlPipe9 1 1
net\NtControlPipe10 1 1
net\NtControlPipe11 1 1
net\NtControlPipe12 1 1
142CDF96-10CC-483c-A516-3E9057526912 1 1
net\NtControlPipe13 1 1
net\NtControlPipe14 1 1
TSVNCache-000000000001b017 20 -1
TSVNCacheCommand-000000000001b017 2 -1
Winsock2\CatalogChangeListener-2b0-0 1 1
Winsock2\CatalogChangeListener-468-0 1 1
TermSrv_API_service 3 -1
Ctx_WinStation_API_service 3 -1
PIPE_EVENTROOT\CIMV2SCM EVENT PROVIDER 2 -1
net\NtControlPipe15 1 1
keysvc 3 -1
It’s clear from this output that several system
 components use named pipes as their communications mechanism. For
 example, the InitShutdown pipe is created by
 WinInit to accept remote shutdown commands, and the
 Atsvc pipe is created by the Task Scheduler
 service to enable applications to communicate with it to schedule
 tasks. You can determine what process has each of these pipes open
 by using the object search facility in Process Explorer.
Note
A Max Instances value of –1 means that there is no upper
 limit on the number of instances.

NetBIOS

Until the 1990s, the Network Basic Input/Output System
 (NetBIOS) programming API had been the most widely used network
 programming API on PCs. NetBIOS allows for both reliable
 connection-oriented and unreliable connectionless communication.
 Windows supports NetBIOS for its legacy applications. Microsoft
 discourages application developers from using NetBIOS because other
 APIs, such as named pipes and Winsock, are much more flexible and
 portable. NetBIOS is supported by the TCP/IP protocol on
 Windows.
NetBIOS Names

NetBIOS relies on a naming convention whereby computers and
 network services are assigned a 16-byte NetBIOS name. The sixteenth
 byte of a NetBIOS name is treated as a modifier that can specify a
 name as unique or as part of a group. Only one instance of a unique
 NetBIOS name can be assigned to a network, but multiple applications
 can assign the same group name. A client can send multicast messages
 by sending them to a group name.
To support interoperability with Windows NT 4 systems as well
 as Windows 9x/Me, Windows automatically defines a NetBIOS name for a
 domain that includes up to the first 15 bytes of the left-most
 Domain Name System (DNS) name that an administrator assigns to the
 domain. For example, if a domain were named
 mspress.microsoft.com, the NetBIOS name of the
 domain would be mspress.
Another concept used by NetBIOS is that of LAN adapter (LANA)
 numbers. A LANA number is assigned to every NetBIOS-compatible
 protocol that layers above a network adapter. For example, if a
 computer has two network adapters and TCP/IP and NWLink can use
 either adapter, there would be four LANA numbers. LANA numbers are
 important because a NetBIOS application must explicitly assign its
 service name to each LANA through which it’s willing to accept
 client connections. If the application listens for client
 connections on a particular name, clients can access the name only
 via protocols on the network adapters for which the name is
 registered.

NetBIOS Operation

A NetBIOS server application uses the NetBIOS API to enumerate
 the LANAs present on a system and assign a NetBIOS name representing
 the application’s service to each LANA. If the server is connection
 oriented, it performs a NetBIOS listen command to wait for client
 connection attempts. After a client is connected, the server
 executes NetBIOS functions to send and receive data. Connectionless
 communication is similar, but the server simply reads messages
 without establishing connections.
A connection-oriented client uses NetBIOS functions to
 establish a connection with a NetBIOS server and then executes
 further NetBIOS functions to send and receive data. An established
 NetBIOS connection is also known as a session.
 If the client wants to send connectionless messages, it simply
 specifies the NetBIOS name of the server with the send
 function.
NetBIOS consists of a number of functions, but they
 all route through the same interface: Netbios.
 This routing scheme is the result of a legacy left over from the
 time when NetBIOS was implemented on MS-DOS as an MS-DOS interrupt
 service. A NetBIOS application would execute an MS-DOS interrupt and
 pass a data structure to the NetBIOS implementation that specified
 every aspect of the command being executed. As a result, the
 Netbios function in Windows takes a single
 parameter, which is a data structure that contains the parameters
 specific to the service the application requests.
EXPERIMENT: Using Nbtstat to See
 NetBIOS Names
You can use the Nbtstat command, which
 is included with Windows, to list the active sessions on a system,
 the NetBIOS-to-TCP/IP name mappings cached on a computer, and the
 NetBIOS names defined on a computer. Here’s an example of the
 Nbtstat command with the
 –n option, which lists the NetBIOS names
 defined on the computer:
C:\Users\Toby>nbtstat -n

Local Area Connection:
Node IpAddress: [192.168.0.193] Scope Id: []

 NetBIOS Local Name Table

 Name Type Status

 WIN-NLRTEOW2ILZ<00> UNIQUE Registered
 WORKGROUP <00> GROUP Registered
 WIN-NLRTEOW2ILZ<20> UNIQUE Registered

NetBIOS API Implementation

The components that implement the NetBIOS API are shown in
 Figure 7-13. The
 Netbios function is exported to applications by
 %SystemRoot%\System32\Netbios.dll. Netbios.dll opens a handle to the
 kernel-mode driver named the NetBIOS emulator
 (%SystemRoot%\System32\Drivers\Netbios.sys) and issues Windows
 DeviceIoControl file commands on behalf of an
 application. The NetBIOS emulator translates NetBIOS commands issued
 by an application into TDI commands that it sends to protocol
 drivers.
[image: NetBIOS API implementation]

Figure 7-13. NetBIOS API implementation

If an application wants to use NetBIOS over the TCP/IP
 protocol, the NetBIOS emulator requires the presence of the NetBT
 driver (%SystemRoot%\System32\Drivers\Netbt.sys). NetBT is known as
 the NetBIOS over TCP/IP driver and is responsible for supporting
 NetBIOS semantics that are inherent to the NetBIOS Extended User
 Interface (NetBEUI) protocol (included in previous versions of
 Windows) but not the TCP/IP protocol. For example, NetBIOS relies on
 NetBEUI’s message-mode transmission and NetBIOS name-resolution
 facilities, so the NetBT driver implements them on top of the TCP/IP
 protocol.

Other Networking APIs

Windows includes other networking APIs that are used less
 frequently or are layered on the APIs already described (and outside
 the scope of this book). Five of these, however—Background Intelligent
 Transfer Service (BITS), Distributed Component Object Model (DCOM),
 Message Queuing (MSMQ), Peer-to-Peer Infrastructure (P2P), and
 Universal Plug and Play (UPnP) with Plug and Play Extensions
 (PnP-X)—are important enough to the operation of a Windows system and
 many applications to merit brief descriptions.
Background Intelligent Transfer Service

BITS is a service and an API that provides reliable
 asynchronous transfer of files between systems, using either the
 SMB, HTTP, or HTTPS protocol. BITS normally runs in the background,
 making use of unutilized network bandwidth by monitoring network
 utilization and throttling itself so that it consumes only resources
 that would otherwise be unused; however, BITS transfers might also
 take place in the foreground and compete for resources with other
 processes running on the system.
BITS keeps track of ongoing, or scheduled, transfers in what
 are known as transfer jobs (not to be confused
 with jobs and job objects as described in Chapter 5) for each user.
 Each job is an entry in a queue and describes the files to transfer,
 the security context (access tokens) to run under, and the priority
 of the job. BITS version 4.0 is integrated into BranchCache
 (described later in this chapter) to further reduce network
 bandwidth.
BITS is used by many other components in Windows, such as
 Microsoft Update, Windows Update, Internet Explorer (version 9 and
 later, for downloading files), Microsoft Outlook (for downloading
 address books), Microsoft Security Essentials (for downloading daily
 virus signature updates), and others, making BITS the most widely
 used network file-transfer system in use today.
BITS provides the following capabilities:
	Seamless data
 transfer. Components create BITS transfer jobs that will then run
 until the files are transferred. When a user logs out, the
 system restarts, or the system loses network connectivity,
 BITS pauses the transfer. The transfer resumes from where it
 left off once the user logs in again or network connectivity
 is restored. The application that created a transfer job does
 not need to remain running, but the user must remain logged
 in, while the transfer is taking place. Transfer jobs created
 under service accounts (such as Windows Update) are always
 considered to be logged on, allowing those jobs to run
 continuously.

	Multiple transfer
 types. BITS supports three transfer types: download (server to
 client), upload (client to server), and upload-reply (client
 to server, with a notification receipt from the
 server).

	Prioritization of
 transfers. When a transfer job is created, the priority is
 specified (either Foreground, Background High, Background
 Normal, or Background Low). All background priority jobs make
 use only of unutilized network resources, while jobs with
 foreground priority compete with applications for network
 resources. If there are multiple jobs, BITS processes them in
 priority order, using a round-robin scheduling system within a
 particular priority so that all jobs make progress on their
 transfers.

	Secure data
 transfer. BITS normally runs the transfer job using the security
 context of the job’s creator, but you can also use the BITS
 API to specify the credentials to use for impersonating a
 user. For privacy across the network, you should use the HTTPS
 protocol.

	Management. The BITS API consists of methods for creating, starting,
 stopping, monitoring, enumerating, modifying, or requesting
 notification of transfer-job status changes. Tools include
 BITSAdmin (which is deprecated and will be removed in a future
 version of Windows), and Windows PowerShell
 cmdlets (the preferred management
 mechanism).

When downloading files, BITS writes the file to a
 temporary hidden file in the destination directory. Of course, BITS
 will impersonate the user to ensure that file-system security and
 quotas are enforced properly. When the application calls the
 IBackgroundCopyJob::Complete method (or the
 Complete-BitsTransfer cmdlet in PowerShell),
 BITS renames the temporary files to their destination names, and the
 files are available to the client. If there is already a file in the
 destination directory with the same name, BITS overwrites the
 file.
When uploading files, by default, BITS does not allow
 overwriting an existing file. When the transfer is finished and BITS
 would overwrite the file, an error is returned to the client. To
 allow overwrites, set the BITSAllowOverwrites
 property to True in the Internet Information
 Services (IIS) metabase using PowerShell or Windows Management
 Instrumentation (WMI) scripting.
The BITS server is a server-side component that lets you
 configure an IIS server to allow BITS clients to perform file
 transfers to IIS virtual directories. Upon completion of a file
 upload, the BITS server can notify a web application of the new
 file’s presence (via an HTTP POST message) so the web application
 can process the uploaded files.
The BITS server extends IIS to support throttled, restartable
 uploads of files. To make use of the upload feature, you must create
 an IIS virtual directory on the server where you want the clients to
 upload their files. BITS adds properties to the IIS metabase for the
 virtual directory you create and uses these properties to determine
 how to upload the files.
For security reasons, BITS will not permit uploading files to
 a virtual directory that has scripting and execute permissions
 enabled. If you upload a file to a virtual directory that has these
 permissions enabled, the job will fail. Also, BITS does not require
 the virtual directory to be write-enabled, so it is recommended that
 you turn off write access to the virtual directory; however, the
 user must have write access to the physical directory.
In some cases, the BITS Compact Server might be used instead
 of IIS. The Compact Server is intended for use by enterprise and
 small business customers that meet the following conditions:
	The anticipated usage is a maximum of 25 URL groups, and
 each URL group supports up to three simultaneous file
 transfers

	File transfers occur between systems in the same domain or
 mutually trusted domains

	File transfers are not intended for Internet-facing
 clients

Figure 7-14 demonstrates how
 to load the BITS module within PowerShell, and some of the BITS
 PowerShell cmdlets.
Figure 7-15 demonstrates the use of the
 BITSAdmin tool, which is now deprecated in favor of PowerShell for
 managing and using BITS.
[image: Using BITS from PowerShell]

Figure 7-14. Using BITS from PowerShell

[image: BitsAdmin tool]

Figure 7-15. BitsAdmin tool

Figure 7-16
 shows BITS messages written to the event log.
[image: BITS messages in the event log]

Figure 7-16. BITS messages in the event log

Peer-to-Peer Infrastructure

Peer-to-Peer Infrastructure is a set of APIs that cover
 different technologies to enhance the Windows networking stack by
 providing flexible peer-to-peer (P2P) support for applications and
 services. The P2P infrastructure covers four major technologies,
 shown in Figure 7-17.
[image: Peer-to-peer architecture]

Figure 7-17. Peer-to-peer architecture

Here are the major peer-to-peer components:
	Peer-to-Peer
 Graphing. Allows applications to pass data between peers
 efficiently and reliably by using nodes and events.

	Peer-to-Peer Namespace
 Provider. Enables serverless name resolution of peers and their
 services (described later in the Name Resolution section).

	Peer-to-Peer
 Grouping. Combines graphing and namespace technologies to group
 and isolate services and/or peers into a defined group and
 uniquely identify it.

	Peer-to-Peer Identity
 Manager. Enhances the services offered by the namespace provider
 to securely create, publish, and identify peer names, as well
 as to identify group members that are part of the grouping
 API.

The Peer-to-Peer Infrastructure in Windows is also paired with
 the Peer-to-Peer Collaboration Interface, which adds support for
 creating collaborative P2P applications (such as online games and
 group instant messaging) and supersedes the Real-Time Communications
 (RTC) architecture in earlier versions of Windows. It also provides
 presence capabilities through the People Near Me (PNM)
 architecture.

DCOM

Microsoft’s COM API lets applications consist of different
 components, each component being a replaceable, self-contained
 module. A COM object exports an object-oriented interface to methods
 for manipulating the data within the object. Because COM objects
 present well-defined interfaces, developers can implement new
 objects to extend existing interfaces and dynamically update
 applications with the new support.
DCOM (Distributed Component Object Model) extends COM by
 letting an application’s components reside on different computers,
 which means that applications don’t need to be concerned that one
 COM object might be on the local computer and another might be
 across the network. DCOM thus provides location transparency, which
 simplifies developing distributed applications. DCOM isn’t a
 self-contained API but relies on RPC to carry out its work.

Message Queuing

Message Queuing is a general-purpose platform for developing
 distributed applications that take advantage of loosely coupled
 messaging. Message Queuing is therefore an API and a messaging
 infrastructure. Its flexibility comes from the fact that its queues
 serve as message repositories in which senders can queue messages
 for receivers, and receivers can de-queue the messages at their
 discretion. Senders and receivers do not need to establish
 connections to use Message Queuing, nor do they need to be executing
 at the same time, which allows for disconnected asynchronous message
 exchange.
A notable feature of Message Queuing is that it is
 integrated with Microsoft Transaction Server (MTS) and SQL Server,
 so it can participate in Microsoft Distributed Transaction
 Coordinator (MS DTC) coordinated transactions. Using MS DTC with
 Message Queuing allows you to develop reliable transaction
 functionality for three-tier applications.

UPnP with PnP-X

Universal Plug and Play is an architecture for peer-to-peer
 network connectivity of intelligent appliances, devices, and
 control points. It is designed to bring
 easy-to-use, flexible, standards-based connectivity to ad-hoc,
 managed, or unmanaged networks, whether these networks are in the
 home, in small businesses, or attached directly to the Internet.
 Universal Plug and Play is a distributed, open networking
 architecture that uses existing TCP/IP and Web technologies to
 enable seamless proximity networking in addition to control and data
 transfer among networked devices.
Universal Plug and Play supports zero-configuration, invisible
 networking, and automatic discovery for a range of device categories
 from a wide range of vendors. This enables a device to dynamically
 join a network, obtain an IP address, and convey its capabilities
 upon request. Then other control points can use the Control Point
 API with UPnP technology to learn about the presence and
 capabilities of other devices. A device can leave a network smoothly
 and automatically when it is no longer in use.
Plug and Play Extensions (PnP-X), shown in Figure 7-18, is an additional component of
 Windows that allows network-attached devices to integrate with the
 Plug and Play manager in the kernel. With PnP-X, network-connected
 devices are shown in the Device Manager like locally attached
 devices and provide the same installation, management, and
 behavioral experience as a local device. (For example, installation
 is performed through the standard Add New Hardware Wizard.)
[image: PnP-X implementation]

Figure 7-18. PnP-X implementation

PnP-X uses a virtual network bus driver that uses an IP bus
 enumerator service (%SystemRoot%\System32\Ipbusenum.dll) to discover
 PnP-X compatible devices, which include UPnP devices (through the
 Simple Service Discovery Protocol) and the newer Device Profile for
 Web Services (DPWS) devices (using the WS-Discovery protocol). The
 IP bus enumerator reports devices it discovers to the Plug and Play
 manager, which uses user-mode Plug and Play manager services if
 needed (such as for driver installation). It’s similar to wireless
 discovery (like Bluetooth) and unlike wired device discovery (like USB), however, PnP-X enumeration and
 driver installation must be explicitly requested by a user from the
 Network Explorer.
Note
DPWS v1.1 became an OASIS standard in June 2009 and has
 goals similar to those of UPnP, but it is tightly integrated with
 web services standards and frameworks and allows greater
 extensibility than UPnP.

Multiple Redirector Support

Applications access file-system resources on remote systems (often
 called file shares) using UNC paths—for example,
 \\servername\sharename\file. Resources can be accessed directly using
 the UNC name if it is already known and the logged-on user’s credentials
 are sufficient. Optionally, the Windows Networking (WNet) API can be
 used to enumerate computers and resources that those computers export
 for sharing, map drive letters to UNC paths, and explicitly specify
 credentials. To access SMB servers from a client, Microsoft supplies an
 SMB client, which has a kernel-mode component called the
 mini-redirector and a user-mode component called
 the Workstation service. (SMB is described in
 Chapter 12 in Part 2.) Microsoft also makes available redirectors that
 can access WebDAV resources, NFS v2/v3 resources (Windows Professional
 and Enterprise editions only), and Terminal Services–shared drives.
 Third parties can add their own redirectors to Windows. In this section,
 we’ll examine the software that decides which redirector to invoke for
 file access using UNC paths. Here are the responsible components:
	Multiple Provider Router (MPR) is a DLL
 (%SystemRoot%\System32\Mpr.dll) that determines which network to
 access when an application uses the Windows WNet API for browsing
 remote file resources.

	Multiple UNC Provider (MUP) is a driver
 (%SystemRoot%\System32\Drivers\Mup.sys) that determines which
 network to access when an application uses the Windows I/O APIs to
 open remote files through UNC paths or drive letters mapped to UNC
 paths.

Multiple Provider Router

The Windows WNet functions allow applications (including the
 Network and Sharing Center) to connect to network resources, such as
 file servers and printers, and to browse the different share points.
 Because the WNet API can be called to work across different networks
 using different transport protocols, software must be present to send
 the request to the correct network and to understand the results that
 the remote server returns. Figure 7-19 shows the
 redirector software responsible for these tasks.
[image: MPR components]

Figure 7-19. MPR components

A provider is software that
 establishes Windows as a client of a remote network server. Some of
 the operations a WNet provider performs include making and breaking
 network connections, as well as supporting network printing. The
 built-in SMB WNet provider includes a DLL, the Workstation service,
 and the redirector. Other network vendors need to supply only a DLL
 and a redirector.
When an application calls a WNet routine, the call passes
 directly to the MPR DLL. MPR takes the call and determines which
 network provider recognizes the resource being accessed. Each provider
 DLL beneath MPR supplies a set of standard functions collectively
 called the network provider interface. This
 interface allows MPR to determine which network the application is
 trying to access and to direct the request to the appropriate WNet
 provider software. The SMB Workstation service’s provider is
 %SystemRoot%\System32\Ntlanman.dll, as specified by the
 ProviderPath value under the
 HKLM\SYSTEM\CurrentControlSet\Services\LanmanWorkstation\NetworkProvider
 registry key.
When called by the WNetAddConnection2 or
 WNetAddConnection3 API function to connect to a
 remote network resource, MPR checks the
 HKLM\SYSTEM\CurrentControlSet\Control\NetworkProvider\HwOrder\ProviderOrder
 registry value to determine which network providers are loaded. It
 polls them one at a time, in the order in which they’re listed in the
 registry, until a provider recognizes the resource or until all
 available providers have been polled. You can change the
 ProviderOrder by using the Advanced Settings
 dialog box shown in Figure 7-20. You can
 access the dialog box by opening the Start menu, typing view network connections in the search box,
 and pressing Enter. This brings up the Network Connections dialog box.
 Press the Alt key on the keyboard, which will display the menus in the
 dialog box. Click on the Advanced drop-down menu, and choose Advanced
 Settings, and then click on the Provider Order tab.
[image: The provider order editor]

Figure 7-20. The provider order editor

The WNetAddConnection function can
 also assign a drive letter or device name to a remote resource. When
 called to do so, WNetAddConnection routes the
 call to the appropriate network provider. The provider, in turn,
 creates a symbolic-link object in the object manager’s namespace that
 maps the drive letter being defined to the redirector (that is, the
 remote FSD) for that network.
Figure 7-21 shows the
 Session 0 DosDevices directory corresponding to the LUID of the user
 who performed the drive-letter mapping, which is where connections to
 remote file shares are stored. The symbolic link created by network
 providers relies on MUP to serve as the connection between a network
 path and the corresponding redirector. The figure shows that MUP
 creates a device object named
 \Device\LanmanRedirector, which is itself a
 symbolic link to \Device\MUP (which is not shown in the figure because
 the symbolic link is in the \Device directory), with additional text
 included in the symbolic link’s value indicating to the MUP redirector
 which mini-redirector the drive letter corresponds to. The “\Global??”
 directory shows you the drive letters available to the system
 session—others will be mapped in the session-specific DosDevices
 directory.
Then, when the WNet or other API calls the object manager to
 open a resource on a different network, the object manager uses the
 device object as a jumping-off point into the remote file system. It
 calls an I/O manager parse method associated with the device object to
 locate the redirector FSD that can handle the request. (See Chapter 12
 in Part 2 for more information on file system drivers.)
[image: Resolving a network resource name]

Figure 7-21. Resolving a network resource name

Multiple UNC Provider

The Multiple UNC Provider (MUP,
 %SystemRoot%\System32\Drivers\mup.sys) is a file-system driver that
 exposes remote file systems to Windows. It is a single point where
 file system filter drivers can be layered to filter any and all I/O
 requests made to remote file systems. (Prior to Windows Vista, there
 were many inconsistencies and difficulties regarding filtering remote
 file systems.) MUP receives I/O requests for access to remote file
 systems (via UNC paths or drive letters mapped to them) and determines
 which redirector will handle the request. The term
 redirector is used because it redirects an I/O
 request to a remote system. Before, and optionally after, calling the
 redirector, MUP will call any registered surrogate
 providers that might provide file caching and path
 rewriting.
MUP implements what is known as a prefix
 cache, which is a list of which remote file system paths
 (\\<server name>[\<share name>]) that are handled by each
 redirector. It is possible that multiple redirectors could handle a
 particular prefix, so there is a list in the registry
 (HKLM\System\CurrentControlSet\Control\NetworkProvider\Order\ProviderOrder)
 containing a comma-separated list of the priority order in which MUP
 forwards requests to the redirectors. This list is also used to load
 the providers. Under ProviderOrder, there are two
 subkeys (HwOrder and Order)
 containing identical information in a value named
 ProviderOrder. A typical value is the
 following:
ProviderOrder REG_SZ RDPNP,LanmanWorkstation,webClient
Each entry specifies the name of a service in
 HKLM\System\CurrentControlSet\Services, where another subkey named
 NetworkProvider is found. For example, in the key
 HKLM\System\CurrentControlSet\Services\RDPNP\NetworkProvider are the
 following values:
DeviceName REG_SZ \Device\RdpDr
DisplayName REG_EXPAND_SZ @%systemroot%\system32\drprov.dll,-100
Name REG_SZ Microsoft Terminal Services
ProviderPath REG_EXPAND_SZ %SystemRoot%\System32\drprov.dll
The DeviceName value is the name assigned
 to the kernel-mode redirector’s device object.
 DisplayName is the formal name of the provider.
 (This can be either a string or the location of a string in the
 resource section of a DLL, as seen here.) Name is
 the name that will be displayed by net use to
 identify which redirector owns a particular drive.
 ProviderPath specifies the path where the
 provider DLL is located.
Note
Not all redirectors are, or have to be, listed in provider
 order. (Typically, you will see only RDPNP,
 LanmanWorkstation, webclient listed.) The priority of the
 redirectors not listed in the registry follows those that are listed
 in decreasing order and is then based upon the order in which the
 mini-redirector registered with MUP via
 FsRtlRegisterUncProviderEx via
 RxRegisterMinirdr.

The components of a prefix (server name and share name) that are
 claimed by a redirector varies; most redirectors usually claim both
 the server name and the share name of a UNC path (\\<server
 name>\<share name>[\<path>]). For example, for the path
 \\Server\Users\Brian\Documents, a redirector might claim the prefix
 \\Server\Users, which would cause MUP to route all requests containing
 that prefix to that particular redirector, such as
 \\Server\Users\David\Documents\Chapter7.doc; however, a path with the
 prefix \\Server\Backups will have to be resolved by querying the
 redirectors in priority order. If a redirector claims a prefix
 consisting of just a server name (for example, \\Server), MUP sends
 requests for all shares (for example, \\Server\Users, \\Server\WebDAV,
 and so on) on that server to the redirector.
MUP uses the names found in ProviderOrder
 to look up the name of the device implementing the redirector, by
 looking in HKLM\System\CurrentControlSet\Services\<redirector
 name>\NetworkProvider\DeviceName. DeviceName
 is a symbolic link, pointing back to MUP—for example,
 \Device\MUP\;LanmanRedirector. (The semicolon identifies this as a
 “targeted open,” meaning that MUP will not look in the prefix
 cache.)
The relationships between MUP and the other components that are
 part of the remote file system are shown in Figure 7-22.
[image: MPR and UNC architecture]

Figure 7-22. MPR and UNC architecture

Surrogate Providers

Prior to Windows Vista, the caching of remote file
 systems (Offline Files) was implemented inside the SMB
 mini-redirector, and the DFS-N (Distributed File System Namespace)
 client was implemented inside MUP. A unified cache was needed, so the
 remote file system architecture was redesigned for Windows Vista. The
 DFS-N client was moved into a separate driver component known as a
 MUP surrogate provider, and Offline Files became
 a separate driver acting both as a mini-redirector and a surrogate
 provider. Currently, there are two surrogate providers:
	Offline Files (%SystemRoot%\System32\Drivers\csc.sys), which
 determines whether a requested file should be or has been cached
 locally. Offline Files is hardcoded to be the highest priority
 surrogate.

	Distributed File System Client
 (%SystemRoot%\System32\Drivers\dfsc.sys), which determines whether
 the path to a requested file needs to be changed (rewritten) to
 point to another server or share. (The essence of DFS-N is that it
 collects one or more network shares in the same namespace.)
 DFSCDFS is hardcoded to be the second highest priority
 surrogate.

It might appear that having surrogates in the path between MUP
 and the redirectors would cause a performance penalty, but Offline
 Files does not process paths that are not enabled for offline access,
 and after rejecting a path, MUP will not forward Offline Files further
 I/Os directed at the path. Likewise, DFS does not process non-DFS
 paths.
The list of surrogates is hardcoded, so MUP does not support the
 addition of additional surrogates.

Redirector

A network redirector consists of software components installed
 on a system that support access to various types of resources on
 remote systems, using various network file protocols. The types of
 resources a redirector supports depends upon the redirector and the
 capabilities of the protocol system. Virtually all redirectors support
 UNC names, which allows the remote sharing of resources such as files,
 printers, named pipes, and mailslots (although a redirector might opt
 out of supporting pipes and mailslots, while still supporting printers
 and files). All redirectors shipping as part of Windows include the
 following components:
	A DLL loaded by MPR in user mode, to perform
 non-file-related operations such as determining the capabilities
 of the network provider, enumerating remote network resources,
 logging on to a remote network, and mounting remote network
 shares.

	A kernel-mode driver known as a
 mini-redirector that imports the RDBSS
 (Redirected Drive Buffering SubSystem) export driver
 (%SystemRoot%\System32\Drivers\rdbss.sys). The mini-redirector
 services file I/O requests directed at remote systems.

Some redirectors require one or more of the following optional
 components:
	A service process to assist the DLL and possibly store
 sensitive information or information that is global across client
 applications using a particular network or share. For example, the
 Workstation service (running in an SVCHOST process) keeps track of
 drive-letter to \\server\share mappings.

	A network protocol driver that implements the legacy
 Transport Driver Interface (TDI) on its upper edge is required if
 the redirector uses a network protocol not supplied by Windows.
 (In essence, this means anything other than TCP/IP.) Such a
 protocol driver is responsible for implementing communications
 with the remote system.

	A service process to assist the redirector. For example, the
 WebDav redirector forwards file-access operations to the WebClient
 user-mode service, which in turn issues the actual WebDav network
 protocol requests using HTTP APIs.

A redirector presents resources that are attached to
 remote systems as if they were attached to the local system. In
 Windows, there are no special file I/O APIs required to access
 resources on a remote system. When accessing a resource, an
 application generally does not know—nor does it care—whether the
 resource is located on the local system or on a remote system. The
 name “redirector” is used because it redirects file system operations
 to the remote system and returns to the application the responses from
 the remote system.
All redirectors that ship with Windows are implemented using the
 mini-redirector architecture, where protocol-specific code is
 implemented in a mini-redirector driver that imports the RDBSS
 library. RDBSS is implemented like a class driver, and the
 mini-redirectors are akin to port drivers. RDBSS registers with MUP by
 calling FsRtlRegisterUncProviderEx.
When a mini-redirector registers with RDBSS via
 RxRegisterMiniRdr, RDBSS in turn registers with
 MUP by calling FsRtlRegisterUncProviderEx. MUP
 routes requests (IRPs) to RDBSS, which performs processing that is
 common to all remote file systems, and then issues simplified requests
 via callback routines that mini-redirectors linked against it have
 registered. RDBSS provides common functionality such as a data
 structure and locking model, Cache Manager and Memory Manager
 integration, and handling of IRPs. This simplifies the implementation
 of the mini-redirectors, and it vastly reduces the amount of code that
 needs to be written and debugged.
Because RDBSS integrates with Cache Manager, RDBSS
 mini-redirectors might not directly see read and write requests on
 buffered handles (handles opened without
 specifying the FILE_FLAG_NO_BUFFERING flag to the
 CreateFile API); changes are cached by the cache
 manager on the local system until they need to be written back to the
 remote system. This improves response time, and it saves network
 bandwidth by aggregating writes and eliminating duplicate reads. RDBSS
 relies on the mini-redirector to tell it when it is safe to cache data
 for read and/or write. For example, the SMB mini-redirector uses
 opportunistic locks (more commonly known as
 oplocks, which are discussed in Chapter 12 in
 Part 2) to manage caching. An oplock is a cache coherency mechanism
 that allows file-system consumers to dynamically alter their caching
 state for a given file or stream (see Chapter 12 in Part 2 for more
 information about file system streams), while maintaining cache
 coherency between multiple concurrent users of a file. If the file (or
 stream) is not currently opened for read or write by another accessor
 (either locally or remotely), a client can locally cache reads,
 writes, and byte range locks. If the file is open by others but is not
 being written, writes and locks will not be locally cached, but reads
 can still be cached.

Mini-Redirectors

A mini-redirector implements a protocol necessary to contact a
 remote system and access its shared resources. The mini-redirector
 tries to make access to remote resources as transparent as possible to
 the local client application. For example, if there are network
 problems, a redirector might retry a request multiple times before it
 returns an error to the client application.
There are several mini-redirectors included with
 Windows:
	RDPDR (Remote Desktop Protocol Device Redirection), which
 allows access from a Terminal Server system to the client system’s
 files and printers
 (%SystemRoot%\System32\Drivers\rdpdr.sys)

	SMB (Server Message Block), which is the standard remote
 file system used by Windows (also known as CIFS, or Common
 Internet File System) (%SystemRoot%\System32\Drivers\MRxSMB.SYS).
 MRxSMB.SYS will load sub-redirectors, which are covered in the
 next section.

	WebDAV (Web Differencing and Versioning), which enables
 access to files over the HTTP(S) protocol
 (%SystemRoot%\System32\Drivers\MRxDAV.SYS).

	MailSlot (part of MRxSMB.SYS). Mailslots are handled very
 differently from named pipes. The surrogates are not called for
 I/Os sent to a mailslot, and prefix caching is not used. (All
 paths having “mailslot” as the share name are targeted directly at
 the mailslot mini-redirector.) There can be, at most, one mailslot
 mini-redirector, and it is currently reserved for the SMB
 redirector.

	Network File System (NFS) is an optional component that was
 formerly installed with Services For Unix (SFU) and is now an
 optional Windows component (available on all Server editions, but
 only Enterprise and Ultimate editions of Windows client) that can
 be installed using the Programs and Features control panel. (Click
 Turn Windows Features On Or Off, and then select Services For
 NFS.) NFS protocol versions 2 and 3 are supported.

Offline Files, covered in a following section, optionally
 enables disk caching and offline access to files accessed through the
 SMB protocol. Offline Files also registers as a MUP surrogate
 provider.

Server Message Block and Sub-Redirectors

The Server Message Block (SMB) protocol is the primary remote
 file-access protocol used by Windows clients and servers, and dates
 back to the 1980s. SMB version 1.0 (generally referred to as just
 SMB) was designed to operate in a friendly LAN
 environment, where speeds were typically 10 Mb/s and no one was trying
 to steal your data. To accomplish many common tasks required a series
 of synchronous messages between the client and the server. Little
 thought was given to WANs, because WANs were scarce at the time. In
 1996, SMB was submitted to the IETF as the Common Internet File System
 (CIFS). Microsoft documents the CIFS/SMB protocol in the MS-CIFS and
 MS-SMB protocol documents.
The SMB 2.0 protocol was released in Windows Vista and Windows
 Server 2008, and it was a complete redesign of the main remote file
 protocol for Windows. SMB 2.0 provides a number of improvements over
 SMB, such as the following:
	Greatly reduced complexity. The number of opcodes was
 reduced from over 100 to just 19.

	Reduced the chattiness of the protocol
 to make it more suitable for running across WANs, which generally
 have much longer latencies and lower bandwidth than LANs.

	Compound requests allow
 multiple requests to be sent in a single network packet.

	Pipelining requests allow multiple
 requests and data to be sent before the answer to a previous
 request is received (also known as credit-based flow
 control).

	Larger reads and writes.

	Caching of folder and file properties.

	Improved message-signing algorithm (HMAC SHA-256 replaced
 MD5).

	Improved scalability of file sharing.

	Works well with Network Address Translation (NAT).

	Support for symbolic links.

Version 2.1 of the SMB protocol (released with Windows 7 and
 Windows Server 2008/R2) is a minor release (documented in the MS-SMB2
 protocol specification). It adds the following improvements:
	A new opportunistic lock (oplock) leasing model, which
 allows greater file and handle caching opportunities—without
 requiring changes to existing applications

	Support for even larger transmission units (large MTU), from
 a previous maximum of 64 KB to 1 MB (by default, but configurable
 up to 8 MB via the registry).

To maintain backward compatibility with SMB servers, an SMB2
 client uses the existing SMB connection setup mechanisms, and then
 advertises that it supports a higher version of the protocol. The SMB
 mini-redirector contains all the functionality that is common between
 the different versions of the protocol, with a separate sub-redirector
 implementing each variant of the SMB protocol. An SMB2 client
 establishes a connection and sends an SMB negotiate request that
 contains both the supported SMB and SMB2 dialects. If the server
 supports SMB2, it responds with an SMB2 negotiate response, and the
 client hands the connection to the SMB2 sub-redirector. At that point,
 all messages on the connection are SMB2. If the server does not
 support SMB2, it responds with an SMB negotiate response, and the
 client hands the connection to the SMB1 sub-redirector:
	The common portions are implemented by
 %SystemRoot%\System32\Drivers\MRxSMB.sys.

	The SMB 1 protocol is implemented by
 %SystemRoot%\System32\Drivers\MRxSMB10.sys.

	The SMB 2 protocol is implemented by
 %SystemRoot%\System32\Drivers\MRxSMB20.sys.

Distributed File System Namespace

Distributed File System Namespace (DFS-N) is a namespace
 aggregation and availability feature of Windows. As organizations grow,
 the number of file servers tends to increase, and users find it
 increasingly difficult to find the files they need because the files
 might be spread over a number of different servers with completely
 unrelated names. DFS-N allows an administrator to create a new file
 share (also known as a root or
 namespace) that aggregates multiple file shares,
 from the same or different servers, into a single namespace. For
 example, assume the Aura Corporation had the following shares:
 \\Development\Projects, \\Accounting\FY2012, and \\Marketing\CoolStuff.
 These shares could be presented to users through a DFS-N
 namespace \\Aura\Teams containing DFS-N
 links called \\Aura\Teams\\Aura\Development,
 \\Aura\Teams\Accounting, and \\Aura\Teams\Marketing. The redirection of
 a client accessing the path \\Aura\Teams\Marketing to the real share
 path \\Marketing\CoolStuff is invisible to the user. In this example,
 \\Marketing\CoolStuff is the link target of
 \\Aura\Teams\Marketing. Link targets can, in fact, refer to paths below
 the root of a share like \\Marketing\CoolStuff\Presentations.
Other benefits that DFS-N provides are redundancy and
 location-aware redirection. Another major capability of DFS is
 availability, through a feature known as DFS Replication (DFSR).
 Replication provides two benefits: high availability in case of a
 failure, and load balancing. As an organization grows geographically,
 accessing file servers from remote offices with wide area network (WAN)
 connections might be slow and inefficient. An administrator could create
 a replicated version of a file server within the remote office,
 providing high-speed access to the files from the users within the
 remote office. A DFS-N link, such as \\Aura\Teams\Accounting in the
 preceding example, might have multiple link targets
 associated with it—for example, \\AccountingEurope\FY2012 and
 \\AccountingUS\FY2012. In this case, the DFS-N server returns to the
 client an ordered list of available target servers and takes into
 account the location of the client and the target servers (using Active
 Directory site information) when ordering the list so that the client
 can access the closest target first. If access to one link target fails,
 DFS-N tries the next available target, if available. When a DFS-N link
 has multiple target shares, the targets should normally contain the same
 data because the client accessing the namespace will access only one of
 the targets at a time. This can be accomplished using DFS Replication
 (DFS-R), discussed in the next section. A server-side implementation of
 DFS-N consists of a Windows service (%SystemRoot%\System32\Dfssvc.exe)
 and a device driver (%SystemRoot%\System32\Drivers\Dfs.sys). The DFSSVC
 service is responsible for exporting DFS topology-management interfaces
 and maintaining the DFS topology in either the registry (on non–Active
 Directory systems) or Active Directory. The DFS driver performs topology
 lookups when it receives a client request touching a link so that it can
 direct the client to the share where the file it is requesting
 resides.
On the client side, DFS-N support is implemented in a MUP
 surrogate provider driver (%SystemRoot%\System32\Drivers\Dfsc.sys) and
 an MPR/WNet provider implemented in %SystemRoot%\System32\Ntlanman.dll.
 The Distributed File System Client (DFSC) driver is responsible for
 determining if a UNC path is a DFS namespace, and if so, it translates
 the specified path into the name of one or more target shares.
 Communication with DFS-N servers is accomplished using the SMB
 redirector. The DFS-N client is only part of the I/O path when a file or
 directory is being created or opened. Once it returns the name of a target share to
 MUP, DFSC is not involved with subsequent I/O to the file.
The DFS-N protocols are documented in the MS-DFSC and MS-DFSNM
 protocol documents.

Distributed File System Replication

Distributed File System Replication (DFS-R) provides
 bandwidth-efficient, asynchronous, multimaster replication of
 file-system changes between servers. In addition to general-purpose,
 file-system replication (for example, keeping data on multiple DFS-N
 link target shares in sync), DFS-R is also used for replicating a domain
 controller’s \SYSVOL directory, which is where Windows domain
 controllers store logon scripts and Group Policy files. (Group Policy
 permits administrators to define usage and security policies for the
 computers that belong to a domain.) Because DFS-R supports multimaster
 replication, file-system changes can occur on any server, potentially
 simultaneously, and DFS-R will automatically handle conflicts and
 maintain synchronization of the file-system contents.
The fundamental unit of DFS replication is a DFS replicated
 folder, which is a directory tree whose contents will be synchronized
 across multiple servers according to an administratively defined
 schedule and replication topology. Replication schedules allow
 administrators to restrict replication activity to specific windows of
 time or restrict the amount of bandwidth that DFS-R will use.
Replication topologies allow administrators to define the network
 connections between a set of servers (called a replication
 group). Arbitrary topologies are supported, including common
 topologies such as ring, star, or mesh. The replication topology
 configuration is stored in Active Directory. Only directories on NTFS
 volumes can be replicated because DFS-R relies on the NTFS USN journal
 to detect changes to the contents of a replicated folder.
DFS-R uses several technologies to conserve network bandwidth,
 making it well-suited to replication over WANs that might have high
 latency and low bandwidth. Remote Differential Compression (RDC) allows
 DFS-R to identify and replicate only those pieces of a file that have
 changed, rather than the whole file. DFS-R also compresses content
 before sending it to a remote partner, providing additional bandwidth
 savings. On Enterprise or Datacenter SKUs, DFS-R makes use of an
 extended version of RDC called RDC Similarity to provide further
 bandwidth savings; if content is modified in a replicated folder on
 server A, and chunks of the modified content are similar to chunks of
 any file in partner server B’s replicated folder, server B satisfies the
 similar chunks of the update’s content locally from the similar files,
 rather than downloading all of the modified content from server
 A.
New capabilities for DFS-R in Windows Server 2008 R2 include
 support for clustering and true read-only replicas.
DFS-R is implemented as a Windows service
 (%SystemRoot%\System32\DfsrS.exe) that uses authenticated RPC with
 encryption to communicate between instances of itself running on
 different computers. There is also a WMI interface for configuration and
 management of the service, a file system minifilter used to protect
 read-only replicas from modification, and a cluster resource DLL for
 integration with MSCS. The DFS-R protocol is documented in the MS-FRS2
 specification.

Offline Files

Offline Files (also known internally as client-side
 caching, or CSC) transparently caches files from a remote system (a file
 server) on the local machine to make the files available when the local
 machine is not connected to the network. Offline Files caches files for
 remote files accessed over the SMB protocol. Files can be cached by
 users by simply right-clicking on a remote file, folder, or drive and
 selecting Always Available Offline, thus pinning
 the selected files to the cache. Cached items can be viewed in the Sync
 Center control panel. Caching also can be specified administratively
 using Group Policy.
There is a single Offline Files cache on the system, which is
 shared by all users of the system. All cached files are stored in an
 ACL-protected directory, which by default is %SystemRoot%\CSC. If you
 choose, you can encrypt the files in the Offline Files cache (accessed
 by going to Control Panel, Sync Center, and then clicking Manage Offline
 Files, clicking on the Encryption tab, and clicking the Encrypt button).
 Access to the cache is permitted only by using Offline File tools and
 the IOfflineFilesXxx COM APIs. The easiest way to examine the contents
 of the cache is to use the Sync Center control panel interface (click
 Manage Offline Files, and then click the View Your Offline Files
 button).
Offline Files understands two types of objects:
	Files. Includes files, folders, and symbolic links. Caching is not
 done at the NTFS level, so not all file NTFS attributes are cached
 or are cacheable. Cacheable attributes include the standard Win32
 file attributes (metadata), such as the name,
 ACL, and the contents—only a file’s (unnamed) data stream will be
 cached.

	Scope. A scope is the portion of a namespace that corresponds to a
 physical share. In a DFS namespace, the root of a scope is the
 object that is pointed to by a DFS link, which can contain
 additional DFS links to other scopes. If DFS is not being used, a
 scope and a share are the same thing.

Offline Files does not support complete NTFS semantics for cached
 files and has the following limitations:
	Offline Files does not cache alternate data streams, which are
 therefore not available offline. When online, access to alternate
 data streams works because I/O requests for streams go directly to
 the server.

	Offline Files does not cache Extended Attributes (EAs). An
 implication of this is that if a file containing EAs is cached and
 the cached version is modified while the server is offline, any EAs
 on the server are deleted when changes are written back to the
 server.

Offline Files consists of the following components, as shown in
 Figure 7-23:
	A user-mode agent (%SystemRoot%\System32\cscsvc.dll) running
 as a service in an SVCHOST process. This service is primarily
 concerned with maintaining synchronization between the cache and
 remote file systems. It also implements the COM interfaces used to
 interact with the Offline Files cache.

	A remote file system driver
 (%SystemRoot%\System32\Drivers\csc.sys) that acts as both a MUP
 surrogate provider and a mini-redirector. This driver is responsible
 for controlling when I/O requests are sent to the cache or to the
 remote file system. The driver also implements the local cache,
 updating the cached data as appropriate based on the I/O requests
 seen.

	An Explorer extension DLL (%SystemRoot%\System32\cscui.dll)
 for selecting which files, folders, or drives to pin in the Offline
 Files cache, and for displaying icon overlays to identify offline
 (cached) files. CSCUI links against
 %SystemRoot%\System32\cscobj.dll, which provides the interface to
 the Offline Files service.

	A DLL (%SystemRoot%\System32\cscapi.dll) containing publicly
 available Win32 APIs for interacting with the Offline Files from
 applications.

	An in-process COM object (%SystemRoot%\System32\cscobj.dll)
 used by application clients of Offline Files COM APIs.

[image: Offline Files architecture]

Figure 7-23. Offline Files architecture

Caching Modes

Offline Files has five caching modes. The mode for an
 object is dependent upon the object’s connection status, which is
 determined by whether or not the local system has a network connection
 to the file server.
Online

This is the default mode for objects cached by Offline Files.
 In this mode, the server is available. The file system metadata
 operations and write operations flow to the server, and the cache
 state is updated as required. Read operations are serviced from the
 cache. When working online, Offline Files attempt to cache data only
 if the SMB client has been granted at least read-caching privileges
 from the file server.

Offline (Slow Connection)

To isolate the user from fluctuations in network performance,
 Offline Files transition into Offline (Slow Connection) mode when
 the network performance meets the configured slow-link latency or
 bandwidth thresholds. In Windows 7, a default slow-link latency
 threshold is configured at 80 milliseconds (ms). The latency and
 bandwidth thresholds can be controlled via the Group Policy editor
 (%SystemRoot%\gpedit.msc) via the Configure Slow-Link Mode
 policy.
When working in this mode, all file-system operations are
 serviced by the Offline Files cache. The data is synchronized back
 to the server every six hours by default, but this synchronization
 frequency can be controlled through Group Policy via the Configure
 Background Sync policy.
The Offline Files Service periodically checks the network
 performance of the shares in the Offline Files cache. If the network
 latency improves to be less than half the configured slow-link
 latency threshold, the user will transition back to working
 online.
The slow-link behavior can be controlled via the Group Policy
 editor (%SystemRoot%\gpedit.msc) as shown in Figure 7-24.
[image: Offline Files Group Policy settings]

Figure 7-24. Offline Files Group Policy settings

Offline (Working Offline)

The user can force the client to work offline by
 clicking the Work Offline button in Explorer. When running in this
 mode, all file-system operations are satisfied from the cache.
 Periodic background synchronization of the data can be enabled in
 this mode through the Configure Background Sync policy, but by
 default they are not enabled. If the user wants to work online
 again, he must click the Work Online button in Explorer.

Offline (Not Connected)

A cached object is in Offline (Not Connected) mode when the
 server is not accessible. The transition to offline is transparently
 satisfied through the Offline Files cache, without the application
 knowing. When the network connection to the server is
 re-established, any changes written to the file are synchronized
 back to the server by the Offline Files agent. If a file is modified
 on both the client and the remote system while the file was offline,
 the conflict must be resolved by the user through Sync
 Center.

Offline (Need to Sync)

When a user transitions back online after making changes to
 the version of the file in the local cache, the status of this file
 will be Offline (Need to Sync) until the changes are synchronized
 back to the server. Offline Files keep the user working offline for
 the affected files until that synchronization is complete to ensure
 that the user sees a consistent view of the files, include the
 changes made while working offline.

Ghosts

When files are selected to be available offline, they
 must be copied from the server to the client. Until the transfer is
 complete, not all the files will be visible on the client. This can
 cause confusion for the user if the server drops offline and the user
 tries to access a file before it is in the cache. To address this
 case, Offline Files creates ghosts of the files
 and directories on the server within the cache as soon as caching is
 enabled. The ghosts are markers for files and directories that have
 not been copied and are unavailable in the cache. Explorer displays
 ghosted files with an overlay on the file’s icon. As the cache is
 filled, the ghost entries eventually disappear. If the user tries to
 access a ghosted file and the server is online, the file is copied
 immediately to the cache and the ghost overlay is removed.
When a subdirectory of a share is pinned into the Offline Files
 cache, ghosts are also used to provide the user context to the
 surrounding namespace that is not cached. When offline, the sibling
 files and directories appear in a ghosted state so that the user does
 not think that this other content somehow disappeared. When files and
 directories are ghosted for this purpose, they are neither cached by
 Offline Files nor are they available while working offline, unless
 they are explicitly pinned in the Offline Files cache.

Data Security

The goal of Offline Files is to provide the same file-access
 experience for remote files that the user experience for local files.
 To achieve that end, Offline Files caches the users and their
 effective access for each file and directory in the cache. This
 information is used by the Offline Files driver to enforce the
 appropriate access on the objects in the cache. Encrypted files using
 EFS on the server are also encrypted in the cache.
Offline Files caches access for a given user as the data is
 accessed or synchronized on behalf of that user. For example, if two
 users, Able and Baker, share a laptop, and user Able marks a file on
 the server to be available offline, the file is copied to the cache
 and only Able’s access is cached. If the server drops offline, user
 Baker would not be able to access the file in the cache; however, when
 the server is online again, and Baker tries to access the file,
 Offline Files updates the cache to reflect user Baker’s access,
 allowing both users to access the file when working offline.
Files protected with EFS remain protected but are encrypted in
 the security context of the first user to bring the data into the
 cache. When working offline, only this user will be able to access the
 data in the cache.

Cache Structure

By default, the root directory for the Offline Files cache is
 located in %SystemRoot%\CSC and is protected with a DACL that grants
 Administrators full control of the directory and everyone else read,
 Read & Execute, and List Folder Contents access. As shown in Figure 7-25, beneath the
 root directory is a subdirectory with a name equal to the current
 version of the database schema (currently, 2.0.6) and a security
 descriptor specifying an owner SID of S-1-5-12, which is used to
 indicate it is owned by restricted code and
 cannot be accessed by anyone other than the Offline Files service.
 This security descriptor is inherited by all files and subdirectories
 beneath the schema version directory.
[image: Default Offline Files directory structure]

Figure 7-25. Default Offline Files directory structure

In the schema version directory are two files and two
 directories. The files consist of the Priority Queue (pq) and SID Map
 (sm) databases. The Priority Queue is a database that tracks the usage
 of the files within the cache and orders them from most recently used
 to least recently used. The Offline Files agent threads walk the queue
 tail to head when pushing files out of the cache when the cache’s disk
 quota has been exceeded. Within the Offline Files cache, an internal
 user ID is used to represent a user when storing that user’s access.
 The SID Map is used to map these internal user IDs to SIDs. This
 becomes important when the server is offline and Offline Files must
 validate the user’s access itself.
The namespace directory is the root of the
 cache and contains a directory for each server that Offline Files is
 caching. The temp directory is for encryption and
 is also used as a temporary location for files that are removed from
 the namespace before they are deleted. The temp directory is used as a
 scratch area by Offline Files.
For every file in the Offline Files cache, Offline Files adds a
 sparse NTFS alternate data stream named
 CscBitmapStream, which contains a bitmap
 indicating which pages of the file have been modified while the file
 was “offline” (server not reachable). Each bit in the bitmap
 represents a 4-KB page within the file. This bitmap is not created
 until the first offline write to a file. Writes that extend the file
 are not included in the bitmap. If the file is truncated while
 offline, the bitmap is also truncated to match the new length of the
 file. When the server is next online, only the changed pages are
 written to the server.

BranchCache

BranchCache is a generalized content-caching mechanism
 designed to reduce network bandwidth, especially over WANs. The name
 BranchCache comes from the concept of branch
 offices within a company connecting to the company’s centralized servers
 via WAN links, which are typically hundreds of times slower than LAN
 links and caching content used by computers in the branch office within
 that branch office. Moving the content cache to the branch office
 drastically reduces the time to access the content because the data does
 not have to traverse the WAN.
Unlike Offline Files, which caches only files, BranchCache caches
 content, which is anything that can be identified
 by a URL, such as files, web pages, an HTTP video stream, or even a blob
 accessed from a database or cloud service.
BranchCache does not access the files in the CSC cache, because
 CSC is a client of BranchCache. Instead, Offline Files uses BranchCache
 to populate its own cache.
A variety of protocols make use of BranchCache, including the
 following ones:
	Server Message Block
 (SMB). Used to access files on file servers

	HTTP(S). Web pages, video streams, and other content identified by a
 URL

	Background Intelligent Transfer
 Service (BITS). Used to transfer files, and runs over HTTP/TLS 1.1

Figure 7-26 depicts the
 BranchCache architecture.
[image: BranchCache architecture]

Figure 7-26. BranchCache architecture

BranchCache’s operation is transparent to the applications
 accessing the content being cached, as shown in Figure 7-26. When BranchCache is enabled on a
 client, a request made by that client to a content server carries
 headers/metadata (the exact mechanism depends upon the protocol used) to
 let the remote content server know that the client has BranchCache
 enabled. In this case, the content server returns content information
 (CI) describing that content, rather than the requested content. The CI
 contains hashes of all the segments and blocks in which the content is
 chunked. (This is covered in more detail later.) The client uses the CI
 for retrieving part, or all, of the content from the local BranchCache.
 If any part of the content is not available locally, the client goes
 back to the remote content server to retrieve the data that was not
 present in the local BranchCache and, once the data is retrieved, offers
 the missing data to the local BranchCache so that the same data can be
 served to other clients in the future.
BranchCache operates in two caching modes, as shown in
 Figure 7-27:
	Hosted Cache. A single server in a branch office (running Windows Server
 2008/R2, or later), with the BranchCache feature enabled, contains
 the entire content cache for all BranchCache-enabled systems
 within that branch office.

	Distributed
 Cache. Instead of a hosted cache server caching content for the
 remote office, the clients within the remote office cache the
 content files themselves. The cache is spread across all the
 clients on the same subnet. There is no effort to evenly
 distribute the contents of the cache among peers within a branch
 office. In general, until the maximum local cache size is reached,
 each client has a copy of all the content it has accessed
 (resulting in content being duplicated throughout the distributed
 cache). This is desirable because it adds redundancy and some
 resiliency to the cache, especially when clients join and leave
 the branch office network frequently, as is often the case when
 the users are working on laptops. The distributed cache is
 implemented using peer-to-peer networking, using the Web Services
 Discovery (WS-D) multicast protocol to locate which client has the
 content in its cache, with a 300-millisecond timeout.

[image: Types of BranchCache caching]

Figure 7-27. Types of BranchCache caching

BranchCache is fully compatible with end-to-end encryption, such
 as IPsec. Just like with CSC, Windows’ existing security mechanisms are
 used to ensure that access to cached content operates the same way that
 it would if the content were not cached.
BranchCache is similar to Offline Files, but it differs in
 several important ways. The most important of which is that content in
 the BranchCache is not available if the WAN is down. This is because the
 content is identified by a hash list generated and stored on the server,
 which the client uses to locate the cached content within the
 BranchCache (distributed or hosted). Some BranchCache features the
 following behaviors:
	Data transfer uses AES encryption.

	For content that is not file-based, BranchCache caches only
 content that is larger than 64 KB. (This can be changed by editing
 the registry value
 HKLM\System\CurrentControlSet\Services\PeerDistKM\Parameters\MinContentLength
 on the server.)

Caching Modes

BranchCache maintains two different local caches on each
 BranchCache-enabled system (which can be BranchCache content servers
 on one side of the WAN link, and BranchCache clients and BranchCache
 hosted cache servers on other side):
	The publication cache stores content
 information metadata for content published using the BranchCache
 Server APIs (PeerDistServerXxx). The content
 information structure contains hashes of the various segments and
 blocks in which BranchCache breaks up the content into chunks,
 along with the secret needed to generate public and private
 content identifiers and the encryption key.

	Publishing is usually thought of as a server-side operation,
 though any BranchCache client can publish content. With regard to
 publishing, BranchCache offers two different approaches to its
 client applications/protocols for generating/managing/storing
 BranchCache content information metadata:
	An application and/or protocol that uses BranchCache
 acceleration can ask BranchCache to store content information
 metadata on its behalf (in the BranchCache publication cache),
 allowing BranchCache to manage the lifetime of that metadata
 according to rules, timelines, and limits shared across
 multiple applications using BranchCache. This is achieved by
 publishing via the PeerDistServerXxx
 APIs, and it is what the HTTP-BranchCache and BITS-BranchCache
 integrations do.

	Alternatively, an application/protocol that wants to use
 BranchCache acceleration can ask BranchCache to generate only
 content information metadata without storing it, and instead
 simply return the metadata to the application or protocols. In
 this case, the application or protocol has to implement its
 own way to store or manage that metadata. This is what the
 SMB-BranchCache integrations does.

In both cases, the protocol integrated with BranchCache or
 the application using BranchCache directly is responsible for
 transporting that content information metadata through the WAN
 link from the publishing content server to the clients in the
 remote branches. BranchCache does not have, or control, a data
 channel crossing the WAN link. The transport of content
 information metadata is intentionally left to the protocol or
 application using BranchCache acceleration, so that the metadata can be
 transported with the same level of security, authentication, and
 authorization that would have been used for retrieving the actual
 content when BranchCache is not used. This is consistent with the
 fact that, from a security standpoint, owning a copy of the
 BranchCache content information for a given content is equivalent
 to owning the entire content and therefore being authorized to
 retrieve a copy of it from other BranchCache entities (clients,
 hosted cache servers, or third-party implementations).
The publication cache does not store any actual data of the
 published content; it stores only content information metadata.
 Publications tend to last for long periods of time, though the
 actual length of time is determined by the application that
 publishes the content. By default, the publication cache is
 constrained to consume no more than one percent of the volume on
 which it is located, which is specified by
 %SystemRoot%\ServiceProfiles\NetworkService\AppData\Local\PeerDistPub.
 The size and location of the publication cache can be changed
 using NetSh:
	netsh branchcache set publicationcache
 directory=C:\PublicationCacheFolder

	netsh branchcache set publicationcachesize size=20
 percent=TRUE

	The republication cache contains both
 metadata (but no secrets) and actual data (chunked in segments and
 blocks) for the BranchCache content retrieved by the local
 BranchCache client. It is stored with the purpose of making those
 chunks of content available to other BranchCache clients.
 Republished content is stored for up to 28 days, but it can be
 flushed out earlier if the republication cache has reached its
 limit and space is needed for newer content to be republished. By
 default, the republication cache is constrained to consume no more
 than five percent of the volume on which it is located, which is
 by specified by
 %SystemRoot%\ServiceProfiles\NetworkService\AppData\Local\PeerDistRepub.
 The location and the size of the republication cache can be
 changed using NetSh:
	netsh branchcache set localcache
 directory=C:\BranchCache\Localcache

	netsh branchcache set localcache size=20
 percent=TRUE

BranchCache attempts to persist the republication cache across
 system reboots through the use of an index file that contains the
 database of segment descriptors. When the system reboots, BranchCache
 validates the general integrity of the republication cache by checking
 that it was properly closed. If the republication cache fails this
 consistency check, it is discarded. The publication cache is not
 persisted across reboots. The private SMB-BranchCache publication
 cache needs no explicit persistence; persistence comes for free, as a
 result of the SMB-BranchCache integration (which was covered
 previously) and the fact that with the SMB all published content is
 actual files. The hashes are validated before access to the files in
 the cache is allowed.
Configuration

BranchCache can be configured using the Local Security Group
 Policy editor as shown in Figure 7-28, using the
 network shell (NetSh) as shown in Figure 7-29, or as part of
 Group Policy pushed by an administrator (within a domain).
[image: Configuring BranchCache using the Group Policy editor]

Figure 7-28. Configuring BranchCache using the Group Policy
 editor

[image: Configuring BranchCache using the network shell]

Figure 7-29. Configuring BranchCache using the network shell

	BranchCache Implementationservice in
 %SystemRoot%\PeerDistSvc.dll. This service starts when the
 BranchCache is enabled on both clients and servers, and it
 interacts with the kernel-mode components (drivers).

	HTTP extension driver in
 %SystemRoot%\System32\Drivers\PeerDistKM.sys. This driver
 registers with the Network Module Registrar (NMR) as a client of
 the http.sys driver and examines all HTTP packets going into and
 out of the system. It adds files to the cache and retrieves
 cached content information for published content from the
 BranchCache service, rather than sending the request to the web
 server.

	BranchCache APIs
 (PeerDistXxx) are exported by
 %SystemRoot%\System32\PeerDist.dll, which uses LRPC/ALPC to
 communicate with the BranchCache service.

	The BranchCache HTTP transport in
 %SystemRoot%\System32\PeerDistHttpTrans.dll implements the
 transport on top of which the Peer Content Caching and
 Retrieval: Retrieval Protocol [MS-PCCRR] exchanges data between
 BranchCache clients and/or hosted cache servers. Each MS-PCCRR
 message is encapsulated in a simple transport message, which in
 turn, is sent over an HTTP request.

	The Web Services Discovery Provider in
 %SystemRoot%\System32\PeerDistWSDDiscoProv.dll implements the
 WS-D protocol to discover which clients on the LAN are caching a
 particular file (or part of a file).

	The BranchCache Network Shell Helper in
 %SystemRoot%\System32\PeerDistSh.dll is an extension to the
 Network Shell (%SystemRoot%\System32\Netsh.exe) application that
 provides users with a means of monitoring and configuring the
 BranchCache service. Network Shell helper DLLs are installed by
 adding a string value to
 HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\NetSh, which provides the
 Network Shell with the path to the helper DLL.

	A standalone variant of all the BranchCache APIs are
 implemented in
 %SystemRoot%\System32\PeerDistHashPeerDistHash.dll (only present
 on Windows Server systems), which contains all of the
 BranchCache APIs and functionality and does not require the use
 of the BranchCache service. This component is designed for use
 by other Windows features that are tightly integrated with
 BranchCache, such as the SMB Groveler, which generates the
 hashes on the server.

	Hash groveler service in %SystemRoot%\System32\smbhash.exe
 (only on Windows Server systems). The groveler runs on the file
 or web server and generates hashes when clients request a hash
 list. The groveler monitors a given namespace or share and
 ensures that the BranchCache hashes are updated for all files
 within that namespace. All groveler I/O runs at low I/O priority
 so as not to interfere with the normal operation of the
 system.

BranchCache uses the following protocols, which are documented
 at www.microsoft.com:
Peer Content Caching and Retrieval: Content Identification, as
 defined in [MS-PCCRC], defines the content information structures
 previously described. Peer Content Caching and Retrieval: Discovery
 Protocol, as defined in [MS-PCCRD], specifies a multicast to
 discover and locate services based on the Web Services Dynamic
 Discovery (WS-Discovery) protocol [WS-Discovery]. There are two
 modes of operations in WS-Discovery: client-initiated probes and
 service-initiated announcements. Both are sent through IP multicast
 to a predefined group. The primary role in the Content Caching and
 Retrieval System is Content Discovery.
	Peer Content Caching and Retrieval: Retrieval Protocol, as
 defined in [MS-PCCRR], specifies the messages that are necessary
 for querying peer-role servers or a hosted cache server for the
 availability of certain content, and for retrieving the content.
 The primary role in the Content Caching and Retrieval System is
 Content Retrieval.

	Peer Content Caching and Retrieval: Hosted Cache
 Protocol, as defined in [MS-PCHC], specifies an HTTPS-based
 mechanism for clients to notify a hosted cache server regarding
 the availability of content and for a hosted cache server to
 indicate interest in the content. The primary role in the
 Content Caching and Retrieval System is Content
 Notification.

	Peer Content Caching and Retrieval: Hypertext Transfer
 Protocol (HTTP) Extensions, as defined in [MS-PCCRTP], specifies
 a content encoding known as PeerDist that
 is used by an HTTP/1.1 client and an HTTP/1.1 server to
 communicate content to each other. The primary role in the
 Content Caching and Retrieval System is Metadata (Hash)
 Retrieval.

	Server Message Block (SMB) Version 2.1 Protocol, as
 defined in [MS-SMB2]. Version 2.1 of this protocol has
 enhancements for the detection of content caching-enabled shares
 and retrieval of metadata related to content caching. The
 primary role in the Content Caching and Retrieval System is
 Metadata (Hash) Retrieval.

Supporting SMB-BranchCache integration requires the following
 changes on both the clients and servers. On the client, the
 functionality of the existing client-side caching (CSC) components
 were extended. On the server, the SMB Server Driver (srv2.sys) was
 extended to support hash list retrieval from the server, and a new
 service was added, the SMB Hash Generation Service (also known as
 the Groveler), to manage the generation, updating, and deletion of
 hashes for content on an SMB share.

BranchCache Optimized Application Retrieval: SMB
 Sequence

The following sequence describes how content that is cached by
 BranchCache is delivered to an application without requiring any
 changes to the application, as shown in Figure 7-30. This sequence refers to the
 case when the channel/protocol of choice for that application is
 SMB—for example, the application opens the file from the remote share
 with CreateFile (or something that calls
 CreateFile, such as fopen)
 and reads from the file. If the application decides to retrieve the
 data via an HTTP request (backed by either
 WinHTTP or WinInet), the
 sequence is very different, but it is still a sequence completely
 transparent to the application.
BranchCache and SMB are integrated through the Offline Files
 component in Windows. The Offline Files service opportunistically
 tries to prefetch files accessed via SMB to optimize network usage and
 user experience on the client side. The offline files driver might
 temporarily delay the application’s read to give the prefetch from
 BranchCache an opportunity to stay ahead of the application’s read
 position. This delay is calculated based on the measured latency to
 the file server.
Data retrieval begins with an application reading data from a
 file on a remote SMB share. When Offline Files is enabled on the
 client and BranchCache is not enabled, the application’s read request
 flow through the offline files driver to the SMB server. When both
 offline files and BranchCache are enabled on the client, the following
 steps occur:
	The offline files driver intercepts the read I/O request and
 determines whether the following specific conditions have been met
 to initiate prefetching the file:
	The data is not already stored in the offline files
 cache. If the data is already present, the application’s read
 will be satisfied by this data without making any data
 requests to the file server.

	The latency to the server (as observed by the client so
 far) is above the configured threshold.

	BranchCache hash generation is enabled on the file
 share.

	The target file size is at least 64 KB.

	The read is beyond the first 64 KB of the file.

	If the preceding conditions are met, the offline files
 driver notifies the offline files service to start prefetching the
 file.

	The offline files service then retrieves the content
 information from the file server. If the server has the up-to-date
 content information for the specified file, it returns it to the
 client. If there is no content information for the specified file
 or if it is out of date, the SMB hash-generation service on the
 file server will be requested to generate new content information
 for this file, and no content information is returned to the
 client, causing offline files to skip BranchCache retrieval for
 this file.

	If content information is retrieved from the file server,
 the offline files service then uses that information to attempt to
 retrieve data from BranchCache.

	BranchCache attempts to retrieve the data either from peers
 or the hosted cache (depending on the configuration). If data is
 found, it is returned to the offline files service; otherwise, an
 error is returned.

	If data is found in BranchCache, the data is written to the
 offline files cache and the prefetch thread continues to attempt
 to retrieve data from BranchCache until it has retrieved up to 8
 MB of data or it fails to retrieve data.

	When the application’s read operation is allowed to proceed,
 it attempts to read the data from the offline files cache, which
 is prepopulated by data from BranchCache if the prefetch thread
 successfully retrieved data. Otherwise, the application’s read is
 allowed to flow to the server to retrieve data. Data retrieved
 from the file server is then cached in the offline files cache for
 later publication to BranchCache.

	When the Offline Files Service is requested to prefetch data
 from BranchCache, it also attempts to publish any data to
 BranchCache for the file from the offline files cache. File data
 is stored in the offline files cache until the offline files cache
 needs to reclaim space for newer files. The same data is also
 stored in BranchCache’s republication cache so that it can be
 shared with other BranchCache clients and across different
 protocols/applications integrated with BranchCache.

If the client accesses the same content again (after
 closing the file and opening it again) and the content has not been
 changed on the server, the application will be able to retrieve the
 data from the Offline Files cache without doing the BranchCache
 lookup. This is called transparent
 caching.
If the requested data cannot be found through BranchCache, once
 it is retrieved from the SMB server it will be republished to the
 BranchCache for access by other clients. (These steps are not shown in
 Figure 7-30.)
[image: BranchCache request flows]

Figure 7-30. BranchCache request flows

BranchCache Optimized Application Retrieval: HTTP
 Sequence

The following sequence describes how content that is cached by
 BranchCache is delivered to an application without requiring any
 changes to the application. This sequence covers the case when the
 channel/protocol of choice for that application is HTTP, for example
 the application retrieves the content via an HTTP request based on
 either WinInet or WinHTTP APIs.
BranchCache and HTTP are tightly integrated, both in terms of
 HTTP.sys on the server side and WinInet and WinHTTP on the client
 side. In contrast with the SMB-BranchCache integration, when
 BranchCache is enabled on both client and server, an application’s
 HTTP requests are always stalled, waiting for BranchCache retrievals.
 The HTTP-BranchCache integration is focuses on minimizing the usage of
 the WAN’s bandwidth (even when the WAN happens to be very fast and has
 very low latency), and all the data that can be retrieved via
 BranchCache will be transferred via BranchCache.
	Data retrieval begins with an application issuing an HTTP
 Request.

	When BranchCache is enabled on the client, the HTTP client
 stack (either WinInet or WinHTTP) adds headers to the request
 indicating that the client is capable of understanding the
 PeerDist HTTP encoding (as defined in [MS-PCCRTP]).

	The HTTP client stack sends the request to the remote
 content server, typically across the WAN link.

	The kernel-mode HTTP driver (HTTP.sys) receives the request
 on the content server. If BranchCache is enabled on that server,
 HTTP.sys forwards a copy of the request to the BranchCache HTTP
 extension driver (PeerDistKM.sys), which keeps track of the
 request and retrieves content information for that content
 (identified by its URL and content tags) from the BranchCache
 service.

	The kernel-mode HTTP driver delivers the HTTP request to the
 associated web server in user mode (typically, IIS or a web
 service) and waits for a response.

	The HTTP server authenticates and authorizes the client, it
 generates the response accordingly, and it starts streaming the
 response down to HTTP.sys.

	Because BranchCache is enabled, HTTP.sys redirects the
 response through PeerDistKM.sys.

	If the content information for that HTTP content is not
 available (or not yet available) or if the content tags do not
 match, the following steps occur:
	PeerDistKM.sys sends a copy of the response stream to
 the BranchCache service for publication so that the next
 request for the same URL will find the content
 information.

	It allows the response stream to go back to HTTP.sys
 unchanged.

	HTTP.sys sends out the response with actual data in it
 and no BranchCache metadata.

	If, instead, the content information for that HTTP content
 is available and, based on content tags, it is found to be up to
 date with the content returned, the following steps occur:
	PeerDistKM.sys replaces the body of the response with
 the content information describing it in BranchCache
 terms.

	It modifies the response headers adding that the
 response is now PeerDist-encoded.

	It returns the modified (and, in general, much shorter)
 response stream to HTTP.sys.

	HTTP.sys sends out the modified response, containing
 only BranchCache content information metadata, but not any
 actual content data.

	The response is received on the client side. If the response
 contains BranchCache content information, the HTTP client stack
 passes that metadata to the BranchCache service, and it starts serving the first application read for the
 actual contents of that response by asking BranchCache to retrieve
 the content data associated with the size of that first
 read.

	BranchCache retrieves that data from the local republication
 cache (if available), or it retrieves a superset including the
 requested data either from other BranchCache clients in the LAN or
 from the hosted cache server (depending on the
 configuration).

	If any of the requested data is missing, BranchCache signals
 to the HTTP stack the range of missing data, and the HTTP stack
 issues a range request back to the remote server for the missing
 data (or a superset including it).

	Once all the data is reassembled for the specific
 application read, it is returned to the application in a way
 completely transparent to the application.

	The last three steps are repeated until all the
 application’s reads on the HTTP response in question are
 completed.

Name Resolution

Name resolution is the process by which a character-based name,
 such as www.microsoft.com
 or Mycomputer, is translated into a numeric address, such as
 192.168.1.1, that the network protocol stack can recognize. This section
 describes the three TCP/IP-related name resolution protocols provided by
 Windows: Domain Name System (DNS), Windows Internet Name Service (WINS),
 and Peer Name Resolution Protocol (PNRP).
Domain Name System

Domain Name System (DNS) is the standard (RFC 1035, et al.) by
 which Internet names (such as www.microsoft.com)
 are translated to their corresponding IP addresses. A network
 application that wants to resolve a DNS name to an IP address sends a
 DNS lookup request using the UDP/IP protocol (TCP/IP is used for
 requests whose response size exceeds 512 bytes) to a DNS server. DNS
 servers implement a distributed database of name/IP address pairs that
 are used to perform translations, and each server maintains the
 translations for a particular zone. Describing
 the details of DNS is outside the scope of this book, but DNS is the
 foundation of naming in Windows and so it is the primary Windows name
 resolution protocol.
The Windows DNS server is implemented as a Windows service
 (%SystemRoot%\System32\Dns.exe) that is included in server versions of
 Windows. Standard DNS server implementation relies on a text file as
 the translation database, but the Windows DNS server can be configured
 to store zone information in Active Directory.

Peer Name Resolution Protocol

The Peer Name Resolution Protocol
 (PNRP) is a distributed peer-to-peer protocol that allows
 for dynamic name resolution and publication exclusively across IPv6
 networks. It allows Internet-connected devices to publish
 peer names and their associated IPv6 address, as
 well as optional information. Other devices will then resolve the peer
 name, retrieve the IPv6 address, and establish a connection.
PNRP offers significant advantages over DNS, mainly by being
 distributed, which means that it is essentially serverless (other than
 for early bootstrapping), can scale to potentially millions of names,
 and is fault tolerant and bottleneck free. Because it includes secure
 name publication services, changes to name records can be performed
 from any system. DNS generally requires contacting a DNS server
 administrator to perform updates. PNRP name updates also occur in real
 time, making it appropriate for highly mobile devices, whereas DNS
 caches results. Finally, PNRP allows for naming more than just
 computers and services by allowing extended information to be
 published with name records. The specification for the Peer Name
 Resolution Protocol [MS-PNRP] can be found at www.microsoft.com.
Windows exposes PNRP via a PNRP API for applications and
 services, as well as by extending the getaddrinfo
 Winsock API described earlier in the chapter to perform resolution of
 PNRP IDs (described next) when an address includes the reserved
 .pnrp.net domain suffix.
PNRP peer names (also called P2P IDs) are
 made up of two components:
	Authority. For secure clients (which have their
 name records signed by a certifying authority), the authority is
 identified by a SHA-1 hash of an associated public key, and for
 unsecured clients, it is zero. If a client
 is secure, PNRP validates the name record before publishing
 it.

	Classifier. The classifier uses a simple string to identify a service
 provided by a peer, which allows multiple services to be
 provided by the same device.

To create a PNRP ID, PNRP hashes the P2P ID and combines it with
 a unique 128-bit ID called the service location,
 as shown in Figure 7-31. The service
 location identifies different instances of the same P2P ID in the same
 cloud. (PNRP uses two clouds: a global
 cloud, which corresponds to all IPv6 addresses on the
 Internet, and the link-local cloud, which
 corresponds to IPv6 addresses with the fe80::/10
 prefix and is analogous to an IPv4 subnet.)
[image: PNRP ID generation]

Figure 7-31. PNRP ID generation

PNRP Resolution and Publication

PNRP name resolution occurs in two phases:
	Endpoint
 determination. In this phase, the requesting peer determines the IPv6
 address associated with the peer responsible for publishing
 the PNRP ID of the desired service.

	PNRP ID
 resolution. In this phase, once the requesting peer has located and
 confirmed the availability of the peer associated with the
 IPv6 address, it sends a PNRP request message for the PNRP ID
 of the service being requested. The peer providing the service
 replies to confirm the PNRP ID and can supply a comment and up
 to 4 KB of additional data, such as context information
 related to the service.

During the first phase, PNRP iterates over nodes while
 locating the publishing node, such that the node performing name
 resolution will be responsible for contacting nodes that are
 successively closer to the desired PNRP ID. Each iteration works as
 follows: Once a peer receives a request message, it performs a
 lookup in its cache for the requested PNRP ID. If a match is found,
 the request message is sent directly; otherwise, it is sent to the
 next closest PNRP ID (by seeing how much of the ID matches).
When a node receives a request message for which it cannot
 find a PNRP ID, it checks the distance of any other IDs in the cache
 to the target ID. If it finds a node that is closer, the requested
 node sends a reply to the requesting node, where the reply contains
 the IPv6 address of the peer that most closely matches the target
 PNRP ID. The requesting node can then use the IPv6 address to send
 another query to that address’ node. If no node is closer, the
 requesting node is notified, and that node sends the request to the
 next closest node. Assuming PNRP IDs of 200, 350, 450, 500, and 800,
 Figure 7-32 depicts a
 possible endpoint determination phase for an example in which peer A
 is trying to find the endpoint for PNRP 800 (peer E).
To publish its PNRP ID(s), a peer first sends PNRP publication
 messages to its closest neighbors (entries in its cache that have
 IDs that are in the lowest levels) to seed their caches. It then
 randomly chooses nodes in the cloud that are not neighbors and sends
 them PNRP name resolution requests for its own PNRP ID. Through a
 mechanism described earlier, the endpoint determination phase
 results in the seeding of the PNRP ID across the caches of the
 random nodes that were chosen in the cloud.
[image: Example of PNRP name resolution]

Figure 7-32. Example of PNRP name resolution

Location and Topology

Today, networked computers often move between networks
 that require different configuration settings—for example, a corporate
 LAN and a home-based wireless network. Windows includes the Network
 Location Awareness (NLA) service to enable the dynamic configuration of
 network applications and settings based on location, and Link-Layer
 Topology Discovery (LLTD) to enable the intelligent discovery and
 mapping of networked devices.
Network Location Awareness

The Network Location Awareness (NLA) service provider is
 implemented as a Winsock Namespace Provider (NSP) and provides the
 necessary framework for allowing computers and devices that move
 across different networks to select the most appropriate configuration
 settings. For example, an application taking advantage of NLA can
 detect when the user moves from a high-speed LAN to a high-latency
 wireless network and fine-tune its bandwidth use appropriately. NLA
 can also detect when a home computer on a LAN might also have a
 secondary VPN connection to the office and select the proper
 configuration options.
Instead of having developers rely on manual network interface
 information to figure out the type of network, and the IP addresses or
 DNS names associated with them, NLA provides a standardized query API
 for enumerating all the local network attachment information and
 correlating it with network interface information. The NLA API also
 includes notifications that enable applications to respond to changes
 when they occur. NLA provides applications two pieces of location
 information:
	Logical network
 identity. This identity is based on the logical network’s DNS domain
 name. If one does not exist, NLA uses custom static information
 stored in the registry together with the network’s subnet
 address as the identity.

	Logical network
 interfaces. For each network that a device is attached to, NLA creates
 an adapter name that identifies interfaces
 such as NICs or RAS connections in a unique fashion.
 Applications use adapter names with the IP Helper API
 (%SystemRoot%\System32\iphlpapi.dll) to query interface
 information and characteristics.

Each logical network is implemented as a service class with an
 associated GUID and properties. NLA creates instances of that service
 class when it returns information about a logical network. Service
 classes are schemas that describe a namespace; they define the name,
 identifier, and namespace-specific information that is common to all
 instances. These classes are then used in combination with the
 WSALookupServiceXxx APIs when performing name
 resolution.
The best way to get network location information
 programmatically is to use the Network List Manager (NLM) APIs—for
 example INetworkListManager,
 INetwork, IEnumNetworks,
 INetworkEvents, and so on.

Network Connectivity Status Indicator

Network Connectivity Status Indicator (NCSI) determines in real
 time the connectivity level of network connections on a system. It is
 loaded by the NLA service and functions solely as an information
 provider for NLA. NLA enables network-interacting programs to change
 their behavior based on how the computer is connected to the network.
 NCSI does not register as a client of NLA, but it does receive certain
 private notifications directly from it. NCSI detects local vs.
 Internet connectivity, hotspot networks, and corporate connectivity
 detection and level.
The connectivity level of a network connection is assessed and
 is based on whether or not the system has access to the Internet and
 to network devices such as the default gateway, DNS servers, and web
 proxy servers. This network connectivity information is used by
 various applications such as the Networking Tray Icon, Mini Map,
 Network Connection Wizard, Windows Media Center, DirectAccess, Windows
 Update, and Outlook. NCSI information is displayed in the tray as an
 overlay on the network icon. Most of NCSI’s activity is disabled if a
 user is not logged in.
NCSI performs the primary tasks described in the following
 sections.
Passive Poll

Every five seconds (configurable in the registry),
 NCSI activates to perform its general processing. The main purpose
 of this action is to query the network stack using the Network
 Storage Interface (NSI), and looks for:
	Evidence that some traffic has been received. NSI returns
 packet counts for each network interface. If any packets have
 been received on an interface, that interface will have at least
 local connectivity.

	Evidence that traffic has been received from either the
 Internet or corporate network. This is a little more complex and
 is determined by calculating the average number of hops a packet
 takes to depart from a system’s local ISP network (in a
 home/nondomain environment) or intranet (in a corporate
 environment). NSI returns the largest hop count seen since the
 last time the hop counts were requested. If this value exceeds
 the average for a given IP family (for example, IPv4 vs. IPv6)
 on a given interface, that interface has
 internet connectivity.

	Evidence that the host is communicating with a web proxy.
 The IP addresses for web proxies will have been identified using
 Web Proxy AutoDetect (WPAD), or DNS, and proxies configured
 manually through Internet control panel. NSI returns details of
 the current TCP paths from the network stack. If this is a new
 path to a proxy, that interface has
 internet connectivity.

	Evidence that an IPSEC Security Association (SA) has been
 established between the system and a host that has an IPv6
 address matching the corporate network prefix defined in the
 registry. (This is passive corporate connectivity
 detection.)

	Evidence that there is a reachable path reported by NSI to
 a host with an IPv6 prefix matching the corporate network prefix
 in the registry. The interface is marked with
 corporate connectivity.

In addition to handling the NSI queries, the passive poll is
 also used by NCSI to carry out most time-based processing. If there
 are no networks connected, NCSI continues to poll, but stops polling
 three polling periods after the last data is received.

Network Change Monitoring

NCSI has to be aware of changes to the configuration of
 interfaces on the system. This is handled by two event monitors that
 watch for NSI interface change notifications and DHCP status change
 notifications.
When NCSI detects that the network has changed, it records the
 current time in a data structure associated with each interface. The
 passive poll task queries this value and, if it is older than 15
 seconds, it will perform an active probe. The 15-second delay (for
 example, three poll periods have elapsed) is used to re-evaluate the
 Internet connectivity state if it has seen one or more unreachable
 paths.
NCSI registers for DHCP events and responds to them
 immediately (that is, there is no dampening that happens). If in
 that callback, DHCP reports that an interface is stable, an active
 probe is queued for that interface.

Registry Change Monitoring

NCSI monitors two parent keys in the registry for any
 changes to themselves or their children using the registry change
 notification API. Any changes trigger NCSI to reload all values
 under each key:
	HKLM\System\CurrentControlSet\Services\NlaSvc\Parameters\Internet

	HKLM\SOFTWARE\Policies\Microsoft\Windows\NetworkConnectivityStatusIndicator

Active Probe

NCSI has two mechanisms for actively testing an interface to
 determine whether it has Internet connectivity, both of which are
 configurable (and can be disabled) using the registry keys.
The first time an active probe is performed on an interface,
 it will be a web probe. This consists of an attempt to download the
 file http://www.msftncsi.com/ncsi.txt,_and it
 compares the contents of that file with the expected value of
 “Microsoft NCSI”. If the comparison succeeds, the active probe is
 considered successful.
If NCSI has detected proxy servers, it checks to see if the
 interface being probed is the best interface over which to reach the
 first proxy server. If so, it applies the proxy settings to the HTTP
 request. Otherwise, it first tries without the proxy settings, only
 applying them and making a second attempt if the first failed with
 name resolution failure. This is to support multihomed scenarios,
 where one interface is connected via proxy and the interface being
 probed is not.
If an active probe succeeds, either the IPv4 or IPv6 Internet
 state will be brought to internet connectivity.
 Because NCSI does not know whether the request was satisfied using
 IPv4 or IPv6 connectivity, it makes a guess based on the existence
 of default gateways for each address family, with IPv4 being
 selected if an exact determination cannot be made.
The next time an active probe is to be performed, if the
 hardware address of the default gateway is already in the list of
 known proxy-less gateways, a DNS probe is performed instead of a web
 probe. This is an optimization that produces quicker results. A DNS
 probe performs a simple DNS lookup for the name listed in the
 registry, with the default being dns.msftncsi.com.
HTTP probe behavior changes in multihomed scenarios when a
 proxy is detected. When an active probe is executed on an interface,
 a check is made whether or not that interface is preferred by the
 network stack to reach the first proxy server address. If so, the
 web probe is continued as normal. If not, the web probe is first
 attempted without the use of the proxy. If that fails because the
 name could not be resolved via DNS, NCSI concludes it must be behind
 the proxy after all and applies the proxy server settings and
 retries the probe.
The content retrieved by the HTTP request is compared to known
 content in the registry. If the content does not match, NCSI assumes
 that the interface is connected to a hotspot network (which has
 rerouted the HTTP request to a login page). It then uses the Network
 List Manager (NLM) APIs to send a message to the PNIDUI
 (%SystemRoot%\System32\pnidui.dll) Shell Service Object (SSO), which
 then displays a balloon to indicate to the user that she needs to
 log in before connecting to the Internet. The gateway MAC address is
 also recorded in a known hotspot gateway list for proxy detection
 optimization later.
NSCI can be configured via Group Policy, as shown in
 Figure 7-33, or via
 the registry.
[image: NCSI parameters in the Group Policy editor]

Figure 7-33. NCSI parameters in the Group Policy editor

Link-Layer Topology Discovery

The Link-Layer Topology Discovery (LLTD) protocol operates over
 both wired and wireless networks and enables applications to discover
 the topology of a network. For example, the Network
 Map functionality in Windows uses LLTD to draw the local
 network topology for the connected devices that support the LLTD
 protocol. Additionally, LLTD supports Quality of Service (QoS)
 extensions, which allow applications to diagnose network problems such
 as low signal strength on a wireless network and bandwidth constraints
 on home networks. Because it operates on the OSI data-link layer, LLTD
 works only on a single LAN or subnet and cannot cross routers, but its
 capabilities make it suitable for most home and small-office networks.
 The specification for the Link-Layer Topology Discovery protocol
 [MS-LLTD] can be found at www.microsoft.com.
The LLTD Mapper I/O and the LLTD
 Responder components implement LLTD. The former is
 responsible for the discovery process and for generating network maps.
 Because it uses a protocol different from IP, the LLTD Mapper uses
 NDIS APIs to directly send commands to the network via the network
 adapter. The LLTD Responder listens for and responds to discovery
 commands with information about the computer. As mentioned earlier,
 only devices that have a responder are shown in the network
 map.

Protocol Drivers

Network drivers take high-level I/O requests and translate
 them into low-level network protocol requests for transmission across
 the network. The network APIs rely on transport protocol drivers in
 kernel mode to perform the actual translation. Separating APIs from
 underlying protocols gives the networking architecture the flexibility
 of letting each API use a number of different protocols. The Internet’s
 explosive growth and reliance on the TCP/IP protocol has made TCP/IP the
 preeminent protocol in Windows. The Defense Advanced Research Projects
 Agency (DARPA) developed TCP/IP in 1969, specifically as the foundation
 for a large-scale, fault-tolerant network that became the Internet;
 therefore, TCP/IP has WAN-friendly characteristics such as routability
 and good WAN performance. TCP/IP is the preferred Windows protocol and
 is installed by default.
The 4-byte network addresses used by the IPv4 protocol on the
 legacy TCP/IP stack limits the number of public IP addresses to roughly
 four billion, which is nearly exhausted as more and more devices, such
 as cell phones and PDAs, acquire an Internet presence. For this reason,
 the IPv6 protocol, which has 16-byte addresses, is gaining adoption.
 Windows includes a combined TCP/IP stack, called the Next
 Generation TCP/IP Stack, which supports both IPv4 and IPv6
 simultaneously, with IPv6 being the preferred protocol. When operating
 on IPv6 networks, the stack also supports coexistence with IPv4 networks
 through the use of tunneling. The Next Generation TCP/IP Stack offers
 several advanced features to improve network performance, some of which
 are outlined in the following list:
	Receive Window Auto
 Tuning. The TCP protocol defines a receive window
 size, which determines how much data a receiver can
 accept before the server requires an acknowledgment. Optimally,
 the receive window size should be equal to the bandwidth-delay
 product, which is the network link’s capacity multiplied by its
 end-to-end delay. This calculates the amount of data that can be
 “in transit” between the sender and receiver at any given time.
 The Windows TCP/IP stack analyzes the conditions of a network link
 and chooses the optimal receive window size, adjusting it as
 needed if the network conditions change.

	Compound TCP
 (CTCP). Network congestion occurs when a node or link reaches its
 carrying capacity. CTCP implements a congestion-avoidance
 algorithm that monitors network bandwidth, latency, and packet
 losses. It aggressively increases the amount of data that can be
 sent by a machine when the network will support it, and it backs
 off when the network is congested. Using CTCP on a high-bandwidth,
 low-latency network can significantly improve transfer
 speeds

	Explicit Congestion Notification
 (ECN). Whenever a TCP packet is lost (unacknowledged), the TCP
 protocol assumes that the data was dropped because of router
 congestion and enforces congestion control, which dramatically
 lowers the sender’s transmission rate. ECN allows routers to
 explicitly mark packets as being forwarded during congestion,
 which is read by the Windows TCP/IP stack as a sign that
 transmission rates should be lowered. Lowering rates in this
 manner results in better performance than relying on loss-based
 congestion control. ECN is disabled by default, because many
 outdated routers might drop packets with the ECN bit set instead of ignoring the bit. To
 determine whether your network supports ECN, you can use the
 Microsoft Internet Connectivity Evaluation Tool (http://www.microsoft.com/windows/using/tools/igd/default.mspx).
 You can examine and modify the ECN capability using the network
 shell (from an Admin command window), as shown in Figure 7-34.
[image: Using the network shell to examine and configure TCP parameters]

Figure 7-34. Using the network shell to examine and configure TCP
 parameters

	High-loss throughput improvements, including the NewReno Fast
 Recovery Algorithm, Enhanced Selective Acknowledgment (SACK),
 Forward RTO-Recovery (F-RTO), and Limited Transit. These algorithms
 reduce the overall retransmission of acknowledgments or TCP segments
 during high-loss scenarios while still maintaining the integrity of
 the TCP stream. This allows for greater bandwidth in these
 environments and preserves TCP’s reliable transport
 semantics.

The Next Generation TCP/IP Stack
 (%SystemRoot%\System32\Drivers\Tcpip.sys), shown in Figure 7-35, implements TCP,
 UDP, IP, ARP, ICMP, and IGMP. To support legacy protocols such as
 NetBIOS, which make use of the deprecated TDI interface, the network
 stack also includes a component called TDX (TDI translation), which
 creates device objects that represent legacy protocols so that clients
 can obtain a file object representing a protocol and issue network I/O
 to the protocol using TDI IRPs. The TDX component creates several device
 objects that represent various TDI client–accessible protocols:
 \Device\Tcp6, \Device\Tcp, \Device\Udp6, \Device\Udp, \Device\Rawip, and
 \Device\Tdx.
[image: Windows Next Generation TCP/IP Stack]

Figure 7-35. Windows Next Generation TCP/IP Stack

EXPERIMENT: Looking at TCP/IP’s Device Objects
Using the kernel debugger to look at a live system, you
 can examine TCP/IP’s device objects. After performing the
 !drvobj command to see the addresses of each of
 the driver’s device objects, execute !devobj to
 view the name and other details about the device object.
kd> !drvobj tdx
Driver object (861d9478) is for:
 \Driver\tdx
Driver Extension List: (id , addr)

Device Object list:
861db310 861db440 861d8440 861d03e8
861cd440 861d2318 861d9350
lkd> !devobj 861cd440
Device object (861cd440) is for:
 Tcp6 \Driver\tdx DriverObject 861d9478
Current Irp 00000000 RefCount 7 Type 00000012 Flags 00000050
Dacl 8b1bc54c DevExt 861cd4f8 DevObjExt 861cd500
ExtensionFlags (0x00000800)
 Unknown flags 0x00000800
Device queue is not busy.
lkd> !devobj 861db440
Device object (861db440) is for:
 RawIp \Driver\tdx DriverObject 861d9478
Current Irp 00000000 RefCount 0 Type 00000012 Flags 00000050
Dacl 8b1bc54c DevExt 861db4f8 DevObjExt 861db500
ExtensionFlags (0x00000800)
 Unknown flags 0x00000800
Device queue is not busy.
lkd> !devobj 861d8440
Device object (861d8440) is for:
 Udp6 \Driver\tdx DriverObject 861d9478
Current Irp 00000000 RefCount 0 Type 00000012 Flags 00000050
Dacl 8b1bc54c DevExt 861d84f8 DevObjExt 861d8500
ExtensionFlags (0x00000800)
 Unknown flags 0x00000800
Device queue is not busy.
lkd> !devobj 861d03e8
Device object (861d03e8) is for:
 Udp \Driver\tdx DriverObject 861d9478
Current Irp 00000000 RefCount 6 Type 00000012 Flags 00000050
Dacl 8b1bc54c DevExt 861d04a0 DevObjExt 861d04a8
ExtensionFlags (0x00000800)
 Unknown flags 0x00000800
Device queue is not busy.
lkd> !devobj 861cd440
Device object (861cd440) is for:
 Tcp6 \Driver\tdx DriverObject 861d9478
Current Irp 00000000 RefCount 7 Type 00000012 Flags 00000050
Dacl 8b1bc54c DevExt 861cd4f8 DevObjExt 861cd500
ExtensionFlags (0x00000800)
 Unknown flags 0x00000800
Device queue is not busy.
lkd> !devobj 861d2318
Device object (861d2318) is for:
 Tcp \Driver\tdx DriverObject 861d9478
Current Irp 00000000 RefCount 167 Type 00000012 Flags 00000050
Dacl 8b1bc54c DevExt 861d23d0 DevObjExt 861d23d8
ExtensionFlags (0x00000800)
 Unknown flags 0x00000800
Device queue is not busy.
lkd> !devobj 861d9350
Device object (861d9350) is for:
 Tdx \Driver\tdx DriverObject 861d9478
Current Irp 00000000 RefCount 0 Type 00000021 Flags 00000050
Dacl 8b0649a8 DevExt 00000000 DevObjExt 861d9408
ExtensionFlags (0x00000800)
 Unknown flags 0x00000800
Device queue is not busy.

Windows Filtering Platform

Windows includes a rich and extensible platform for
 monitoring, intercepting, and processing network traffic at all levels
 in the network stack. Other Windows networking services extend basic
 networking features of the TCP/IP protocol driver by relying on
 Windows Filtering Platform (WFP). These include Network Address
 Translation (NAT), IP filtering, IP inspection, and Internet Protocol
 Security (IPsec). Figure 7-36 shows how the
 different components of the WFP are integrated with the TCP/IP stack.
 These include
	Filter engine. The filter engine is implemented in both user mode and
 kernel mode and performs all the filtering operations on the
 network. Each filter engine component consists of filtering
 layers, one for each component of the network stack. The
 user-mode engine, responsible for RPC and IPsec keying policy,
 among other things, contains approximately 10 filters, while the
 kernel-mode engine, which performs the network and transport
 layer filtering of the TCP/IP stack, contains around 50.

	Shims. Shims are the kernel-mode components that reside between
 the network stack and the filter engine. They are responsible
 for making the decision to allow or block network traffic based
 on their filtering behavior, which is defined by the filter
 engine. A shim operates in three steps: it parses the incoming
 data to match incoming values with entries in the filter engine,
 calls the filter engine to return an action based on the
 incoming values, and then interprets the action (drop the
 packet, for example).

	Base filtering engine
 (BFE). The BFE is a user-mode service
 (%SystemRoot%\System32\Bfe.dll) that manages all WFP operations.
 It is responsible for adding and removing filters from the WFP
 stack, managing the filter configuration, and enforcing security
 on the filter database.

	Callout
 drivers. Callout drivers are kernel-mode components that add custom
 filtering functionality outside the basic support provided by
 the WFP. Callout drivers associate callout functions with one or
 more kernel-mode filtering layers, and the WFP enables callout
 functions to perform deep packet inspection and modification.
 Network Address Translation (described next) and IPsec are
 implemented as callout drivers, for example.

[image: Windows Filtering Platform architecture]

Figure 7-36. Windows Filtering Platform architecture

Network Address Translation

Network Address Translation (NAT) is a routing service
 that allows multiple private IP addresses to map to a single public
 IP address. Without NAT, each computer of a LAN must be assigned a
 public IP address to communicate across the Internet. NAT allows one
 computer of the LAN to be assigned an IP address and the other
 computers to use private IP addresses and be connected to the
 Internet through that computer. NAT translates between private IP
 addresses and the public IP address as necessary, routing packets
 between LAN computers and the Internet.
NAT components on Windows consist of a NAT device driver,
 %SystemRoot%\System32\Drivers\ipnat.sys, that interfaces with the
 WFP stack as a callout driver, as well as packet editors that can
 perform additional packet processing beyond address and port
 translation.

IP Filtering

Windows includes a very basic IP filtering capability with
 which a user can choose to allow only certain ports or IP protocols
 into or out of the network. Although this capability can serve to
 protect a computer from unauthorized network accesses, its drawback
 is that it is static and does not automatically create new filters
 for traffic initiated by applications running on the
 computer.
Windows also includes a host firewall capability, called
 Windows Firewall, that goes beyond the basic filtering just
 described. Windows Firewall uses WFP to provide a stateful
 firewall, which is one that keeps track of traffic flow
 so that it distinguishes between TCP/IP traffic that originates on
 the local LAN and unsolicited traffic that originates on the
 Internet. When Windows Firewall is enabled on an interface, one of
 three profiles can be applied—public, private, and domain. By
 default, when the public profile is chosen (or until a profile is
 selected), all unsolicited incoming traffic received by the computer
 is discarded. A user or application can define exceptions so that
 services running on the computer, such as file and printer sharing
 or a website, can be accessed from other computers.
The Windows Firewall service, which executes in a Svchost
 process, uses the BFE to pass exception rules defined in the
 configuration user interface to the IPNat driver. The WFP filter
 engine executes the callback functions of each registered callout
 driver as it processes both inbound and outbound IP packets. A
 callback function can provide NAT functionality by modifying source
 and destination addresses in a packet, or as a firewall by returning
 a status code to TCP/IP that requests that TCP/IP drop the packet
 and cease processing for it. In kernel mode, Windows Firewall uses
 the Microsoft Protection Service driver
 (%SystemRoot%\System32\Drivers\Mpsdrv.sys) that provides support for
 PPTP and FTP filtering, because those protocols provide their own
 independent control and data channels. The driver must analyze the
 control channel to figure out which data channel to manipulate. The
 driver is also used for displaying notification windows when an
 application starts listening on a socket.

Internet Protocol Security

Internet Protocol Security (IPsec), which is integrated with
 the Windows TCP/IP stack, helps protect unicast (IPsec itself
 supports multicast, but the Windows implementation does not) IP data
 against attacks such as eavesdropping, sniffer attacks, data
 modification, IP address spoofing, and man-in-the-middle attacks (as
 long as the identity of the remote machine can be verified, such as a VPN). You
 can use IPsec to provide defense-in-depth against network-based
 attacks from untrusted computers; certain attacks that can result in
 the denial-of-service of applications, services, or the network;
 data corruption, data theft, and user-credential theft; and the
 administrative control over servers, other computers, and the
 network. IPsec helps defend against network-based attacks through
 cryptography-based security services, security protocols, and
 dynamic key management.
IPsec provides the following properties for unicast IP packets
 sent between trusted hosts:
	Data origin authentication, which verifies the origin of
 an IP packet and ensures that unauthenticated parties cannot
 access data.

	Data integrity, which protects an IP packet from being
 modified in transit without being detected.

	Data confidentiality, which encrypts the payload of IP
 packets before transmission. Data confidentiality ensures that
 only the IPsec peer with which a computer is communicating can
 read and interpret the contents of the packets. This property is
 optional.

	Anti-replay (or replay protection), which ensures that
 each IP packet is unique and can’t be reused. This property
 prevents an attacker from intercepting IP packets and inserting
 modified packets into a data stream between a source computer
 and a destination computer. When anti-replay is used, attackers
 cannot reply to captured messages to establish a session or gain
 unauthorized access to data.

You can use IPsec to help defend against network-based attacks
 by configuring host-based IPsec packet filtering and enforcing
 trusted communications. When you use IPsec for host-based IPsec
 packet filtering, IPsec can permit or block specific types of
 unicast IP traffic based on source and destination address
 combinations and specific protocols and specific ports.
In an Active Directory environment, Group Policy can be used
 to configure domains, sites, and organizational units (OUs), and
 IPsec policies (called connection security
 rules) can then be assigned as required to Group Policy
 objects (GPOs) through Windows Firewall with Advanced Security
 configuration settings. Alternatively, you can configure and assign
 local IPsec policies. Active Directory–based connection security
 rules are stored in Active Directory, and a copy of the current
 policy is maintained in a cache in the local registry. Local
 connection security rules are stored in the local system
 registry.
To establish trusted communications, IPsec uses mutual
 authentication, and it supports the following authentication methods
 through AuthIP, Microsoft’s extension to Internet Key Exchange
 (IKE):
	Interactive user Kerberos 5 credentials or interactive
 user NTLMv2 credentials

	User x.509 certificates

	Computer SSL certificates

	NAP health certificates

	Anonymous authentication (optional
 authentication)

	Preshared key

If AuthIP is not available, plain IKE is also supported by
 IPsec. The Windows implementation of IPsec is based on IPsec
 Requests for Comments (RFCs). The Windows IPsec architecture
 includes Windows Firewall with Advanced Security, the legacy IPsec
 Policy Agent, the IKE and Authenticated Internet Protocol (AuthIP)
 protocols, and an IPsec WFP callout driver, which are described in
 the following list:
	Windows Firewall with Advanced
 Security. In addition to the filtering functionality described
 earlier, the Windows Firewall service is also responsible for
 providing the security and policy configuration settings for
 IPsec, which can be configured through Group Policy either
 locally or on an Active Directory domain.

	Legacy IPsec Policy
 Agent. The legacy IPsec Policy Agent runs as a service. In the
 Services snap-in in the Microsoft Management Console (MMC),
 the IPsec Policy Agent appears in the list of computer
 services under the name IPsec Policy Agent. The IPsec Policy
 Agent obtains the legacy IPsec policy from an Active Directory
 domain or the local registry and then passes IP address
 filters to the IPsec driver and authentication and security
 settings to IKE. These policies are honored to enable
 compatibility with older versions of Windows, which implement
 IPsec management through Active Directory.

	IKE and
 AuthIP. IKE is a protocol that supports the authentication and
 key negotiation services required by IPsec. For outgoing
 traffic, IKE waits for requests to negotiate security
 associations (SAs) from the IPsec driver, negotiates the SAs,
 and then sends the SA settings back to the IPsec driver. For
 incoming traffic, IKE receives a negotiation request directly
 from the remote peer, and all other traffic from the peer is
 dropped until the SAs have been successfully negotiated. SAs
 are a combination of mutually agreeable IPsec policy settings
 and keys that defines the security services, mechanisms, and
 keys that are used to help secure communications between IPsec
 peers. Each SA is a one-way or simplex connection that secures
 the traffic it carries. IKE negotiates main mode SAs and quick
 mode SAs when requested by the IPsec driver. The IKE main mode
 (or ISAKMP) SA protects the IKE negotiation. The quick mode
 (or IPsec) SAs protect application traffic. AuthIP is a
 proprietary extension to IKE supported by Windows Vista and
 later, while Windows 7 and Windows Server 2008 R2 also add
 support for IKEv2, an equivalent standardized extension. It
 adds a secondary authentication mechanism to increase security
 and simplify maintenance and configuration of IPsec.

	IPsec WFP callout
 driver. The IPsec WFP callout driver is a device driver
 (%SystemRoot%\System32\Drivers\Fwpkclnt.sys) that is bound to
 WFP and processes packets that pass through the TCP/IP driver.
 The IPsec driver monitors and secures outbound unicast IP
 traffic, and it monitors, decrypts, and validates inbound
 unicast IP packets. WFP receives filters from the IPsec Policy
 Agent and invokes the callout, which then permits, blocks, or
 secures packets as required. To secure traffic, the IPsecI
 driver uses active SA settings, or it requests that new SAs be
 created.

You can use the Windows Firewall with Advanced
 Security (%SystemRoot%\System32\Wf.msc) snap-in that is available in
 MMC to create and manage connection security rules by using the New
 Connection Security Rule Wizard, shown in Figure 7-37. This snap-in can
 be used to create, modify, and store local connection security rules
 or Active Directory–based connection security rules, and to modify
 connection security rules on remote computers. Alternatively, you
 can use the Netsh utility with the netsh advfirewall
 consec command to manage connection security rules. After
 IPsec-secured communication is established, you can monitor IPsec
 information for local computers and for remote computers by using
 the Windows Firewall with Advanced Security snap-in or the Netsh
 utility with the netsh advfirewall monitor
 command.
[image: New Connection Security Rule Wizard]

Figure 7-37. New Connection Security Rule Wizard

NDIS Drivers

When a protocol driver wants to read or write messages formatted
 in its protocol’s format from or to the network, the driver must do so
 using a network adapter. Expecting protocol drivers to understand the
 nuances of every network adapter on the market (proprietary network
 adapters number in the thousands) is not reasonable, so network adapter
 vendors provide device drivers that can take network messages and
 transmit them via the vendors’ proprietary hardware. In 1989, Microsoft
 and 3Com jointly developed the Network Driver Interface Specification
 (NDIS), which lets protocol drivers communicate with network adapter
 drivers in a device-independent manner. Network adapter drivers that
 conform to NDIS are called NDIS drivers or
 NDIS miniport drivers. The version of NDIS that
 ships with Windows 7 and Windows Server 2008 R2 is NDIS 6.20.
The NDIS library (%SystemRoot%\System32\Drivers\Ndis.sys)
 implements the boundary that exists between network transports, such as
 the TCP/IP driver, and adapter drivers. The NDIS library is a helper library that NDIS driver clients use to format
 commands they send to NDIS drivers. NDIS drivers interface with the
 library to receive requests and send back responses. Figure 7-38 shows the relationship between various
 NDIS-related components.
[image: NDIS components]

Figure 7-38. NDIS components

Instead of merely providing the NDIS boundary helper routines, the
 NDIS library provides NDIS drivers with an entire execution environment.
 NDIS drivers do not follow the standard Windows device driver I/O model,
 and they cannot function without the encapsulation the NDIS library
 gives them. This insulation layer wraps NDIS drivers so thoroughly that
 NDIS drivers don’t accept and process IRPs. Rather, protocol drivers
 such as TCP/IP call a function in the NDIS library,
 NdisAllocateNetBufferList, and pass the packets to
 an NDIS miniport by calling an NDIS library function
 (NdisSendNetBufferLists). Additionally, to make
 development simpler, all components of the Windows Next Generation
 TCP/IP stack make use of the NET_BUFFER_LIST structure, including TCP/IP
 and WSK, which streamlines communications with NDIS.
NDIS includes the following features:
	NDIS drivers can report whether or not their network medium is
 active, which allows Windows to display a network
 connected/disconnected icon on the taskbar. This feature also allows
 protocols and other applications to be aware of this state and react
 accordingly. The TCP/IP transport, for example, uses this
 information to determine when it should reevaluate addressing
 information it receives from DHCP.

	NDIS drivers can be paused and resumed, which enables
 run-time reconfiguration, such as adding or removing an NDIS
 Lightweight Filter driver. A lightweight filter replaces most
 instances of NDIS intermediate drivers used prior to NDIS version 6.
 (Intermediate drivers are still supported in NDIS 6, but their
 complexity makes them suitable for only a small class of problems.)
 Lightweight filter drivers are covered in more detail in the
 upcoming sections.

	TCP/IP offloading, including task and chimney offloading. Task
 offloading allows a network interface card to implement some or all
 of the TCP/IP protocol stack, providing a substantial increase in
 network performance. NDIS includes support for IPsec Task Offload
 Version 2, which includes support for additional cryptography suites
 used in IPsec, such as AES, as well as IPv6 support. Chimney
 offloading provides a direct connection (the so-called
 chimney) between network applications and the
 network card hardware, enabling greater offloading and connection
 state management to be implemented by the network card. These
 offloading operations can improve system performance by relieving
 the CPU from the tasks.

	Receive-side scaling enables systems with multiple processors
 to perform packet receive operations based on the most efficient use
 of available target processors. NDIS supports the receive-side
 scaling (RSS) interface at the hardware level and targets interrupts
 and DPCs to the appropriate processors.

	Wake-on-LAN allows a wake-on-LAN-capable network adapter to
 bring the system out of a suspended power state. Events that can
 trigger the network adapter to signal the system include media
 connections (such as plugging a network cable into the adapter), the
 receipt of protocol-specific patterns registered by a protocol (the
 TCP/IP transport asks to be woken for Address Resolution Protocol
 [ARP] requests), and, for Ethernet adapters, the receipt of a
 magic packet (a network packet that contains 16
 contiguous copies of the adapter’s Ethernet address).

	Header-data split allows compatible network cards to improve
 network performance by splitting the data and header part of an
 Ethernet frame into different buffers and subsequently combining the
 buffers into smaller regions of memory than if the buffers were
 combined. This allows more efficient memory usage as well as better
 caching because multiple headers can fit in a single page.

	Connection-oriented NDIS (CoNDIS) allows NDIS drivers to
 manage connection-oriented media (typically, a WAN), such as ISDN or
 PPP devices. (CoNDIS is described in more detail shortly.)

The interfaces that the NDIS library provides for NDIS drivers to
 interface with network adapter hardware are available via functions that
 translate directly to corresponding functions in the HAL.
EXPERIMENT: Listing the Loaded NDIS Miniports
The Ndiskd kernel debugger extension library includes
 the !miniports and !miniport
 commands, which let you list the loaded miniports using a kernel
 debugger and, given the address of a miniport block (a data structure
 Windows uses to track miniports), see detailed information about the
 miniport driver. The following example shows the
 !miniports and !miniport
 commands being used to list all the miniports and then specifics about
 the miniport responsible for interfacing the system to a PCI Ethernet
 adapter. (Note that WAN miniport drivers work with dial-up
 connections.)
lkd> .load ndiskd
Loaded ndiskd extension DLL

lkd> !miniports
NDIS Driver verifier level: 0
NDIS Failed allocations : 0
Miniport Driver Block: 86880d78, Version 0.0
 Miniport: 868cf0e8, NetLuidIndex: 1, IfIndex: 9, RAS Async Adapter
Miniport Driver Block: 84c3be60, Version 4.0
 Miniport: 84c3c0e8, NetLuidIndex: 3, IfIndex: 15, VMware Virtual Ethernet Adapter
Miniport Driver Block: 84c29240, Version 0.0
 Miniport: 84c2b438, NetLuidIndex: 0, IfIndex: 2, WAN Miniport (SSTP)
...
lkd> !miniport 84bcc0e8

 Miniport 84bcc0e8 : Broadcom NetXtreme 57xx Gigabit Controller, v6.0

 AdapterContext : 85f6b000
 Flags : 0c452218
 BUS_MASTER, 64BIT_DMA, IGNORE_TOKEN_RING_ERRORS
 DESERIALIZED, RESOURCES_AVAILABLE, SUPPORTS_MEDIA_SENSE
 DOES_NOT_DO_LOOPBACK, SG_DMA,
 NOT_MEDIA_CONNECTED,
 PnPFlags : 00610021
 PM_SUPPORTED, DEVICE_POWER_ENABLED, RECEIVED_START
 HARDWARE_DEVICE, NDIS_WDM_DRIVER,
 MiniportState : STATE_RUNNING
 IfIndex : 10
 Ndis5MiniportInNdis6Mode : 0
 InternalResetCount : 0000
 MiniportResetCount : 0000
 References : 5
 UserModeOpenReferences: 0
 PnPDeviceState : PNP_DEVICE_STARTED
 CurrentDevicePowerState : PowerDeviceD0
 Bus PM capabilities
 DeviceD1: 0
 DeviceD2: 0
 WakeFromD0: 0
 WakeFromD1: 0
 WakeFromD2: 0
 WakeFromD3: 1

 SystemState DeviceState
 PowerSystemUnspecified PowerDeviceUnspecified
 S0 D0
 S1 PowerDeviceUnspecified
 S2 PowerDeviceUnspecified
 S3 D3
 S4 D3
 S5 D3
 SystemWake: S5
 DeviceWake: D3

 WakeupMethods Enabled 2:
 WAKE_UP_PATTERN_MATCH
 WakeUpCapabilities:
 MinMagicPacketWakeUp: 4
 MinPatternWakeUp: 4
 MinLinkChangeWakeUp: 0
 Current PnP and PM Settings: : 00000030
 DISABLE_WAKE_UP, DISABLE_WAKE_ON_RECONNECT,
 Translated Allocated Resources:
 Memory: ecef0000, Length: 10000
 Interrupt Level: 9, Vector: a8
 MediaType : 802.3
 DeviceObject : 84bcc030, PhysDO : 848fd6b0 Next DO: 848fc7b0
 MapRegisters : 00000000
 FirstPendingPkt: 00000000
 DriverVerifyFlags : 00000000
 Miniport Interrupt : 85f72000
 Miniport version 6.0
 Miniport Filter List:
 Miniport Open Block Queue:
 8669bad0: Protocol 86699530 = NDISUIO, ProtocolBindingContext 8669be88, v6.0
 86690008: Protocol 86691008 = VMNETBRIDGE, ProtocolBindingContext 866919b8, v5.0
 84f81c50: Protocol 849fb918 = TCPIP6, ProtocolBindingContext 84f7b930, v6.1
 84f7b230: Protocol 849f43c8 = TCPIP, ProtocolBindingContext 84f7b5e8, v6.1
The Flags field for the miniport that was
 examined indicates that the miniport supports 64-bit direct memory
 access operation (64BIT_DMA), that the media is currently not active
 (NOT_MEDIA_CONNECTED), and that it can dynamically detect whether the
 media is connected or disconnected (SUPPORTS_MEDIA_SENSE). Also listed
 are the adapter’s system-to-device power-state mappings and the bus
 resources that the Plug and Play manager assigned to the adapter. (See
 the section “The Power Manager” in Chapter 8 in Part 2 for more
 information on power-state mappings.)

Variations on the NDIS Miniport

The NDIS model also supports hybrid network transport
 NDIS drivers, called NDIS intermediate drivers.
 These drivers lie between transport drivers and NDIS miniport drivers.
 To an NDIS miniport driver, an NDIS intermediate driver looks like a
 transport driver; to a transport driver, an NDIS intermediate driver
 looks like an NDIS miniport driver. NDIS intermediate drivers can see
 all network traffic taking place on a system because the drivers lie
 between protocol drivers and network drivers. Software that provides
 fault-tolerant and load-balancing options for network adapters, such
 as Microsoft’s Network Load Balancing Provider, are based on NDIS
 intermediate drivers. Finally, the NDIS model also implements
 lightweight filter drivers (LWF), which are
 similar to intermediate drivers but specifically designed for
 filtering network traffic. LWFs support dynamic insertion and removal
 while the protocol stack is running. Filter drivers have the ability
 to filter all communications to and from the underlying miniport
 adapter. They also have the ability to select specify types of
 filtering (packet data or control messages) and to be bypassed for
 those that they are not interested in.

Connection-Oriented NDIS

Support for connection-oriented network hardware (for example,
 PPP) is native in Windows, which makes connection management and
 establishment standard in the Windows network architecture.
 Connection-oriented NDIS drivers use many of the same APIs that
 standard NDIS drivers use; however, connection-oriented NDIS drivers
 send packets through established network connections rather than
 placing them on the network medium.
In addition to miniport support for connection-oriented media,
 NDIS includes definitions for drivers that work to support a
 connection-oriented miniport driver:
	Call managers are NDIS drivers that provide call setup and
 teardown services for connection-oriented clients (described
 shortly). A call manager uses a connection-oriented miniport to
 exchange signaling messages with network switches or another
 connection-oriented network medium. A call manager supports one or
 more signaling protocols. A call manager is implemented as a
 network protocol driver.

	An integrated miniport call manager (MCM) is a
 connection-oriented miniport driver that also provides call
 manager services to connection-oriented clients. An MCM is
 essentially an NDIS miniport driver with a built-in call
 manager.

	A connection-oriented client uses the call setup and
 teardown services of a call manager or MCM and the send and
 receive services of a connection-oriented NDIS miniport driver. A
 connection-oriented client can provide its own protocol services
 to higher levels in the network stack, or it can implement an
 emulation layer that interfaces connectionless legacy protocols
 and connection-oriented media.

Figure 7-39
 shows the relationships between these components.
[image: Connection-oriented NDIS drivers]

Figure 7-39. Connection-oriented NDIS drivers

EXPERIMENT: Using Network Monitor to Capture Network
 Packets
Microsoft provides a tool named Network Monitor that lets you
 capture packets that flow through one or more NDIS miniport drivers
 on your system by installing an NDIS lightweight filter driver
 (Netmon). You can obtain the latest version of Network Monitor by
 going to http://www.microsoft.com/download/en/details.aspx?id=4865.
 Don’t forget to download the NetMon protocol parsers from
 http://nmparsers.codeplex.com/; otherwise,
 you won’t be able to decode the Microsoft protocols. When you first
 start Network Monitor, you’ll see a window similar to the one shown
 in Figure 7-40.
[image: Network monitor]

Figure 7-40. Network monitor

In the Select Networks pane, Network Monitor lets you
 select which network connection you want to monitor. After selecting
 one or more, start the capture environment by clicking the New
 Capture button on the toolbar. You can now initiate monitoring by
 clicking the Start button on the toolbar. Perform operations that
 generate network activity on the connection you’re monitoring (such
 as browsing to a website), and after you see that Network Monitor
 has captured packets, stop monitoring by clicking the Stop button.
 In the Frame Summary pane, you will see all the raw network traffic
 during the capture period. The Network Conversations pane displays
 network traffic isolated by process, whenever possible. By clicking
 on the Iexplore.exe process in this example, Network Monitor shows
 only the relevant frames in the Frame Summary view, as shown in
 Figure 7-41.
[image: Capturing packets with Network Monitor]

Figure 7-41. Capturing packets with Network Monitor

The window shows the HTTP packets that Network Monitor
 captured as the Microsoft website was accessed through Internet
 Explorer. If you click on a frame, Network Monitor displays a view
 of the packet that breaks it apart to show various layered
 application and protocol headers in the Frame Details pane, as shown
 in the previous screen shot.
Network Monitor also includes a number of other features, such
 as capture triggers and filters, that make it a powerful tool for
 troubleshooting network problems. You can also add parsers for other
 protocols, as well as view and modify their source code. Network
 Monitor parsers are hosted on CodePlex (http://nmparsers.codeplex.com), the
 Microsoft open source project site.

Remote NDIS

Prior to the development of Remote NDIS, a vendor that developed
 a USB network device had to provide a driver that interfaced with NDIS
 as a miniport driver as well as interfacing with a USB WDM bus driver,
 as shown in Figure 7-42.
[image: NDIS miniport driver for a USB network device]

Figure 7-42. NDIS miniport driver for a USB network device

Remote NDIS is a specification for network devices on USB. The
 specification eliminates the need for a hardware vendor to write an
 NDIS miniport driver by defining messages and the mechanism by which
 the messages are transmitted over USB. Remote NDIS messages mirror the
 NDIS interface and include messages for initializing and resetting a
 device, transmitting and receiving packets, setting and querying
 device parameters, and indicating media link status.
The Remote NDIS architecture, in Figure 7-43, relies on a
 Microsoft-supplied NDIS miniport driver,
 %SystemRoot%\System32\Drivers\Rndismp.sys, that translates NDIS
 commands and forwards them to a USB device. The architecture allows
 for a single NDIS miniport driver to be used for all Remote NDIS
 devices on USB.
[image: Remote NDIS architecture for USB network devices]

Figure 7-43. Remote NDIS architecture for USB network devices

Currently, USB is the only bus supported by RNDIS on
 Windows.

QoS

If no special measures are taken, IP network traffic is
 delivered on a first-come, first-served basis. Applications have no
 control over the priority of their messages, and they can experience
 bursty network behavior, where they occasionally
 obtain high throughput and low latencies but otherwise receive poor
 network performance. While this level of service is acceptable in most
 situations (such as transferring files or browsing the Web), an
 increasing number of network applications demand more consistent
 service levels, or Quality of Service (QoS)
 guarantees. Video conferencing, media streaming, and enterprise
 resource planning (ERP) are examples of applications that require
 consistent network performance. QoS allows an application to specify
 minimum bandwidth and maximum latencies, which can be satisfied only
 if every networking software and hardware component between a sender
 and a receiver supports QoS standards such as IEEE 802.1P, an industry
 standard that specifies the format of QoS packets and how OSI layer 2
 devices (switches and network adapters) respond to them.
Windows supports QoS through a policy-based
 QoS implementation that takes full advantage of the Next
 Generation TCP/IP network stack, WFP, and NDIS lightweight filter
 drivers. The implementation allows for managing or prioritizing
 bandwidth use based on different conditions, such as the application,
 the source or destination IP address, the protocol being used, and the
 source or destination ports. Network administrators typically apply
 QoS settings to a logon session or a computer with Active
 Directory–based Group Policy, but they can be applied locally as
 well.
Policy-based QoS provides two methods through which bandwidth
 can be managed. The first uses a special field in the IP header called
 the Differentiated Services Code Point (DSCP). Routers that support
 DSCP read the value and separate packets into specific priority
 queues. The QoS architecture in Windows can mark outgoing packets with
 the appropriate DSCP field so that network devices can provide
 differentiated levels of service. The other bandwidth management
 method is the ability to simply throttle outgoing traffic based on the
 conditions outlined earlier, where the QoS components limit bandwidth
 to a specified rate.
The Windows QoS implementation consists of several components,
 as shown in Figure 7-44. First,
 the QoS Client Side Extension (%SystemRoot%\System32\Gptext.dll)
 notifies the Group Policy client and the QoS Inspection Module that
 QoS settings have changed. Next, the QoS Inspection Module (Enterprise
 Quality of Service, eQoS), which is a WFP packet-inspection component
 implemented in the TCP/IP driver that reacts to policy changes,
 retrieves the updated policy and works with the transport layer and
 QoS Packet Scheduler to mark traffic that matches the policy. Finally,
 the QoS Packet Scheduler, or Pacer
 (%SystemRoot%\System32\Drivers\Pacer.sys), provides the NDIS
 lightweight filter functionality, such as throttling and setting the
 DSCP value, to control packet scheduling based on the QoS policies.
 Pacer also provides the GQoS (Generic QoS) and TC (Traffic Control)
 API support for legacy Windows applications that used these
 mechanisms.
In addition to the systemwide, policy-based QoS support provided
 by the QoS architecture, Windows enables specific classes of
 socket-based applications to have individual and specific control of
 QoS behavior through an API called the Quality Windows Audio/Video
 Experience, or qWAVE. Network-based multimedia applications, such as Voice
 over IP (VoIP), can use the qWAVE API to query information on
 real-time network bandwidth and adapt to changing network conditions,
 as well as to prioritize packets to efficiently use the available
 bandwidth. qWAVE also takes advantage of the topology protocols
 described earlier to dynamically determine if the current network
 devices will support the required bandwidth for a video stream, for
 example. It can notify applications of diminishing bandwidth, at which
 point the multimedia application is expected to reduce the stream
 quality, for example.
[image: Policy-based QoS architecture]

Figure 7-44. Policy-based QoS architecture

qWAVE is implemented in the QoS2
 (%SystemRoot%\System32\Qwave.dll) API library and provides four main
 components:
	Admission control, which determines, when a new network
 multimedia stream is started, if the current network can support
 the sustained bandwidth requested.

	Caching, which allows the detailed admission control checks
 to be bypassed if similar usage patterns occurred in the past and
 the calculation result was already cached.

	Monitoring and probing, which keep track of available
 bandwidth and notify applications during low-bandwidth or
 high-latency situations.

	Traffic tagging and shaping, which uses the 802.11p and DSCP
 technologies mentioned earlier to tag packets with the appropriate
 priority to ensure timely delivery.

Figure 7-45 shows the general
 overview of the qWAVE architecture:
[image: qWAVE architecture]

Figure 7-45. qWAVE architecture

Binding

The final piece in the Windows networking architecture puzzle is
 the way in which the components at the various layers—networking API
 layer, transport driver layer, NDIS driver layer—locate one another. The
 name of the process that connects the layers is
 binding. You’ve witnessed binding taking place if
 you’ve changed your network configuration by adding or removing a
 component using the Network Connections folder.
When you install a networking component, you must supply an INF
 file for the component. (INF files are described in Chapter 8 in Part
 2.) This file includes directions that setup API routines must follow to
 install and configure the component, including binding dependencies or
 binding relationships. A developer can specify binding dependencies for
 a proprietary component so that the Service Control Manager (the Service
 Control Manager is described in Chapter 4) will not only load the component in
 the correct order but will load the component only if other dependent
 components are present on the system. Binding relationships, which the
 bind engine determines with the aid of additional information in a
 component’s INF file, establish connections between components at the
 various layers. The connections specify which components a network
 component on one layer can use on the layer beneath it.
For example, the Workstation service (redirector) automatically
 binds to the TCP/IP protocol. The order of the binding, which you can
 examine on the Adapters And Bindings tab in the Advanced Settings dialog
 box (shown in Figure 7-46), determines the
 priority of the binding. (See the section Multiple Redirector Support earlier in this chapter for
 instructions on how to launch the Advanced Settings dialog box.) When
 the redirector receives a request to access a remote file, it submits
 the request to both protocol drivers simultaneously. When the response
 comes, the redirector waits until it has also received responses from any higher-priority
 protocol drivers. Only then will the redirector return the result to the
 caller. Thus, it can be advantageous to reorder bindings so that
 bindings of high priority are also the most performance efficient or
 applicable to most of the computers in your network. You can also
 manually remove bindings with the Advanced Settings dialog box.
[image: Editing bindings with the Advanced Settings dialog box]

Figure 7-46. Editing bindings with the Advanced Settings dialog box

The Bind value, in the Linkage subkey of a
 network component’s registry configuration key, stores binding
 information for that component. For example, if you examine
 HKLM\SYSTEM\CurrentControlSet\Services\LanmanWorkstation\Linkage\Bind,
 you’ll see the binding information for the Workstation service.

Layered Network Services

Windows includes network services that build on the APIs and
 components we’ve presented in this chapter. Describing the capabilities
 and detailed internal implementation of all these services is outside
 the scope of this book, but this section provides a brief overview of
 remote access, Active Directory, Network Load Balancing, and Distributed
 File System (DFS), including DFS Replication (DFSR).
Remote Access

Remote access, which is available with Windows Server with the
 Routing and Remote Access service, allows remote access clients to
 connect to remote access servers and access network resources such as
 files, printers, and network services as if the client were physically
 connected to the remote access server’s network. Windows provides two
 types of remote access:
	Dial-up remote access is used by clients that connect to a
 remote access server via a telephone or other telecommunications
 infrastructure. The telecommunications medium is used to create a
 temporary physical or virtual connection between the client and
 the server.

	Virtual private network (VPN) remote access lets a
 VPN client establish a virtual point-to-point connection to the
 server over an IP network such as the Internet. Windows also
 supports the Secure Socket Transmission Protocol (SSTP), which is
 a newer tunneling protocol for VPN connections that has the
 ability to pass through most firewalls and routers that block PPTP
 or L2TP/IPsec traffic. It does so by packaging PPP data over the
 SSL channel of the HTTPS protocol. Because the latter operates on
 port 443 and is usually part of typical Web browsing behavior, it
 is much more likely to be available than traditional VPN tunneling
 protocols.

Remote access differs from remote control solutions because
 remote access acts as a proxy connection to a Windows network, whereas
 remote control software executes applications on a server, presenting
 a user interface to the client.

Active Directory

Active Directory is the Windows implementation of Lightweight
 Directory Access Protocol (LDAP) directory services (RFC 4510).
 Fundamentally, Active Directory is a database that stores objects
 representing resources defined by applications in a Windows network.
 For example, the structure and membership of a Windows domain,
 including user accounts and password information, are stored in Active
 Directory.
Object classes and the attributes that define properties of
 objects are specified by a schema. The objects in
 the Active Directory are hierarchically arranged, much like the
 registry’s logical organization, where container objects can store
 other objects, including other container objects. (See Chapter 6 for more information on container
 objects.)
Active Directory supports a number of APIs that clients can use
 to access objects within an Active Directory database:
	The LDAP C API is a C language API that uses the LDAP
 networking protocol. Applications written in C or C++ can use this
 API directly, and applications written in other languages can
 access the APIs through translation layers.

	Active Directory Service Interfaces (ADSI) is a COM
 interface to Active Directory implemented on top of LDAP that
 abstracts the details of LDAP programming. ADSI supports multiple
 languages, including Microsoft Visual Basic, C, and Microsoft
 Visual C++. ADSI can also be used by Microsoft Windows Script Host
 (WSH) applications.

	Messaging API (MAPI) is supported for compatibility with
 Microsoft Exchange client and Outlook Address Book client
 applications.

	Security Account Manager (SAM) APIs are built on top of
 Active Directory to provide an interface to logon authentication
 packages such as MSV1_0 (%SystemRoot%\System32\Msv1_0.dll, which
 is used for legacy NT LAN Manager authentication) and Kerberos
 (%SystemRoot%\System32\Kdcsvc.dll).

	Windows NT 4 networking APIs (Net APIs) are used by Windows
 NT 4 clients to gain access to Active Directory through
 SAM.

	NTDS API is used to look up SIDs and GUIDs in an
 Active Directory implementation (via
 DsCrackNames mostly) as well as for its main
 purposes, Active Directory management and replication. Several
 third parties have written applications that monitor Active
 Directory from these APIs.

Active Directory is implemented as a database file that, by
 default, is named %SystemRoot%\Ntds\Ntds.dit and replicated across the
 domain controllers in a domain. The Active Directory directory
 service, which is a Windows service that executes in the Local
 Security Authority Subsystem (LSASS) process, manages the database,
 using DLLs that implement the on-disk structure of the database as
 well as provide transaction-based updates to protect the integrity of
 the database. The Active Directory database store is based on a
 version of the Extensible Storage Engine (ESE), also known as the JET
 Blue, database used by Microsoft Exchange Server 2007, Desktop Search,
 and Windows Mail. The ESE library (%SystemRoot%\System32\Esent.dll)
 provides routines for accessing the database, which are open for other
 applications to use as well. Figure 7-47 shows the Active Directory
 architecture.
[image: Active Directory architecture]

Figure 7-47. Active Directory architecture

Network Load Balancing

As stated earlier in the chapter, Network Load
 Balancing, which is included with server versions of Windows, is based
 on NDIS lightweight filter technology. Network Load Balancing allows
 for the creation of a cluster containing up to 32 computers, which are
 called cluster hosts in Network Load Balancing.
 The cluster can maintain multiple dedicated IP addresses and a single
 virtual IP address that is published for access by clients. Client
 requests go to all the computers in the cluster, but only one cluster
 host responds to the request. The Network Load Balancing NDIS drivers
 effectively partition the client space among available cluster hosts
 in a distributed manner. This way, each host handles its portion of
 incoming client requests, and every client request always gets handled
 by one and only one host. The cluster host that determines it should
 handle a client request allows the request to propagate up to the
 TCP/IP protocol driver and eventually a server application; the other
 cluster hosts don’t. If a cluster host fails, the rest of the cluster
 realizes that the cluster host is no longer a candidate for processing
 requests and redistributes the incoming client requests to the
 remaining cluster hosts. No new client requests are sent to the failed
 cluster host. Another cluster host can be added to the cluster as a
 replacement, and it will then seamlessly start handling client
 requests.
Network Load Balancing isn’t a general-purpose clustering
 solution because the server application that clients communicate with
 must have certain characteristics: the first is that it must be based
 on protocols supported by the Windows TCP/IP stack, and the second is
 that it must be able to handle client requests on any system in a
 Network Load Balancing cluster. This second requirement typically
 means that an application that must have access to shared state in
 order to service client requests must manage the shared state
 itself—Network Load Balancing doesn’t include services for
 automatically distributing shared state across cluster hosts.
 Applications that are ideally suited for Network Load Balancing
 include a web server that serves static content, Windows Media Server,
 and Terminal Services. Figure 7-48 shows an example of a
 Network Load Balancing operation.
[image: Network Load Balancing operation]

Figure 7-48. Network Load Balancing operation

Network Access Protection

One of the most difficult challenges that network
 administrators face is ensuring that systems that connect to their
 private networks are up to date and meet the organization’s health
 policy requirements. A health policy contains the specific
 requirements that a system must meet, such as the minimum required
 system hotfixes, or a minimum antivirus signature version. Enforcing
 these requirements is even more difficult when the systems, such as
 home computers or laptops, are not under the network administrator’s
 control. Attackers often create malware that targets out-of-date
 software, so users who do not keep their systems up to date with the
 most recent operating system updates or antivirus signatures risk
 exposing the organization’s private network assets to attacks and
 viruses.
Network Access Protection (NAP) provides a mechanism that helps
 network administrators enforce compliance with health requirement
 policies for all systems that require network access. Systems that do
 not meet the required health policies are isolated from the network
 and are placed in quarantine. While in quarantine, the noncompliant
 system’s network connectivity is severely limited, and it can only see
 the remediation servers from which it can receive the necessary
 updates to bring it back into compliance. This ensures that only
 systems that comply with the health policy requirements are allowed to
 access the organization’s network. NAP is not designed to protect a
 network from malicious users; it is designed to help administrators
 maintain the health of the systems on the network, which in turn helps
 maintain the network’s overall integrity. NAP is a multivendor system,
 with clients running on other operating systems, such as Mac OS X and
 Linux, and several third-party System Health Agents, System Health
 Validators, and Enforcement Clients.
An exhaustive description of NAP is beyond the scope of
 this book; however, Figure 7-49
 and Figure 7-50 illustrate the
 various components that implement NAP on client and server systems. A
 detailed description of NAP can be found at http://technet.microsoft.com/en-us/network/bb545879.aspx.
[image: NAP client-side architecture]

Figure 7-49. NAP client-side architecture

In brief, the components of NAP on the client include the
 following:
	System Health Agent
 (SHA). Monitors one or more aspects of a client’s health, and
 provides one or more Statements of Health (SoH) to the local
 system’s NAP Agent. For example, an antivirus SHA might examine
 the version numbers of the antivirus engine and virus signature
 file, and place that information in its SoH. A SHA can be
 matched to a remediation server so that a noncompliant system
 will know how to become compliant. For example, a SHA for
 checking antivirus signatures could be matched to a server that
 contains the latest antivirus signature file and the antivirus
 application package. Some SHAs do not need to be matched with a
 remediation server. For example, a SHA might just report local
 system settings that a System Health Validator (SHV) running on
 the NAP server SHV can use to determine whether the system’s
 firewall is enabled. Windows XP Service Pack 3 and later provide
 a SHA (%SystemRoot%\System32\Mssha.dll) that monitors the
 settings of the Windows Action Center (SHA-WAC). This SHA is
 typically referred to as the Windows SHA, or WSH. To write a
 SHA, look at the
 INapSystemHealthAgentBinding2,
 INapSystemHealthAgentCallback, and
 INapSystemHealthAgentRequest APIs. The SHA is dependent upon the System Health
 Validator (SHV), and it is expected that the author of a SHA
 also provide a SHV.
Note
SHA vendors should understand that the evaluation process
 can happen before the system has an IP address (for example,
 using 802.1x), so the SHA cannot look for data outside the
 client system. In addition, the IP address can change at any
 point in time (for example, if NAP causes the client to move to
 the quarantine VLAN), so the SHA should not cache sockets or
 make any assumptions about its IP address.

	NAP Agent. %SystemRoot%\System32\qagentRT.dll (quarantine agent
 service runtime). Runs on each client computer, collects the SoH
 from each SHA, and relays that information to the NAP Server.
 The NAP Agent communicates with the NAP Server running on the
 Network Policy Server using the Microsoft Statement of Health
 protocol [MS-SoH].

	Enforcement Client
 (EC). Responsible for communicating with an Enforcement Point
 when trying to connect to a network, and for enforcing machine
 compliance with NAP policies. An Enforcement Point is a server
 or network access device that can be used with NAP to require
 the evaluation of a NAP client’s health state and provide
 restricted network access or communication. If the machine’s
 health is not compliant, the NAP EC indicates the restricted
 status to the NAP Agent. Windows provides ECs for IPsec
 (%SystemRoot%\System32\NapIPsec.dll), 802.1X and VPN
 EAP-authenticated connections
 (%SystemRoot%\System32\Eapqec.dll), DHCP
 (%SystemRoot%\System32\Dhcpqec.dll), and a Remote Desktop
 gateway (%SystemRoot%\System32\Tsgqec.dll). To write an EC, look
 at the INapEnforcementClientBinding,
 INapEnforcementClientCallback, and
 INapEnforcementClientConnection2
 APIs.
Note
The name “enforcement client” can be somewhat confusing.
 The name refers to its role as a client of a network enforcement
 point, so it is more about how a client system accesses a
 network (although access control is generally part of its
 function).

The following diagram shows the NAP components on a server.
 On the server side, the entire mechanism is an add-on to the
 Network Policy Server (NPS) Server (part of the IAS service). In
 general, the health requests arrive at the NPS as an addition to
 RADIUS requests sent to the NPS by the enforcement point. The
 servers, the NPS then passes the Statement of Health (SoH) to the
 health validation layer, which passes the SoH to the appropriate
 SHV.
From the NPS perspective, the requests are coming from
 RADIUS clients (for example, 802.1x network switch, VPN server,
 DHCP server, and so on) in RADIUS UDP packets. Or it allows
 private ALPC calls. (Instead of going through UDP, the ALPC is
 used by the other Windows Server roles—for example, DHCP server—to simplify
 the programming model.) The RADIUS specification (RFC 2865)
 provides for a maximum packet size of 4096, which has a
 significant impact on the amount of data that a SHA can
 send.
The client IPsec EC talks to a Health Registration Authority
 (HRA) server over HTTP. The HRA is an IIS ISAPI filter, which
 passes the SoH to the NPS (using the ALPC interface) and is
 responsible for issuing the certificates (when the machine is
 identified as qualified for a certificate). The HRA server list
 can be configured using DNS, by adding HRA server records and
 configuring the client to get the list from DNS. Third parties can
 implement a RADIUS client to talk to the NPS over UDP.
[image: NAP server-side architecture]

Figure 7-50. NAP server-side architecture

	System Health Validator
 (SHV). Evaluates a SoH received from the corresponding SHA on a
 client and determines whether the client is in compliance with
 the organization’s health policy by checking with a Health
 Requirements Server (HRS). For example, an antivirus HRS might
 specify the minimum antivirus engine version and virus signature
 file version.
Note
The presence of a Health Requirements Server is an
 implementation detail; an SHV can perform all the necessary work
 on its own.

The SHV uses this information to determine whether the SoH
 provided by the client SHA is in compliance with the health policy
 provided by the HRS. To write a SHV, look at the
 INapSystemHealthValidator and
 INapSystemHealthValidationRequest2 APIs. The
 SHV is dependent upon the System Health Agent (SHA), and it is
 expected that the author of a SHA also provide a SHV.

Not pictured in the diagram are one or more Remediation Servers,
 which allow a client to be brought into compliance (for example, a
 Windows Update server). The SHV is not connected to the Remediation
 Servers, but it is aware of their existence (configured
 administratively). It passes information about the servers to the
 client when the SoH indicates that the client is not compliant with
 the current policy requirements.
NAP client configuration is typically done in the Group Policy
 editor with the Enforcement Client snap-in, but it can also be
 performed using the NAP client configuration MMC snap-in
 (%SystemRoot%\System32\Napclcfg.msc) or the network shell
 (%SystemRoot%\System32\Netsh.exe), as shown in Figure 7-51, Figure 7-52, and Figure 7-53.
Note
Group Policy always takes precedence over other
 configurations, followed by the local configuration, and then by DNS
 auto-discovery.

[image: NAP Client configuration]

Figure 7-51. NAP Client configuration

[image: NAP Client configuration]

Figure 7-52. NAP Client configuration

[image: Configuring NAP using the network shell]

Figure 7-53. Configuring NAP using the network shell

Direct Access

In Windows 7 Ultimate and Enterprise editions, Microsoft
 added an always-on Virtual Private Network (VPN) capability known as
 DirectAccess (DA), which allows a remote client on the Internet access
 to a corporate domain-based network. A DA connection to a corporate
 network is created when the client system boots, and it lasts for as
 long as the client is running and connected to the Internet. If
 network problems cause the connection to be dropped, the connection
 will be automatically re-established when network connections permit.
 DA uses IPsec running over IPv6, which can be encapsulated in IPv4
 using a variety of mechanisms (described later) if the local system
 does not have end-to-end IPv6 connectivity to the private network.
 Remote systems can even use DA when they are behind a firewall,
 because DA can use HTTPS (TCP port 443) as a transport
 (IP-HTTPS).
Unlike traditional VPN products, remote systems using DA to
 access a corporate network are always visible and manageable—just as
 if the machine was directly plugged into the corporate network. The
 corporate IT department can manage remote systems by updating Group
 Policy settings or push software updates at any time the remote
 systems are attached to the Internet. The IT department can also
 specify which corporate network resources (applications, servers,
 subnets, and so on) can be accessed by a user or remote system that is
 connected using DA.
For enhanced security, Authentication Mechanism Assurance
 (described in Chapter 6) can be required on
 DA clients. This requires two-factor authentication (for example, a
 smart card or other hardware token) to log on or unlock a
 system.
As shown in Figure 7-54, there are many
 mechanisms available for connecting a DA client to a corporate
 network: IPv6, Intra-Site Automatic Tunnel Addressing Protocol
 (ISATAP), IPv4 encrypted with IPsec, 6to4 tunnel, or Teredo. In all
 cases, a connection is made between the remote client and a DA server.
 This server provides Denial of Service (DoS) protection by
 rate-limiting connection negotiation traffic used to connect to it,
 and it acts as an IPv6 tunnel gateway between the remote client and
 the corporate network. The DA server also functions as an IPv6-based
 IPsec security gateway, similar to a VPN server or VPN client access
 concentrator, to control access to the corporate network
A client typically has two IPv6 tunnels to the DA server: an
 infrastructure tunnel and an
 intranet tunnel. The infrastructure tunnel is for
 communicating with corporate infrastructure servers, such as a Domain
 Name System (DNS) server, and domain controllers. The infrastructure
 tunnel is created automatically when the client boots, and it does not
 require the user to be logged in. The intranet tunnel is established
 when a user logs in, and it carries network traffic for the
 user.
DA also works with NAP. In this case, a Health Registration
 Authority (HRA) server is placed outside the corporate firewall (often
 referred to as the DMZ, or DeMilitarized Zone). The client is
 configured with the name of the HRA (which can be resolved to an IP
 address using a public DNS server). When the client boots, it contacts
 the HRA and sends its Statement of Health. If the client is not
 healthy, it must access remediation servers, which are also in the
 DMZ. Once the client is healthy, it obtains a health certificate that
 can then be used with IPsec to connect to the DA server.
[image: Connecting a DA client to a corporate network]

Figure 7-54. Connecting a DA client to a corporate network

Conclusion

The Windows network architecture provides a flexible
 infrastructure for networking APIs, network protocol drivers, and
 network adapter drivers. The Windows networking architecture takes
 advantage of I/O layering to give networking support the extensibility
 to evolve as computer networking evolves. Similarly, new APIs can
 interface to existing Windows protocol drivers. Finally, the range of
 networking APIs implemented on Windows affords network application
 developers a range of possible implementations, each with different
 programming models and protocol support.

Appendix A. About the Authors

[image: image with no caption]

Mark Russinovich is a Technical
 Fellow in Windows Azure at Microsoft, working on Microsoft’s cloud
 operating system. He is the author of the cyberthriller Zero
 Day (Thomas Dunne Books, 2011) and coauthor of
 Windows Sysinternals Administrator’s Reference
 (Microsoft Press, 2011). Mark joined Microsoft in 2006 when Microsoft
 acquired Winternals Software, the company he cofounded in 1996, as well as
 Sysinternals, where he still authors and publishes dozens of popular
 Windows administration and diagnostic utilities. He is a featured speaker
 at major industry conferences. Follow Mark on Twitter at @markrussinovich
 and on Facebook at http://facebook.com/markrussinovich.
[image: image with no caption]

David Solomon, president of David
 Solomon Expert Seminars (www.solsem.com), has
 focused on explaining the internals of the Microsoft Windows NT operating
 system line since 1992. He has taught his world-renowned Windows internals
 classes to thousands of developers and IT professionals worldwide. His
 clients include all the major software and hardware companies, including
 Microsoft. He was nominated a Microsoft Most Valuable Professional in 1993
 and from 2005 to 2008.
Prior to starting his own company, David worked for nine years as a
 project leader and developer in the VMS operating system development group
 at Digital Equipment Corporation. His first book was entitled
 Windows NT for Open VMS Professionals (Digital
 Press/Butterworth Heinemann, 1996). It explained Windows NT to
 VMS-knowledgeable programmers and system administrators. His second book,
 Inside Windows NT, Second
 Edition (Microsoft Press, 1998), covered the internals of
 Windows NT 4.0. Since the third edition (Inside Windows
 2000) David has coauthored this book series with Mark
 Russinovich.
In addition to organizing and teaching seminars, David is a regular
 speaker at technical conferences such as Microsoft TechEd and Microsoft
 PDC. He has also served as technical chair for several past Windows NT
 conferences. When he’s not researching Windows, David enjoys sailing,
 reading, and watching Star Trek.
[image: image with no caption]

Alex Ionescu is the founder of
 Winsider Seminars & Solutions Inc., specializing in low-level system
 software for administrators and developers as well as reverse engineering
 and security training for government and infosec clients. He also teaches
 Windows internals courses for David Solomon Expert Seminars, including at
 Microsoft. From 2003 to 2007, Alex was the lead kernel developer for
 ReactOS, an open source clone of Windows XP/Server 2003 written from
 scratch, for which he wrote most of the Windows NT-based kernel. While in
 school and part-time in summers, Alex worked as an intern at Apple on the
 iOS kernel, boot loader, firmware, and drivers on the original core
 platform team behind the iPhone, iPad, and AppleTV. Returning to his
 Windows security roots, Alex is now chief architect at CrowdStrike, a
 startup based in Seattle and San Francisco.
Alex continues to be very active in the security research community,
 discovering and reporting several vulnerabilities related to the Windows
 kernel, and presenting talks at conferences such as Blackhat, SyScan, and
 Recon. His work has led to the fixing of many critical kernel
 vulnerabilities, as well as to fixing over a few dozen nonsecurity bugs.
 Previous to his work in the security field, Alex’s early efforts led to
 the publishing of nearly complete NTFS data structure documentation, as
 well as the Visual Basic metadata and pseudo-code format
 specifications.

Appendix B. More Resources for Developers

Microsoft Press® books

Visual Studio

Microsoft® Visual Basic® 2010 Step by Step

Michael Halvorson

978-07356-2669-0

Microsoft Visual C#® 2010 Step by Step

John Sharp

978-07356-2670-6

Windows® via C/C++, Fifth Edition

Jeffrey Richter,

Christophe Nasarre

978-07356-2424-5

Microsoft Visual Basic 2010 Developer’s Handbook

Sarika Calla Purohit,

Klaus Löffelmann

978-07356-2705-5

Inside the Microsoft Build Engine: Using MSBuild and Team Foundation Build, Second Edition

Sayed Ibrahim Hashimi

William Bartholomew

978-07356-4524-0

Microsoft .NET: Architecting Applications for the Enterprise

Dino Esposito,

Andrea Saltarello

978-07356-2609-6

Microsoft .NET and SAP

Juergen Daiberl, et al.

978-07356-2568-6

Programming Microsoft Visual C# 2008: The Language

Donis Marshall

978-07356-2540-2

Microsoft XNA® Game Studio 4.0: Learn Programming Now!

Rob Miles

978-07356-5157-9

[image: image with no caption]

Web Development

Developing Service-Oriented AJAX Applications on the Microsoft Platform

Daniel Larson

978-07356-2591-4

Microsoft ASP.NET and AJAX: Architecting Web Applications

Dino Esposito

978-07356-2621-8

Programming Microsoft ASP.NET 4

Dino Esposito

978-07356-4338-3

Microsoft ASP.NET 4 Step by Step

George Shepherd

978-07356-2701-7

Microsoft Silverlight® 4, Step by Step

Laurence Moroney

978-07356-3887-7

JavaScript, Second Edition Step by Step

Steve Suehring

978-07356-4552-3

Microsoft Visual Web Developer™ 2008 Express Edition Step by Step

Eric Griffin

978-07356-2606-5

.Net Framework

CLR via C#, Third Edition

Jeffrey Richter

978-07356-2704-8

Programming Microsoft LINQ in .NET Framework 4

Paolo Pialorsi, Marco Russo

978-07356-4057-3

3D Programming for Windows

Charles Petzold

978-07356-2394-1

Data Access/Database

Microsoft SQL Server® 2008 Internals

Kalen Delaney, et al.

978-07356-2624-9

Inside Microsoft SQL Server 2008: T-SQL Querying

Itzik Ben-Gan, et al.

978-07356-2603-4

Programming Microsoft SQL Server 2008

Leonard Lobel, Andrew J.

Brust, Stephen Forte

978-07356-2599-0

Smart Business Intelligence Solutions with Microsoft SQL Server 2008

Lynn Langit, et al.

978-07356-2580-8

Other Topics

Agile Portfolio Management

Jochen Krebs

978-07356-2567-9

Agile Project Management with Scrum

Ken Schwaber

978-07356-1993-7

Software Estimation: Demystifying the Black Art

Steve McConnell

978-0-7356-0535-0

How We Test Software at Microsoft

Alan Page, Ken Johnston,

Bj Rollison

978-07356-2425-2

Practical Project Initiation

Karl E. Wiegers

978-07356-2521-1

Simple Architectures for Complex Enterprises

Roger Sessions

978-07356-2578-5

[image: image with no caption]

Appendix C. Find the Right Resource for You

	[image:]	[image:]	[image:]	[image:]
	START
 HERE!
	STEP BY
 STEP
	DEVELOPER
 REFERENCE
	FOCUSED
 TOPICS

		Beginner-level instruction

	Easy to follow explanations and examples

	Exercises to build your first projects

		For experienced developers learning a new topic

	Focus on fundamental techniques and tools

	Hands-on tutorial with practice files plus
 eBook

		Professional developers; intermediate to
 advanced

	Expertly covers essential topics and techniques

	Features extensive, adaptable code examples

		For programmers who develop complex or advanced
 solutions

	Specialized topics; narrow focus; deep coverage

	Features extensive, adaptable code examples

	Start Here!™

Learn Microsoft® Visual C#® 2010

John Paul Mueller

978-0-7356-5772-4

 Start Here!

Learn Microsoft Visual Basic® 2010

Evangelos Petroutsos

978-0-7356-5682-6

 Start Here!

Fundamentals of Microsoft .NET Programming

Rod Stephens

978-0-7356-6168-4

	Microsoft Visual Basic 2010 Step by Step

Michael Halvorson

978-0-7356-2669-0

 Microsoft Visual C# 2010 Step by Step

John Sharp

978-0-7356-2670-6

 Microsoft ASP.NET 4 Step by Step

George Shepherd

978-0-7356-2701-7

	Programming Microsoft ASP.NET 4

Dino Esposito

978-0-7356-4338-3

 Programming Windows® Identity Foundation

Vittorio Bertocci

978-0-7356-2718-5

 Programming Microsoft LINQ in .NET Framework 4

Paolo Pialorsi, Marco Russo

978-0-7356-4057-3

	Microsoft ASP.NET and AJAX: Architecting Web Applications

Dino Esposito

978-0-7356-2621-8

 CLR via C#, Third Edition

Jeffrey Richter

978-0-7356-2704-8

 Windows Internals, Fifth Edition

Mark E. Russinovich

and David A. Solomon

with Alex Ionescu

978-0-7356-2530-3

microsoft.com/mspress
[image: image with no caption]

 Index

A note on the digital index

 A link in an index entry is displayed as the section title in which that entry appears. Because some sections have multiple index markers,
 it is not unusual for an entry to have several links to the same section. Clicking on any link will take you directly to the place in the text
 in which the marker appears.

 Symbols
	!dp command, Data Structures
	!dt command, Data Structures
	!handle command, Data Structures
	!numa command, NUMA Systems
	!pcr command, Termination
	!peb command, Data Structures
	!process command, Data Structures, Data Structures, Idle Threads
	!ready command, Thread Scheduling
	!reg dumppool command, Hive Structure
	!reg findkcb command, The Registry Namespace and Operation
	!teb command, Data Structures
	!thread command, Data Structures, Data Structures, Data Structures
	%SystemRoot%\System32 directory, WMI Implementation
	%SystemRoot%\System32\Wbem directory, WMI Implementation
	/SUBSYSTEM qualifier, Environment Subsystems and Subsystem DLLs
	16-bit applications, Wow64 support, I/O Control Requests
	32-bit applications, Exception Dispatching, Wow64
		execution on 64-bit systems, Wow64
	frame-based exception handlers, Exception Dispatching

	32-bit programming interfaces, Windows Operating System Versions
	32-bit Windows, Virtual Memory, Kernel Mode vs. User Mode, System Service Dispatching, Type Objects, Ideal and Last Processor
		address space layout, Virtual Memory
	kernel mode security, Kernel Mode vs. User Mode
	object headers, Type Objects
	processor selection, Ideal and Last Processor
	system calls, System Service Dispatching

	3Com, Internet Protocol Security
	64-bit applications, Exception Dispatching, DLL Name Redirection
		DLL versioning check, DLL Name Redirection
	structured exception handling, Exception Dispatching

	64-bit programming interfaces, Windows Operating System Versions
	64-bit Windows, Virtual Memory, Kernel Mode vs. User Mode, System Service Dispatching, Type Objects, Wow64, Ideal and Last Processor
		address space, Virtual Memory
	device driver verification, Kernel Mode vs. User Mode
	object headers, Type Objects
	stride value, Ideal and Last Processor
	system calls, System Service Dispatching
	Win32 emulation, Wow64 (see Wow64)

 A
	AAM (Admin Approval Mode), Running with Administrator Rights
	aborts, Trap Dispatching
	absolute timers, Timer Expiration
	abstract classes, Providers
	AcceptEx function, Winsock Server Operation
	access, ACL Assignment, Ghosts, Network Access Protection
		caching, Ghosts
	determining, ACL Assignment
	network, Network Access Protection

	access checks, Protecting Objects, ACL Assignment, Determining Access, Determining Access, Determining Access
		access token-based, Determining Access
	discretionary, ACL Assignment, Determining Access
	user-mode equivalents, Determining Access

	access control, Security, Trusted Computer System Evaluation Criteria, Security Descriptors and Access Control, The AuthZ API, The AuthZ API
		claims based, The AuthZ API
	discretionary, Trusted Computer System Evaluation Criteria
	forms of, Security
	identity-based, The AuthZ API

	access control entries (ACEs), Security Descriptors and Access Control (see ACEs (access control entries))
	access control lists (ACLs), Security Descriptors and Access Control (see ACLs (access control lists))
	access logging, Protecting Objects
	access mask, specifying, Object Security
	access rights, Reserve Objects, Protected Processes, Protected Processes, Determining Access, Assured Authentication, User Account Control and Virtualization
		administrative vs. user, User Account Control and Virtualization
	group claims, Assured Authentication
	process requests, Protected Processes
	protected processes and, Protected Processes
	revocation, Determining Access
	to objects, Reserve Objects

	access tokens, Services, Functions, and Routines, Processes, Threads, and Jobs, Local Session Manager (Lsm.exe), Tokens, Determining Access, Super Privileges, User Logon Steps, User Logon Steps, User Logon Steps, Application Identification (AppID)
		access checks based on, Determining Access
	AppIDs in, Application Identification (AppID)
	creation, User Logon Steps
	generation, Local Session Manager (Lsm.exe)
	privileges, adding, User Logon Steps
	user, User Logon Steps

	access validation, Determining Access, Determining Access
		ACE ordering, Determining Access
	algorithms, Determining Access

	access-denied errors, Process Monitor Troubleshooting Techniques
	AccessCheck, Digging into Windows Internals, Object Security, Integrity Levels, Determining Access
		object integrity levels, viewing, Integrity Levels
	object security checks, Object Security

	AccessCheckByType function, Determining Access
	account profiles, loading, Service Startup
	account rights, Conditional ACEs, Account Rights
		defined, Conditional ACEs

	ACEs (access control entries), Security Descriptors and Access Control, Security Descriptors and Access Control, Security Descriptors and Access Control, Security Descriptors and Access Control, ACL Assignment, ACL Assignment, Determining Access, Determining Access, Determining Access, The AuthZ API, Security Auditing, Application Identification (AppID), AppLocker
		audit types, Security Auditing
	conditional, The AuthZ API, Application Identification (AppID), AppLocker
	flags, Security Descriptors and Access Control
	in SACLs, Security Descriptors and Access Control
	inheritance, Security Descriptors and Access Control
	order of, ACL Assignment, Determining Access
	processing, Determining Access
	propagation, ACL Assignment
	viewing, Determining Access

	ACLs (access control lists), Reserve Objects, Service Isolation, Virtual Service Accounts, Virtual Service Accounts, Security Descriptors and Access Control, Security Descriptors and Access Control, Security Descriptors and Access Control, ACL Assignment
		accumulation of access rights, Security Descriptors and Access Control
	ACE order in, ACL Assignment
	assigning, Security Descriptors and Access Control
	displaying, Reserve Objects
	services, permissions for, Service Isolation
	types, Security Descriptors and Access Control
	virtual service accounts in, Virtual Service Accounts, Virtual Service Accounts

	act as part of operating system privilege, Super Privileges
	Action Center, viewing crashes in, Windows Error Reporting
	activation contexts, DLL Name Redirection
	active desktop, Winlogon Initialization
	Active Directory, HKEY_LOCAL_MACHINE, Security System Components, Security Descriptors and Access Control, RPC Operation, Remote Access, Remote Access, Remote Access, Active Directory, Active Directory
		ACEs used in, Security Descriptors and Access Control
	APIs to access objects, Remote Access
	architecture, Active Directory
	directory service, Active Directory
	schema, Remote Access
	server name publishing integration, RPC Operation

	Active Directory Service Interfaces (ADSI), Remote Access
	Active Directory Users and Groups MMC snap-in, Account Rights and Privileges
	active logon sessions, listing, User Logon Steps
	active probes, Registry Change Monitoring
	ActiveX controls, WMI Architecture
	address mapping, Virtual Memory
	address ordering, Data Structures
	address sharing, restricting, Winsock Kernel
	address space, Virtual Memory, Wow64, Stage 3A: Setting Up the EPROCESS Object
		for Wow64 processes, Wow64
	initial process, Stage 3A: Setting Up the EPROCESS Object
	layout, Virtual Memory

	Address Windowing Extension (AWE), Virtual Memory
	addresses, Winsock Extensions, Network Load Balancing
		(see also IP addresses)
	well-known, Winsock Extensions

	AdjustBoost dispatch events, Boosts Due to Scheduler/Dispatcher Events
	AdjustBoost priority boosts, Applying Boosts
	AdjustUnwait dispatch events, Priority Boosts
	AdjustUnwait priority boosts, Priority Boosts for CPU Starvation
	Admin Approval Mode (AAM), Running with Administrator Rights
	administrative rights, User Account Control and Virtualization, Registry Virtualization, Running with Administrator Rights, Running with Administrator Rights
		operations requiring, Registry Virtualization
	requesting, Running with Administrator Rights
	running with, Running with Administrator Rights

	Administrator account name, Security Identifiers
	administrators, Account Rights and Privileges, Privileges
		Bypass Traverse Checking privilege, Privileges
	privileges assignment, Account Rights and Privileges

	admission control, QoS
	ADSI (Active Directory Service Interfaces), Remote Access
	Advanced Local Procedure Call (ALPC), Executive (see ALPC (Advanced Local Procedure Call))
	Advanced Security Settings dialog box, Determining Access, Determining Access
		Effective Permissions tab, Determining Access
	Permissions tab, Determining Access

	Advanced Settings dialog box Adapters And Bindings
 tab, QoS
	Advapi32.dll, Architecture Overview, API Sets, Protected Processes
		process-creation routines, Protected Processes
	virtual DLL files, API Sets

	AFD (Ancillary Function Driver), Extending Winsock
	affinity masks, Symmetric Multiprocessing, Thread Selection, NUMA Systems, Logical Processor State, Affinity, Affinity
		(see also processor affinity)
	extended, Affinity
	process, Affinity
	restricting to specific node, NUMA Systems
	thread, Logical Processor State

	affinity policy, interrupts, Software Interrupt Request Levels (IRQLs)
	alertable wait state, Asynchronous Procedure Call Interrupts
	ALPC (Advanced Local Procedure Call), Executive, Session Manager (Smss), Windows Global Flags, Windows Global Flags, Connection Model, Connection Model, Message Model, Message Model, Message Model, Message Model, Message Model, Asynchronous Operation, Asynchronous Operation, Asynchronous Operation, Asynchronous Operation, Views, Regions, and Sections, Views, Regions, and Sections, Views, Regions, and Sections, Views, Regions, and Sections, Blobs, Handles, and Resources, Blobs, Handles, and Resources, Security, Security, Debugging and Tracing, Debugging and Tracing
		asynchronous operation, Message Model
	attributes, Views, Regions, and Sections
	blobs, Views, Regions, and Sections
	completion list, Message Model
	connection model, Connection Model
	debugging, Debugging and Tracing
	handle table, Blobs, Handles, and Resources
	handles, Views, Regions, and Sections
	message model, Message Model
	message queues, Message Model
	message zones, Security
	performance, Security
	port creation, Session Manager (Smss)
	ports, Connection Model, Message Model
	regions, Asynchronous Operation
	resources, Views, Regions, and Sections
	sections, Asynchronous Operation
	security, Asynchronous Operation, Blobs, Handles, and Resources
	tracing, Debugging and Tracing
	uses, Windows Global Flags
	views, Asynchronous Operation

	altitudes of registry callbacks, Stable Storage
	AMD-V Rapid Virtualization Indexing (RVI), Memory Virtualization
	Ancillary Function Driver (AFD), Extending Winsock
	ANSI character text strings, converting to
 Unicode, Registry
	antivirus products, use of callback
 mechanism, Stable Storage
	APC boosts, Unwait Boosts
	APC delivery, Keyed Events, Fast Mutexes and Guarded Mutexes, Wow64 Process Address Space Layout
		disabling, Keyed Events, Fast Mutexes and Guarded Mutexes
	in Wow64, Wow64 Process Address Space Layout

	APC interrupt level, Software Interrupt Request Levels (IRQLs), Stage 7: Performing Process Initialization in the Context of
 the New Process, Interrupt Levels vs. Priority Levels
	APC objects, Dispatch or Deferred Procedure Call (DPC)
 Interrupts
	APC queue, Dispatch or Deferred Procedure Call (DPC)
 Interrupts
	APCs (asynchronous procedure calls), Dispatch or Deferred Procedure Call (DPC)
 Interrupts, Dispatch or Deferred Procedure Call (DPC)
 Interrupts, Asynchronous Procedure Call Interrupts, Reserve Objects, Stage 4: Creating the Initial Thread and Its Stack and
 Context, Priority Boosts, Lock Ownership Boosts, Priority Boosts for Multimedia Applications and Games, Choosing a Processor for a Thread When There Are Idle
 Processors, Per-Session CPU Quota Blocks, Per-Session CPU Quota Blocks, Charging of Cycles to Throttled Threads, Resuming Execution, RPC Operation
		CPU quota enforcement, Charging of Cycles to Throttled Threads
	disabling, Dispatch or Deferred Procedure Call (DPC)
 Interrupts
	insertion and delivery behavior, Asynchronous Procedure Call Interrupts
	pending, Priority Boosts for Multimedia Applications and Games, Choosing a Processor for a Thread When There Are Idle
 Processors
	per-process CPU Quota APC structure, Per-Session CPU Quota Blocks
	per-thread, Per-Session CPU Quota Blocks, Resuming Execution
	queuing to thread, Priority Boosts
	rate control, Stage 4: Creating the Initial Thread and Its Stack and
 Context
	signaling code implementation, Lock Ownership Boosts
	User APC reserve object, Reserve Objects

	API redirection, Image Loader, Post-Import Process Initialization
		for application compatibility, Post-Import Process Initialization
	image loader support, Image Loader

	API Sets, Image Loader, SwitchBack
		image loader support, Image Loader

	APIC (Advanced Programmable Interrupt
 Controller), Hardware Interrupt Processing, Hardware Interrupt Processing, x64 Interrupt Controllers, Software Interrupt Request Levels (IRQLs), Synthetic Devices
		architecture, Hardware Interrupt Processing
	interrupt assignment, Software Interrupt Request Levels (IRQLs)
	viewing, x64 Interrupt Controllers
	virtualizing, Synthetic Devices

	APIs, Post-Import Process Initialization, SwitchBack, Protocol Drivers
		application-compatibility risks, Post-Import Process Initialization
	categorization, SwitchBack
	separating from underlying protocols, Protocol Drivers

	AppID, Controlling UAC Behavior, AppLocker
		certificate verification, AppLocker

	application desktop, Logon
	application failures, troubleshooting, Process Monitor Internals
	application layer in OSI reference model, The OSI Reference Model
	application load failures, Import Parsing, Post-Import Process Initialization
	application manifests, Post-Import Process Initialization, Requesting Administrative Rights
		execution level information, Requesting Administrative Rights
	version-specific GUIDs in, Post-Import Process Initialization

	application setup programs, Services, Services
		service initialization, Services
	service registration, Services

	application start cursor, Stage 5: Performing Windows Subsystem–Specific
 Post-Initialization
	application-compatibility flags, Requesting Administrative Rights
	application-compatibility shims, File System and Registry Virtualization
	applications, Environment Subsystems and Subsystem DLLs, Windows Subsystem, Timer Processing, Object Directories, Registry Redirection, Native Support, Native Support, Image Loader, SwitchBack, Viewing and Changing the Registry, Registry Usage, Process Monitor Internals, Process Monitor Internals, Process Monitor Troubleshooting Techniques, Process Monitor Troubleshooting Techniques, The Registry Namespace and Operation, Windows Diagnostic Infrastructure, Stage 5: Performing Windows Subsystem–Specific
 Post-Initialization, Thread Scheduling, Dynamic Processor Addition and Replacement, Access Checks, User Account Control and Virtualization, User Account Control and Virtualization, User Account Control and Virtualization, Running with Administrator Rights, Controlling UAC Behavior, Controlling UAC Behavior, Extending Winsock, RPC Operation, Background Intelligent Transfer Service, Location and Topology
		administrative rights, requesting, Running with Administrator Rights
	affinity updates, Dynamic Processor Addition and Replacement
	AppIDs, Controlling UAC Behavior
	buffer overflows, Process Monitor Troubleshooting Techniques
	compatibility levels, SwitchBack
	debugging startup, Image Loader
	dynamic configuration, Location and Topology
	group-aware, Thread Scheduling
	I/O control functions, Registry Redirection
	identification for security
 purposes, Controlling UAC Behavior
	initialization, Native Support
	nonadministrative, User Account Control and Virtualization
	notification of registry changes, Process Monitor Internals
	peer-to-peer support, Background Intelligent Transfer Service
	private objects, Access Checks
	problem diagnosis requests, Windows Diagnostic Infrastructure
	registry key creation, The Registry Namespace and Operation
	registry settings, Registry Usage
	registry settings, locating, Process Monitor Internals
	response times, Timer Processing
	RPC, RPC Operation
	single-instancing, Object Directories
	standard user rights, running with, User Account Control and Virtualization
	startup, Viewing and Changing the Registry
	subsystem DLL calls, Environment Subsystems and Subsystem DLLs
	unprivileged user accounts, running in, Process Monitor Troubleshooting Techniques
	user data, saving, User Account Control and Virtualization
	USER function calls, Windows Subsystem
	user-mode execution, Native Support
	virtualization, Stage 5: Performing Windows Subsystem–Specific
 Post-Initialization
	Winsock functions, access to, Extending Winsock

	AppLocker, Security System Components, The AuthZ API, Application Identification (AppID), AppLocker, AppLocker, AppLocker, AppLocker, AppLocker, AppLocker, AppLocker
		auditing mode, AppLocker
	CBAC use, The AuthZ API
	conditional ACEs, Application Identification (AppID), AppLocker
	PowerShell commands, AppLocker
	registry change notifications, AppLocker
	rules, AppLocker
	storage location of rules, AppLocker

	APs (authentication protocols), Assured Authentication
	arbiters, Software Interrupt Request Levels (IRQLs)
	argument table, System Service Dispatching
	artificial wait state, CPU Rate Limits
	ASMP (asymmetric multiprocessing), Portability
	assembly language, Portability
	ASSERT checks, Checked Build
	association classes, The WMI Namespace
	Assured Authentication, User Logon Steps
	asymmetric multiprocessing (ASMP), Portability
	asynchronous callbacks, for change
 notifications, Viewing and Changing the Registry
	asynchronous events, interrupts, Trap Dispatching
		(see also interrupts)

	asynchronous execution, Run Once Initialization
	asynchronous file transfer, Background Intelligent Transfer Service
	asynchronous messaging, Message Model, Security
		message zones, Security

	asynchronous notifications, Message Model
	asynchronous procedure calls (APCs), Dispatch or Deferred Procedure Call (DPC)
 Interrupts (see APCs (asynchronous procedure calls))
	asynchronous RPC, RPC Operation
	atomic lock operations, Fast Mutexes and Guarded Mutexes
	attributes, Views, Regions, and Sections, Stage 1: Converting and Validating Parameters and Flags, The AuthZ API, Offline Files
		ALPC, Views, Regions, and Sections
	cacheable, Offline Files
	CBAC, The AuthZ API
	process, Stage 1: Converting and Validating Parameters and Flags

	Audio Device Graph process (Audiodg.exe), Protected Processes
	Audit Log, Security Descriptors and Access Control
	Audit Object Access policy, Security Auditing
	audit records, Security Auditing, Security Auditing, Security Auditing, Security Auditing
		ACEs in, Security Auditing
	flow of, Security Auditing
	generation, Security Auditing
	object-access, Security Auditing

	auditing, Security Auditing, Security Auditing, Security Auditing, Security Auditing, Security Auditing, Advanced Audit Policy Settings
		advanced policy settings, Advanced Audit Policy Settings
	audit events, generating, Security Auditing
	Audit Object Access policy, Security Auditing
	local system policies, Security Auditing
	mechanisms for, Security Auditing
	policy configuration, Security Auditing

	AuditPol command, Global Audit Policy
	AuditQueryGlobalSacl API, Global Audit Policy
	AuditSetGlobalSacl API, Global Audit Policy
	authentication, Local Session Manager (Lsm.exe), Logon, Winlogon Initialization, Winlogon Initialization, Winlogon Initialization, User Logon Steps, User Logon Steps, User Logon Steps, User Logon Steps, Assured Authentication, Assured Authentication, RPC Operation, RPC Operation
		Assured Authentication, User Logon Steps
	biometric framework, Assured Authentication
	certificate-based, Assured Authentication
	credential providers, Local Session Manager (Lsm.exe)
	Kerberos, User Logon Steps
	levels, RPC Operation
	MSV1_0, Winlogon Initialization
	network communication, RPC Operation
	password-based, Winlogon Initialization
	remote, User Logon Steps
	smartcard, User Logon Steps
	user, Logon, Winlogon Initialization

	authentication packages, Security System Components, Logon, Winlogon Initialization
		for user logon, Winlogon Initialization

	authentication protocols (APs), Assured Authentication
	authentication services, RPC Operation
	AuthIP, Internet Protocol Security, Internet Protocol Security
	authorization, Determining Access
	AuthZ Windows API, Access Checks, Determining Access
	AUTHZ_CLIENT_CONTEXT, Determining Access
	auto-elevation, Requesting Administrative Rights
	auto-start services, Services, Interactive Services and Session 0 Isolation, The Service Control Manager, Service Startup, Service Startup
		dependencies, Service Startup

	Autochk.exe, Session Manager (Smss)
	automated problem detection, Windows Diagnostic Infrastructure
		(see also WDI (Windows Diagnostic Infrastructure))

	availability, Distributed File System Namespace
	AWE (Address Windowing Extension), Virtual Memory

 B
	Background Intelligent Transfer Service
 (BITS), Background Intelligent Transfer Service, BranchCache
	balance set manager, System Processes, Priority Boosts After GUI Threads Wake Up
	balance-set-manager thread, What Signals an Object?
	balancer, Memory Virtualization
	base filtering engine (BFE), Windows Filtering Platform
	Base Services, Windows Operating System Versions
	BaseNamedObjects directory, Object Headers and Bodies
	basic sockets, WSK Implementation
	BCD (Boot Configuration Database), Viewing and Changing the Registry, HKEY_USERS, HKEY_LOCAL_MACHINE
		registry hive, HKEY_USERS
	remote editing, HKEY_LOCAL_MACHINE

	BCDEdit, HKEY_LOCAL_MACHINE
	BFE (base filtering engine), Windows Filtering Platform
	binary dependencies, Early Process Initialization, DLL Name Redirection
		manifests, DLL Name Redirection
	resolving, Early Process Initialization

	binary MOF (BMF) files, The Common Information Model and the Managed Object Format
 Language
	binding, QoS, QoS
		bindings priority, QoS

	bins for registry cells, Hive Structure, The Registry Namespace and Operation
		allocation, The Registry Namespace and Operation

	biometrics, Assured Authentication
	bitmasks, processor state, Processor Group Assignment
	BITS (Background Intelligent Transfer
 Service), Background Intelligent Transfer Service, Background Intelligent Transfer Service, Background Intelligent Transfer Service, Background Intelligent Transfer Service, Background Intelligent Transfer Service, Background Intelligent Transfer Service, Background Intelligent Transfer Service, Background Intelligent Transfer Service, BranchCache
		BITSAdmin tool, Background Intelligent Transfer Service
	BranchCache use, BranchCache
	capabilities, Background Intelligent Transfer Service
	Compact Server, Background Intelligent Transfer Service
	downloading files, Background Intelligent Transfer Service
	messages in event log, Background Intelligent Transfer Service
	PowerShell cmdlets, Background Intelligent Transfer Service
	uploading files, Background Intelligent Transfer Service

	blobs, Views, Regions, and Sections
	blocked threads, resuming execution, Resuming Execution
	blocking calls timeout parameter, Message Model
	blocking IPC mechanisms, Message Model
	blocks, registry hive, Hive Structure
	boosts, Priority Boosts (see priority boosts)
	Boot Configuration Database (BCD), Viewing and Changing the Registry (see BCD (Boot Configuration Database))
	boot loader, Viewing and Changing the Registry
	boot menu, Service Startup
	boot process, HKEY_LOCAL_MACHINE, Service Startup, Service Startup, Startup Errors, Startup Errors, Startup Errors, Diagnostic Functionality, Diagnostic Functionality, Protected Processes
		auto-start and delayed auto-start services, Service Startup
	debugging mode, Protected Processes
	failures, Startup Errors
	information storage location, HKEY_LOCAL_MACHINE
	last known good configuration, Startup Errors
	performance diagnostics, Diagnostic Functionality
	safe mode, Service Startup
	startup repair tool, Diagnostic Functionality
	successful, Startup Errors

	boot-start drivers, Interactive Services and Session 0 Isolation
	boot-verification programs, Accepting the Boot and Last Known Good
	Boot.ini file, HKEY_USERS
	boundary descriptors, Object Directories
	BranchCache, BranchCache, BranchCache, BranchCache, BranchCache, BranchCache, BranchCache, BranchCache, Caching Modes, Caching Modes, Configuration, Configuration, Configuration, Configuration, Configuration, Configuration, Configuration, BranchCache Optimized Application Retrieval: SMB
 Sequence
		acceleration, BranchCache
	APIs, Configuration
	application retrieval: HTTP sequence, BranchCache Optimized Application Retrieval: SMB
 Sequence
	application retrieval: SMB sequence, Configuration
	architecture, BranchCache
	availability, BranchCache
	caching modes, BranchCache
	configuration, Caching Modes
	hash groveler service, Configuration
	HTTP extension driver, Configuration
	Implementation service, Configuration
	Network Shell Helper, Configuration
	operation, BranchCache
	protocols used by, Configuration
	publication cache, BranchCache
	republication cache, Caching Modes

	broadcasting, Mailslot Operation, Named Pipe and Mailslot Implementation
	BSD (Berkeley Software Distribution) Sockets, Networking APIs
	buffer overflows, Process Monitor Troubleshooting Techniques
	bus drivers, Windows Driver Model (WDM), Software Interrupt Request Levels (IRQLs)
	busy wait loops, Spinlocks
	Bypass Traverse Checking privilege, Privileges
	byte mode, HTTP

 C
	C programming language, Operating System Model, Portability
	C-state intervals, Intelligent Timer Tick Distribution
	cache manager, Executive
	cache-aware pushlocks, Pushlocks
	cacheable attributes, Offline Files
	caches, Offline Files, Offline Files, Ghosts, BranchCache, Caching Modes
		accessing, Offline Files
	BranchCache, BranchCache
	Offline Files, Offline Files
	republication, Caching Modes
	structure, Ghosts

	caching, Offline Files, Offline Files, BranchCache, BranchCache, QoS
		client-side, Offline Files
	content, BranchCache
	files, Offline Files
	network usage infomation, QoS
	security, BranchCache

	call managers, Variations on the NDIS Miniport
	callable functions, Windows Operating System Versions
	callbacks, Asynchronous Procedure Call Interrupts, Timer Expiration, Reserve Objects, Object Filtering, Object Filtering, Asynchronous Operation, Blobs, Handles, and Resources, User Callbacks, Post-Import Process Initialization, Viewing and Changing the Registry, Stable Storage, Network Address Translation
		allocation and deallocation, Blobs, Handles, and Resources
	asynchronous, Reserve Objects, Viewing and Changing the Registry
	DPC, Timer Expiration
	executive objects, Asynchronous Operation
	NAT functionality, Network Address Translation
	pre and post, Object Filtering
	registry, Stable Storage
	Shim Engine, Post-Import Process Initialization
	to completion routine, Asynchronous Procedure Call Interrupts
	user, User Callbacks
	verifying, Object Filtering

	callout drivers, Windows Filtering Platform
	callouts, Windows Networking Components
	CBAC (Claims Based Access Control), The AuthZ API
	CBI (Component Based Servicing) stack, HKEY_LOCAL_MACHINE
	cell indexes, Hive Structure
	cells, registry hive, Hive Structure, Hive Structure
		data types, Hive Structure

	certificate chains, AppLocker
	certificate paths, reverification, Application Identification (AppID)
	certificate verification, AppLocker
	certificate-based authentication, Assured Authentication
	change notifications, asynchronous callbacks
 for, Viewing and Changing the Registry
	Change Notify privilege, Running with Least Privilege
	ChangeServiceConfig2 API, Running with Least Privilege
	ChangeWindowMessageEx API, Determining Access
	ChangeWindowMessageFilter API, Determining Access
	checked build, Checked Build, Debugging and Tracing
		ALPC message logging, Debugging and Tracing

	child partitions, Virtual Machine Manager Service and Worker Processes, Virtual Machine Manager Service and Worker Processes, Child Partitions, Child Partitions, Child Partitions, Emulated Devices, Synthetic Devices, Synthetic Devices, Memory Virtualization
		(see also hypervisor (Hyper-V))
	access to hardware, Virtual Machine Manager Service and Worker Processes
	access to memory, Memory Virtualization
	emulated devices for, Emulated Devices
	enlightenments, Child Partitions
	processors, adding, Synthetic Devices
	viewing, Child Partitions
	virtual processors, Synthetic Devices
	virtualization components, Child Partitions

	child processes, Integrity Levels, Tokens
		integrity level, Integrity Levels
	token inheritance, Tokens

	chimney offloading, NDIS Drivers
	CIM (Common Information Model), WMI Architecture, Providers
		classes, Providers

	CIMV2 namespace, Class Association
	CIM_ManagedSystemElement class, Providers
	Claims Based Access Control (CBAC), The AuthZ API
	classes, HKEY_USERS, Providers, Providers, Providers, Providers, The Common Information Model and the Managed Object Format
 Language, The Common Information Model and the Managed Object Format
 Language, The Common Information Model and the Managed Object Format
 Language, The WMI Namespace, The WMI Namespace
		abstract, Providers
	associations, The WMI Namespace
	CIM, Providers
	common-model, Providers
	definitions, The Common Information Model and the Managed Object Format
 Language
	extended-model, Providers
	MOF definitions, viewing, The Common Information Model and the Managed Object Format
 Language
	objects in, enumerating, The WMI Namespace
	registrations in registry, HKEY_USERS
	static, The Common Information Model and the Managed Object Format
 Language

	client communication ports, Connection Model
	client IDs, Processes, Threads, and Jobs
	client operating systems, Scalability, Checked Build
		(see also operating systems)
	vs. server versions, Scalability

	client processes, impersonation limits, Impersonation
	client-side caching (CSC), Offline Files
	Client/Server Run-Time Subsystem (Csrss.exe), Environment Subsystems and Subsystem DLLs
		(see also Csrss.exe (Client/Server Run-Time Subsystem))

	clients, Windows Networking Components, Windows Sockets, Network Access Protection
		connectionless, Windows Sockets
	health monitoring, Network Access Protection
	of the transport, Windows Networking Components

	clock cycles, Examining Thread Activity, Quantum, Quantum Accounting, Quantum End, Per-Session CPU Quota Blocks, Per-Session CPU Quota Blocks
		DFSS, triggering, Per-Session CPU Quota Blocks
	for quantum targets, Quantum End
	per quantum, Quantum Accounting
	thread run time, Examining Thread Activity, Quantum
	threads, charging to, Per-Session CPU Quota Blocks

	clock interrupt handler, Dispatch or Deferred Procedure Call (DPC)
 Interrupts
	clock interrupts, Hardware Interrupt Processing, Software Interrupt Request Levels (IRQLs), Asynchronous Procedure Call Interrupts, Intelligent Timer Tick Distribution
		minimizing, Intelligent Timer Tick Distribution

	clock interval timer, scheduling on, Quantum End
	clock intervals, Asynchronous Procedure Call Interrupts, Timer Processing, Dispatcher Database, Quantum, Quantum
		change request tracing, Timer Processing
	for running threads, Dispatcher Database
	frequency, Quantum
	length of, Quantum
	modification, Asynchronous Procedure Call Interrupts

	Clockres program, Quantum
	close method, Object Methods
	CLR (Common Language Runtime), Windows API, Windows API
		Windows DLLs, Windows API

	CLR via C#, 3rd edition (Richter), Windows API
	cluster hosts, Network Load Balancing
	Clustered Shared Volumes (CSV), Live Migration
	clustering, Network Load Balancing
	coalescing, timer, Intelligent Timer Tick Distribution
	code, Software Interrupt Request Levels (IRQLs), System Service Dispatching, Synchronization, Spinlocks, Pushlocks, Condition Variables, Run Once Initialization, Kernel Patch Protection, Kernel Patch Protection, Diagnostic Functionality, Protecting Objects
		atomic execution, Run Once Initialization
	critical sections, Synchronization, Spinlocks, Pushlocks, Condition Variables
	dispatch, Software Interrupt Request Levels (IRQLs)
	integrity, Kernel Patch Protection
	kernel-mode, System Service Dispatching, Kernel Patch Protection, Protecting Objects
	Self-Monitoring Analysis and Reporting Technology
 (SMART) code, Diagnostic Functionality

	cold patches, Kernel Transaction Manager
	COM API, WMI Architecture
	COM class registrations, HKEY_USERS
	COM objects, administrative rights requests, Auto-Elevation
	commands, task-based, Consumer Registration
	Common Criteria for Information Technology Security
 Evaluation (CCITSE), Objects and Handles, Trusted Computer System Evaluation Criteria
	Common Information Model (CIM), WMI Architecture
	Common Language Runtime, Windows API (see CLR (Common Language Runtime))
	Common Language Runtime (CLR), Windows API
	common-model classes, Providers
	communication ports, Connection Model
	Compaq, Architecture Overview
	compatibility, Requirements and Design Goals, Image Loader
		dynamic runtime, Image Loader

	completion lists, Message Model, Security
		ALPC, Message Model
	ALPC support, Security

	completion ports, Asynchronous Operation
	Component Based Servicing (CBS) stack, HKEY_LOCAL_MACHINE
	Component Services, Windows Operating System Versions
	components, identifying, HKEY_LOCAL_MACHINE
	compositing, Kernel Mode vs. User Mode
	compound TCP (CTCP), Protocol Drivers
	condition variables (CondVars), Low-IRQL Synchronization, User-Mode Resources
	conditional ACEs, The AuthZ API, Application Identification (AppID), AppLocker
	conditional expressions, The AuthZ API
	configuration data, Viewing and Changing the Registry, HKEY_LOCAL_MACHINE
		reading, Viewing and Changing the Registry
	storage location, HKEY_LOCAL_MACHINE

	configuration manager, Ntdll.dll, Object Methods, Logging Activity in Unprivileged Accounts or During
 Logon/Logoff, Hive Structure, Hive Structure, Hive Structure, Cell Maps, Cell Maps, Stable Storage, Stable Storage, Registry Filtering, Registry Filtering, Registry Filtering, Registry Virtualization
		cell mapping, Hive Structure
	hive syncs, Stable Storage
	key and value name storage, Registry Filtering
	key control block lookups, Registry Filtering
	memory management, Hive Structure
	naming parsing, Cell Maps
	object manager’s object support, Cell Maps
	performance optimizations, Registry Filtering
	registry filtering, Stable Storage
	registry management, Logging Activity in Unprivileged Accounts or During
 Logon/Logoff
	registry namespace implementation, Object Methods
	registry virtualization, Registry Virtualization
	subkey searches, Hive Structure

	congestion, Protocol Drivers, Internet Protocol Security
		(see also network traffic)
	avoidance algorithm, Protocol Drivers

	ConnectEx API, Winsock Server Operation
	connection blobs, Blobs, Handles, and Resources
	connection-oriented clients, Variations on the NDIS Miniport
	connection-oriented NDIS (CoNDIS), NDIS Drivers, Variations on the NDIS Miniport
	connection-oriented network hardware, Variations on the NDIS Miniport
	connection-oriented sockets, WSK Implementation
	connectionless networking protocols, Winsock Server Operation
	connections, Network Location Awareness (see network connections)
	connectivity status, Network Location Awareness
	console applications, Windows Subsystem, Services
		services, Services

	console window host (Conhost.exe), Windows Subsystem
	consumers, Kernel Event Tracing, Kernel Support, Provider Registration
		of debug events, Kernel Support
	trace data, Kernel Event Tracing
	UBPM registration, Provider Registration

	content, BranchCache, BranchCache, Caching Modes, Configuration
		caching, BranchCache
	identification, Configuration
	publishing, BranchCache
	republished, Caching Modes

	contention count, Executive Resources
	context attribute, Views, Regions, and Sections
	CONTEXT block, Processes, Threads, and Jobs
	context switches, Processes, Threads, and Jobs, Hardware Support, Overview of Windows Scheduling, Quantum Accounting, Priority Boosts for Multimedia Applications and Games, Priority Boosts for Multimedia Applications and Games
		defined, Overview of Windows Scheduling
	processor-specific implementations, Hardware Support
	thread, Priority Boosts for Multimedia Applications and Games

	control handlers, Service Applications
	control objects, Executive
	control points, Message Queuing
	control sets, last known good, HKEY_LOCAL_MACHINE
	controllers, Kernel Event Tracing
	ConvertThreadToFiber function, Processes, Threads, and Jobs
	core parking, Processor Selection
	Core Parking engine, Choosing a Processor for a Thread When There Are No Idle
 Processors
	core system files, Architecture Overview
	CoreProcessorSetvalue, Thread Selection
	CoresPerPhysicalProcessor value, Thread Selection
	corporate networks, accessing, Direct Access
	corrected machine check interrupt level, Software Interrupt Request Levels (IRQLs)
	CPs (credential providers), Local Session Manager (Lsm.exe), Security System Components, Logon, Logon, Logon
		alternative, Logon
	loading, Logon
	user identification tasks, Logon

	CPU, Synthetic Devices, Termination, Per-Session CPU Quota Blocks
		(see also logical processors; processors)
	idle thread, Termination
	share weight, Per-Session CPU Quota Blocks

	CPU 0 congestion, Processor Selection
	CPU quotas, Dynamic Fair Share Scheduling, Dynamic Fair Share Scheduling, Charging of Cycles to Throttled Threads, Resuming Execution, DFSS Idle-Only Queue Scheduling
		enforcement, Charging of Cycles to Throttled Threads
	per-session blocks, Dynamic Fair Share Scheduling
	recovering, Resuming Execution
	updating and extending, DFSS Idle-Only Queue Scheduling

	CPU rate limits, CPU Rate Limits
	CPU starvation, Priority Boosting After I/O Completion, Priority Boosts After GUI Threads Wake Up
		prevention, Priority Boosting After I/O Completion
	thread priority boosts for, Priority Boosts After GUI Threads Wake Up

	CPU Stress tool, viewing priority boosts, Priority Boosts for Foreground Threads After Waits, Priority Boosts for CPU Starvation
	CPU throttling, Stage 4: Creating the Initial Thread and Its Stack and
 Context, Priority Boosts for Multimedia Applications and Games, Per-Session CPU Quota Blocks, Charging of Cycles to Throttled Threads
		clock cycles, charging to threads, Per-Session CPU Quota Blocks
	quota enforcement, Charging of Cycles to Throttled Threads

	CPU usage, Processes, Threads, and Jobs, Performance Monitor, System Process and System Threads, Examining Thread Activity, Using Tools to Interact with Priority, Quantum, Priority Boosts for Multimedia Applications and Games, CPU Rate Limits
		displaying, Processes, Threads, and Jobs, Performance Monitor
	limiting, CPU Rate Limits
	multimedia threads, Priority Boosts for Multimedia Applications and Games
	specifying, Using Tools to Interact with Priority
	system threads, mapping to, System Process and System Threads
	threads, Examining Thread Activity, Quantum

	crash dump files, Debugging Tools for Windows
	crashed applications, Windows Error Reporting, Windows Error Reporting
		error reporting, Windows Error Reporting
	user, informing, Windows Error Reporting

	create a token object privilege, Super Privileges
	create global object privilege, Session Namespace
	CreateEventEx API, Object Security
	CreateFile function, Impersonation
	CreateMailslot function, Mailslot Operation
	CreateMutexEx API, Object Security
	CreateNamedPipe function, HTTP
	CreatePrivateNamespace API, Object Directories
	CreateProcess function, Protected Processes, Stage 1: Converting and Validating Parameters and Flags, Stage 2: Opening the Image to Be Executed
		flags and parameters, creating and
 validating, Stage 1: Converting and Validating Parameters and Flags
	flow of, Protected Processes
	stage 1 decision tree, Stage 2: Opening the Image to Be Executed

	CreateProcessAsUser function, Service Startup, Running with Administrator Rights
	CreateRestrictedToken function, Impersonation
	CreateSemaphoreEx API, Object Security
	CreateService function, Services
	CreateThread function, Birth of a Thread, Idle Threads
	CreationFlags parameter, Stage 1: Converting and Validating Parameters and Flags
	Creator Group ID SID, Security Identifiers
	Creator Owner ID SID, Security Identifiers
	credential providers (CPs), Local Session Manager (Lsm.exe) (see CPs (credential providers))
	critical sections, Synchronization, Spinlocks, Pushlocks, Pushlocks, Condition Variables
		limitations, Pushlocks
	mutually exclusive access, Synchronization
	spinlocks on, Spinlocks
	SRW Locks, replacement by, Condition Variables

	critical structure corruptions, Kernel Patch Protection
	critical worker threads, System Worker Threads
	CSC (client-side caching), Offline Files
	CsrCreateProcess function, Stage 5: Performing Windows Subsystem–Specific
 Post-Initialization
	Csrss.exe (Client/Server Run-Time Subsystem), Environment Subsystems and Subsystem DLLs, Service Shutdown, Service Shutdown, Processes, Threads, and Jobs, Data Structures, Data Structures, Protected Processes, Data Structures, Data Structures
		CSR_PROCESS maintenance, Data Structures
	CSR_THREAD maintenance, Data Structures
	parallel proces structures, Processes, Threads, and Jobs
	parallel thread structures, Data Structures
	process information, Data Structures
	process-creation routines, Protected Processes
	SCM, killing, Service Shutdown
	shutdown routine, Service Shutdown

	CSR_PROCESS, Processes, Threads, and Jobs, Data Structures, Data Structures, Stage 5: Performing Windows Subsystem–Specific
 Post-Initialization, Data Structures
		allocation, Stage 5: Performing Windows Subsystem–Specific
 Post-Initialization
	dumping, Data Structures
	pointer to, Data Structures

	CSR_THREAD, Stage 5: Performing Windows Subsystem–Specific
 Post-Initialization, Data Structures, Data Structures, Data Structures, Data Structures
		allocation, Stage 5: Performing Windows Subsystem–Specific
 Post-Initialization
	dumping, Data Structures
	fields, Data Structures

	CSV (Clustered Shared Volumes), Live Migration
	CTCP (compound TCP), Protocol Drivers
	Ctrl+Alt+Delete key combination, Winlogon Initialization
	current directory, path, DLL Name Resolution and Redirection
	current user, Registry Logical Structure, Choosing a Processor for a Thread When There Are No Idle
 Processors
		(see also users)
	preferences and software
 configuration, Registry Logical Structure

	CurrentControlSet key, Startup Errors

 D
	DA (DirectAccess), Direct Access
	DACLs (discretionary access control lists), Object Security, Protecting Objects, Security Descriptors and Access Control, Security Descriptors and Access Control, Security Descriptors and Access Control, Security Descriptors and Access Control, Security Descriptors and Access Control, Determining Access, Determining Access
		access checks, Determining Access, Determining Access
	ACEs in, Security Descriptors and Access Control
	assigning, Security Descriptors and Access Control
	null, Security Descriptors and Access Control

	daisy-chain configurations, Software Interrupt Request Levels (IRQLs)
	dangling dependencies, API Sets
	data execution prevention (DEP), Import Parsing
	data formatting for transmission, The OSI Reference Model
	data structures, Objects and Handles, Object Filtering, What Signals an Object?, Processes, Threads, and Jobs, Processes, Threads, and Jobs, Data Structures, Data Structures, Data Structures, Data Structures, Data Structures, Data Structures, Data Structures, Stage 7: Performing Process Initialization in the Context of
 the New Process, Data Structures, Data Structures, Data Structures, Data Structures, Thread States, Termination, Dynamic Fair Share Scheduling
		abstraction layer, Data Structures
	CSR_PROCESS, Data Structures
	CSR_THREAD, Data Structures
	dispatcher database, Thread States
	EPROCESS, Processes, Threads, and Jobs
	fields, displaying, Data Structures
	idle process and idle thread, Termination
	KPROCESS, Data Structures
	KTHREAD, Data Structures
	of wait operations, What Signals an Object?
	PEB, Data Structures
	process, Processes, Threads, and Jobs
	PspCpuQuotaControl, Dynamic Fair Share Scheduling
	synchronization of access, Object Filtering
	TEB, Data Structures
	thread, Data Structures, Stage 7: Performing Process Initialization in the Context of
 the New Process
	vs. objects, Objects and Handles
	W32PROCESS, Data Structures
	W32THREAD, Data Structures

	data transfer, The OSI Reference Model, Networking APIs, Background Intelligent Transfer Service, Background Intelligent Transfer Service, Background Intelligent Transfer Service, Background Intelligent Transfer Service, Background Intelligent Transfer Service, Background Intelligent Transfer Service, Protocol Drivers, Protocol Drivers
		BITS management, Background Intelligent Transfer Service
	congestion, Protocol Drivers
	downloading, Background Intelligent Transfer Service
	high-loss scenarios, Protocol Drivers
	prioritization, Background Intelligent Transfer Service
	reliable transfer, The OSI Reference Model, Networking APIs
	seamless, Background Intelligent Transfer Service
	transfer types, Background Intelligent Transfer Service
	uploading, Background Intelligent Transfer Service

	data transmission, The OSI Reference Model, HTTP, Mailslot Operation
		bidirectional, HTTP
	formatting for, The OSI Reference Model
	unreliable, unidirectional, Mailslot Operation

	data view attribute, Views, Regions, and Sections
	datagram sockets, WSK Implementation
	datagrams, Winsock Server Operation
	datalink layer in OSI reference model, The OSI Reference Model, The OSI Reference Model, The OSI Reference Model
		Logical Link Control, The OSI Reference Model
	Medium Access Control, The OSI Reference Model

	DbgkCreateThread, Stage 7: Performing Process Initialization in the Context of
 the New Process
	DbgUi APIs, User-Mode Debugging, Kernel Support, Native Support
	DCE (distributed computing environment), WSK Implementation
	DCOM (Distributed Component Object Model), Peer-to-Peer Infrastructure
	DdeImpersonateClient function, Impersonation
	deadline requirements, Software Interrupt Request Levels (IRQLs)
	deadlocks, Pushlocks, Message Model, Priority Boosting After I/O Completion
		avoiding, Message Model
	detection, Pushlocks
	limiting, Priority Boosting After I/O Completion

	debug events, kernel-mode, User-Mode Debugging
	debug object, User-Mode Debugging
	debug programs privilege, Super Privileges
	debug version of Windows, Checked Build
	debugger, Digging into Windows Internals, Debugging Tools for Windows, Checked Build, Timer Processing, Processor Selection, Exception Dispatching, Exception Dispatching, Exception Dispatching, Kernel Support, Kernel Support, Native Support, Image Loader, Stage 7: Performing Process Initialization in the Context of
 the New Process
		(see also kernel debugger; user-mode debugger)
	breakpoints, Exception Dispatching, Exception Dispatching
	debug event requests, Kernel Support
	extension commands, Debugging Tools for Windows
	image loader, watching, Image Loader
	notifications, Checked Build, Stage 7: Performing Process Initialization in the Context of
 the New Process
	objects, viewing, Native Support
	ports, Exception Dispatching
	processes, breaking into, Kernel Support
	system timers, listing, Processor Selection
	timer resolution information, Timer Processing

	debugger-based attacks, Protected Processes
	Debugger.chm help file, Debugging Tools for Windows
	debugging, Performance Monitor, Kernel Debugging, Unhandled Exceptions, Object Retention, User-Mode Debugging, User-Mode Debugging, Image Loader, Image Loader
		application startup, Image Loader
	crashing processes, Unhandled Exceptions
	handles and object, Object Retention
	kernel, Performance Monitor
	kernel support, User-Mode Debugging
	loader snaps, Image Loader
	user-mode, Kernel Debugging, User-Mode Debugging

	debugging mode, booting in, Debugging Tools for Windows
	Debugging Tools for Windows, Processes, Threads, and Jobs, Kernel Debugging, Kernel Debugging, Debugging Tools for Windows
		help file, Debugging Tools for Windows
	Tlist.exe tool, Processes, Threads, and Jobs
	updates, Kernel Debugging

	default security, Access Checks
		(see also security)

	Defense Advanced Research Projects Agency (DARPA), Protocol Drivers
	deferred delete operations, Object Retention
	deferred procedure calls (DPCs), Software Interrupt Request Levels (IRQLs) (see DPCs (deferred procedure calls))
	deferred ready threads, Stage 4: Creating the Initial Thread and Its Stack and
 Context, Using Tools to Interact with Priority, Priority Boosts for CPU Starvation
		processing, Priority Boosts for CPU Starvation

	delay load, Import Parsing
	delayed auto-start services, Service Startup, Service Startup
		startup, Service Startup

	delayed worker threads, Run Once Initialization
	DelayedAutoStart parameter, Service Applications
	delete method, Object Methods
	delete operations, deferred, Object Retention
	DEP (data execution prevention), Import Parsing
	dependencies, Import Parsing, API Sets, Service Startup, Service Startup, QoS
		binding, QoS
	dangling, API Sets
	defining and fulfilling, Import Parsing
	of auto-start services, Service Startup
	of services, Service Startup

	Dependency Walker, Digging into Windows Internals, Environment Subsystems and Subsystem DLLs, Hardware Abstraction Layer
		image type, viewing, Environment Subsystems and Subsystem DLLs
	kernel and HAL images, viewing, Hardware Abstraction Layer

	DependOnGroup parameter, Service Applications, Service Startup
	DependOnService parameter, Service Applications
	Description parameter, Service Applications
	desktop, Stage 1: Converting and Validating Parameters and Flags, Logon, Winlogon Initialization, Winlogon Initialization, Controlling UAC Behavior
		creating and opening, Logon
	locking or unlocking, Winlogon Initialization
	process association with, Stage 1: Converting and Validating Parameters and Flags
	protecting access to, Winlogon Initialization
	UAC prompts, Controlling UAC Behavior

	desktop object, Executive Objects, Object Methods, Object Methods
		okay-to-close routine, Object Methods
	open method, Object Methods

	Desktops tool, Processes, Threads, and Jobs
	Developing Drivers with the Windows Driver Foundation
 (Orwick and Smith), Windows Driver Kit
	development environment, Windows API
	device drivers, Kernel Mode vs. User Mode, Architecture Overview, Device Drivers, Device Drivers, Device Drivers, Device Drivers, Windows Driver Model (WDM), Windows Driver Model (WDM), Windows Driver Foundation, System Process and System Threads, Software Interrupt Request Levels (IRQLs), Dispatch or Deferred Procedure Call (DPC)
 Interrupts, Asynchronous Procedure Call Interrupts, Asynchronous Procedure Call Interrupts, Exception Dispatching, System Service Dispatching, Object Handles and the Process Handle Table, Spinlocks, Instack Queued Spinlocks, Keyed Events, Run Once Initialization, Registry Redirection, Hotpatch Support, Kernel Patch Protection, Registry Usage, Service Applications, Service Applications, The Service Control Manager, The Service Control Manager, The Service Control Manager, Lock Ownership Boosts, Priority Boosting After I/O Completion, Biometric Framework for User Authentication, The OSI Reference Model
		(see also drivers)
	32-bit, Hotpatch Support
	APC blocking, Asynchronous Procedure Call Interrupts
	auto-start, The Service Control Manager
	biometric scanner, Biometric Framework for User Authentication
	characteristics, Service Applications
	development frameworks, Windows Driver Model (WDM)
	DPCs, Dispatch or Deferred Procedure Call (DPC)
 Interrupts
	dynamically allocated queued spinlocks, Instack Queued Spinlocks
	fast mutexes, Keyed Events
	I/O control functions, Registry Redirection
	installed, viewing, Windows Driver Foundation
	integrity of code, Kernel Patch Protection
	interrupt request restriction
 violations, Software Interrupt Request Levels (IRQLs)
	kernel-mode APCs, Asynchronous Procedure Call Interrupts
	kernel-mode contexts, Device Drivers
	loading, The Service Control Manager
	minidrivers, Priority Boosting After I/O Completion
	object access, Object Handles and the Process Handle Table
	parameters, Service Applications
	priority boost specification, Lock Ownership Boosts
	registry settings, Registry Usage
	spinlocks, Spinlocks
	startup failures, The Service Control Manager
	structured exception handling, Exception Dispatching
	system calls access, System Service Dispatching
	system threads, mapping to, System Process and System Threads
	system worker thread use, Run Once Initialization
	TDI clients, The OSI Reference Model
	types, Device Drivers
	verification of, Kernel Mode vs. User Mode
	WDM environment, Windows Driver Model (WDM)
	Windows internals, accessing with, Device Drivers

	device interrupts, Trap Dispatching, Software Interrupt Request Levels (IRQLs)
	Device Manager, HKEY_LOCAL_MACHINE
	Device Profile for Web Services (DPWS), Message Queuing
	device-to-driver mappings, HKEY_LOCAL_MACHINE
	devices, Session Manager (Smss), Virtual Machine Manager Service and Worker Processes
		emulation, Virtual Machine Manager Service and Worker Processes
	symbolic link creation, Session Manager (Smss)

	DFS-N (Distributed File System Namespace), Distributed File System Namespace
	DFS-R (Distributed File System Replication), Distributed File System Namespace, Distributed File System Namespace
	DFSS (Dynamic Fair Share Scheduler), Dynamic Fair Share Scheduling, Dynamic Fair Share Scheduling, Dynamic Fair Share Scheduling, Dynamic Fair Share Scheduling, Per-Session CPU Quota Blocks, Charging of Cycles to Throttled Threads, Resuming Execution, Resuming Execution, DFSS Idle-Only Queue Scheduling
		clock cycles, charging to threads, Per-Session CPU Quota Blocks
	idle-only queue thread management, Resuming Execution
	initialization, Dynamic Fair Share Scheduling
	per-session CPU quota blocks, Dynamic Fair Share Scheduling
	quota enforcement, Charging of Cycles to Throttled Threads
	scheduler, Resuming Execution
	session weight management, DFSS Idle-Only Queue Scheduling
	turning off, Dynamic Fair Share Scheduling

	Dhcp service, Running with Least Privilege
	DiagLog session, Windows Diagnostic Infrastructure
	Diagnostic Policy Service (DPS), Windows Diagnostic Infrastructure
	diagnostic scenarios, Diagnostic Policy Service, Diagnostic Functionality
		built-in, Diagnostic Functionality
	Group Policy settings, Diagnostic Policy Service

	diagnostics instrumentation, Windows Diagnostic Infrastructure
	dial-up remote access, Binding
	Differentiated Services Code Point (DSCP), QoS
	Digital Equipment Corporation Alpha AXP, Architecture Overview
	digital rights management, protected processes
 and, Protected Processes
	Direct2D, Kernel Mode vs. User Mode
	DirectAccess (DA), Direct Access
	directed context switches, Processes, Threads, and Jobs
	directory object type, Executive Objects
	DisconnectEx API, Winsock Server Operation
	discretionary access checks, ACL Assignment
	discretionary access control, Security, Trusted Computer System Evaluation Criteria, Protecting Objects, Protecting Objects
		access logging, Protecting Objects
	object protection, Protecting Objects

	discretionary access control lists (DACLs), Object Security (see DACLs (discretionary access control lists))
	disk diagnostics, Diagnostic Functionality
	disk, paging data to, Virtual Memory
	dispatch code, Software Interrupt Request Levels (IRQLs)
	dispatch events, thread priority boosts, Priority Boosts
	dispatch interrupts, Software Interrupt Request Levels (IRQLs), Interrupt Levels vs. Priority Levels
	dispatcher, Overview of Windows Scheduling, Thread States
	dispatcher database, Thread States, Dispatcher Database
		synchronization, Dispatcher Database

	dispatcher headers, What Signals an Object?, Data Structures, Data Structures
		flags, Data Structures
	interpreting, Data Structures

	dispatcher objects, Executive, Type Objects, Low-IRQL Synchronization, Low-IRQL Synchronization, What Signals an Object?, What Signals an Object?
		thread state changes, What Signals an Object?
	waiting for, Low-IRQL Synchronization

	dispatcher synchronization objects, Timer Expiration
	dispatching, System Mechanisms, Trap Dispatching
		interrupt, Trap Dispatching
	trap, System Mechanisms

	display I/O functionality, Windows Subsystem
	DisplayName parameter, Service Applications
	distributed applications, loosely coupled
 messaging, Peer-to-Peer Infrastructure
	Distributed Cache caching mode, BranchCache
	Distributed Component Object Model (DCOM), Peer-to-Peer Infrastructure
	distributed computing environment (DCE), WSK Implementation
	Distributed File System Client, Surrogate Providers
	Distributed File System Namespace (DFS-N), Distributed File System Namespace
	Distributed File System Replication (DFS-R), Distributed File System Namespace
	Distributed Management Task Force (DMTF), Service Control Programs
	DLL restriction, AppLocker
	Dllhost.exe, Processes, Threads, and Jobs
	DllMain routines, Post-Import Process Initialization
	DLLs, Services, Functions, and Routines, Architecture Overview, Session Manager (Smss), Local Session Manager (Lsm.exe), Image Loader, Early Process Initialization, Early Process Initialization, DLL Name Resolution and Redirection, DLL Name Resolution and Redirection, Import Parsing, Post-Import Process Initialization, SwitchBack, Hotpatch Support
		credential providers, Local Session Manager (Lsm.exe)
	defined, Services, Functions, and Routines
	importing and loading, Import Parsing
	initialization tasks, Post-Import Process Initialization
	KPP-protected, Hotpatch Support
	loading and unloading by image loader, Image Loader, Early Process Initialization
	name redirection rules, DLL Name Resolution and Redirection
	name resolution by image loader, Early Process Initialization
	opening, Session Manager (Smss)
	search path, DLL Name Resolution and Redirection
	sub-DLLs, SwitchBack
	subsystem, Architecture Overview

	DMTF (Distributed Management Task Force), Service Control Programs
	DNS (Domain Name System), BranchCache Optimized Application Retrieval: HTTP
 Sequence, BranchCache Optimized Application Retrieval: HTTP
 Sequence
		lookup requests, BranchCache Optimized Application Retrieval: HTTP
 Sequence

	DNS servers, BranchCache Optimized Application Retrieval: HTTP
 Sequence
	domain accounts, SIDs, Security Identifiers
	Domain Name System (DNS), BranchCache Optimized Application Retrieval: HTTP
 Sequence
	downloads, Background Intelligent Transfer Service
	DPC objects, Dispatch or Deferred Procedure Call (DPC)
 Interrupts
	DPC queues, Dispatch or Deferred Procedure Call (DPC)
 Interrupts
	DPC/dispatch interrupts, Software Interrupt Request Levels (IRQLs), Software Interrupt Request Levels (IRQLs), Software Interrupt Request Levels (IRQLs), Dispatch or Deferred Procedure Call (DPC)
 Interrupts, Dispatch or Deferred Procedure Call (DPC)
 Interrupts, Spinlocks
		for spinlocks, Spinlocks
	generation rules, Dispatch or Deferred Procedure Call (DPC)
 Interrupts
	triggering, Dispatch or Deferred Procedure Call (DPC)
 Interrupts

	DPCs (deferred procedure calls), Software Interrupt Request Levels (IRQLs), Dispatch or Deferred Procedure Call (DPC)
 Interrupts, Dispatch or Deferred Procedure Call (DPC)
 Interrupts, Dispatch or Deferred Procedure Call (DPC)
 Interrupts, Dispatch or Deferred Procedure Call (DPC)
 Interrupts, Dispatch or Deferred Procedure Call (DPC)
 Interrupts, Dispatch or Deferred Procedure Call (DPC)
 Interrupts, Processor Selection, Priority Boosts for Multimedia Applications and Games, Resuming Execution, DFSS Idle-Only Queue Scheduling
		capabilities, Dispatch or Deferred Procedure Call (DPC)
 Interrupts
	monitoring, Dispatch or Deferred Procedure Call (DPC)
 Interrupts
	prioritization, Dispatch or Deferred Procedure Call (DPC)
 Interrupts
	processing, Dispatch or Deferred Procedure Call (DPC)
 Interrupts
	queuing, Resuming Execution
	target processor, Processor Selection
	targeted, Dispatch or Deferred Procedure Call (DPC)
 Interrupts
	thread wake-up calls, DFSS Idle-Only Queue Scheduling
	threaded, Dispatch or Deferred Procedure Call (DPC)
 Interrupts

	DPS (Diagnostic Policy Service), Windows Diagnostic Infrastructure
	DPWS (Device Profile for Web Services), Message Queuing
	drive-letter assignment, The Service Control Manager
	drive-letter mapping, Multiple Provider Router
	Driver directory, The Service Control Manager
	Driver Verifier, Kernel Mode vs. User Mode, Executive, Pushlocks
		deadlock detection, Pushlocks

	drivers, Kernel Mode vs. User Mode, Architecture Overview, Object Filtering, Kernel Patch Protection, Registry Filtering, Interactive Services and Session 0 Isolation, Internet Protocol Security
		(see also device drivers)
	boot-start and system-start, Interactive Services and Session 0 Isolation
	context data, assigning and creating, Registry Filtering
	network adapter-protocol driver
 communication, Internet Protocol Security
	object filtering, Object Filtering
	signature enforcement, Kernel Mode vs. User Mode
	signing policies, Kernel Patch Protection

	DSCP (Differentiated Services Code Point), QoS
	dt command, Debugging Tools for Windows, Data Structures, Data Structures, Package Sets and SMT Sets
		KNODE structure, viewing, Package Sets and SMT Sets

	Dynamic Fair Share Scheduler (DFSS), Dynamic Fair Share Scheduling (see DFSS (Dynamic Fair Share Scheduler))
	Dynamic Memory, Memory Virtualization, Memory Virtualization, Memory Virtualization, Memory Virtualization, Memory Virtualization
		architecture, Memory Virtualization
	calculating, Memory Virtualization
	configuring, Memory Virtualization
	watching, Memory Virtualization

	dynamic processors, Session Manager (Smss), Dynamic Processor Addition and Replacement, Dynamic Processor Addition and Replacement
		adding, Session Manager (Smss)
	threaded DPC support, Dynamic Processor Addition and Replacement

	dynamic providers, The Common Information Model and the Managed Object Format
 Language
	dynamic runtime compatibility mitigations, Image Loader
	dynamic worker threads, System Worker Threads
	dynamic-link libraries, Local Session Manager (Lsm.exe) (see DLLs)

 E
	ECN (Explicit Congestion Notification), Protocol Drivers
	elevation shims, Stage 5: Performing Windows Subsystem–Specific
 Post-Initialization
	elevation, UAC, Registry Virtualization, Running with Administrator Rights, Running with Administrator Rights, Running with Administrator Rights, Requesting Administrative Rights, Requesting Administrative Rights, Controlling UAC Behavior
		auto-elevation, Requesting Administrative Rights
	declining, Running with Administrator Rights
	defined, Running with Administrator Rights
	elevation prompts, Controlling UAC Behavior
	over-the-shoulder, Running with Administrator Rights
	requested levels, Requesting Administrative Rights

	emulation, device, Virtual Machine Manager Service and Worker Processes, Emulated Devices
	EnableCpuQuota registry value, Dynamic Fair Share Scheduling
	encryption of network communication, RPC Operation
	end nodes, data transfer between, The OSI Reference Model
	energy-report.html, Timer Processing
	Enforcement Client (EC), Network Access Protection
	enlightened I/O, Enlightenments
	enlightenments, Hypervisor (Hyper-V), Child Partitions, Kernel Patch Protection
		kernel patch protection, Kernel Patch Protection

	enlistment objects, Kernel Transaction Manager
	EnterCriticalSection function, Data Structures
	environment subsystem, Architecture Overview, Environment Subsystems and Subsystem DLLs, Executive Objects
		excutive objects and object services, Executive Objects
	server processes, Architecture Overview

	environment variables, creation, Session Manager (Smss)
	EPROCESS, Processes, Threads, and Jobs, Data Structures, Data Structures, Data Structures, Data Structures, Protected Processes, Termination, Per-Session CPU Quota Blocks
		accessing, Data Structures
	CPU quota block pointer, Per-Session CPU Quota Blocks
	executive routines in, Data Structures
	fields, displaying, Data Structures
	key fields, Data Structures
	protected process flag, Protected Processes

	EPROCESS object, setting up, Stage 2: Opening the Image to Be Executed
	ERESOURCE, Unwait Boosts, Priority Boosting After I/O Completion
	errata manager, Executive
	error port, Exception Dispatching, Windows Error Reporting
	error recovery, Executive, Live Migration, Live Migration, HKEY_PERFORMANCE_DATA, Service Failures
		kernel transaction manager, Executive, Live Migration
	service recovery options, Service Failures
	transactional modification of registry, HKEY_PERFORMANCE_DATA

	error reports, Unhandled Exceptions, Windows Error Reporting, Windows Error Reporting
		crash analysis server, sending to, Windows Error Reporting
	destination, configuring, Windows Error Reporting
	Windows Error Reporting, Unhandled Exceptions

	ErrorControl parameter, Service Applications, Service Startup
	errors, Exception Dispatching, Process Monitor Troubleshooting Techniques, Service Startup, Startup Errors, Windows Diagnostic Infrastructure, The OSI Reference Model
		access-denied, Process Monitor Troubleshooting Techniques
	automated detection and resolution, Windows Diagnostic Infrastructure
		(see also WDI (Windows Diagnostic Infrastructure))

	fatal, Exception Dispatching
	service startup, Service Startup
	system startup, Startup Errors
	transmit and receive, The OSI Reference Model

	Ethernet frames, header-data split, NDIS Drivers
	ETHREAD, Processes, Threads, and Jobs, Stage 7: Performing Process Initialization in the Context of
 the New Process, Stage 7: Performing Process Initialization in the Context of
 the New Process, Data Structures, Termination
		displaying, Data Structures
	executive thread object encapsulation, Stage 7: Performing Process Initialization in the Context of
 the New Process

	ETW (Event Tracing for Windows), Executive, Timer Processing, Debugging and Tracing, Kernel Event Tracing, Kernel Event Tracing, Kernel Event Tracing, Kernel Event Tracing, Windows Diagnostic Infrastructure
		clock interval change requests, Timer Processing
	DiagLog session, Windows Diagnostic Infrastructure
	for ALPC messages, Debugging and Tracing
	TCP/IP activity, tracing, Kernel Event Tracing
	trace classes, Kernel Event Tracing
	trace event header, Kernel Event Tracing

	EtwConsumer objects, Executive Objects
	EtwRegistration objects, Executive Objects
	Evaluation Assurance Levels (EALs), Trusted Computer System Evaluation Criteria
	event classes, Kernel Event Tracing
	event handles, Object Methods
	Event Log provider, WMI Architecture, The Common Information Model and the Managed Object Format
 Language, Class Association
		association class, Class Association
	inheritance, The Common Information Model and the Managed Object Format
 Language

	Event Log, service startup error entries, Service Startup
	event objects, Executive Objects, What Signals an Object?
		signaled state, What Signals an Object?

	Event Tracing for Windows (ETW), Executive (see ETW (Event Tracing for Windows))
	event tracing, kernel, Kernel Event Tracing
	event unwait operations, Fast Mutexes and Guarded Mutexes
	Event Viewer, AppLocker
	event-based problem diagnosis, Windows Diagnostic Infrastructure
	events, Trap Dispatching, Trap Dispatching, Intercepts, Access Checks, WSK Implementation
		asynchronous, Trap Dispatching
	default security, Access Checks
	intercepts for, Intercepts
	network-status, WSK Implementation
	synchronous, Trap Dispatching

	Everyone SID, Security Identifiers, Security Identifiers
	Ex APIs, Object Security
	exception dispatcher, Exception Dispatching
	exception dispatching, Timer Coalescing, Unhandled Exceptions, Wow64 Process Address Space Layout
		Windows Error Reporting, Unhandled Exceptions
	Wow64, Wow64 Process Address Space Layout

	exception handlers, Exception Dispatching, Exception Dispatching
		frame-based, Exception Dispatching
	vectored, Exception Dispatching

	exception ports, Exception Dispatching
	exceptions, System Mechanisms, Trap Dispatching, Trap Dispatching, Exception Dispatching, Exception Dispatching, Exception Dispatching, Exception Dispatching, Condition Variables
		aborts, Trap Dispatching
	architecture-independent, Exception Dispatching
	defined, System Mechanisms
	from SRW Lock failure, Condition Variables
	interrupt numbers, Exception Dispatching
	kernel-mode, Exception Dispatching
	reproducing, Trap Dispatching
	unhandled, Exception Dispatching

	exclusive access, Fast Mutexes and Guarded Mutexes
	executable images, Kernel Patch Protection, Stage 1: Converting and Validating Parameters and Flags, Stage 2: Opening the Image to Be Executed
		integrity of, Kernel Patch Protection
	opening, Stage 1: Converting and Validating Parameters and Flags
	running, decision tree, Stage 2: Opening the Image to Be Executed

	executable pages, integrity of, Code Integrity
	executables, Services, File System and Registry Virtualization, Running with Administrator Rights, Requesting Administrative Rights, Requesting Administrative Rights, Requesting Administrative Rights
		administrative rights requests, Running with Administrator Rights
	auto-elevation, Requesting Administrative Rights
	default configuration, Requesting Administrative Rights
	service applications, Services
	virtualization and, File System and Registry Virtualization
	Windows, Requesting Administrative Rights

	execution, Kernel Mode vs. User Mode, Software Interrupt Request Levels (IRQLs)
		modes, Kernel Mode vs. User Mode
	profiling, Software Interrupt Request Levels (IRQLs)

	executive components, Object Handles and the Process Handle Table, Run Once Initialization
		object access, Object Handles and the Process Handle Table
	system worker thread use, Run Once Initialization

	executive interlocked functions, Instack Queued Spinlocks
	executive LUID, Tokens, Tokens
	executive mutexes, Keyed Events
	executive objects, Executive, Object Manager, Executive Objects, Executive Objects, Executive Objects, Protecting Objects, Protecting Objects
		access methods, Protecting Objects
	creation, Executive Objects
	object types, viewing, Executive Objects
	primary, Executive Objects
	security descriptor, Protecting Objects

	executive process object, Flow of CreateProcess, Stage 2: Opening the Image to Be Executed, Stage 2: Opening the Image to Be Executed, Stage 3A: Setting Up the EPROCESS Object, Stage 3D: Concluding the Setup of the Process Address
 Space, Stage 3E: Setting Up the PEB, Stage 3E: Setting Up the PEB
		creation, Flow of CreateProcess, Stage 2: Opening the Image to Be Executed
	EPROCESS object setup, Stage 2: Opening the Image to Be Executed
	final setup, Stage 3E: Setting Up the PEB
	initial thread creation, Stage 3E: Setting Up the PEB
	PEB setup, Stage 3D: Concluding the Setup of the Process Address
 Space
	process address space setup, Stage 3A: Setting Up the EPROCESS Object

	executive resources, Low-IRQL Synchronization, Fast Mutexes and Guarded Mutexes, Fast Mutexes and Guarded Mutexes, Priority Boosting After I/O Completion
		listing, Fast Mutexes and Guarded Mutexes
	thread waits on, Priority Boosting After I/O Completion

	executive thread object, Stage 3E: Setting Up the PEB, Stage 4: Creating the Initial Thread and Its Stack and
 Context, Stage 5: Performing Windows Subsystem–Specific
 Post-Initialization, Stage 7: Performing Process Initialization in the Context of
 the New Process, Data Structures
		creation, Stage 3E: Setting Up the PEB
	execution, starting, Stage 5: Performing Windows Subsystem–Specific
 Post-Initialization
	fields of, Data Structures
	thread parameter, Stage 4: Creating the Initial Thread and Its Stack and
 Context
	thread representation, Stage 7: Performing Process Initialization in the Context of
 the New Process

	executive, Windows, Architecture Overview, Subsystem for Unix-based Applications, Ntdll.dll, Ntdll.dll, Ntdll.dll, Executive, Executive, Windows Driver Foundation, Asynchronous Procedure Call Interrupts, Object Directories, System Worker Threads, User-Mode Debugging, Data Structures, Protected Processes, User Logon Steps
		abstraction layer, Data Structures
	access token creation, User Logon Steps
	components, Ntdll.dll
	functions, Ntdll.dll
	infrastructure routines, Executive
	kernel-mode APCs, Asynchronous Procedure Call Interrupts
	prefixes, Windows Driver Foundation
	process-creation routines, Protected Processes
	support functions, Executive
	symbolic link objects, Object Directories
	system service stubs, Subsystem for Unix-based Applications
	system worker thread management, System Worker Threads
	user-mode debugging module, User-Mode Debugging

	ExitWindowsEx function, Service Shutdown
	experiments, Digging into Windows Internals
	expiration time, token, Tokens
	Explicit Congestion Notification (ECN), Protocol Drivers
	Explorer, User Logon Steps, File Virtualization
		display of virtualized files, File Virtualization

	export tables, parsing by image loader, Image Loader
	extended-model classes, Providers
	extensibility, System Architecture
	extension interfaces, WSK Implementation
	extensions, virtualization exceptions, File System and Registry Virtualization

 F
	facilities, displaying, Differences Between Client and Server Versions
	FailureActions parameter, Service Applications, Service Failures
	FailureCommand parameter, Service Applications, Service Failures
	failures, Import Parsing, Process Monitor Internals, Service Failures
		application, Process Monitor Internals
	application startup, Import Parsing
	services, Service Failures

	fast mutexes, Keyed Events, Keyed Events, Fast Mutexes and Guarded Mutexes
		acquiring, Keyed Events
	vs. guarded mutexes, Fast Mutexes and Guarded Mutexes

	fast user switching, Terminal Services and Multiple Sessions
	fatal errors, Exception Dispatching
	FCL (Framework Class Library), Windows API
	features enabled, determining, Differences Between Client and Server Versions
	fibers, Processes, Threads, and Jobs
	file access, caching, Ghosts
	file extensions, HKEY_USERS, File System and Registry Virtualization
		associations in HKCR, HKEY_USERS
	virtualization exceptions, File System and Registry Virtualization

	file handles, Object Methods
	file hash, Application Identification (AppID), AppLocker
		for AppLocker rules, AppLocker

	file mapping objects, Processes, Threads, and Jobs
	file objects, Objects and Handles, Executive Objects, Access Checks, Integrity Levels
		default security overrides, Access Checks
	integrity level, Integrity Levels

	file renames, Session Manager (Smss)
	file requests, Server Message Block and Sub-Redirectors, Server Message Block and Sub-Redirectors
		compounding, Server Message Block and Sub-Redirectors
	pipelining, Server Message Block and Sub-Redirectors

	file shares, UPnP with PnP-X, Distributed File System Namespace, Offline Files
		aggregating, Distributed File System Namespace
	caching files on local machine, Offline Files

	file sharing, and symbolic links, Object Directories
	file system minifilters, Kernel Patch Protection
	file system namespace, Object Methods
	file system objects, global audit policy, Global Audit Policy
	file system virtualization, File System and Registry Virtualization
	file transfer, Background Intelligent Transfer Service, Background Intelligent Transfer Service
		(see also data transfer)
	asynchronous, Background Intelligent Transfer Service

	file virtualization, File System and Registry Virtualization, File Virtualization
		enabling and disabling, File Virtualization

	file-system drivers (FSDs), Device Drivers (see FSDs (file-system drivers))
	file-system runtime library, Executive
	files, Protecting Objects, AppLocker, Offline Files, Ghosts
		access methods, Protecting Objects
	caching on local machine, Offline Files
	ghosted, Ghosts
	locking down, AppLocker

	filter drivers, Device Drivers, Windows Driver Model (WDM), Variations on the NDIS Miniport
		lightweight, Variations on the NDIS Miniport

	filter engine, Windows Filtering Platform
	filtered admin tokens, Tokens, Impersonation, Filtered Admin Token, User Account Control and Virtualization
		characteristics, Impersonation
	UAC use, User Account Control and Virtualization
	viewing, Filtered Admin Token

	Fingerprint Biometric Service Provider, Biometric Framework for User Authentication
	fingerprint scanners, Assured Authentication
	firewalls, Service Isolation, Network Address Translation
		rules, Service Isolation
	stateful, Network Address Translation

	flags, Timer Expiration, Object Headers and Bodies, Object Headers and Bodies, Object Headers and Bodies, Object Handles and the Process Handle Table, Data Structures, System Worker Threads, Security Descriptors and Access Control, Security Descriptors and Access Control, Registry Virtualization, Requesting Administrative Rights
		ACE, Security Descriptors and Access Control
	application-compatibility, Requesting Administrative Rights
	dispatcher header, Data Structures
	global, System Worker Threads
	handle table entry, Object Handles and the Process Handle Table
	object, Object Headers and Bodies
	object attribute, Object Headers and Bodies
	object header, Object Headers and Bodies
	PRCB, Timer Expiration
	registry virtualization, Registry Virtualization
	security descriptor, Security Descriptors and Access Control

	floating-point exceptions, Exception Dispatching
	floating-point state, saving, Software Interrupt Request Levels (IRQLs)
	foreground threads, Variable Quantums, Priority Boosts for Foreground Threads After Waits
		priority boosts, Priority Boosts for Foreground Threads After Waits
	quantum length, Variable Quantums

	fragment names, HTTP
	frame-based exception handlers, Exception Dispatching
	Framework Class Library (FCL), Windows API
	free build, Checked Build
	FSDs (file-system drivers), Device Drivers, Device Drivers, Object Methods, Priority Boosting After I/O Completion, Named Pipe and Mailslot Implementation, Multiple UNC Provider
		filter drivers, Device Drivers
	invoking, Named Pipe and Mailslot Implementation
	MUP, Multiple UNC Provider
	thread priority boost values, Priority Boosting After I/O Completion

	function drivers, Windows Driver Model (WDM)
	functions, Environment Subsystems and Subsystem DLLs, Environment Subsystems and Subsystem DLLs, Windows Driver Foundation, Service Descriptor Tables, Synchronization, API Sets
		intrinsic, Synchronization
	name prefixes, Windows Driver Foundation
	splitting across discrete files, API Sets
	system call numbers, mapping to, Service Descriptor Tables
	user-mode, Environment Subsystems and Subsystem DLLs
	Windows executive calls, Environment Subsystems and Subsystem DLLs

	Fusion (SxS) redirection, DLL Name Redirection

 G
	games, thread priority boosts for, Removing Boosts
	gates, Fast Mutexes and Guarded Mutexes, Executive Resources
		pushlocks, Executive Resources

	GDI functions, Windows Subsystem
	GDI subsystem, Data Structures
	GDI/User objects, Object Manager
	Gdi32.dll, Architecture Overview
	getaddrinfo function, Windows Sockets
	GetEffectiveRightsFromAcl function, Determining Access
	GetSystemTimeAdjustment function, Quantum
	GetThreadContext function, Processes, Threads, and Jobs
	Gflags.exe, System Worker Threads
	ghosts, Ghosts
	global audit policy, Global Audit Policy, Global Audit Policy, Global Audit Policy, Global Audit Policy, Global Audit Policy, Global Audit Policy
		additional auditing, Global Audit Policy
	configuring, Global Audit Policy
	querying, Global Audit Policy
	setting, Global Audit Policy
	storage location, Global Audit Policy

	Global Descriptor Table (GDT), Hotpatch Support
	global flags, Object Manager, System Worker Threads, System Worker Threads, System Worker Threads
		changing, System Worker Threads
	maintain objects list, Object Manager
	viewing, System Worker Threads

	Global Flags tool, Digging into Windows Internals
	global namespace, Object Directories, Session Namespace
		accessing, Session Namespace

	global resources, mutually exclusive access, Synchronization
	global spinlocks, Queued Spinlocks
	Graphics and Multimedia Services, Windows API
	group claims, Assured Authentication
	Group parameter, Service Applications
	group SIDs, Tokens
	group-aware applications, Thread Scheduling
	groups, processor, NUMA Systems, Processor Group Assignment
		assignment, NUMA Systems
	number per group, Processor Group Assignment

	GroupSetMember value, Thread Selection
	guarded mutexes, Keyed Events, Fast Mutexes and Guarded Mutexes, Fast Mutexes and Guarded Mutexes
		acquiring, Fast Mutexes and Guarded Mutexes
	vs. fast mutexes, Fast Mutexes and Guarded Mutexes

	guest operating systems, Hypervisor (Hyper-V), Enlightenments, Memory Virtualization
		(see also hypervisor (Hyper-V); operating systems)
	address translation, virtual and physical, Memory Virtualization
	support from, Enlightenments

	guest physical address space (GPA space), Memory Virtualization
	guest virtual address space (GVA space), Virtual Machine Manager Service and Worker Processes, Memory Virtualization
	GUI permissions editors, Determining Access
	GUI processes, state information, Data Structures
	GUI threads, priority boosts, Priority Boosts for Foreground Threads After Waits
	GUIDs, Windows version-specific, Post-Import Process Initialization

 H
	HAL (hardware abstraction layer), Architecture Overview, Checked Build, Hardware Support, Hardware Support, Hardware Abstraction Layer, Software Interrupt Request Levels (IRQLs), Dynamic Processor Addition and Replacement
		checked build version, Checked Build
	dynamic processor support, Dynamic Processor Addition and Replacement
	interrupt levels, Software Interrupt Request Levels (IRQLs)
	version, determining, Hardware Abstraction Layer
	x86 versions, Hardware Support

	Hal.dll, Architecture Overview
	handle attribute, Views, Regions, and Sections
	handle data blobs, Blobs, Handles, and Resources
	handle leaks, Object Retention
	handle tables, Object Handles and the Process Handle Table, Object Handles and the Process Handle Table, Object Handles and the Process Handle Table, Object Handles and the Process Handle Table, Blobs, Handles, and Resources
		ALPC-specific, Blobs, Handles, and Resources
	entries, structure of, Object Handles and the Process Handle Table
	kernel handle table, Object Handles and the Process Handle Table
	viewing, Object Handles and the Process Handle Table

	Handle tool, Object Handles and the Process Handle Table
	handle tracing database, Object Retention
	Handle Viewer, Digging into Windows Internals
	handlers, control, Service Applications
	handles, Objects and Handles, Registry Data Types, Transactional Registry (TxR), Hive Size Limits, Data Structures, Access Checks
		defined, Objects and Handles
	existing, referencing objects with, Access Checks
	hive, Hive Size Limits
	process, Data Structures
	to registry keys, Registry Data Types
	transaction, Transactional Registry (TxR)

	handles, object, Object Methods, Object Handles and the Process Handle Table, Object Handles and the Process Handle Table, Object Handles and the Process Handle Table, Object Handles and the Process Handle Table, Object Security, Object Retention, Object Retention, Object Retention, Object Retention
		debugging mechanisms, Object Retention
	kernel handle table, Object Handles and the Process Handle Table
	maximum number, Object Handles and the Process Handle Table
	open, searching for, Object Handles and the Process Handle Table
	references, viewing, Object Retention
	resource accounting, Object Retention
	tracing, Object Security, Object Retention
	viewing, Object Handles and the Process Handle Table

	hardware, Virtual Memory, Trap Dispatching, Hardware Interrupt Processing, Hypervisor (Hyper-V), Enlightenments, HKEY_LOCAL_MACHINE, The OSI Reference Model
		device-to-driver mappings, HKEY_LOCAL_MACHINE
	exceptions and interrupts, Trap Dispatching
	in OSI reference model, The OSI Reference Model
	interrupt processing, Hardware Interrupt Processing
	virtual address space, Virtual Memory
	virtualized, Hypervisor (Hyper-V), Enlightenments

	hardware abstraction layer (HAL), Architecture Overview (see HAL (hardware abstraction layer))
	hardware device drivers, Device Drivers
	hardware exceptions, Trap Dispatching
	hardware profiles, HKEY_LOCAL_MACHINE
	hardware-generated interrupts, Trap Dispatching
	hashing, Application Identification (AppID)
	header files, Windows Driver Kit
	header-data split, NDIS Drivers
	health policies, Network Access Protection
	Health Requirements Server (HRS), Network Access Protection
	heap manager, Ntdll.dll
	helper DLLs, Extending Winsock
	high interrupt level, Software Interrupt Request Levels (IRQLs)
	high-frequency timers, Timer Processing
	high-loss scenarios, Protocol Drivers
	hive handles, Hive Size Limits
	hive syncs, Stable Storage
	hives, reigstry, Logging Activity in Unprivileged Accounts or During
 Logon/Logoff, Logging Activity in Unprivileged Accounts or During
 Logon/Logoff, Hives, Hive Size Limits, Hive Size Limits, Hive Structure, Hive Structure, Hive Structure, Hive Structure, Hive Structure, Hive Structure, Stable Storage, Stable Storage, Stable Storage, Stable Storage
		bins, Hive Structure
	cell indexes, Hive Structure
	cell maps, Hive Structure
	cells, Hive Structure
	corruption, Stable Storage
	loading and unloading, Hives
	log hives, Stable Storage
	nonvolatile, Stable Storage
	on-disk file names, Logging Activity in Unprivileged Accounts or During
 Logon/Logoff
	opening, Hive Size Limits
	page pool usage, viewing, Hive Structure
	recoverable state, Stable Storage
	size limits, Hive Size Limits
	structure, Hive Structure

	HKCU\SOFTWARE\Microsoft \Windows NT\Current
 Version\Winlogon\Shell value, User Logon Steps
	HKEY_CLASSES_ROOT, Registry Data Types, HKEY_USERS
	HKEY_CURRENT_CONFIG, Registry Data Types, HKEY_LOCAL_MACHINE
	HKEY_CURRENT_USER, Registry Data Types
	HKEY_LOCAL_MACHINE, Registry, Registry Data Types, HKEY_USERS
	HKEY_PERFORMANCE_DATA, Registry Data Types, HKEY_PERFORMANCE_DATA
	HKEY_USERS, Registry Data Types, HKEY_USERS
	HKLM\SAM key, Security System Components
	HKLM\Security key, Security System Components
	HKLM\SOFTWARE\Microsoft\Windows NT \Current
 Version\Winlogon\Userinit value, User Logon Steps
	host-based IPsec packet filtering, Internet Protocol Security
	host-based virtualization, Hypervisor (Hyper-V)
	Hosted Cache caching mode, BranchCache
	hot key processing code, Winlogon Initialization
	hotpatching, Image Loader, Kernel Transaction Manager, Kernel Transaction Manager, Hotpatch Support, Hotpatch Support, Hotpatch Support
		compile-time, Hotpatch Support
	limitations, Hotpatch Support
	operations, Kernel Transaction Manager
	patch descriptors, Hotpatch Support

	housekeeping threads, Extended Affinity Mask
	HTTP, Web Access APIs, BranchCache Optimized Application Retrieval: SMB
 Sequence, BranchCache Optimized Application Retrieval: SMB
 Sequence
		BranchCache application retrieval sequence, BranchCache Optimized Application Retrieval: SMB
 Sequence
	BranchCache integration, BranchCache Optimized Application Retrieval: SMB
 Sequence
	requests and responses, Web Access APIs

	HTTP Server API, Web Access APIs
	Http.sys, HTTP
	HTTPS, Background Intelligent Transfer Service, BranchCache
		BranchCache use, BranchCache

	hung processes, Examining Thread Activity
	hvboot.sys driver, Virtual Machine Manager Service and Worker Processes
	Hyper-Threading, Symmetric Multiprocessing
	hypercalls, Virtual Machine Manager Service and Worker Processes
	hypercritical worker threads, System Worker Threads
	hypervisor (Hyper-V), Hypervisor (Hyper-V), Partitions, Partitions, Partitions, Partitions, Parent Partition, Parent Partition, Virtual Machine Manager Service and Worker Processes, Virtual Machine Manager Service and Worker Processes, Virtual Machine Manager Service and Worker Processes, Child Partitions, Enlightenments, Enlightenments, Enlightenments, Emulated Devices, Emulated Devices, Synthetic Devices, Memory Virtualization, Memory Virtualization, Memory Virtualization, Memory Virtualization, Intercepts, Kernel Patch Protection, Trusted Computer System Evaluation Criteria
		architectural stack, Partitions
	child partitions, Virtual Machine Manager Service and Worker Processes
	emulated devices, Emulated Devices
	enlightenments, Child Partitions
	enlightenments, kernel patch
 protection, Kernel Patch Protection
	guest physical address space, Memory Virtualization
	hardware emulation and support, Enlightenments
	hardware management, Enlightenments
	hypercalls, Virtual Machine Manager Service and Worker Processes
	initialization, Virtual Machine Manager Service and Worker Processes
	intercepts, Memory Virtualization
	Live Migration, Intercepts
	parent partition, Partitions
	parent partition operating system, Parent Partition
	partitions, Partitions
	security rating, Trusted Computer System Evaluation Criteria
	shadow page tables, Memory Virtualization
	SLAT use, Memory Virtualization
	synthetic devices, Emulated Devices
	VDevs, Enlightenments
	virtual machine management service, Parent Partition
	virtual processors, Synthetic Devices
	Windows driver architecture use, Partitions

	hypervisor library, Executive
	hypervisor stack, Partitions

 I
	I.O Completion packet reserve object, Reserve Objects
	I/O, Performance Monitor, Trap Dispatching, Trap Dispatching, Registry Redirection, Lock Ownership Boosts
		control functions, Registry Redirection
	device interrupts, Trap Dispatching, Trap Dispatching
	per-file information, Performance Monitor
	priority boosts on completion, Lock Ownership Boosts

	I/O completion ports, Worker Factories (Thread Pools), Dynamic Processor Addition and Replacement
		jobs associated with, Dynamic Processor Addition and Replacement
	scalability, wait internals, and efficiency of work
 processing, Worker Factories (Thread Pools)

	I/O manager, Executive, Object Methods
		file system namespace
 implementation, Object Methods

	I/O model of processing, WSK Implementation
	I/O requests, The OSI Reference Model, Protocol Drivers
	I/O transfers, Trap Dispatching
	i82489 Advanced Programmable Interrupt Controller
 (APIC), Hardware Interrupt Processing
		(see also APIC (Advanced Programmable Interrupt
 Controller))

	i8259A Programmable Interrupt Controller
 (PIC), Hardware Interrupt Processing
	IA32Exec.bin, Wow64
	IA64 architecture, x64 Interrupt Controllers, Software Interrupt Request Levels (IRQLs), System Service Dispatching
		interrupt controllers, x64 Interrupt Controllers
	interrupt request levels, Software Interrupt Request Levels (IRQLs)
	system service dispatching, System Service Dispatching

	IBAC (identity-based access control), The AuthZ API
	ICs (integration components), Emulated Devices
	ideal node, Ideal and Last Processor
	ideal processor, Extended Affinity Mask
	identification, credential providers, Local Session Manager (Lsm.exe)
	identity-based access control (IBAC), The AuthZ API
	idle process, Termination, Idle Threads
		name, Idle Threads

	idle processors, Process Monitor Internals, Thread Selection on Multiprocessor Systems
		registry activity, viewing, Process Monitor Internals

	idle scheduling, Thread Selection
	idle threads, Termination, Idle Threads, Idle Threads, Idle Threads, Thread Selection
		operations, Idle Threads
	preemption, Idle Threads
	priority level, Idle Threads
	ready queue scanning, Thread Selection

	idle-only queue, Idle Threads, Thread Selection on Multiprocessor Systems, Per-Session CPU Quota Blocks, Per-Session CPU Quota Blocks, Charging of Cycles to Throttled Threads, Charging of Cycles to Throttled Threads, Charging of Cycles to Throttled Threads, Resuming Execution, Resuming Execution, Resuming Execution, Resuming Execution, Resuming Execution, DFSS Idle-Only Queue Scheduling
		flushing, Charging of Cycles to Throttled Threads, Resuming Execution
	locking mechanism, Per-Session CPU Quota Blocks, Charging of Cycles to Throttled Threads
	maintainence, Per-Session CPU Quota Blocks
	remote processor, Resuming Execution
	scheduling, Resuming Execution
	thread management, Resuming Execution
	thread reinsertion, DFSS Idle-Only Queue Scheduling
	thread release, Thread Selection on Multiprocessor Systems
	threads, adding to, Charging of Cycles to Throttled Threads
	threads, resuming execution, Resuming Execution

	idle-time duration, optimizing, Intelligent Timer Tick Distribution
	idle/sleep processor states, Intelligent Timer Tick Distribution
	IDT (interrupt dispatch table), Hardware Interrupt Processing, Hardware Interrupt Processing
		viewing, Hardware Interrupt Processing

	Iexplore.exe, Integrity Levels
	IKE (Internet Key Exchange), Internet Protocol Security
	image database, Service Startup
	image loader, Ntdll.dll, Native Support, Native Support, Image Loader, Image Loader, Image Loader, Early Process Initialization, DLL Name Resolution and Redirection, DLL Name Redirection, DLL Name Redirection, Loaded Module Database, Import Parsing, Import Parsing, Import Parsing, Post-Import Process Initialization, SwitchBack, Stage 7: Performing Process Initialization in the Context of
 the New Process, Data Structures, Running with Administrator Rights, AppLocker
		API Sets use, SwitchBack
	application initialization tasks, Native Support
	context information, Data Structures
	DLL name redirection, DLL Name Resolution and Redirection
	DLL name resolution, Early Process Initialization
	DLL restriction, AppLocker
	DLL search, Import Parsing
	DLL search order, viewing, DLL Name Redirection
	early process initialization, Image Loader
	import parsing, Import Parsing
	initialization, Stage 7: Performing Process Initialization in the Context of
 the New Process
	internals, Loaded Module Database
	legacy installer identification, Running with Administrator Rights
	loaded module database, DLL Name Redirection
	post-import initialization tasks, Import Parsing
	SwitchBack, Post-Import Process Initialization
	tasks of, Image Loader
	watching, Image Loader

	image subsystem, Environment Subsystems and Subsystem DLLs
	ImagePath parameter, Service Applications, Service Startup
	images, Windows Global Flags, Affinity, Software Restriction Policies
		execution, Software Restriction Policies
	global flags, Windows Global Flags
	uniprocessor flag, Affinity

	ImpersonateNamedPipeClient function, Impersonation, Named-Pipe Operation
	ImpersonateSecurityContext function, Impersonation
	impersonation, Processes, Threads, and Jobs, Protecting Objects, Impersonation, Impersonation, Impersonation, Impersonation, RPC Operation, Named-Pipe Operation
		client, RPC Operation, Named-Pipe Operation
	integrity policy, Impersonation
	misuse prevention, Impersonation
	server forms, Impersonation

	impersonation tokens, Tokens, Impersonation
	import parsing, Import Parsing
	import tables, parsing by image loader, Image Loader, Early Process Initialization
	in-memory structures, Management Mechanisms
	increase scheduling priority privilege, Priority Levels
	increaseuserva qualifier, Virtual Memory
	indirection, Object Methods
	inheritance, The Common Information Model and the Managed Object Format
 Language, Priority Levels, Security Descriptors and Access Control, Security Descriptors and Access Control, ACL Assignment
		class, The Common Information Model and the Managed Object Format
 Language
	of ACE flags, Security Descriptors and Access Control
	of ACEs, Security Descriptors and Access Control
	priority levels, Priority Levels
	Windows API support, ACL Assignment

	init once, Run Once Initialization
	initial process address space, creating, Stage 3A: Setting Up the EPROCESS Object
	initialization, Run Once Initialization, Native Support, Virtual Machine Manager Service and Worker Processes, Initialization, Dynamic Fair Share Scheduling, Logon, Logon
		Dynamic Fair Share Scheduler, Dynamic Fair Share Scheduling
	hypervisor, Virtual Machine Manager Service and Worker Processes
	of processes, Native Support
	of Unified Background Process Manager, Initialization
	system, Run Once Initialization, Logon
	Winlogon, Logon

	initialization tasks, Run Once Initialization, Import Parsing, Import Parsing
		atomic execution, Run Once Initialization
	import parsing, Import Parsing
	post-import tasks, Import Parsing

	initialized threads, Thread States
	input string parameters, Registry
	installers, I/O Control Requests, Running with Administrator Rights
		administrative rights for, Running with Administrator Rights

	Institute of Electrical and Electronics Engineers
 (IEEE) 802 committee, The OSI Reference Model
	integer divide-by-zero exceptions, Exception Dispatching
	integer overflow, Exception Dispatching
	integration components (ICs), Emulated Devices
	integrity checks, mandatory, ACL Assignment
	integrity levels, Protecting Objects, Security Identifiers, Integrity Levels, Integrity Levels, Integrity Levels, Integrity Levels, Tokens, Determining Access, Determining Access
		access based on, Determining Access
	for User Interface Privilege Isolation, Determining Access
	implementation, Protecting Objects
	low, launching programs at, Tokens
	object, Integrity Levels
	process, Integrity Levels
	propagation, Integrity Levels
	Protected Mode Internet Explorer use, Integrity Levels

	integrity protection, Objects and Handles
	integrity state, Code Integrity
	Intel processors, Architecture Overview
	Intel VT Extended/Nested Page Table (NPT)
 technology, Memory Virtualization
	intelligent timer tick distribution, Processor Selection
	interactive logon, Logon, Logon, Winlogon Initialization
		authentication packages, Logon, Winlogon Initialization

	interactive logon manager (Winlogon), Security System Components
		(see also Winlogon)

	interactive processes, Service Isolation
	interactive services, Interactive Services and Session 0 Isolation, Service Startup
	Interactive Services Detection (UI0Detect)
 service, Interactive Services and Session 0 Isolation
	intercepts, Memory Virtualization
	interfaces, testing, Registry Change Monitoring
	interlocked operations, Synchronization, Instack Queued Spinlocks
		spinlocks for, Instack Queued Spinlocks

	intermediate nodes, The OSI Reference Model
	internal data structures, Debugging Tools for Windows, Protected Processes
		(see also processes; threads)
	contents, displaying, Debugging Tools for Windows

	internal support functions, Subsystem for Unix-based Applications
	International Organization for Standardization
 (ISO), The OSI Reference Model
	Internet APIs, Web Access APIs
	Internet applications, Web Access APIs
	Internet Explorer, Integrity Levels, Determining Access, File System and Registry Virtualization
		Protected Mode, Integrity Levels, Determining Access
	virtualization support, File System and Registry Virtualization

	Internet Key Exchange (IKE), Internet Protocol Security
	interprocess communication, programming APIs
 for, HTTP
	interprocessor interrupt level, Software Interrupt Request Levels (IRQLs)
	interprocessor interrupts (IPIs), Software Interrupt Request Levels (IRQLs)
	Interrupt Affinity Policy Tool, Software Interrupt Request Levels (IRQLs)
	interrupt controllers, Hardware Interrupt Processing, x64 Interrupt Controllers, x64 Interrupt Controllers
		IA64, x64 Interrupt Controllers
	x64, x64 Interrupt Controllers
	x86, Hardware Interrupt Processing

	Interrupt Descriptor Table (IDT), Kernel Patch Protection
	interrupt dispatch table (IDT), Hardware Interrupt Processing
	interrupt dispatching, Trap Dispatching
	interrupt objects, Software Interrupt Request Levels (IRQLs), Software Interrupt Request Levels (IRQLs), Software Interrupt Request Levels (IRQLs), Software Interrupt Request Levels (IRQLs), Software Interrupt Request Levels (IRQLs)
		address, Software Interrupt Request Levels (IRQLs)
	connecting and disconnecting, Software Interrupt Request Levels (IRQLs)
	ISR, registering, Software Interrupt Request Levels (IRQLs)
	viewing details, Software Interrupt Request Levels (IRQLs)

	interrupt request levels (IRQLs), IA64 Interrupt Controllers (see IRQLs (interrupt request levels))
	interrupt requests (IRQs), Hardware Interrupt Processing (see IRQs (interrupt requests))
	interrupt service routine (ISR), Trap Dispatching, Software Interrupt Request Levels (IRQLs)
	interrupt trap handlers, Trap Dispatching
	interrupts, System Mechanisms, Hardware Interrupt Processing, Hardware Interrupt Processing, Hardware Interrupt Processing, IA64 Interrupt Controllers, Software Interrupt Request Levels (IRQLs), Software Interrupt Request Levels (IRQLs), Software Interrupt Request Levels (IRQLs), Software Interrupt Request Levels (IRQLs), Software Interrupt Request Levels (IRQLs), Software Interrupt Request Levels (IRQLs), Software Interrupt Request Levels (IRQLs), Software Interrupt Request Levels (IRQLs), Software Interrupt Request Levels (IRQLs), Software Interrupt Request Levels (IRQLs), Dispatch or Deferred Procedure Call (DPC)
 Interrupts, Dispatch or Deferred Procedure Call (DPC)
 Interrupts, Synchronization, Quantum End
		affinity, Software Interrupt Request Levels (IRQLs)
	APC, Dispatch or Deferred Procedure Call (DPC)
 Interrupts
	defined, System Mechanisms
	dispatch or DPC, Software Interrupt Request Levels (IRQLs)
	handling, Quantum End
	hardware processing, Hardware Interrupt Processing
	interrupt control flow, Software Interrupt Request Levels (IRQLs)
	IRQL, mapping to, Software Interrupt Request Levels (IRQLs)
	line-based, Software Interrupt Request Levels (IRQLs)
	masking, Software Interrupt Request Levels (IRQLs), Synchronization
	message signaled-based, Software Interrupt Request Levels (IRQLs)
	monitoring, Dispatch or Deferred Procedure Call (DPC)
 Interrupts
	prioritization, Hardware Interrupt Processing, Software Interrupt Request Levels (IRQLs)
	routing algorithms, Hardware Interrupt Processing
	service routines, IA64 Interrupt Controllers
	sharing, Software Interrupt Request Levels (IRQLs)
	software, Software Interrupt Request Levels (IRQLs)

	intra-user isolation, Protecting Objects
	intrinsic functions, Synchronization
	IoCompletion object type, Executive Objects
	IP addresses, Protocol Drivers, Network Address Translation, Network Load Balancing
		cluster, Network Load Balancing
	private to public mapping, Network Address Translation
	public, Protocol Drivers

	IP filtering, Network Address Translation
	IPC parsing bugs, Blobs, Handles, and Resources
	IPIs (interprocessor interrupts), Software Interrupt Request Levels (IRQLs)
	IPsec, Network Address Translation, Internet Protocol Security, Internet Protocol Security, Internet Protocol Security, Internet Protocol Security, Internet Protocol Security, Internet Protocol Security
		architecture, Internet Protocol Security
	authentication methods, Internet Protocol Security
	Group Policy settings, Internet Protocol Security
	host-based packet filtering, Internet Protocol Security
	monitoring secured communication, Internet Protocol Security
	WFP callout driver, Internet Protocol Security

	IPsec Policy Agent, Internet Protocol Security
	IPv4, Protocol Drivers
	IPv6, Protocol Drivers
	IRPs (I/O request packets), The OSI Reference Model
	IRQ lines, interrupts based on, Software Interrupt Request Levels (IRQLs)
	IRQLs (interrupt request levels), IA64 Interrupt Controllers, Software Interrupt Request Levels (IRQLs), Software Interrupt Request Levels (IRQLs), Software Interrupt Request Levels (IRQLs), Software Interrupt Request Levels (IRQLs), Software Interrupt Request Levels (IRQLs), Software Interrupt Request Levels (IRQLs), Software Interrupt Request Levels (IRQLs), Software Interrupt Request Levels (IRQLs), Synchronization, Priority Levels, Dispatcher Database
		APC level, Software Interrupt Request Levels (IRQLs)
	DISPATCH_LEVEL, Dispatcher Database
	interrupts, mapping to, Software Interrupt Request Levels (IRQLs)
	lazy, Software Interrupt Request Levels (IRQLs)
	on spinlocks, Synchronization
	passive level, Software Interrupt Request Levels (IRQLs)
	predefined, Software Interrupt Request Levels (IRQLs)
	raising and lowering, Software Interrupt Request Levels (IRQLs)
	save locations, Software Interrupt Request Levels (IRQLs)
	viewing, Software Interrupt Request Levels (IRQLs)
	vs. thread priorities, Priority Levels

	IRQs (interrupt requests), Hardware Interrupt Processing, Software Interrupt Request Levels (IRQLs), Software Interrupt Request Levels (IRQLs)
		IRQ 1, Software Interrupt Request Levels (IRQLs)
	prioritization, Software Interrupt Request Levels (IRQLs)

	isolation, Transactional Registry (TxR), Running with Least Privilege, Service Isolation, Protecting Objects
		intra-user, Protecting Objects
	service, Running with Least Privilege
	Session Zero Isolation, Service Isolation
	transaction, Transactional Registry (TxR)

	ISR (interrupt service routine), Trap Dispatching, Software Interrupt Request Levels (IRQLs), Software Interrupt Request Levels (IRQLs)
		interrupt level, connecting and
 disconnecting, Software Interrupt Request Levels (IRQLs)
	registering, Software Interrupt Request Levels (IRQLs)

 J
	job object type, Executive Objects
	job objects, Quantum Accounting, Dynamic Processor Addition and Replacement, Dynamic Processor Addition and Replacement, Job Limits, Job Limits, Job Limits
		job sets, Job Limits
	limits, specifying, Job Limits
	process accounting information, Dynamic Processor Addition and Replacement
	quantum values, Quantum Accounting
	viewing, Job Limits

	jobs, Processes, Threads, and Jobs, Background Intelligent Transfer Service
		transfer, Background Intelligent Transfer Service

 K
	Kd.exe, Debugging Tools for Windows
	KeAcquire/ReleaseSpinLockForDpc API, Dispatch or Deferred Procedure Call (DPC)
 Interrupts
	KeAcquireInStackQueuedSpinLock function, Instack Queued Spinlocks
	KeAcquireInterruptSpinLock API, Spinlocks
	KeAcquireSpinLock function, Spinlocks
	KeAddSystemServiceTable function, System Service Dispatching
	KeAreAllApcsDisabled function, Fast Mutexes and Guarded Mutexes
	KeAreApcsDisabled function, Fast Mutexes and Guarded Mutexes
	KeEnterGuardedRegion, Asynchronous Procedure Call Interrupts
	KeInitializeProcess function, Stage 3B: Creating the Initial Process Address Space
	KePerformGroupConfiguration routine, NUMA Systems
	Kerberos authentication, Logon, Winlogon Initialization, User Logon Steps
		TCP/IP port (port 88), User Logon Steps

	Kerberos Key Distribution Center service, User Logon Steps
	KeReleaseInStackQueuedSpinLock function, Instack Queued Spinlocks
	KeReleaseInterruptSpinLock API, Spinlocks
	KeReleaseSpinLock function, Spinlocks
	kernel, Requirements and Design Goals, Architecture Overview, Architecture Overview, Symmetric Multiprocessing, Executive, Executive, Kernel Processor Control Region and Control Block (KPCR and
 KPRCB), Kernel Processor Control Region and Control Block (KPCR and
 KPRCB), Kernel Processor Control Region and Control Block (KPCR and
 KPRCB), Hardware Support, Trap Dispatching, Trap Dispatching, Software Interrupt Request Levels (IRQLs), Software Interrupt Request Levels (IRQLs), Software Interrupt Request Levels (IRQLs), Software Interrupt Request Levels (IRQLs), Dispatch or Deferred Procedure Call (DPC)
 Interrupts, Exception Dispatching, Exception Dispatching, Synchronization, Low-IRQL Synchronization, What Signals an Object?, Data Structures, Views, Regions, and Sections, Blobs, Handles, and Resources, User-Mode Debugging, Loaded Module Database, Worker Factories (Thread Pools), Worker Factories (Thread Pools), Overview of Windows Scheduling, Priority Levels, Thread States, Package Sets and SMT Sets, Dynamic Processor Addition and Replacement
		attributes management, Views, Regions, and Sections
	blob management, Blobs, Handles, and Resources
	daisy-chain configuration support, Software Interrupt Request Levels (IRQLs)
	design, Architecture Overview
	dispatcher database, Thread States
	dispatcher objects, Low-IRQL Synchronization, What Signals an Object?
	DPC processing, Dispatch or Deferred Procedure Call (DPC)
 Interrupts
	driver and DLL loader, Loaded Module Database
	dynamic thread creation, Worker Factories (Thread Pools)
	exception trapping and handling, Exception Dispatching
	exceptions and interrupts, distinguishing
 between, Trap Dispatching
	hardware support, Kernel Processor Control Region and Control Block (KPCR and
 KPRCB)
	interrupt objects, Software Interrupt Request Levels (IRQLs)
	lock ordering scheme, Data Structures
	mutual exclusion functions, Synchronization
	NUMA system information, Package Sets and SMT Sets
	objects, Executive
	portable interfaces, Kernel Processor Control Region and Control Block (KPCR and
 KPRCB)
	processor control region, Kernel Processor Control Region and Control Block (KPCR and
 KPRCB)
	protection mechanisms, Requirements and Design Goals
	real-time, Software Interrupt Request Levels (IRQLs)
	scalability features, Symmetric Multiprocessing
	software interrupts, Software Interrupt Request Levels (IRQLs)
	structured exception handling, Exception Dispatching
	system interrupts, Trap Dispatching
	thread priority assignment, Priority Levels
	thread scheduling, creation, and termination, Worker Factories (Thread Pools)
		(see also thread scheduling)

	threaded DPC support for dynamic processors, Dynamic Processor Addition and Replacement
	user-mode debugging support, User-Mode Debugging
	Windows scheduling code, Overview of Windows Scheduling
	x86-specific interfaces, Hardware Support

	kernel boot process, Viewing and Changing the Registry
	kernel debugger, Digging into Windows Internals, Debugging Tools for Windows, Debugging Tools for Windows, Executive, Object Handles and the Process Handle Table, Fast Mutexes and Guarded Mutexes, System Worker Threads, Windows Global Flags, The Registry Namespace and Operation, Data Structures, Data Structures, Data Structures, Data Structures, Data Structures, Data Structures, Thread Scheduling, Job Limits, Tokens, Security Descriptors and Access Control, Protocol Drivers, NDIS Drivers
		!process command, Data Structures
	commands, Debugging Tools for Windows
	EPROCESS fields, displaying, Data Structures
	ETHREAD and KTHREAD, displaying, Data Structures
	executive resources, listing, Fast Mutexes and Guarded Mutexes
	extension commands, Debugging Tools for Windows
	handle table, viewing, Object Handles and the Process Handle Table
	job objects, viewing, Job Limits
	key control blocks, viewing, The Registry Namespace and Operation
	library, Executive
	NDIS mini-ports, listing, NDIS Drivers
	NtGlobalFlag variable, viewing and setting, Windows Global Flags
	PEB, displaying, Data Structures
	ready threads, viewing, Thread Scheduling
	security descriptors, viewing, Security Descriptors and Access Control
	system worker threads, listing, System Worker Threads
	TCP/IP device objects, viewing, Protocol Drivers
	TEB, dumping, Data Structures
	thread data structures, dumping, Data Structures
	tokens, viewing, Tokens

	kernel debugging, Performance Monitor, Debugging Tools for Windows, Debugging Tools for Windows
		local, Debugging Tools for Windows
	system not booted in debug mode, Debugging Tools for Windows

	kernel dispatcher, Overview of Windows Scheduling, Thread States
		ready queues, Thread States

	kernel event tracing, Kernel Event Tracing
	kernel handle table, Object Handles and the Process Handle Table, Hive Size Limits
		registry hives, opening, Hive Size Limits

	kernel handles, Protected Processes
	kernel image, Differences Between Client and Server Versions, Checked Build
		checked build version, Checked Build
	client and server version, Differences Between Client and Server Versions

	kernel logger, Kernel Event Tracing, Kernel Event Tracing, Kernel Event Tracing
		TCP/IP activity, tracing, Kernel Event Tracing
	trace classes, enabling, Kernel Event Tracing

	kernel mode, Kernel Mode vs. User Mode, Kernel Mode vs. User Mode, Requirements and Design Goals, Operating System Model, Protected Processes, RPC Implementation
		protected processes support, Protected Processes
	RPC support, RPC Implementation
	transitioning to user mode, Kernel Mode vs. User Mode

	Kernel Mode Code Signing (KMCS) policy, Kernel Mode vs. User Mode, Kernel Patch Protection
	kernel objects, Object Manager
	Kernel Patch Protection (KPP), Hotpatch Support
	kernel processor control block (KPRCB), Kernel Processor Control Region and Control Block (KPCR and
 KPRCB), Kernel Processor Control Region and Control Block (KPCR and
 KPRCB)
		viewing, Kernel Processor Control Region and Control Block (KPCR and
 KPRCB)

	Kernel Profiler (Kernrate), Software Interrupt Request Levels (IRQLs)
	kernel queues, Worker Factories (Thread Pools)
	Kernel Security Device Driver (KSecDD), Security System Components
	kernel stacks, Kernel Patch Protection
	kernel streaming filter drivers, Device Drivers
	kernel structures, Debugging Tools for Windows, Debugging Tools for Windows
		substructures, Debugging Tools for Windows
	type information, displaying, Debugging Tools for Windows

	kernel support functions, defined, Windows API
	kernel support routines, defined, Windows API
	Kernel Transaction Manager (KTM), Executive, Live Migration
	kernel-mode APCs, Dispatch or Deferred Procedure Call (DPC)
 Interrupts, Reserve Objects
	kernel-mode code, System Service Dispatching, Kernel Patch Protection, Protecting Objects
		signing, Kernel Patch Protection
	system calls, System Service Dispatching
	trust level, Protecting Objects

	kernel-mode components, Architecture Overview, Device Drivers
		device drivers, Device Drivers

	Kernel-Mode Driver Framework (KMDF), Windows Driver Model (WDM)
	kernel-mode exceptions, Exception Dispatching
	kernel-mode RPC, RPC Implementation
	kernel-mode system threads, System Processes
	kernel-mode threads, Interrupt Levels vs. Priority Levels
	kernel-mode trampolines, System Service Dispatching
	Kernel32.dll, Architecture Overview, Native Support, API Sets, Protected Processes, Stage 4: Creating the Initial Thread and Its Stack and
 Context, Birth of a Thread
		process-creation tasks, Protected Processes
	thread creation, Birth of a Thread
	user-mode debugging component, Native Support
	virtual DLL files, API Sets
	Windows subsystem–specific operations, Stage 4: Creating the Initial Thread and Its Stack and
 Context

	KeServiceDescriptorTable, System Service Dispatching, Service Descriptor Tables
	KeServiceDescriptorTableShadow, System Service Dispatching, Service Descriptor Tables
	KeStartDynamicProcessor function, Dynamic Processor Addition and Replacement
	KeStartThread function, Stage 4: Creating the Initial Thread and Its Stack and
 Context
	KeUpdateRunTime routine, Timer Expiration
	KeUpdateSystemTime routine, Timer Expiration
	key control blocks, Cell Maps, The Registry Namespace and Operation, The Registry Namespace and Operation, Registry Filtering, Registry Filtering
		allocation, Cell Maps
	deletion, The Registry Namespace and Operation
	fast access to, Registry Filtering
	key name references, Registry Filtering
	viewing, The Registry Namespace and Operation

	key object allocation, Cell Maps
	key object type, Executive Objects
	keyboard, logon requests from, Logon
	keyed events, Data Structures, Keyed Events, Keyed Events, Keyed Events
		performance, Keyed Events
	signaling, Keyed Events
	waiter lists, Keyed Events

	keys, registry, Registry Usage, Registry Usage, Process Monitor Internals, Hive Size Limits, Registry Filtering, Service Startup, Startup Errors, Global Audit Policy, File Virtualization
		access, protecting, Registry Filtering
	CurrentControlSet, Startup Errors
	global audit policy, Global Audit Policy
	linking, Hive Size Limits
	missing, Process Monitor Internals
	naming scheme, Registry Usage
	safe mode, Service Startup
	virtualized, File Virtualization

	keystrokes, squashing, Winlogon Initialization
	KiCheckForThreadDispatch function, Choosing a Processor for a Thread When There Are Idle
 Processors
	KiCyclesPerClockQuantum value, Quantum, DFSS Idle-Only Queue Scheduling
	KiDeferredReadyThread function, Logical Processor State, Thread Selection on Multiprocessor Systems
	KiFloatingDispatch handler, Software Interrupt Request Levels (IRQLs)
	KiIdleLoop routine, Idle Threads
	KiInterruptDispatchLBControl handler, Software Interrupt Request Levels (IRQLs)
	KiInterruptDispatchNoEOI handler, Software Interrupt Request Levels (IRQLs)
	KiInterruptDispatchNoLock handler, Software Interrupt Request Levels (IRQLs)
	KiProcessDeferredReadyList function, Logical Processor State
	KiSearchForNewThread function, Thread Selection, Ideal and Last Processor, Thread Selection on Multiprocessor Systems, Resuming Execution
	KiSelectCandidateProcessor function, Choosing a Processor for a Thread When There Are No Idle
 Processors
	KiSelectNextThread function, Idle Threads
	KiSelectReadyThread function, Thread Selection
	KiSystemService routine, System Service Dispatching
	KiThreadStartup function, Stage 7: Performing Process Initialization in the Context of
 the New Process
	KMCS (Kernel Mode Code Signing) policy, Kernel Mode vs. User Mode
	KMDF (Kernel-Mode Driver Framework), Windows Driver Model (WDM)
	KNODE, Package Sets and SMT Sets
	Known DLLs, DLL Name Redirection
	KPCR (kernel processor control region), Kernel Processor Control Region and Control Block (KPCR and
 KPRCB), Kernel Processor Control Region and Control Block (KPCR and
 KPRCB)
		viewing, Kernel Processor Control Region and Control Block (KPCR and
 KPRCB)

	KPP (Kernel Patch Protection), Hotpatch Support, Kernel Patch Protection
		supported techniques for working around, Kernel Patch Protection

	KPRCB (kernel processor control block), Kernel Processor Control Region and Control Block (KPCR and
 KPRCB), Kernel Processor Control Region and Control Block (KPCR and
 KPRCB)
		viewing, Kernel Processor Control Region and Control Block (KPCR and
 KPRCB)

	KPROCESS, Data Structures, Data Structures, Stage 3B: Creating the Initial Process Address Space, Termination
		initializing, Stage 3B: Creating the Initial Process Address Space
	viewing, Data Structures

	KQUEUE, Worker Factories (Thread Pools)
	KSecDD, Security System Components
	KTHREAD, Stage 7: Performing Process Initialization in the Context of
 the New Process, Data Structures, Data Structures, Termination
		displaying, Data Structures
	Win32Thread field, Data Structures

	KTM (Kernel Transaction Manager), Executive, Live Migration
	KTM objects, Object Retention, Kernel Transaction Manager
		deferred deletion, Object Retention

	Ktmutil.exe, Kernel Transaction Manager

 L
	LAN adapter (LANA) numbers, NetBIOS
	language packs, Registry
	LANs, datalink layer, The OSI Reference Model
	last known good control set, HKEY_LOCAL_MACHINE, Startup Errors
	last processor, Extended Affinity Mask
	latency, Priority Boosts, Lock Ownership Boosts
		decreasing, Priority Boosts
	optimizing for, Lock Ownership Boosts

	layered network services, QoS, Binding
		binding, QoS

	layered service providers (LSPs), Winsock Extensions
	lazy IRQL, Software Interrupt Request Levels (IRQLs)
	Ldr, Native Support
		(see also image loader)

	least privilege, The Local Service Account
	LeaveCriticalSection function, Data Structures
	legacy applications, Diagnostic Functionality, User Account Control and Virtualization, File System and Registry Virtualization, File System and Registry Virtualization, Networking APIs, NetBIOS
		Administrative privileges, User Account Control and Virtualization
	application-compatibility shims, File System and Registry Virtualization
	compatibility assistance, Diagnostic Functionality
	networking APIs for, Networking APIs, NetBIOS
	standard user account, running in, File System and Registry Virtualization

	legacy hardware, registry descriptions, HKEY_LOCAL_MACHINE
	legacy IPsec Policy Agent, Internet Protocol Security
	levels of trust ratings, Security
	licensed processors, Symmetric Multiprocessing
	Lightweight Directory Access Protocol (LDAP)
 directory services, Remote Access
	lightweight filter drivers (LWF), Variations on the NDIS Miniport
	link command /SUBSYSTEM qualifier, Environment Subsystems and Subsystem DLLs
	Link-Layer Topology Discovery (LLTD), Active Probe
	links, registry, Registry Data Types
	listening sockets, WSK Implementation
	Live Migration, Intercepts, Intercepts, Intercepts, Live Migration, Live Migration
		memory transfer, Intercepts
	setup, Intercepts
	state transfer, Live Migration
	VM files, transfer of
 ownership, Live Migration

	LiveKd, Debugging Tools for Windows, Child Partitions
		child partitions, viewing, Child Partitions

	LLTD (Link-Layer Topology Discovery), Active Probe
	load and unload device drivers privilege, Super Privileges
	loaded modules database, DLL Name Redirection
	loader data table entries, DLL Name Redirection, DLL Name Redirection
		fields, DLL Name Redirection

	loader snaps, Image Loader
	local accounts and group registry information, HKEY_LOCAL_MACHINE
	local area networks (LANs), The OSI Reference Model
	local kernel debugging, Debugging Tools for Windows
	local logon SIDs, Winlogon Initialization
	local namespace, Object Directories
	.LOCAL redirection, DLL Name Resolution and Redirection
	local RPC, RPC Implementation
	local security authentication server
 process, Local Session Manager (Lsm.exe)
	Local Security Authority (LSA), Account Rights
	Local Security Authority process (LSASS), Service Isolation (see LSASS (Local Security Authority subsystem))
	local security policy, Security Auditing
	Local Security Policy Editor, Account Rights and Privileges, Security Auditing, Advanced Audit Policy Settings, Software Restriction Policies, Caching Modes
		Advanced Audit Policy Configuration
 settings, Advanced Audit Policy Settings
	audit policy configuration, Security Auditing
	BranchCache configuration, Caching Modes
	Software Restriction Policies node, Software Restriction Policies
	User Rights Assignment configuration, Account Rights and Privileges

	local service account, Service Applications, The Local System Account, The Local System Account, The Local System Account, The Local System Account, The Local Service Account, Shared Service Processes
		account privileges, The Local System Account
	group membership, The Local System Account
	network resource access, The Local System Account
	services running in, Service Applications, The Local Service Account

	Local Session Manager (Lsm.exe), Service Control Manager (SCM)
	Local SID, Security Identifiers
	local system, Debugging Tools for Windows, Security Auditing
		audit policy, Security Auditing
	connecting to, Debugging Tools for Windows

	local system account, Service Applications, Service Applications, The Local System Account, The Local System Account, The Local System Account, Running with Least Privilege
		access to resources, Running with Least Privilege
	characteristics, The Local System Account
	core operating system components in, Service Applications
	group membership, The Local System Account
	privileges, The Local System Account
	services, running in, Service Applications

	local-account SIDs, Security Identifiers
	locally unique identifier (LUID), Tokens (see LUID (locally unique identifier))
	LocalService service group, Shared Service Processes
	LocalServiceAndNoImpersonation service group, Shared Service Processes
	LocalServiceNetworkRestricted service group, Shared Service Processes
	LocalServiceNoNetwork service group, Shared Service Processes
	LocalSystemNetworkRestricted service
 group, Shared Service Processes
	location, network, Location and Topology, Location and Topology
		Network Location Awareness service, Location and Topology

	lock convoys, Pushlocks
	lock ownership priority boosts, Boosts Due to Scheduler/Dispatcher Events, Priority Boosts for CPU Starvation
	lockdown, system, AppLocker
	locking mechanisms, Data Structures, Pushlocks, User-Mode Resources
		order of objects, Data Structures
	SRW Locks, User-Mode Resources
	user-mode, Pushlocks

	locking primitives, Spinlocks, Low-IRQL Synchronization
		for user-mode code, Low-IRQL Synchronization
	spinlocks, Spinlocks

	log hives, Stable Storage
	logging, Debugging and Tracing, Transactional Registry (TxR)
		ALPC messages, Debugging and Tracing
	transacted operations, Transactional Registry (TxR)

	Logical Link Control (LLC), The OSI Reference Model
	logical network identity, Network Location Awareness
	logical network interfaces, Network Location Awareness
	logical networks, Network Location Awareness
	logical prefetcher, Executive
	logical processors, Synthetic Devices, Overview of Windows Scheduling, Idle Threads, Thread Selection, Thread Selection, NUMA Systems, Processor Group Assignment, Processor Group Assignment, Logical Processor State, Logical Processor State, Logical Processor State, Extended Affinity Mask, Thread Selection on Multiprocessor Systems, Choosing a Processor for a Thread When There Are No Idle
 Processors, Dynamic Processor Addition and Replacement
		(see also processors)
	active, Logical Processor State
	affinity mask, Thread Selection
	candidate processor selection, Choosing a Processor for a Thread When There Are No Idle
 Processors
	context switch to new thread, Overview of Windows Scheduling
	dynamic, Dynamic Processor Addition and Replacement
	group assignment, NUMA Systems
	ideal, last, and next, Extended Affinity Mask
	idle, Logical Processor State
	nonparked, Logical Processor State
	number per group, Processor Group Assignment
	ready queue population, Thread Selection on Multiprocessor Systems
	state information, Thread Selection, Processor Group Assignment
	thread selection, Idle Threads

	LogicalProcessorsPerCore value, Thread Selection
	logon, Local Session Manager (Lsm.exe), Viewing and Changing the Registry, Process Monitor Troubleshooting Techniques, Service Startup, Startup Errors, Trusted Computer System Evaluation Criteria, Protecting Objects, Account Rights, Account Rights, Logon, Logon, Logon, Logon, Winlogon Initialization, Winlogon Initialization, User Logon Steps, User Logon Steps, Biometric Framework for User Authentication
		aborted, Winlogon Initialization
	account rights retrieval, Account Rights
	active sessions, listing, User Logon Steps
	authentication requirements, Protecting Objects
	components of, Logon
	configuration data use, Viewing and Changing the Registry
	interactive, Logon
	management, Local Session Manager (Lsm.exe)
	registry activity during, Process Monitor Troubleshooting Techniques
	secure, Trusted Computer System Evaluation Criteria
	security, Logon
	service logon, Service Startup
	successful, Startup Errors
	termination, User Logon Steps
	type, determining, Account Rights
	user, Winlogon Initialization
	via fingerprint scan, Biometric Framework for User Authentication
	Winlogon management of, Logon

	logon sessions, Security Identifiers, Winlogon Initialization, User Logon Steps
		active, listing, User Logon Steps
	LUID for, Winlogon Initialization
	SID for, Security Identifiers

	logon SIDs, Security Identifiers
	LogonSessions, User Logon Steps
	LogonUI, Local Session Manager (Lsm.exe), Security System Components, Logon, Logon, Winlogon Initialization
		launching, Winlogon Initialization
	network provider DLLs, loading, Logon

	LogonUser function, Impersonation
	LogonUserEx function, Service Startup
	low-memory situations, Data Structures
	LPC, Windows Global Flags
	LSA (Local Security Authority), Account Rights
	LsaAddAccountRights function, Account Rights
	LsaAuthenticationPort function, Winlogon Initialization
	LsaEnumerateAccountRights function, Account Rights
	LsaEnumerateLogonSessions function, User Logon Steps
	LsaLogonUser calls, Winlogon Initialization
	LsaLogonUser function, Account Rights
	LsaRemoveAccountRights function, Account Rights
	LSASS (Local Security Authority subsystem), Service Isolation, The Service Control Manager, The Service Control Manager, Service Startup, Service Shutdown, Security System Components, Security System Components, Security System Components, Tokens, Security Auditing, Winlogon Initialization, User Logon Steps, User Logon Steps
		allowed access checks, User Logon Steps
	audit policy manintenance, Security Auditing
	groups and privileges checks, Tokens
	logon termination, User Logon Steps
	policy database, Security System Components
	processes shared by, Service Shutdown
	service startup, The Service Control Manager, Service Startup
	SRM connection, Security System Components
	user logon tasks, Winlogon Initialization

	LsaStorePrivateData function, Service Startup
	Lsm.exe, Service Control Manager (SCM)
	LSPs (layered service providers), Winsock Extensions
	LUID (locally unique identifier), Tokens, Tokens, Winlogon Initialization
		logon session, Winlogon Initialization
	token authentication ID, Tokens

	LWF (lightweight filter drivers), Variations on the NDIS Miniport

 M
	machines, HKEY_LOCAL_MACHINE, Security Identifiers, Location and Topology
		(see also hardware; processors; servers)
	location, network, Location and Topology
	SIDs, Security Identifiers

	MailSlot mini-redirector, Mini-Redirectors
	mailslots, Session Manager (Smss), HTTP, Mailslot Operation, Named Pipe and Mailslot Implementation, Named Pipe and Mailslot Implementation
		as FSDs, Named Pipe and Mailslot Implementation
	client naming format, Mailslot Operation
	creation, Session Manager (Smss)
	implementation, Named Pipe and Mailslot Implementation

	malicious operations, Super Privileges
		(see also security)

	Managed Object Format (MOF) language, WMI Architecture, The Common Information Model and the Managed Object Format
 Language, The Common Information Model and the Managed Object Format
 Language
		binary MOF (BMF) files, The Common Information Model and the Managed Object Format
 Language
	class definitions, The Common Information Model and the Managed Object Format
 Language

	management applications, Service Control Programs, Class Association
		objects, examining, Class Association

	management mechanisms, Management Mechanisms, Services, Service Tags, Service Control Programs, Windows Diagnostic Infrastructure
		registry, Management Mechanisms
	services, Services
	Unified Background Process Manager, Service Tags
	Windows Diagnostic Infrastructure, Windows Diagnostic Infrastructure
	Windows Management Instrumentation, Service Control Programs

	management policies, The AuthZ API
	mandatory integrity checks, ACL Assignment
	mandatory integrity control (MIC), Security, Security Identifiers
	mandatory policies, Integrity Levels, Tokens
		in tokens, Tokens

	manifests, Image Loader, DLL Name Redirection
		image loader management, Image Loader

	manual reset events, What Signals an Object?
	MAPI (Messaging API), Remote Access
	mapped files, Session Manager (Smss)
	mapping, address, Virtual Memory
	Margosis, Aaron, Windows Driver Kit
	marshaling/unmarshaling, RPC Operation, RPC Implementation
	Max Instances values, Named Pipe and Mailslot Implementation
	MCM (miniport call manager), Variations on the NDIS Miniport
	Media Foundation API, Protected Processes
	Medium Access Control (MAC), The OSI Reference Model
	memory, Virtual Memory, Virtual Memory, Performance Monitor, Software Interrupt Request Levels (IRQLs), Exception Dispatching, Synchronization, Memory Virtualization, Memory Virtualization
		access violations, Exception Dispatching
	accessing, Software Interrupt Request Levels (IRQLs)
	child partition access, Memory Virtualization
	displaying statistics, Performance Monitor
	paging data, Virtual Memory
	sharing, Synchronization
	virtual, Virtual Memory, Memory Virtualization

	memory diagnostic tool, Diagnostic Functionality
	memory leaks, Diagnostic Functionality, Using Tools to Interact with Priority
		detecting, Using Tools to Interact with Priority
	diagnosing, Diagnostic Functionality

	memory management, Enlightenments, Memory Virtualization, Processes, Threads, and Jobs, Using Tools to Interact with Priority
		on virtual machines, Memory Virtualization
	process data structures used, Processes, Threads, and Jobs
	specifying limits, Using Tools to Interact with Priority
	with hypervisor, Enlightenments

	memory management events, System Processes
	memory manager, Virtual Memory, Virtual Memory, Executive, Pushlocks
		mapping operations, Virtual Memory
	paging operations, Virtual Memory
	pushlock use, Pushlocks

	memory translation, Memory Virtualization
	message passing, Windows Global Flags, Message Model, Message Model, Background Intelligent Transfer Service
		(see also data transfer)
	ALPC for, Windows Global Flags
		(see also ALPC (Advanced Local Procedure Call))

	canceled, Message Model
	notifications, asynchronous, Message Model

	Message Queuing, Peer-to-Peer Infrastructure
	message zones, Message Model, Security
	message-signaled interrupts (MSI), Software Interrupt Request Levels (IRQLs)
	messages, Views, Regions, and Sections, Blobs, Handles, and Resources, Blobs, Handles, and Resources, Security, Virtual Machine Manager Service and Worker Processes
		attributes, Views, Regions, and Sections
	blobs, Blobs, Handles, and Resources
	delayed copying of, Security
	hypercalls, Virtual Machine Manager Service and Worker Processes
	resources, Blobs, Handles, and Resources

	Messaging and Collaboration, Windows API
	Messaging API (MAPI), Remote Access
	MIC (mandatory integrity control), Security Identifiers
	Microsoft .NET Framework, Windows API
	Microsoft Developer Network (MSDN), Windows Operating System Versions
	Microsoft Distributed Transaction Coordinator (MS
 DTC), Message Queuing
	Microsoft Interface Definition Language (MIDL)
 compiler, RPC Operation
	Microsoft Internet Connectivity Evaluation
 Tool, Protocol Drivers
	Microsoft scripts, Class Association
	Microsoft TechNet Scripting Center, Class Association
	mini-redirectors, UPnP with PnP-X, Surrogate Providers, Redirector
		architecture, Redirector

	minidrivers, Priority Boosting After I/O Completion
	miniport call manager (MCM), Variations on the NDIS Miniport
	miniport drivers, Windows Networking Components
	MinWin, Windows Subsystem, Image Loader, DLL Name Resolution and Redirection, API Sets
		API Set redirection, DLL Name Resolution and Redirection
	image loader support, Image Loader

	MIPS architecture, Architecture Overview
	Mmc.exe auto-elevation, Auto-Elevation
	MMCSS (MultiMedia Class Scheduler Service), Priority Boosts, Priority Boosts for Multimedia Applications and Games, Priority Boosts for Multimedia Applications and Games, Priority Boosts for Multimedia Applications and Games
		network packet throttling, Priority Boosts for Multimedia Applications and Games
	scheduling categories, Priority Boosts for Multimedia Applications and Games
	tasks, Priority Boosts for Multimedia Applications and Games

	MmSessionCreate function, Session Manager (Smss)
	mode transitions, Kernel Mode vs. User Mode
	modules, loaded, DLL Name Redirection
	Motorola PowerPC, Architecture Overview
	MPR (Multiple Provider Router), UPnP with PnP-X
	MS DTC (Microsoft Distributed Transaction
 Coordinator), Message Queuing
	MS-DOS executables, Stage 2: Opening the Image to Be Executed
	Msafd.dll, Extending Winsock
	MSDN (Microsoft Developer Network), Windows Operating System Versions
	MSI (message-signaled interrupts), Software Interrupt Request Levels (IRQLs)
	MSI-X, Software Interrupt Request Levels (IRQLs)
	Msinfo32, Windows Driver Foundation
	MSV1_0 authentication, Logon, Winlogon Initialization, User Logon Steps
		remote authentication, User Logon Steps

	Mswsock.dll, Extending Winsock
	multicasting, Windows Sockets, Mailslot Operation
	multicore systems, Symmetric Multiprocessing
	MultiMedia Class Scheduler Service (MMCSS), Priority Boosts
	multimedia playback boosts, Priority Boosts, Removing Boosts
	multimedia response times, Timer Processing
	Multiple Provider Router (MPR), UPnP with PnP-X
	multiple sessions management, Session Manager (Smss)
	Multiple UNC Provider (MUP), Multiple UNC Provider
	multiple user sessions, Kernel Mode vs. User Mode
	multiprocessor environments, Keyed Events
	Multiprocessor Specification (MP
 Specification), Hardware Interrupt Processing
	multiprocessor systems, Portability, Thread States, Thread Selection, Thread Selection, Thread Selection, Package Sets and SMT Sets, NUMA Systems, Processor Group Assignment, Processor Group Assignment, Logical Processor State, Logical Processor State, Affinity, Extended Affinity Mask, Extended Affinity Mask, Ideal and Last Processor, Ideal and Last Processor
		affinity, Logical Processor State
	affinity mask, extended, Affinity
	affinity mask, system, Extended Affinity Mask
	dispatcher database, Thread States
	ideal and last processors, Extended Affinity Mask
	ideal node, Ideal and Last Processor
	NUMA systems, Package Sets and SMT Sets
	package sets, Thread Selection
	processor group assignment, NUMA Systems
	processor state, Processor Group Assignment
	processors per group, Processor Group Assignment
	scheduler scalability, Logical Processor State
	SMT sets, Thread Selection
	thread scheduling, Thread Selection
	thread selection, Ideal and Last Processor

	multitasking, defined, Portability
	multithreaded applications, Extended Affinity Mask
	MUP (Multiple UNC Provider), Multiple UNC Provider
	MUP surrogate providers, Surrogate Providers
	music content, protected, Protected Processes
	mutants, Executive Objects
	mutex objects, What Signals an Object?, What Signals an Object?
		abandonment, What Signals an Object?
	signaled state, What Signals an Object?

	mutexes, Executive Objects, Keyed Events, Access Checks
		default security, Access Checks
	fast and guarded, Keyed Events

	mutual exclusion, Object Filtering, Spinlocks
		multiprocessor, Spinlocks

 N
	name parsing, Cell Maps
	name resolution, Early Process Initialization, BranchCache Optimized Application Retrieval: HTTP
 Sequence, BranchCache Optimized Application Retrieval: HTTP
 Sequence, Peer Name Resolution Protocol
		DNS, BranchCache Optimized Application Retrieval: HTTP
 Sequence
	PNRP, Peer Name Resolution Protocol

	name retention, Object Security
	named pipes, Debugging Tools for Windows, Session Manager (Smss), HTTP, HTTP, HTTP, Named-Pipe Operation, Named Pipe and Mailslot Implementation, Named Pipe and Mailslot Implementation, Named Pipe and Mailslot Implementation, Named Pipe and Mailslot Implementation
		activity, viewing, Named Pipe and Mailslot Implementation
	as FSDs, Named Pipe and Mailslot Implementation
	connections, establishing, Named-Pipe Operation
	creation, Session Manager (Smss)
	implementation, Named Pipe and Mailslot Implementation
	modes, HTTP
	namespace, listing, Named Pipe and Mailslot Implementation
	servers and clients, HTTP
	target systems, connecting, Debugging Tools for Windows

	namespace extensions, Networking APIs
	namespace service providers, Winsock Extensions, Extending Winsock
		Winsock, adding to, Winsock Extensions

	namespaces, Object Methods, Object Methods, Object Directories, Object Directories, Object Directories, Object Directories, The Common Information Model and the Managed Object Format
 Language, Class Association, WMI Implementation, Distributed File System Namespace, Offline Files
		aggregation and availability, Distributed File System Namespace
	CIMV2, Class Association
	file-system, Object Methods
	global, Object Directories
	instancing, Object Directories
	private, Object Directories
	registry, Object Methods
	scopes, Offline Files
	security, WMI Implementation
	session, Object Directories
	WMI, The Common Information Model and the Managed Object Format
 Language

	NAP (Network Access Protection), Network Access Protection, Network Access Protection, Network Access Protection, Network Access Protection, Network Access Protection, Direct Access
		client configuration, Network Access Protection
	client-side architecture, Network Access Protection
	DA and, Direct Access
	Group Policy settings, Network Access Protection
	server-side, Network Access Protection

	NAP Agent, Network Access Protection
	Nasarre, Christophe, Windows Operating System Versions, Timer Coalescing, What Signals an Object?
	NAT (Network Address Translation), Network Address Translation
	National Computer Security Center (NCSC), Security
	native system calls, Windows API, Worker Factories (Thread Pools)
		definition, Windows API
	worker factory management, Worker Factories (Thread Pools)

	native system services, defined, Windows API
	Nbsts command, NetBIOS Operation
	NCSI (Network Connectivity Status Indicator), Network Location Awareness, Passive Poll, Passive Poll, Registry Change Monitoring, Registry Change Monitoring
		active probing, Registry Change Monitoring
	network change monitoring, Passive Poll
	passive polling, Passive Poll
	registry change monitoring, Registry Change Monitoring

	NDIS (Network Driver Interface Specification), Internet Protocol Security, NDIS Drivers, NDIS Drivers, NDIS Drivers, NDIS Drivers, NDIS Drivers, NDIS Drivers, Variations on the NDIS Miniport, Variations on the NDIS Miniport
		components, NDIS Drivers
	connection-oriented, NDIS Drivers, Variations on the NDIS Miniport
	features, NDIS Drivers
	lightweight filter drivers, NDIS Drivers, Variations on the NDIS Miniport
	receive-side scaling, NDIS Drivers
	TCP/IP offloading, NDIS Drivers

	NDIS drivers, Windows Networking Components, Internet Protocol Security, NDIS Drivers, NDIS Drivers, NDIS Drivers, Variations on the NDIS Miniport, Variations on the NDIS Miniport, Connection-Oriented NDIS
		connection-oriented, Variations on the NDIS Miniport
	execution environment, NDIS Drivers
	intermediate, Variations on the NDIS Miniport
	network medium activity, NDIS Drivers
	pausing and resuming, NDIS Drivers
	Remote NDIS, Connection-Oriented NDIS

	NDIS library, Windows Networking Components, Internet Protocol Security
	NDIS Lightweight Filter driver, Multiple UNC Provider, NDIS Drivers
	NDIS miniport drivers, Windows Networking Components, NDIS Drivers, Connection-Oriented NDIS, Connection-Oriented NDIS
		for USB network devices, Connection-Oriented NDIS
	listing, NDIS Drivers
	packets through, capturing, Connection-Oriented NDIS

	Ndis.sys, Windows Networking Components
	Ndiskd kernel debugger extension library, NDIS Drivers
	.NET Framework, Windows API, Windows API, Windows API
		Common Language Runtime, Windows API
	components, Windows API
	Framework Class Library, Windows API

	Net APIs, Remote Access
	NetBIOS, NetBIOS, NetBIOS, NetBIOS, NetBIOS, NetBIOS Operation, NetBIOS Operation, NetBIOS Operation
		implementation, NetBIOS Operation
	names, listing, NetBIOS Operation
	naming convention, NetBIOS
	operation, NetBIOS
	routing scheme, NetBIOS Operation
	sessions, NetBIOS

	NetBIOS Extended User Interface (NetBEUI)
 protocol, NetBIOS API Implementation
	Netbios function, NetBIOS Operation
	NetBT (NetBIOS over TCP/IP) driver, NetBIOS API Implementation
	Netlogon, User Logon Steps
	Netsh, Winsock Extensions, Caching Modes, Caching Modes, Internet Protocol Security
		BranchCache configuration, Caching Modes
	connection security settings, Internet Protocol Security
	publication and republication cache
 configuration, Caching Modes
	Winsock service and namespace providers,
 viewing, Winsock Extensions

	Network Access Protection (NAP), Network Access Protection
	network access, protecting, Network Access Protection
	network activity, displaying, Performance Monitor
	network adapter drivers, Internet Protocol Security, Internet Protocol Security
		NDIS drivers, Internet Protocol Security

	network adapters, Internet Protocol Security, NDIS Drivers
		Wake-on-LAN, NDIS Drivers

	Network Address Translation (NAT), Network Address Translation
	network applications, Location and Topology, QoS
		dynamic configuration, Location and Topology
	service levels, QoS

	network bandwidth, Distributed File System Namespace, BranchCache, QoS, QoS
		conserving, Distributed File System Namespace
	managing and prioritizing, QoS
	real-time information, QoS
	reducing, BranchCache

	Network Basic Input/Output System (NetBIOS), NetBIOS
	network communication, authentication and
 encryption, RPC Operation
	network connections, The OSI Reference Model, Message Queuing, Network Location Awareness, Internet Protocol Security, Connection-Oriented NDIS
		connectivity level, determining, Network Location Awareness
	establishing, The OSI Reference Model
	monitoring, Connection-Oriented NDIS
	peer-to-peer, Message Queuing
	security configuration, Internet Protocol Security

	Network Connections dialog box, Multiple Provider Router
	Network Connectivity Status Indicator (NCSI), Network Location Awareness
	network diagnostics, Diagnostic Functionality
	network drive letter assignment, The Service Control Manager
	Network Driver Interface Specification (NDIS), Internet Protocol Security (see NDIS (Network Driver Interface Specification))
	Network File System (NFS), Mini-Redirectors
	network group, Security Identifiers
	network layer in OSI reference model, The OSI Reference Model
	Network List Manager (NLM) APIs, Network Location Awareness
	Network Load Balancing, Network Load Balancing
	Network Location Awareness (NLA) service, Location and Topology
	network logon service (Netlogon), Security System Components
	Network Module Registrar (NMR), Winsock Kernel
	Network Monitor, Connection-Oriented NDIS, Connection-Oriented NDIS
		downloading, Connection-Oriented NDIS
	packet capture, Connection-Oriented NDIS

	network packet throttling, Priority Boosts for Multimedia Applications and Games
	network protocol requests, Protocol Drivers
	network provider interface, Multiple Provider Router
	network providers, Multiple Provider Router, Multiple Provider Router
		drive-letter mapping, Multiple Provider Router

	network redirectors, Device Drivers (see redirectors)
	network restriction rules, Service Isolation
	network servers, Device Drivers
	network service account, Service Applications, The Local System Account, The Local System Account, The Local System Account
		account privileges, The Local System Account
	group membership, The Local System Account
	services running in, Service Applications

	network services, RPC Operation, Binding, Binding, Remote Access, Network Load Balancing, Network Access Protection, Direct Access
		Active Directory, Remote Access
	DirectAccess, Direct Access
	Network Access Protection, Network Access Protection
	Network Load Balancing, Network Load Balancing
	remote access, Binding
	RPC applications, RPC Operation

	Network Shell (Netsh.exe), Caching Modes (see Netsh)
	network stack, Networking, Protocol Drivers, Protocol Drivers, Windows Filtering Platform
		IPv4 and IPv6 coexistence, Protocol Drivers
	legacy protocol support, Protocol Drivers
	WFP integration, Windows Filtering Platform

	network status events, WSK Implementation
	network traffic, Passive Poll, Windows Filtering Platform, Internet Protocol Security, QoS, QoS
		authentication and key negotiation, Internet Protocol Security
	first-come, first-served delivery, QoS
	monitoring, intercepting, and processing, Windows Filtering Platform
	polling for, Passive Poll
	tagging and shaping, QoS

	network transmissions, Networking, The OSI Reference Model, Windows Sockets, Winsock Server Operation
		multicast messages, Windows Sockets
	OSI reference model, traversing, The OSI Reference Model
	requests and replies, Networking
	zero-copy, Winsock Server Operation

	network-based attack prevention, Network Address Translation
	networking, Windows API, Networking, Networking, Networking, The OSI Reference Model, The OSI Reference Model, Networking APIs, HTTP, Background Intelligent Transfer Service, UPnP with PnP-X, Surrogate Providers, Distributed File System Namespace, Distributed File System Namespace, Offline Files, Caching Modes, BranchCache, BranchCache Optimized Application Retrieval: HTTP
 Sequence, Location and Topology, Location and Topology, Protocol Drivers, Protocol Drivers, Protocol Drivers, Windows Filtering Platform, Windows Filtering Platform, Internet Protocol Security, Variations on the NDIS Miniport, QoS, QoS, Binding
		APIs, Networking APIs
	architecture, Networking
	binding, QoS
	BranchCache, BranchCache
	connection-oriented network hardware, Variations on the NDIS Miniport
	Distributed File System Namespace, Distributed File System Namespace
	Distributed File System Replication, Distributed File System Namespace
	filtering operations, Windows Filtering Platform
	high-loss scenarios, Protocol Drivers
	location-based configuration settings, Location and Topology
	name resolution, BranchCache Optimized Application Retrieval: HTTP
 Sequence
	NDIS drivers, Internet Protocol Security
	network services, Binding
	Offline Files, Offline Files
	OSI reference model, The OSI Reference Model
	performance features, Protocol Drivers
	privacy, Background Intelligent Transfer Service
	protocol drivers, Protocol Drivers
	Quality of Service, QoS
	redirectors, UPnP with PnP-X
	slow-link latency threshold, Caching Modes
	software components, Networking
	surrogate providers, Surrogate Providers
	topology discovery and mapping, Location and Topology
	UNC names, HTTP
	Windows components, The OSI Reference Model
	Windows Filtering Platform, Windows Filtering Platform

	networking APIs, The OSI Reference Model, Windows Networking Components, Networking APIs, Networking APIs, Winsock Kernel, WSK Implementation, Web Access APIs, HTTP, HTTP, HTTP, NetBIOS, Background Intelligent Transfer Service, Background Intelligent Transfer Service, Peer-to-Peer Infrastructure, Peer-to-Peer Infrastructure, Message Queuing
		Background Intelligent Transfer Service, Background Intelligent Transfer Service
	byte mode and message mode, HTTP
	Distributed Component Object Model, Peer-to-Peer Infrastructure
	Internet APIs, Web Access APIs
	mailslots, HTTP
	Message Queuing, Peer-to-Peer Infrastructure
	named pipes, HTTP
	NetBIOS, NetBIOS
	Peer-to-Peer Infrastructure, Background Intelligent Transfer Service
	remote procedure call, WSK Implementation
	Universal Plug and Play, Message Queuing
	Windows Sockets, Networking APIs
	Winsock Kernel, Windows Networking Components, Winsock Kernel

	networking components, Network Location Awareness, Registry Change Monitoring, Variations on the NDIS Miniport, QoS, Network Access Protection
		connection-oriented, Variations on the NDIS Miniport
	health policies for, Network Access Protection
	installing, QoS
	logical network identity and interfaces, Network Location Awareness
	network connectivity, testing, Registry Change Monitoring

	networks, Network Location Awareness, Passive Poll, Active Probe, Protocol Drivers, QoS
		bursty behavior, QoS
	changes on, monitoring, Passive Poll
	IPv6, Protocol Drivers
	logical, Network Location Awareness
	mapping, Active Probe

	NetworkService service group, Shared Service Processes
	NetworkServiceAndNoImpersonation service
 group, Shared Service Processes
	New Connection Security Rule Wizard, Internet Protocol Security
	Next Generation TCP/IP Stack, Protocol Drivers
	next processor, Extended Affinity Mask
	NFS (Network File System), Mini-Redirectors
	NIC driver encapsulation, Windows Networking Components
	NLA (Network Location Awareness) service, Location and Topology
	NMR (Network Module Registrar), Winsock Kernel
	No-Execute-Up mandatory policy, Integrity Levels
	No-Read-Up mandatory policy, Integrity Levels, Determining Access
	No-Write-Up mandatory policy, Integrity Levels
	Nobody SID, Security Identifiers
	node addresses, The OSI Reference Model
	nodes, Symmetric Multiprocessing, The OSI Reference Model, The OSI Reference Model
		end, The OSI Reference Model
	intermediate, The OSI Reference Model

	nonuniform memory access (NUMA) systems, Package Sets and SMT Sets
	Notepad registry settings, Process Monitor Internals
	notifications, Message Model, Viewing and Changing the Registry, Process Monitor Internals, Service Applications, Interactive Services and Session 0 Isolation, Service Startup, Service Shutdown, Service Shutdown, Initialization
		asynchronous, Message Model
	change, Viewing and Changing the Registry, Process Monitor Internals
	from services, Interactive Services and Session 0 Isolation, Service Startup
	preshutdown, Service Applications, Service Shutdown
	shutdown, Service Shutdown
	time-change, Initialization

	NotifyBootConfigStatus function, Startup Errors
	NT Kernel Logger, Kernel Event Tracing
	NtAllocateReserveObject system call, Reserve Objects
	NtAlpcCreatePortSection API, Asynchronous Operation
	NtCreateThreadEx function, Birth of a Thread
	NtCreateUserProcess function, Flow of CreateProcess, Stage 1: Converting and Validating Parameters and Flags, Stage 1: Converting and Validating Parameters and Flags, Stage 2: Opening the Image to Be Executed
		calling, Stage 1: Converting and Validating Parameters and Flags
	executable file, opening, Stage 1: Converting and Validating Parameters and Flags
	executive process object creation, Stage 2: Opening the Image to Be Executed

	NtDelayExecutionThread calls, Ideal and Last Processor
	Ntdll.dll, Architecture Overview, Subsystem for Unix-based Applications, Kernel Support, Native Support, Image Loader, Worker Factories (Thread Pools)
		DbgUi functions, Kernel Support
	image loader, Native Support
	worker factory interface, Worker Factories (Thread Pools)

	NTDS API, Active Directory
	NtGlobalFlag variable, System Worker Threads, Windows Global Flags
		viewing and setting, Windows Global Flags

	NtInitializeRegistry function, Accepting the Boot and Last Known Good
	Ntkrnlpa.exe, Architecture Overview
	Ntoskrnl.exe, Kernel Debugging, Architecture Overview, Differences Between Client and Server Versions, Kernel Event Tracing
	NtQueryInformationWorkerFactory API, Worker Factories (Thread Pools)
	NtQueueUserApcThread system call, Reserve Objects
	NtSetIoCompletion API, Reserve Objects
	NtSetSystemInformation, Session Manager (Smss)
	null sessions, The Local System Account, Impersonation
	NUMA (nonuniform memory access) systems, Symmetric Multiprocessing, Package Sets and SMT Sets
	NUMA distance array, NUMA Systems
	NUMA node 0, NUMA Systems
	NUMA nodes, NUMA Systems
	NUMA Proximity IDs, NUMA Systems
	NUMA spanning, Memory Virtualization

 O
	ObCheckObjectAccess function, Access Checks
	ObDereferenceObjectWithTag function, Object Retention
	object access auditing, Security Auditing, Object Access Auditing
		demonstrating, Object Access Auditing

	object attribute flags, Object Headers and Bodies
	object attributes, Objects and Handles, Object Headers and Bodies
		defined, Objects and Handles

	object bodies, Object Structure, Object Headers and Bodies
		format and contents, Object Headers and Bodies

	object directories, Object Names
	object directory objects, Object Names
	object handles, Object Methods
	object headers, Object Structure, Object Headers and Bodies, Type Objects, Object Retention
		offsets, Object Headers and Bodies
	quota charges attribute, Object Retention
	viewing, Type Objects

	Object Identifiers (OIDs), User Logon Steps
	object leaks, Object Retention
	object manager, Objects and Handles, Executive, Service Descriptor Tables, Service Descriptor Tables, Object Manager, Object Manager, Object Structure, Object Headers and Bodies, Object Headers and Bodies, Object Headers and Bodies, Type Objects, Object Methods, Object Methods, Reserve Objects, Object Security, Object Security, Object Security, Object Names, Object Names, Object Names, Object Directories, Object Directories, Object Directories, Session Namespace, Object Filtering, Pushlocks, Kernel Patch Protection, Worker Factories (Thread Pools), Protecting Objects, Protecting Objects, Access Checks, Security Descriptors and Access Control, Security Auditing
		access permissions, recording, Protecting Objects
	access rights checking and storage, Reserve Objects
	audit event creation, Security Auditing
	exploring, Service Descriptor Tables
	filtering, Kernel Patch Protection
	finding objects, Object Methods
	generic services, Object Headers and Bodies
	goals, Object Manager
	handle creation, Object Methods
	kernel-managed thread pools, Worker Factories (Thread Pools)
	name lookups, Object Names, Object Directories
	namespace, Object Manager
	namespace management, Session Namespace
	object directory object, Object Names
	object filtering, Object Filtering
	object header and subheader
 access, Object Headers and Bodies
	object header control, Object Structure
	object method calls, Type Objects
	object naming requirements, Object Names
	object retention, Object Security
	object security enforcement, Protecting Objects
	open handle counter, incrementing, Object Security
	pushlock use, Pushlocks
	reference count, incrementing, Object Security
	remote file access, Object Directories
	security access validation, Access Checks
	security descriptor management, Security Descriptors and Access Control
	symbolic link object, Object Directories
	type objects, Object Headers and Bodies

	Object Manager (CIMOM), WMI Architecture
	object methods, Objects and Handles, Type Objects, Type Objects, Object Methods, Object Methods, Object Methods, Object Methods, Object Methods, Object Methods, Object Methods
		close method, Object Methods
	defined, Objects and Handles
	delete method, Object Methods
	okay-to-close method, Object Methods
	open method, Object Methods
	parse method, Object Methods
	query name method, Object Methods
	security method, Object Methods
	security routine, Type Objects

	object name squatting, Object Directories
	object owners, write-DACL access, Determining Access
	object protection mechanisms, Protecting Objects, Protecting Objects, Access Checks, Security Identifiers, Tokens, Impersonation, Impersonation, Impersonation, Virtual Service Accounts, Security Descriptors and Access Control, Security Descriptors and Access Control, User Logon Steps
		access checks, Protecting Objects
	access control, Security Descriptors and Access Control
	assured authentication, User Logon Steps
	filtered admin tokens, Impersonation
	impersonation, Impersonation
	integrity levels, Security Identifiers
	restricted tokens, Impersonation
	security descriptors, Security Descriptors and Access Control
	SIDs, Access Checks
	tokens, Tokens
	virtual service accounts, Virtual Service Accounts

	object reference tagging, Object Retention
	object reference tracing, Object Retention
	object retention, Object Security
	object reuse protection, Trusted Computer System Evaluation Criteria
	object security locks, Access Checks
	object subheaders, Object Structure, Object Headers and Bodies
		conditions required for, Object Headers and Bodies

	object types, defined, Terminal Services and Multiple Sessions
	Object Viewer, Digging into Windows Internals
	object-oriented design, Operating System Model
	ObjectAttributes parameter, Objects and Handles
	ObjectName parameter, Service Applications, Service Startup
	objects, Terminal Services and Multiple Sessions, Terminal Services and Multiple Sessions, Objects and Handles, Objects and Handles, Objects and Handles, Security, Executive, Executive, Object Manager, Object Structure, Object Headers and Bodies, Object Headers and Bodies, Type Objects, Type Objects, Type Objects, Object Methods, Reserve Objects, Reserve Objects, Reserve Objects, Object Security, Object Security, Object Retention, Object Retention, Object Retention, Object Names, Object Names, Object Directories, Object Directories, Object Filtering, Waiting for Dispatcher Objects, Data Structures, Data Structures, WMI Architecture, The WMI Namespace, Dynamic Processor Addition and Replacement, Protecting Objects, Access Checks, Access Checks, Access Checks, Access Checks, Integrity Levels, Integrity Levels, Security Descriptors and Access Control, Security Descriptors and Access Control, ACL Assignment, Determining Access, Determining Access, Determining Access, Caching Modes
		access, determining, ACL Assignment
	ACL assignment, Security Descriptors and Access Control
	address ordering, Data Structures
	base named, viewing, Object Directories
	caching modes, Caching Modes
	create, open, and query services, Object Headers and Bodies
	default security, Access Checks
	deferred delete operations, Object Retention
	defined, Terminal Services and Multiple Sessions
	deleting, Object Retention
	desired access rights, Reserve Objects
	dispatcher objects, Type Objects
	executive-level, Executive
	existing handles, referencing by, Access Checks
	filtering, Object Filtering
	integrity levels, Integrity Levels
	integrity protection, Objects and Handles
	internal structure, Objects and Handles
	job, Dynamic Processor Addition and Replacement
	kernel, Executive
	locating in namespaces, The WMI Namespace
	locking order, Data Structures
	management, WMI Architecture
		(see also object manager)

	mandatory policies, Integrity Levels
	naming, Object Names, Object Directories
	open handle counter, Object Security
	opening by name, Access Checks
	operating system tasks, Objects and Handles
	owner rights, Determining Access
	private, Access Checks
	protection, Security
	referencing, Object Methods
	reserve, Reserve Objects
	resource accounting, Object Retention
	security, Reserve Objects
	security descriptors, Protecting Objects, Security Descriptors and Access Control
	security routine, Type Objects
	security settings, viewing, Determining Access
	sharing in global namespace, Object Names
	signaled state, defining, Waiting for Dispatcher Objects
	structure, Object Structure
	synchronization support, Type Objects
	temporary and permanent, Object Security
	type objects, Object Headers and Bodies
	types, Object Manager
	write-DACL access, Determining Access

	OBJECT_ATTRIBUTES, Birth of a Thread
	ObpCreateHandle function, Access Checks
	ObReferenceObjectByHandle function, Access Checks
	ObReferenceObjectWithTag function, Object Retention
	OCI (open cryptographic interface), RPC Operation
	ODBC (Open Database Connectivity) adapter, WMI Architecture
	Offline (Need to Sync) caching mode, Offline (Working Offline)
	Offline (Not Connected) caching mode, Offline (Working Offline)
	Offline (Slow Connection) caching mode, Caching Modes
	Offline (Working Offline) caching mode, Offline (Working Offline)
	Offline Files, Surrogate Providers, Mini-Redirectors, Offline Files, Offline Files, Offline Files, Offline Files, Offline Files, Offline Files, Caching Modes, Offline (Working Offline), Ghosts, Ghosts, Ghosts, Configuration
		architecture, Offline Files
	cache, Offline Files
	cache structure, Ghosts
	caching modes, Caching Modes
	capabilities, Mini-Redirectors
	components, Offline Files
	data security, Ghosts
	ghosts, Ghosts
	Group Policy settings, Offline (Working Offline)
	limitations, Offline Files
	object types, Offline Files
	prefetching files, Configuration

	Offline Registry Library, Viewing and Changing the Registry
	Offreg.dll, Viewing and Changing the Registry
	OIDs (Object Identifiers), User Logon Steps
	okay-to-close method, Object Methods
	on-demand problem diagnosis, Windows Diagnostic Infrastructure
	one-time initialization, Run Once Initialization
	Oney, Walter, Windows Driver Kit
	online caching mode, Caching Modes
	open cryptographic interface (OCI), RPC Operation
	Open Database Connectivity (ODBC) adapter, WMI Architecture
	open handle counter, Object Security
	open method calls, Object Methods
	open object APIs, problems with, Object Security
	Open Software Foundation (Open Group), WSK Implementation
	Open Systems Interconnection (OSI) model, The OSI Reference Model
	Openfiles /query command, Service Descriptor Tables
	OpenSCManager function, Interactive Services and Session 0 Isolation
	operating systems, Virtual Memory, Kernel Mode vs. User Mode, Objects and Handles, Checked Build, Hypervisor (Hyper-V), Hypervisor (Hyper-V), Hypervisor (Hyper-V), Partitions, Virtual Machine Manager Service and Worker Processes, Child Partitions, Synthetic Devices, Dynamic Processor Addition and Replacement, Dynamic Processor Addition and Replacement, Security, Running with Administrator Rights, Network Access Protection
		(see also Windows operating system)
	administrative rights, requesting, Running with Administrator Rights
	child partitions, Virtual Machine Manager Service and Worker Processes
	dynamic processor support, Dynamic Processor Addition and Replacement
	enlightenments, Hypervisor (Hyper-V), Child Partitions
	hypervisor component, Hypervisor (Hyper-V)
		(see also hypervisor (Hyper-V))

	logical processors, Synthetic Devices
		(see also logical processors)

	parent partition, Partitions
	ProcessorAdd callback, Dynamic Processor Addition and Replacement
	security ratings, Security
	software, kernel-mode execution, Kernel Mode vs. User Mode
	tasks, objects role in, Objects and Handles
	updates and antivirus signatures, Network Access Protection
	virtual memory space, Virtual Memory
	virtualization, Hypervisor (Hyper-V)

	operations, administrative rights for, Registry Virtualization
	Orange Book, Security
	Orwick, Penny, Windows Driver Kit
	OSI reference model, The OSI Reference Model
	over-the-shoulder (OTS) elevations, Running with Administrator Rights
	Owner Rights SID, Determining Access

 P
	packets, Priority Boosts for Multimedia Applications and Games, The OSI Reference Model, The OSI Reference Model, Protocol Drivers, Network Address Translation, Internet Protocol Security, NDIS Drivers, Connection-Oriented NDIS
		capturing, Connection-Oriented NDIS
	filtering by IPSec, Internet Protocol Security
	forwarding, Protocol Drivers
	receive-side scaling, NDIS Drivers
	routing, The OSI Reference Model
	throttling, Priority Boosts for Multimedia Applications and Games
	unicast, Network Address Translation

	page faults, Hardware Interrupt Processing, Software Interrupt Request Levels (IRQLs)
		exception numbers, Hardware Interrupt Processing

	paging data, Virtual Memory
	paging files, initialization, Session Manager (Smss)
	Parameters subkey, Service Applications
	parameters, marshaling, RPC Operation
	parent partition, Partitions, Synthetic Devices
		(see also hypervisor (Hyper-V))
	logical processors, Synthetic Devices

	parent processes, Services, Functions, and Routines, Stage 2: Opening the Image to Be Executed
		absent, Stage 2: Opening the Image to Be Executed
	retrieving, Services, Functions, and Routines

	parse method, Object Methods, Object Directories
		remote file access, Object Directories

	partitions, Partitions
		(see also child partitions; parent partition)

	passive interrupt level, Software Interrupt Request Levels (IRQLs)
	password-based authentication, Winlogon Initialization
	passwords for user logon, Winlogon Initialization
	patch descriptors, Hotpatch Support
	PatchGuard, Hotpatch Support
	pause assembly instruction, Spinlocks
	PCA (Program Compatibility Assistant), Diagnostic Functionality
	Pcb (process control block) member, Data Structures
	PCR (processor control region), Software Interrupt Request Levels (IRQLs), Termination
	PEB (process environment block), DLL Name Redirection, Processes, Threads, and Jobs, Data Structures, Data Structures, Data Structures, Stage 3D: Concluding the Setup of the Process Address
 Space
		address, Data Structures
	fields, Data Structures
	fields, viewing, Data Structures
	setting up, Stage 3D: Concluding the Setup of the Process Address
 Space

	Peer Content Caching and Retrieval, Configuration, Configuration, Configuration, Configuration, Configuration
		Content Identification, Configuration
	Hosted Cache Protocol, Configuration
	Hypertext Transfer Protocol (HTTP)
 Extensions, Configuration
	Retrieval Protocol, Configuration

	Peer Name Resolution Protocol (PNRP), Peer Name Resolution Protocol
	Peer-to-Peer Collaboration Interface, Peer-to-Peer Infrastructure
	Peer-to-Peer Graphing, Peer-to-Peer Infrastructure
	Peer-to-Peer Grouping, Peer-to-Peer Infrastructure
	Peer-to-Peer Identity Manager, Peer-to-Peer Infrastructure
	Peer-to-Peer Infrastructure, Background Intelligent Transfer Service
	Peer-to-Peer Namespace Provider, Peer-to-Peer Infrastructure
	per-processor ready queues, Thread States
	performance, Security, Emulated Devices, Diagnostic Functionality, Priority Boosts for Multimedia Applications and Games, NDIS Drivers, QoS
		ALPC optimizations, Security
	emulated devices, Emulated Devices
	network, QoS
	offloading operations, NDIS Drivers
	playback, Priority Boosts for Multimedia Applications and Games
	problems, detecting and resolving, Diagnostic Functionality

	performance counters, Kernel Mode vs. User Mode, Security, Digging into Windows Internals, Service Descriptor Tables, Memory Virtualization, HKEY_PERFORMANCE_DATA
		accessing, Security, HKEY_PERFORMANCE_DATA
	descriptions, Digging into Windows Internals
	Dynamic Memory-related, Memory Virtualization
	mode-related, Kernel Mode vs. User Mode
	System Calls/Sec, Service Descriptor Tables

	Performance Data Helper (PDH) API and
 functions, HKEY_PERFORMANCE_DATA
	performance diagnostics, Diagnostic Functionality
	Performance Monitor, Kernel Mode vs. User Mode, Kernel Mode vs. User Mode, Digging into Windows Internals, Digging into Windows Internals, Digging into Windows Internals, Digging into Windows Internals, UBPM API, Examining Thread Activity
		functions, Digging into Windows Internals
	kernel mode vs. user mode counter, Kernel Mode vs. User Mode
	kernel mode vs. user mode usage, Kernel Mode vs. User Mode
	performance counter descriptions, Digging into Windows Internals
	providers, viewing, UBPM API
	System Monitor function, Digging into Windows Internals
	thread activity, viewing, Examining Thread Activity

	Performance Options dialog box, Controlling the Quantum, Quantum Settings Registry Value
	Performance tool, Thread States, Priority Boosts for Multimedia Applications and Games, Job Limits
		job objects, viewing, Job Limits
	multimedia thread boosts, viewing, Priority Boosts for Multimedia Applications and Games
	thread state transitions, viewing, Thread States

	permanent objects, Object Security
	permissions, Examining Thread Activity, Determining Access
		effective, viewing, Determining Access
	for protected process threads, Examining Thread Activity

	physical layer in OSI reference model, The OSI Reference Model
	Physical Memory counter, Memory Virtualization
	physical memory, mapping to virtual memory, Virtual Memory
	PIC (Programmable Interrupt Controller), Hardware Interrupt Processing, x64 Interrupt Controllers
		viewing, x64 Interrupt Controllers

	pipelining, Server Message Block and Sub-Redirectors
	PipeList, Named Pipe and Mailslot Implementation
	pipes, establishing, The OSI Reference Model
		(see also named pipes)

	PIT (Programmable Interrupt Timer), Asynchronous Procedure Call Interrupts
	Pkgmgr.exe, auto-elevation, Auto-Elevation
	platforms, portability across, Architecture Overview
	Plug and Play drivers, Windows Driver Model (WDM), Kernel Patch Protection
		code signing, Kernel Patch Protection

	Plug and Play Extensions (PnP-X), Message Queuing
	Plug and Play manager, Executive, Software Interrupt Request Levels (IRQLs), Dynamic Processor Addition and Replacement
		device interrupt assignment, Software Interrupt Request Levels (IRQLs)
	dynamic processor support, Dynamic Processor Addition and Replacement

	PMP (Protected Media Path), Protected Processes, Protected Processes
	PNRP (Peer Name Resolution Protocol), BranchCache Optimized Application Retrieval: HTTP
 Sequence, Peer Name Resolution Protocol, Peer Name Resolution Protocol, PNRP Resolution and Publication
		ID generation, Peer Name Resolution Protocol
	peer names, BranchCache Optimized Application Retrieval: HTTP
 Sequence
	phases of name resolution, PNRP Resolution and Publication

	point-to-point communications, The OSI Reference Model
	pointers, KPP-protected, Kernel Patch Protection
	policy settings, viewing, Differences Between Client and Server Versions
	policy-based QoS, QoS
	Pool Monitor, Digging into Windows Internals
	port objects, Connection Model
	portability, System Architecture, Architecture Overview, Hardware Support
		across hardware architectures, Architecture Overview
	HAL and, Hardware Support

	ports, The OSI Reference Model
	POSIX executables, Stage 2: Opening the Image to Be Executed, Stage 3D: Concluding the Setup of the Process Address
 Space
		process section base address, Stage 3D: Concluding the Setup of the Process Address
 Space

	POSIX subsystem, Subsystem for Unix-based Applications
	PostQueuedCompletionStatus API, Reserve Objects
	power fail interrupt level, Software Interrupt Request Levels (IRQLs)
	power management, Intelligent Timer Tick Distribution
	power manager, Executive
	Power Options, Windows Driver Model (WDM)
	PowerPC architecture, Architecture Overview
	PowerRequest objects, Executive Objects
	PRCB (processor region control block), Software Interrupt Request Levels (IRQLs), Queued Spinlocks, Thread States, Quantum
		global spinlock pointers, Queued Spinlocks
	per-processor ready queues and
 summary, Thread States
	quantum reset value, Quantum

	predictable-reads isolation level, Transactional Registry (TxR)
	preemption, Priority Boosts for Multimedia Applications and Games, Scheduling Scenarios, Idle Threads
		idle thread, Idle Threads

	preemptive scheduler, Overview of Windows Scheduling
	prefetching, Stage 7: Performing Process Initialization in the Context of
 the New Process
	prefix cache, Multiple UNC Provider
	presentation layer in OSI reference model, The OSI Reference Model
	preshutdown notifications, Service Applications, Service Shutdown
	PreshutdownTimeout parameter, Service Applications
	previous mode, System Service Dispatching
	primary tokens, Tokens
	principal names, RPC Operation
	printer drivers, 32-bit vs. 64-bit, I/O Control Requests
	priority boosts, Priority Boosts, Priority Boosts, Priority Boosts, Boosts Due to Scheduler/Dispatcher Events, Unwait Boosts, Unwait Boosts, Unwait Boosts, Lock Ownership Boosts, Priority Boosting After I/O Completion, Priority Boosts for Foreground Threads After Waits, Priority Boosts for Foreground Threads After Waits, Priority Boosts for Foreground Threads After Waits, Priority Boosts After GUI Threads Wake Up, Priority Boosts for CPU Starvation, Priority Boosts for CPU Starvation, Priority Boosts for CPU Starvation, Priority Boosts for CPU Starvation, Applying Boosts, Applying Boosts, Removing Boosts
		AdjustBoost, Applying Boosts
	AdjustUnwait, Priority Boosts for CPU Starvation
	APC, Unwait Boosts
	applying, Priority Boosts for CPU Starvation
	effects of, Priority Boosts for CPU Starvation
	executive resources, waiting on, Priority Boosting After I/O Completion
	for CPU starvation, Priority Boosts After GUI Threads Wake Up
	for multimedia applications and games, Priority Boosts, Removing Boosts
	foreground threads after waits, Priority Boosts for Foreground Threads After Waits
	GUI threads, Priority Boosts for Foreground Threads After Waits
	I/O completion, Lock Ownership Boosts
	lock ownership, Unwait Boosts
	removing, Applying Boosts
	scheduler/dispatcher events, Priority Boosts
	unwait, Boosts Due to Scheduler/Dispatcher Events, Unwait Boosts
	viewing, Priority Boosts for Foreground Threads After Waits, Priority Boosts for CPU Starvation

	priority class, process, Stage 1: Converting and Validating Parameters and Flags
	priority levels, Overview of Windows Scheduling, Overview of Windows Scheduling, Priority Levels, Priority Levels, Priority Levels, Priority Levels, Using Tools to Interact with Priority, Using Tools to Interact with Priority, Thread States, Variable Quantums, Priority Boosts, Priority Boosts for CPU Starvation, Preemption, Idle Threads, Idle Threads
		boosts, Priority Boosts
	boosts and quantum length, Variable Quantums
	changing, Using Tools to Interact with Priority
	idle thread, Idle Threads
	inheritance, Priority Levels
	mapping of Windows kernel to Windows API, Priority Levels
	preemption and, Preemption
	priority 0, Idle Threads
	process, Using Tools to Interact with Priority
	ready queues, Thread States
	real-time range, Priority Levels
	recomputation, Priority Boosts for CPU Starvation
	thread-scheduling, Overview of Windows Scheduling
	vs. IRQLs, Priority Levels

	Priority Queue, Cache Structure
	priority-driven, preemptive scheduling, Thread Scheduling, Scheduling Scenarios
		(see also thread scheduling)

	privacy, Background Intelligent Transfer Service
	private address spaces, Virtual Memory
	private namespaces, Object Directories
	private objects, Access Checks
	private virtual address spaces, Services, Functions, and Routines
	privilege arrays, Tokens
	privileged access control, Security
	privileges, The Local System Account, The Local Service Account, Running with Least Privilege, Integrity Levels, Tokens, Conditional ACEs, Conditional ACEs, Account Rights and Privileges, Account Rights, Account Rights, Privileges, Privileges, Privileges, Super Privileges, Super Privileges, Security Auditing
		assignment, Account Rights and Privileges
	auditing-related, Security Auditing
	Bypass Traverse Checking privilege, Privileges
	checks for, Tokens, Account Rights
	defined, Conditional ACEs
	enabling and disabling, Privileges
	enforcement, Account Rights
	exploitation, Super Privileges
	list of, Privileges
	local system account, The Local System Account
	separating levels of, Integrity Levels
	services, specifying, The Local Service Account
	services, viewing, Running with Least Privilege
	super-user, Super Privileges

	problem scenarios, automated detection and
 resolution, Windows Diagnostic Infrastructure
	procedures, local and remote, RPC Operation
	process activity, viewing, Processes, Threads, and Jobs
	process address space, Processes, Threads, and Jobs, Stage 3A: Setting Up the EPROCESS Object, Stage 3B: Creating the Initial Process Address Space, Stage 7: Performing Process Initialization in the Context of
 the New Process, Data Structures
		creating, Stage 3A: Setting Up the EPROCESS Object
	PEB in, Processes, Threads, and Jobs
	setting up, Stage 3B: Creating the Initial Process Address Space
	TEB in, Stage 7: Performing Process Initialization in the Context of
 the New Process, Data Structures

	process creation, Protected Processes, Flow of CreateProcess, Stage 1: Converting and Validating Parameters and Flags, Stage 1: Converting and Validating Parameters and Flags, Stage 2: Opening the Image to Be Executed, Stage 3E: Setting Up the PEB, Stage 4: Creating the Initial Thread and Its Stack and
 Context, Stage 5: Performing Windows Subsystem–Specific
 Post-Initialization, Stage 7: Performing Process Initialization in the Context of
 the New Process, Stage 7: Performing Process Initialization in the Context of
 the New Process
		executable file, opening, Stage 1: Converting and Validating Parameters and Flags
	executive thread object, stack, and context,
 creating, Stage 3E: Setting Up the PEB
	flags and parameters, creating and
 validating, Stage 1: Converting and Validating Parameters and Flags
	initial thread execution, starting, Stage 5: Performing Windows Subsystem–Specific
 Post-Initialization
	main stages, Flow of CreateProcess
	process initialization in context of new
 process, Stage 7: Performing Process Initialization in the Context of
 the New Process
	tracing, Stage 7: Performing Process Initialization in the Context of
 the New Process
	Windows executive process object
 creation, Stage 2: Opening the Image to Be Executed
	Windows subsystem–specific
 post-initialization, Stage 4: Creating the Initial Thread and Its Stack and
 Context

	process environment block (PEB), DLL Name Redirection (see PEB (process environment block))
	Process Explorer, Services, Functions, and Routines, Processes, Threads, and Jobs, Processes, Threads, and Jobs, Processes, Threads, and Jobs, Processes, Threads, and Jobs, Processes, Threads, and Jobs, Processes, Threads, and Jobs, Digging into Windows Internals, Service Control Manager (SCM), Exception Dispatching, Object Handles and the Process Handle Table, Object Security, Running with Least Privilege, Shared Service Processes, WMI Implementation, Protected Processes, Protected Processes, Examining Thread Activity, Examining Thread Activity, Examining Thread Activity, Examining Thread Activity, Examining Thread Activity, Limitations on Protected Process Threads, Worker Factories (Thread Pools), Using Tools to Interact with Priority, Using Tools to Interact with Priority, Security Identifiers, Integrity Levels, Tokens, Privileges
		access rights, Protected Processes
	capabilities, Processes, Threads, and Jobs
	clock cycle counter use, Examining Thread Activity
	handle table, viewing, Object Security
	hosting processes tooltips, Processes, Threads, and Jobs
	information in, Processes, Threads, and Jobs
	object handles, viewing, Object Handles and the Process Handle Table
	parent processes, Services, Functions, and Routines
	priority levels, changing, Using Tools to Interact with Priority
	privileges, viewing enabled, Privileges
	process details, viewing, Processes, Threads, and Jobs
	process integrity levels, viewing, Integrity Levels
	protected process threads, viewing, Limitations on Protected Process Threads
	protected processes and, Protected Processes
	service processes, viewing details, Service Control Manager (SCM)
	service security tokens, viewing, Running with Least Privilege
	services running in processes,
 viewing, Shared Service Processes
	SIDs, viewing, Security Identifiers
	symbols, accessing, Processes, Threads, and Jobs
	thread activity, viewing, Examining Thread Activity
	thread pools, viewing, Worker Factories (Thread Pools)
	thread stack, displaying, Examining Thread Activity
	thread startup address, Examining Thread Activity
	thread user start address, viewing, Exception Dispatching
	threads, killing, Using Tools to Interact with Priority
	token contents, viewing, Tokens
	Wmiprvse creation, viewing, WMI Implementation
	Wow64 processes, displaying, Examining Thread Activity

	process IDs, Services, Functions, and Routines
	process manager, Executive, System Worker Threads, CPU Rate Limits
		CPU rate limit enforcement, CPU Rate Limits
	hypercritical work item use, System Worker Threads

	process memory, changing, Debugging Tools for Windows
	Process Monitor, Digging into Windows Internals, Dispatch or Deferred Procedure Call (DPC)
 Interrupts, Dispatch or Deferred Procedure Call (DPC)
 Interrupts, DLL Name Redirection, Transactional Registry (TxR), Transactional Registry (TxR), Transactional Registry (TxR), Process Monitor Internals, Process Monitor Troubleshooting Techniques, Stage 7: Performing Process Initialization in the Context of
 the New Process, Integrity Levels
		account privileges for, Transactional Registry (TxR)
	administrative account, running in, Process Monitor Troubleshooting Techniques
	DLL search order, viewing, DLL Name Redirection
	DPC activity, monitoring, Dispatch or Deferred Procedure Call (DPC)
 Interrupts
	internals, Transactional Registry (TxR)
	Internet Explorer, tracing, Integrity Levels
	interrupts, monitoring, Dispatch or Deferred Procedure Call (DPC)
 Interrupts
	process startup, tracing, Stage 7: Performing Process Initialization in the Context of
 the New Process
	registry activity, monitoring, Transactional Registry (TxR)
	troubleshooting techniques, Process Monitor Internals

	process notifications, Kernel Patch Protection
	process object type, Objects and Handles, Executive Objects
	process objects, Native Support, Data Structures, Data Structures
		creation, Native Support
	information in, displaying, Data Structures

	process security tokens, Processes, Threads, and Jobs
	process tree, Processes, Threads, and Jobs, Processes, Threads, and Jobs
	Process Type object, Data Structures
	process/thread runtime, updating, Timer Expiration
	processes, Services, Functions, and Routines, Services, Functions, and Routines, Processes, Threads, and Jobs, Processes, Threads, and Jobs, Processes, Threads, and Jobs, Processes, Threads, and Jobs, Processes, Threads, and Jobs, Processes, Threads, and Jobs, Processes, Threads, and Jobs, Debugging Tools for Windows, Architecture Overview, System Processes, Timer Processing, Windows Error Reporting, Object Methods, Object Methods, Object Handles and the Process Handle Table, Object Retention, Object Retention, Kernel Support, Image Loader, DLL Name Redirection, Hotpatch Support, Services, Service Applications, The Local System Account, Service Isolation, Service Shutdown, Shared Service Processes, Processes, Threads, and Jobs, Processes, Threads, and Jobs, Processes, Threads, and Jobs, Data Structures, Data Structures, Data Structures, Data Structures, Protected Processes, Protected Processes, Protected Processes, Stage 1: Converting and Validating Parameters and Flags, Stage 1: Converting and Validating Parameters and Flags, Examining Thread Activity, Examining Thread Activity, Worker Factories (Thread Pools), Priority Levels, Using Tools to Interact with Priority, Affinity, Ideal and Last Processor, Dynamic Processor Addition and Replacement, Access Checks, Security Identifiers, Integrity Levels, Tokens, Determining Access, Super Privileges, File System and Registry Virtualization
		access rights requests, Protected Processes
	access tokens, Super Privileges
	affinity mask, Affinity
		(see also affinity masks)

	attaching to, Debugging Tools for Windows
	attribute list, Stage 1: Converting and Validating Parameters and Flags
	base priority, Priority Levels
	breaking into, Kernel Support
	components, Services, Functions, and Routines
	CPU utilization, Processes, Threads, and Jobs
		(see also CPU usage)

	CreateProcess flow, Protected Processes
		(see also process creation)

	Csrss-specific information, Data Structures
	CSR_PROCESS, Processes, Threads, and Jobs
	data structures, Processes, Threads, and Jobs
	defined, Services, Functions, and Routines
	details, viewing, Processes, Threads, and Jobs
	error port, Windows Error Reporting
	handle tables, Object Handles and the Process Handle Table, Access Checks
	handles, Object Methods, Data Structures
	handles, acquiring, Object Methods
	hung, Examining Thread Activity
	ideal node, Ideal and Last Processor
	initialization, Image Loader
	integrity levels, Security Identifiers, Determining Access
	integrity levels, viewing, Integrity Levels
	internals, Processes, Threads, and Jobs
	job objects, Dynamic Processor Addition and Replacement
	loaded modules database, DLL Name Redirection
	multiple services, running, Service Applications
	network resource access, The Local System Account
	open handles list, Processes, Threads, and Jobs
	overhead, Data Structures
	parent/child relationships, viewing, Processes, Threads, and Jobs, System Processes
	priority classes, Stage 1: Converting and Validating Parameters and Flags
	priority levels, specifying, Using Tools to Interact with Priority
	protected, Hotpatch Support, Protected Processes
	quota structure, Object Retention
	resources, Processes, Threads, and Jobs
	security context, Processes, Threads, and Jobs, Tokens
	services, Services (see services)
	services running in, viewing, Shared Service Processes
	shared, Service Shutdown
	system resource access, Object Retention
	threads in, Processes, Threads, and Jobs
	threads, viewing, Examining Thread Activity
	timer resolution change requests, Timer Processing
	user-mode, Architecture Overview
	virtualization status, File System and Registry Virtualization
	W32PROCESS, Data Structures
	window stations, Service Isolation
	work factory use, viewing, Worker Factories (Thread Pools)

	processing, Software Interrupt Request Levels (IRQLs), Software Interrupt Request Levels (IRQLs)
		deferring, Software Interrupt Request Levels (IRQLs)
	real-time, Software Interrupt Request Levels (IRQLs)

	processor access modes, Kernel Mode vs. User Mode
	processor affinity, Thread Scheduling, Using Tools to Interact with Priority, NUMA Systems, Logical Processor State, Affinity, Extended Affinity Mask, Dynamic Processor Addition and Replacement
		(see also affinity masks)
	extended affinity mask, Affinity
	group assignment, NUMA Systems
	specifying, Using Tools to Interact with Priority
	system affinity mask, Extended Affinity Mask
	updating, Dynamic Processor Addition and Replacement

	processor control region (PCR), Software Interrupt Request Levels (IRQLs), Termination
	processor groups, Symmetric Multiprocessing
	Processor Machine State Registers (MSRs), Kernel Patch Protection
	processor region control block (PRCB), Software Interrupt Request Levels (IRQLs) (see PRCB (processor region control block))
	processor selection, Thread Selection on Multiprocessor Systems
	processor share-based scheduling, Choosing a Processor for a Thread When There Are No Idle
 Processors
	processor-specific data, Kernel Processor Control Region and Control Block (KPCR and
 KPRCB)
	ProcessorAdd callback, Dynamic Processor Addition and Replacement
	processors, Portability, Symmetric Multiprocessing, Symmetric Multiprocessing, Hardware Interrupt Processing, Hardware Interrupt Processing, Software Interrupt Request Levels (IRQLs), Software Interrupt Request Levels (IRQLs), Timer Expiration, Processor Selection, Processor Selection, Intelligent Timer Tick Distribution, Synthetic Devices, Synthetic Devices, Synthetic Devices, Dynamic Processor Addition and Replacement, Dynamic Processor Addition and Replacement
		(see also logical processors)
	adding to child partitions, Synthetic Devices
	CPU 0, Processor Selection
	dynamic, Dynamic Processor Addition and Replacement
	idle/sleep states, Intelligent Timer Tick Distribution
	IDT, Hardware Interrupt Processing
	interrupt request level settings, Software Interrupt Request Levels (IRQLs)
	interrupts, Hardware Interrupt Processing
	IRQL, changing, Software Interrupt Request Levels (IRQLs)
	licensed, Symmetric Multiprocessing
	look-aside lists, Dynamic Processor Addition and Replacement
	multiple, Portability
	timer expiration, Timer Expiration
	timer selection, Processor Selection
	tracking, Symmetric Multiprocessing
	virtual, Synthetic Devices

	producers, Kernel Support
	ProductPolicy registry value, Differences Between Client and Server Versions
	ProductSuite registry value, Differences Between Client and Server Versions
	ProductType registry value, Differences Between Client and Server Versions
	profile interrupt level, Software Interrupt Request Levels (IRQLs)
	profiles, HKEY_USERS, HKEY_USERS, HKEY_USERS, Impersonation, User Logon Steps, File Virtualization
		loading and unloading, HKEY_USERS
	roaming, HKEY_USERS, File Virtualization
	security, Impersonation
	user, HKEY_USERS, User Logon Steps

	Program Compatibility Assistant (PCA), Diagnostic Functionality
	Programmable Interrupt Timer (PIT), Asynchronous Procedure Call Interrupts
	Programming the Microsoft Windows Driver Model, Second
 Edition (Oney), Windows Driver Kit
	programs, Services, Functions, and Routines, Tokens, Running with Administrator Rights
		(see also executables)
	defined, Services, Functions, and Routines
	low integrity level, launching, Tokens

	Protected Media Path (PMP), Protected Processes, Protected Processes
	Protected Mode Internet Explorer (PIME), Integrity Levels, Determining Access
	protected process threads, Examining Thread Activity, Limitations on Protected Process Threads
		information, viewing, Limitations on Protected Process Threads
	limitations, Examining Thread Activity

	protected processes, Hotpatch Support, Protected Processes, Stage 1: Converting and Validating Parameters and Flags, Stage 5: Performing Windows Subsystem–Specific
 Post-Initialization
		attribute list, Stage 1: Converting and Validating Parameters and Flags
	checks performed on, Stage 5: Performing Windows Subsystem–Specific
 Post-Initialization

	Protection Profile (PP), Trusted Computer System Evaluation Criteria
	protocol drivers, Device Drivers, Protocol Drivers, Protocol Drivers, Windows Filtering Platform, Internet Protocol Security
		NDIS driver use, Internet Protocol Security
	network, Protocol Drivers
	transport, Protocol Drivers
	Windows Filtering Platform, Windows Filtering Platform

	protocol stack, The OSI Reference Model
		(see also network stack)

	providers, Kernel Event Tracing, UBPM API, UBPM API, UBPM API, WMI Architecture, WMI Architecture, WMI Architecture, WMI Architecture, The Common Information Model and the Managed Object Format
 Language, Multiple Provider Router
		built-in, WMI Architecture
	COM and DCOM servers, WMI Architecture
	defined, Multiple Provider Router
	dynamic, The Common Information Model and the Managed Object Format
 Language
	event tracing, Kernel Event Tracing
	interface features, WMI Architecture
	UBPM registration, UBPM API
	unregistering, UBPM API
	viewing, UBPM API

	proxies, detecting, Registry Change Monitoring
	proximity IDs, NUMA Systems
	PsAllocateCpuQuotaBlock function, Dynamic Fair Share Scheduling
	PsChargeProcessCpuCycles function, Charging of Cycles to Throttled Threads
	PsCpuFairShareEnabled variable, Dynamic Fair Share Scheduling
	PsCreateSystemThread function, System Processes
	PsGetSid function, Security Identifiers
	PsInvertedFunctionTable, Kernel Patch Protection
	PspAllocateProcess function, Stage 2: Opening the Image to Be Executed, Stage 2: Opening the Image to Be Executed
	PspAllocateThread function, Stage 3E: Setting Up the PEB
	PspCalculateCpuQuota-BlockCycleCredits
 function, Per-Session CPU Quota Blocks
	PspCpuQuotaControl data structure, Dynamic Fair Share Scheduling
	PspCreateThread function, Stage 3E: Setting Up the PEB, Birth of a Thread
		helper routines, Stage 3E: Setting Up the PEB

	PspFlushProcessorIdleOnlyQueue function, Resuming Execution
	PspInsertProcess function, Stage 3E: Setting Up the PEB
	PspInsertThread function, Stage 3E: Setting Up the PEB
	PspLazyInitializeCpuQuota function, Dynamic Fair Share Scheduling
	PsPrioritySeparation function, Quantum Settings Registry Value, Priority Boosts for Foreground Threads After Waits, Priority Boosts After GUI Threads Wake Up
	PspStartNewFairShareInterval function, Resuming Execution
	PspUserThreadStartup function, Stage 7: Performing Process Initialization in the Context of
 the New Process
	PsReleaseThreadFromIdleOnlyQueue routine, Resuming Execution, DFSS Idle-Only Queue Scheduling
	public IP addresses, Protocol Drivers, Network Address Translation
		private address mapping to, Network Address Translation

	publication cache, BranchCache
	publishing content, BranchCache
	pushlocks, Executive Resources, Pushlocks, Unwait Boosts
		priority boosts and, Unwait Boosts
	structure, Pushlocks

 Q
	Quality of Service (QoS), Networking APIs, QoS, QoS
		components, QoS
	Winsock support, Networking APIs

	Quality Windows Audio/Video Experience (qWAVE), QoS
	quantum, Dispatch or Deferred Procedure Call (DPC)
 Interrupts, Overview of Windows Scheduling, Dispatcher Database, Quantum, Quantum Accounting, Quantum Accounting, Quantum Accounting, Variable Quantums, Variable Quantums, Variable Quantums, Quantum Settings Registry Value, Quantum Settings Registry Value, Quantum Settings Registry Value, Quantum Settings Registry Value, Quantum Settings Registry Value, Preemption
		clock cycles per, Quantum Accounting
	clock tick adjustment, Quantum Accounting
	configuration settings, changing, Quantum Settings Registry Value
	controlling, Quantum Accounting
	end of, Preemption
	expiration, Dispatch or Deferred Procedure Call (DPC)
 Interrupts
	Priority Separation field, Quantum Settings Registry Value
	registry value, Variable Quantums
	reset value, Quantum
	short vs. long, Quantum Settings Registry Value
	threads in idle process priority class, Quantum Settings Registry Value
	values, Variable Quantums
	variable, Variable Quantums, Quantum Settings Registry Value

	quarantine agent service runtime, Network Access Protection
	query name method, Object Methods
	query/set native calls, worker factory management, Worker Factories (Thread Pools)
	queued spinlocks, Queued Spinlocks
	QueueUserApc API, Reserve Objects

 R
	race conditions, Dynamic Processor Addition and Replacement
	rate limiting, CPU, CPU Rate Limits
	Raw transport protocol, Winsock Kernel
	RDBSS (Redirected Drive Buffering
 SubSystem), Surrogate Providers, Redirector
		mini-redirectors, Redirector

	RDPDR mini-redirector, Mini-Redirectors
	read-commit isolation level, Transactional Registry (TxR)
	ready queues, Stage 4: Creating the Initial Thread and Its Stack and
 Context, Thread States, Thread States, Thread States, Thread States, Quantum Accounting, Priority Boosts After GUI Threads Wake Up, Priority Boosts for CPU Starvation, Preemption, Thread Selection, Thread Selection, Thread Selection on Multiprocessor Systems
		context switch to, Quantum Accounting
	deferred, Stage 4: Creating the Initial Thread and Its Stack and
 Context
	dispatcher, Thread States, Thread Selection
	per-processor dispatcher, Thread States
	preempted threads, Preemption
	scanning, Thread States, Priority Boosts After GUI Threads Wake Up, Priority Boosts for CPU Starvation, Thread Selection
	systemwide, Thread States
	thread association with, Thread Selection on Multiprocessor Systems

	ready summary, Thread States
	ready threads, Thread Scheduling, Using Tools to Interact with Priority, Thread States, Priority Boosts After GUI Threads Wake Up
		in ready queue, Thread States
	priority boosts for, Priority Boosts After GUI Threads Wake Up
	viewing, Thread Scheduling

	Real Time Clock (RTC), Asynchronous Procedure Call Interrupts
	real-time processing, Software Interrupt Request Levels (IRQLs)
	reaper function, System Worker Threads
	reason for access reporting, Security Auditing
	receive window auto tuning, Protocol Drivers
	recv and send APIs, Windows Sockets
	Redirected Drive Buffering SubSystem
 (RDBSS), Surrogate Providers
	redirection, User Callbacks, DLL Name Resolution and Redirection, SwitchBack
		API Sets, SwitchBack
	in Wow64, User Callbacks
	of DLL names, DLL Name Resolution and Redirection

	redirectors, Device Drivers, WSK Implementation, UPnP with PnP-X, UPnP with PnP-X, Multiple UNC Provider, Multiple UNC Provider, Multiple UNC Provider, Surrogate Providers, Surrogate Providers, Redirector, Mini-Redirectors
		components, Surrogate Providers
	mini-redirectors, Redirector
	Multiple Provider Router, UPnP with PnP-X
	Multiple UNC Provider, Multiple UNC Provider
	prefix cache, Multiple UNC Provider
	priority order, Multiple UNC Provider
	Server Message Block, Mini-Redirectors
	surrogate providers, Surrogate Providers

	reference count, object, Object Security
	Reg.exe, Viewing and Changing the Registry, Registry Virtualization
		virtualization state, displaying, Registry Virtualization

	RegCreateKeyTransacted API, HKEY_PERFORMANCE_DATA
	RegDeleteKeyTransacted API, HKEY_PERFORMANCE_DATA
	Regedit.exe, Viewing and Changing the Registry, Hives, Security System Components
		hives, loading and unloading, Hives
	local system account, running as, Security System Components

	RegFlushKey API, Stable Storage
	Regini.exe, Viewing and Changing the Registry
	region blobs, Blobs, Handles, and Resources
	regions, mapping, Asynchronous Operation
	RegisterServiceCtrlHandler function, Service Applications
	registry, Security, Security, Differences Between Client and Server Versions, Differences Between Client and Server Versions, Differences Between Client and Server Versions, Environment Subsystems and Subsystem DLLs, Session Manager (Smss), Registry Redirection, Registry Redirection, Management Mechanisms, Management Mechanisms, Management Mechanisms, Management Mechanisms, Viewing and Changing the Registry, Registry Usage, Registry Usage, Registry Usage, Registry Usage, Registry Usage, Registry Data Types, Registry Data Types, Registry Data Types, Registry Logical Structure, HKEY_USERS, HKEY_USERS, HKEY_USERS, HKEY_LOCAL_MACHINE, HKEY_LOCAL_MACHINE, HKEY_PERFORMANCE_DATA, HKEY_PERFORMANCE_DATA, HKEY_PERFORMANCE_DATA, Transactional Registry (TxR), Transactional Registry (TxR), Process Monitor Internals, Process Monitor Internals, Process Monitor Internals, Process Monitor Internals, Process Monitor Troubleshooting Techniques, Logging Activity in Unprivileged Accounts or During
 Logon/Logoff, Logging Activity in Unprivileged Accounts or During
 Logon/Logoff, Logging Activity in Unprivileged Accounts or During
 Logon/Logoff, Hive Size Limits, Hive Structure, Hive Structure, Stable Storage, Stable Storage, Registry Filtering, Services, Service Applications, Startup Errors, Startup Errors, Variable Quantums, Dynamic Fair Share Scheduling, Global Audit Policy, File Virtualization, Requesting Administrative Rights, AppLocker
		activity, montoring, Transactional Registry (TxR)
	applications settings, locating, Process Monitor Internals
	AppLocker rules, AppLocker
	blocks, Hive Structure
	buffer overflows, Process Monitor Troubleshooting Techniques
	compacting, Hive Structure
	configuration data in, Registry Redirection
	configuration manager management, Logging Activity in Unprivileged Accounts or During
 Logon/Logoff
	CurrentControlSet key, Startup Errors
	data types, Registry Usage
	editing, Management Mechanisms
	EnableCpuQuota value, Dynamic Fair Share Scheduling
	error recovery, HKEY_PERFORMANCE_DATA
	filtering, Stable Storage
	flushes, Stable Storage
	global audit policy, Global Audit Policy
	hives, Logging Activity in Unprivileged Accounts or During
 Logon/Logoff
		(see also hives, registry)

	HKEY_CLASSES_ROOT, HKEY_USERS
	HKEY_CURRENT_CONFIG, HKEY_LOCAL_MACHINE
	HKEY_CURRENT_USER, Registry Logical Structure
	HKEY_LOCAL_MACHINE, HKEY_USERS
	HKEY_PERFORMANCE_DATA, HKEY_PERFORMANCE_DATA
	HKEY_USERS, HKEY_USERS
	idle system activity, viewing, Process Monitor Internals
	initialization, Session Manager (Smss)
	internals, Logging Activity in Unprivileged Accounts or During
 Logon/Logoff
	keys, Registry Usage
	last known good configuration, HKEY_LOCAL_MACHINE, Startup Errors
	links, Registry Data Types
	logical structure, Registry Data Types
	missing keys or values, Process Monitor Internals
	modification, Registry Usage
	naming scheme, Registry Usage
	Native and Wow64 portions, Registry Redirection
	performance counters, accessing, Security
	performance optimizations, Registry Filtering
	permanent changes, Transactional Registry (TxR)
	ProductPolicy value, Differences Between Client and Server Versions
	ProductSuite value, Differences Between Client and Server Versions
	ProductType value, Differences Between Client and Server Versions
	quantum settings, Variable Quantums
	root keys, Registry Data Types
	Services key, Services, Service Applications
	subsystem startup information, Environment Subsystems and Subsystem DLLs
	symbolic links, Hive Size Limits
	tools for editing, Management Mechanisms
	transactional, HKEY_PERFORMANCE_DATA
	troubleshooting problems, Process Monitor Internals
	usage, Viewing and Changing the Registry
	values, Registry Usage
	viewing, Management Mechanisms
	virtualization, File Virtualization, Requesting Administrative Rights

	Registry Editor, HKEY_LOCAL_MACHINE
	registry filter notifications, Kernel Patch Protection
	registry namespace, Object Methods, File System and Registry Virtualization
		virtualization, File System and Registry Virtualization

	RegOpenKeyTransacted API, HKEY_PERFORMANCE_DATA
	.regtrans-ms extension, Transactional Registry (TxR)
	REG_BINARY values, Registry Usage
	REG_DWORD values, Registry Usage
	REG_LINK values, Registry Data Types
	REG_SZ values, Registry Usage
	relative identifiers (RIDs), Access Checks
	relative timers, Timer Expiration
	reliability, Requirements and Design Goals
	relocation, Import Parsing
	Remediation Servers, Network Access Protection
	remote access, Binding
	remote authentication, User Logon Steps
	remote clients, network connectivity, Direct Access
	remote desktop connections, Kernel Mode vs. User Mode
	remote editing of BCD, HKEY_LOCAL_MACHINE
	remote file systems, Multiple UNC Provider, Surrogate Providers, Mini-Redirectors
		accessing, Multiple UNC Provider, Mini-Redirectors
	caching, Surrogate Providers

	remote files, Mini-Redirectors, Offline Files
		caching on local machine, Offline Files
	requests for, Mini-Redirectors

	Remote NDIS, Connection-Oriented NDIS
	remote performance monitoring, HKEY_PERFORMANCE_DATA
	remote procedure call (RPC), WSK Implementation (see RPC (remote procedure call))
	remote resources, accessing, Multiple Provider Router, Surrogate Providers
	remoting, Kernel Mode vs. User Mode
	replay protection, Internet Protocol Security
	replication, Distributed File System Namespace, Distributed File System Namespace, Distributed File System Namespace
		benefits, Distributed File System Namespace
	multimaster, Distributed File System Namespace
	topologies, Distributed File System Namespace

	replication groups, Distributed File System Namespace
	republication cache, Caching Modes
	RequiredPrivileges parameter, Service Applications, Running with Least Privilege
	reserve blobs, Blobs, Handles, and Resources
	reserve objects, Reserve Objects
	resource accounting, Object Retention
	resource exhaustion prevention, Diagnostic Functionality
	resource management, Using Tools to Interact with Priority
	Resource Manager (RM), Kernel Transaction Manager, Transactional Registry (TxR)
		registry, Transactional Registry (TxR)

	Resource Manager SID, Security Identifiers
	Resource Monitor, Performance Monitor, Object Handles and the Process Handle Table
		object handles, viewing, Object Handles and the Process Handle Table
	resources, displaying, Performance Monitor

	resources, Object Filtering, Running with Least Privilege, Service Isolation, UPnP with PnP-X, Multiple Provider Router, Surrogate Providers
		mutual exclusion and, Object Filtering
	permissions, setting, Service Isolation
	remote, Multiple Provider Router, Surrogate Providers
	service access to, Running with Least Privilege
	UNC name access, UPnP with PnP-X

	responsiveness, Priority Boosts, Lock Ownership Boosts, Priority Boosts for Foreground Threads After Waits, Priority Boosts for Foreground Threads After Waits
		improving, Priority Boosts, Priority Boosts for Foreground Threads After Waits, Priority Boosts for Foreground Threads After Waits
	thread priority boosts and, Lock Ownership Boosts

	restore files and directories privilege, Super Privileges
	restricted service SIDs, Service Isolation
	restricted tokens, Tokens, Impersonation
	retail build, Checked Build
	Richter, Jeffrey, Windows Operating System Versions, Windows API, Timer Coalescing, What Signals an Object?
	RIDs (relative identifiers), Access Checks, Security Identifiers
		viewing, Security Identifiers

	rings 0 through 3, Kernel Mode vs. User Mode
	RM (Resource Manager), Kernel Transaction Manager
	roaming profiles, HKEY_USERS, File Virtualization
		registry values, HKEY_USERS
	virtualized files and, File Virtualization

	robustness, Requirements and Design Goals
	root keys, registry, Registry Data Types
	root \Sessions directory, Session Manager (Smss)
	routers, The OSI Reference Model, Protocol Drivers
		congestion, Protocol Drivers

	routing functions, The OSI Reference Model
	routing modes, Hardware Interrupt Processing
	RPC (remote procedure call), WSK Implementation, WSK Implementation, RPC Operation, RPC Operation, RPC Operation, RPC Operation, RPC Operation, RPC Implementation, RPC Implementation, RPC Implementation
		asynchronous, RPC Operation
	implementation, RPC Implementation
	local and remote execution, RPC Operation, RPC Implementation
	operation, WSK Implementation
	security, RPC Operation
	server name publishing, RPC Operation
	subsystem, RPC Implementation
	unencrypted, RPC Operation

	RpcImpersonateClient function, Impersonation, RPC Operation
	RPCSS, RPC Implementation
	RTC (Real Time Clock), Asynchronous Procedure Call Interrupts
	RtlUserThreadStart, Stage 7: Performing Process Initialization in the Context of
 the New Process
	RtlVerifyVersionInfo function, Differences Between Client and Server Versions
	Run As Administrator command, Running with Administrator Rights
	run-once initialization (InitOnce), Low-IRQL Synchronization, Run Once Initialization
	run-time patching, Image Loader
	Runas command, HKEY_USERS, Process Monitor Troubleshooting Techniques, Running with Administrator Rights
	running threads, Thread States
	runtime compatibility mitigations, Image Loader
	Russinovich, Mark, Windows Driver Kit

 S
	SACLs, Security Descriptors and Access Control, Security Descriptors and Access Control, Security Descriptors and Access Control
		assigning, Security Descriptors and Access Control

	safe DLL search mode, Early Process Initialization
	safe mode, Service Startup, Service Startup
		registry keys, Service Startup

	SAM (Security Accounts Manager), Security System Components, Security System Components
		security descriptors, Security System Components

	SAM APIs, Remote Access
	SAM database, Security System Components
	SAPICs (Streamlined Advanced Programmable Interrupt
 Controllers), Hardware Interrupt Processing
	SAS (secure attention sequence), Trusted Computer System Evaluation Criteria, Winlogon Initialization, Winlogon Initialization
		implementation, Winlogon Initialization
	logon startup, Winlogon Initialization

	SAs (security associations), Internet Protocol Security
	sc command, Consumer Registration
	Sc tool, virtual service account creation, Virtual Service Accounts
	scalability, Symmetric Multiprocessing
	scatter-gather, Networking APIs
	ScAutoStartServices function, The Service Control Manager
	ScGenerateServiceDB function, Interactive Services and Session 0 Isolation
	ScGenerateServiceTag function, Shared Service Processes
	ScGetBootAndSystemDriverState function, The Service Control Manager
	SChannel, RPC Operation
	Scheduled Tasks service, Provider Registration
	scheduling, Thread Scheduling, Thread Scheduling, Choosing a Processor for a Thread When There Are No Idle
 Processors
		processor share-based, Choosing a Processor for a Thread When There Are No Idle
 Processors
	thread, Thread Scheduling
	Windows system, Thread Scheduling

	scheduling events, System Processes, Boosts Due to Scheduler/Dispatcher Events
		thread priority boosts, Boosts Due to Scheduler/Dispatcher Events

	scheduling priorities, thread, Software Interrupt Request Levels (IRQLs)
		(see also priority levels)

	ScInitDelayStart function, Service Startup
	ScLogonAndStartImage function, Service Startup
	SCM (Service Control Manager), Session Manager (Smss), Services, Service Applications, Service Applications, Service Applications, Service Applications, Running with Least Privilege, Service Isolation, Interactive Services and Session 0 Isolation, Interactive Services and Session 0 Isolation, Interactive Services and Session 0 Isolation, Interactive Services and Session 0 Isolation, Interactive Services and Session 0 Isolation, The Service Control Manager, Service Startup, Service Startup, Startup Errors, Accepting the Boot and Last Known Good, Service Shutdown, Shared Service Processes, Initialization
		boot-verification program startup, Accepting the Boot and Last Known Good
	commands, Service Applications
	internal service database, Interactive Services and Session 0 Isolation
	last known good control set, Startup Errors
	named pipe creation, Service Startup
	network drive letter tracking, The Service Control Manager
	service characteristics, Service Applications
	service database, Interactive Services and Session 0 Isolation
	service deletion, Service Applications
	service entry and group order lists, Interactive Services and Session 0 Isolation
	service privileges, accounting, Running with Least Privilege
	service registry key creation, Services
	service SID generation, Service Isolation
	service-start command, Service Applications, Service Startup
	shutdown routine, Service Shutdown
	startup, Interactive Services and Session 0 Isolation
	SvcHost process launch, Shared Service Processes
	UBPM initialization, Initialization

	SCM Extension DLL (Scext.dll), Service Tags
	scopes, Offline Files
	script execution, controlling, Software Restriction Policies
	scripting API, WMI Architecture
	scripts, Class Association
	ScStartService function, Service Startup
	ScTagQuery (Winsider Seminars & Solutions
 Inc.), Shared Service Processes
	SDDL (Security Descriptor Definition Language), The AuthZ API
	SeAccessCheck function, Access Checks
	SeAuditPrivilege, Security Auditing
	second-chance notification, Exception Dispatching
	Second-Level Address Translation (SLAT), Memory Virtualization
	section blobs, Blobs, Handles, and Resources
	section objects, Executive Objects, Asynchronous Operation, API Sets, Stage 1: Converting and Validating Parameters and Flags
		mapping to API Sets, API Sets

	secure attention sequence (SAS), Trusted Computer System Evaluation Criteria (see SAS (secure attention sequence))
	Secure Socket Transmission Protocol (SSTP), Remote Access
	security, Objects and Handles, Security, Windows Subsystem, Reserve Objects, Object Directories, Asynchronous Operation, Asynchronous Operation, HKEY_LOCAL_MACHINE, Registry Filtering, Service Applications, The Local System Account, Running with Least Privilege, Interactive Services and Session 0 Isolation, WMI Implementation, WMI Implementation, Protected Processes, Job Limits, Impersonation, Determining Access, Super Privileges, RPC Operation, BranchCache, Network Address Translation
		(see also security mechanisms)
	access control, Security
	console processes, Windows Subsystem
	debugger-based attacks, Protected Processes
	for namespaces, WMI Implementation
	IPsec, Network Address Translation
	job object limits, Job Limits
	local system account characteristics, The Local System Account
	object, Reserve Objects
	object name squatting, Object Directories
	of cache content, BranchCache
	of registry keys, Registry Filtering
	of RPC, RPC Operation
	privilege exploitation, Super Privileges
	regions and, Asynchronous Operation
	section objects and, Asynchronous Operation
	service isolation, Running with Least Privilege
	service security contexts, Service Applications
	shatter attack prevention, Interactive Services and Session 0 Isolation, Determining Access
	spoofing prevention, Impersonation
	systemwide policies in registry, HKEY_LOCAL_MACHINE
	WMI, WMI Implementation

	Security Accounts Manager (SAM), Security System Components, Security System Components
	security associations (SAs), Internet Protocol Security
	security attribute, Views, Regions, and Sections
	security auditing, Security, Trusted Computer System Evaluation Criteria, Security Auditing, Security Auditing, Global Audit Policy
		global audit policy, Global Audit Policy
	object access auditing, Security Auditing

	security blobs, Blobs, Handles, and Resources
	security boundaries, Registry Virtualization
	security checks, Determining Access
	security components, Security System Components, Controlling UAC Behavior
		application identification, Controlling UAC Behavior
	communication paths, Security System Components

	security contexts, Processes, Threads, and Jobs, Security, Tokens
		identifying, Tokens
	process, Processes, Threads, and Jobs
	user, Security

	security credentials, user, Security
	security descriptors, Examining Thread Activity, Security Descriptors and Access Control, Security Descriptors and Access Control, Security Descriptors and Access Control, Security Descriptors and Access Control
		attributes, Security Descriptors and Access Control
	flags, Security Descriptors and Access Control
	thread, Examining Thread Activity
	viewing, Security Descriptors and Access Control

	security identifiers (SIDs), Access Checks (see SIDs (security identifiers))
	security mechanisms, Blobs, Handles, and Resources, Security, Security, Security System Components, Protecting Objects, Protecting Objects, Protecting Objects, Determining Access, Conditional ACEs, Conditional ACEs, Super Privileges, Logon, User Account Control and Virtualization, Controlling UAC Behavior, AppLocker, Software Restriction Policies
		access checks, Protecting Objects
	access logging, Protecting Objects
	access tokens, Super Privileges
	account rights, Conditional ACEs
	ALPC mechanisms, Blobs, Handles, and Resources
	AppID, Controlling UAC Behavior
	AppLocker, AppLocker
	AuthZ Windows API, Determining Access
	core components, Security System Components
	logon, Logon
	object protection, Protecting Objects
	privileges, Conditional ACEs
	ratings, Security
	Software Restriction Policies, Software Restriction Policies
	UAC, User Account Control and Virtualization

	security method, Object Methods
	Security parameter, Service Applications
	security policy, Security Auditing
	Security Policy MMC snap-in, AppLocker management, AppLocker
	security quality of service (SQOS), Impersonation
	security ratings, Security, Trusted Computer System Evaluation Criteria
		Common Criteria for Information Technology Security
 Evaluation, Trusted Computer System Evaluation Criteria
	Trusted Computer System Evaluation Criteria, Security

	security reference monitor (SRM), Executive, Reserve Objects, Security System Components
		access rights checking, Reserve Objects

	security routine, Type Objects
	security support providers (SSPs), RPC Operation
	Security Target (ST), Trusted Computer System Evaluation Criteria
	security tokens, Processes, Threads, and Jobs
	security validation of impersonating threads, Protecting Objects
	Self-Monitoring Analysis and Reporting Technology (SMART)
 code, Diagnostic Functionality
	semaphore object type, Executive Objects
	semaphores, Executive Objects, Executive Objects, Object Directories, What Signals an Object?, Keyed Events, Fast Mutexes and Guarded Mutexes, User-Mode Resources, Access Checks
		default security, Access Checks
	ETHREAD, Keyed Events
	for shared resources, User-Mode Resources
	for shared waiters, Fast Mutexes and Guarded Mutexes
	object directory, Object Directories
	signaled state, What Signals an Object?

	SeNotifyPrivilege, Privileges
	server communication ports, Connection Model
	server connection ports, Connection Model
	Server Message Block (SMB), Mini-Redirectors (see SMB (Server Message Block))
	server name publishing, RPC Operation
	server operating system versions vs. client
 versions, Scalability
	servers, Dispatcher Database, Dynamic Processor Addition and Replacement, Impersonation, Winsock Server Operation, Winsock Extensions, RPC Operation, Distributed File System Namespace, Distributed File System Namespace, Distributed File System Namespace, Network Access Protection
		accept operations, queuing, Winsock Server Operation
	CPU addition and replacement, Dynamic Processor Addition and Replacement
	file-system change replication, Distributed File System Namespace, Distributed File System Namespace
	impersonation, Impersonation
	principal names, RPC Operation
	quantum length, Dispatcher Database
	Remediation Servers, Network Access Protection
	replication groups, Distributed File System Namespace
	well-known addresses, Winsock Extensions

	service applications, Services, Services
		SCPs, Services

	Service Control (Sc.exe), Running with Least Privilege
	Service Control Manager (SCM), Session Manager (Smss)
	service control programs, Consumer Registration
	service
 groupNetworkService-NetworkRestricted, Shared Service Processes
	service hardening, Determining Access
	Service Host (SvcHost), services running in, Service Shutdown
	service logon SIDs, Service Isolation
	service processes, Architecture Overview, Session Manager (Smss), Service Control Manager (SCM), Service Control Manager (SCM)
		management, Session Manager (Smss)
	service details, viewing, Service Control Manager (SCM)
	services in, mapping, Service Control Manager (SCM)

	service provider interface (SPI), Winsock Extensions
	service tags, Shared Service Processes
	Service-0x0-3e7$ window station, Service Isolation
	services, Session Manager (Smss), Session Manager (Smss), Service Control Manager (SCM), Services, Services, Services, Services, Services, Services, Service Applications, Service Applications, Service Applications, Service Applications, Service Applications, Service Applications, Service Applications, Service Applications, The Local System Account, The Local System Account, The Local Service Account, The Local Service Account, The Local Service Account, The Local Service Account, Running with Least Privilege, Running with Least Privilege, Running with Least Privilege, Service Isolation, Service Isolation, Service Isolation, Interactive Services and Session 0 Isolation, Interactive Services and Session 0 Isolation, Interactive Services and Session 0 Isolation, Interactive Services and Session 0 Isolation, Interactive Services and Session 0 Isolation, The Service Control Manager, The Service Control Manager, Service Startup, Service Startup, Service Startup, Service Startup, Service Startup, Service Startup, Service Startup, Service Startup, Service Startup, Service Startup, Service Failures, Service Failures, Service Shutdown, Service Shutdown, Service Shutdown, Service Shutdown, Shared Service Processes, Shared Service Processes, Shared Service Processes, Consumer Registration, Service Control Programs, Winsock Extensions, Background Intelligent Transfer Service
		(see also Windows services)
	account settings, The Local Service Account
	alternate accounts, running in, The Local Service Account
	authenticating to other machines, The Local System Account, The Local System Account
	auto-start, Services, Interactive Services and Session 0 Isolation, The Service Control Manager
	Change Notify privilege, Running with Least Privilege
	characteristics, Service Applications
	delayed auto-start, Service Startup, Service Startup
	dependencies, Service Startup
	entry points, Service Applications
	FailureActions and FailureCommand values, Service Failures
	failures, Service Failures
	group startup ordering, Interactive Services and Session 0 Isolation, Service Startup
	groupings, Shared Service Processes
	ImagePath value, Service Startup
	initializing, Service Applications
	interactive, Interactive Services and Session 0 Isolation, Service Startup
	isolation, Running with Least Privilege
	least privilege, running with, The Local Service Account
	listing, Service Control Manager (SCM)
	local system account, running in, Service Applications
	logon information, Service Startup
	main thread, Service Applications
	names, Session Manager (Smss)
	ObjectName value, Service Startup
	Parameters subkey, Service Applications
	peer-to-peer support, Background Intelligent Transfer Service
	privileges, specifying, The Local Service Account
	privileges, viewing, Running with Least Privilege
	process, launching, Service Startup
	registering, Services
	running in processes, viewing, Shared Service Processes
	security context, Service Applications
	security descriptors, Service Control Programs
	service applications, Services
	Service Control Manager, Interactive Services and Session 0 Isolation
	service SIDs, Service Isolation
	service tags, Shared Service Processes
	Services key, Services
	Session Zero Isolation, Service Isolation
	shared processes, Service Shutdown
	shutdown, Service Shutdown
	shutdown notifications, Service Shutdown
	shutdown order, Service Shutdown
	startup, Session Manager (Smss), Services, The Service Control Manager
	startup errors, Service Startup
	status messages, Service Applications
	triggers, Consumer Registration
	user notifications, Interactive Services and Session 0 Isolation
	well-known addresses, Winsock Extensions
	window stations, Service Isolation

	Services key, Services, Service Applications
	Services MMC snap-in, Service Control Programs
	ServiceSidType parameter, Service Applications
	SeSecurityPrivilege, Security Auditing
	session create requests, Session Manager (Smss)
	session layer in OSI reference model, The OSI Reference Model
	session manager (Smss), Environment Subsystems and Subsystem DLLs, Session Manager (Smss)
	session namespace, Object Directories, Session Namespace
		instancing, viewing, Session Namespace

	Session Zero Isolation, Service Isolation
	sessions, Kernel Mode vs. User Mode, Terminal Services and Multiple Sessions, Per-Session CPU Quota Blocks, DFSS Idle-Only Queue Scheduling, User Logon Steps, NetBIOS
		accounting information, Per-Session CPU Quota Blocks
	active logon, listing, User Logon Steps
	disconnecting, Terminal Services and Multiple Sessions
	multiple, Kernel Mode vs. User Mode
	NetBIOS, NetBIOS
	session weight, DFSS Idle-Only Queue Scheduling

	Set API, DFSS Idle-Only Queue Scheduling
	SetInformationJobObject function, Affinity
	SetPriorityClass function, Priority Levels
	SetProcessAffinityMask function, Affinity
	SetProcessWorkingSetSizeEx function, Using Tools to Interact with Priority
	SetServiceStatus function, Service Applications
	SetThreadAffinityMask function, Affinity
	setup programs, virtualization, Stage 5: Performing Windows Subsystem–Specific
 Post-Initialization
	SetWindowsHook function, Winlogon Initialization
	shadow page tables (SPTs), Memory Virtualization
	shared access, executive resources for, Fast Mutexes and Guarded Mutexes
	shared memory, Processes, Threads, and Jobs, Asynchronous Operation, Asynchronous Operation
		communication, Asynchronous Operation
	regions, Asynchronous Operation
	sections, Processes, Threads, and Jobs

	shared processes, Service Shutdown, Service Shutdown
		of services, Service Shutdown

	shatter attacks, Interactive Services and Session 0 Isolation, Determining Access
	ShellExecute API, Running with Administrator Rights
	shifting, Timer Coalescing
	shims, Image Loader, Stage 5: Performing Windows Subsystem–Specific
 Post-Initialization, File System and Registry Virtualization, Windows Filtering Platform
		application-compatibility, File System and Registry Virtualization
	elevation, Stage 5: Performing Windows Subsystem–Specific
 Post-Initialization

	shutdown, Service Shutdown, Service Shutdown, Service Shutdown, Diagnostic Functionality
		notifications, Service Shutdown
	ordering, Service Shutdown
	performance diagnostics, Diagnostic Functionality
	services, Service Shutdown

	side-by-side assemblies, Stage 5: Performing Windows Subsystem–Specific
 Post-Initialization, Birth of a Thread
	side-by-side redirection, DLL Name Redirection
	SIDs (security identifiers), Service Isolation, Service Isolation, Access Checks, Access Checks, Security Identifiers, Security Identifiers, Security Identifiers, Security Identifiers, Integrity Levels, Determining Access, Winlogon Initialization
		assignment, Security Identifiers
	firewall rules and, Service Isolation
	integrity level, Integrity Levels
	list of, Security Identifiers
	local logon, Winlogon Initialization
	Owner Rights, Determining Access
	structure, Security Identifiers
	types, Service Isolation
	values in, Access Checks
	viewing, Security Identifiers

	Sigcheck, viewing application manifests with, Requesting Administrative Rights
	signaled state, defining, Waiting for Dispatcher Objects
	signed files, Application Identification (AppID)
	silent process death, Windows Error Reporting, Windows Error Reporting
		solving, Windows Error Reporting

	simple problem scenarios, Windows Diagnostic Infrastructure
	single instancing, Object Directories
	SIPolicy tool, Differences Between Client and Server Versions
	SLAT (Second-Level Address Translation), Memory Virtualization
	Sleep API, Ideal and Last Processor
	SleepConditionVariableSRW API, Condition Variables
	Slim Reader-Writer Locks (SRW Locks), Low-IRQL Synchronization, User-Mode Resources
	slow-link latency threshold, Caching Modes
	smartcard authentication, User Logon Steps
	SMB (Server Message Block), Mini-Redirectors, Server Message Block and Sub-Redirectors, BranchCache, Configuration, Configuration
		backward compatibility, Server Message Block and Sub-Redirectors
	BranchCache application retrieval
 sequence, Configuration
	BranchCache integration, Configuration
	BranchCache use, BranchCache

	SMB 2.0, Mini-Redirectors
	SMB 2.1, Server Message Block and Sub-Redirectors, Configuration
	SMB mini-redirector, Mini-Redirectors, Server Message Block and Sub-Redirectors
	SMB WNet provider, Multiple Provider Router
	Smith, Guy, Windows Driver Kit
	SMP (symmetric multiprocessing), Portability
	Smss (session manager), Environment Subsystems and Subsystem DLLs, Session Manager (Smss), Session Manager (Smss), Session Manager (Smss)
		initialization steps, Session Manager (Smss)
	session startup instance, Session Manager (Smss)
	subsystem startup, Environment Subsystems and Subsystem DLLs

	SMT sets, Thread Selection
	sockets, Networking APIs, Windows Sockets, Windows Sockets, WSK Implementation, WSK Implementation
		categories, WSK Implementation
	client connections to, Windows Sockets
	extension interfaces, WSK Implementation
	listen operations, Windows Sockets
	Windows support, Networking APIs

	software, Differences Between Client and Server Versions, Trap Dispatching, Trap Dispatching, IA64 Interrupt Controllers, Software Interrupt Request Levels (IRQLs), Running with Administrator Rights, The OSI Reference Model
		(see also applications)
	exceptions and interrupts, Trap Dispatching
	in OSI reference model, The OSI Reference Model
	interrupt request levels, IA64 Interrupt Controllers
	interrupts, Trap Dispatching, Software Interrupt Request Levels (IRQLs)
	licensing, Differences Between Client and Server Versions

	Software Restriction Policies (SRP), Stage 5: Performing Windows Subsystem–Specific
 Post-Initialization (see SRP (Software Restriction Policies))
	special boot menu, Service Startup
	SPI (service provider interface), Winsock Extensions
	spinlocks, Spinlocks, Spinlocks, Spinlocks, Queued Spinlocks, Queued Spinlocks, Queued Spinlocks, Instack Queued Spinlocks, Instack Queued Spinlocks, Low-IRQL Synchronization
		for interlocked functions, Instack Queued Spinlocks
	global, Queued Spinlocks
	implementation, Spinlocks
	instack queued, Instack Queued Spinlocks
	kernel-mode, Spinlocks
	queued, Queued Spinlocks
	restrictions on, Low-IRQL Synchronization
	viewing, Queued Spinlocks

	Spinstall.exe, auto-elevation, Auto-Elevation
	spoofing prevention, Impersonation
	SPTs (shadow page tables), Memory Virtualization
	SQOS (security quality of service), Impersonation
	squatting attacks, Object Directories
	SRM (security reference monitor), Executive, Security System Components, Security System Components, Access Checks, Security Auditing
		audit policy, passing, Security Auditing
	LSASS connection, Security System Components
	security model equation, Access Checks

	SRP (Software Restriction Policies), Stage 5: Performing Windows Subsystem–Specific
 Post-Initialization, AppLocker, AppLocker, Software Restriction Policies
		enforcement, Software Restriction Policies

	SRW Locks, User-Mode Resources
	SSPs (security support providers), RPC Operation
	SSTP (Secure Socket Transmission Protocol), Remote Access
	stack frames, exception handlers, Exception Dispatching
	stack traces, Object Retention
	stack, thread, Examining Thread Activity
	standard user rights, User Account Control and Virtualization, User Account Control and Virtualization, Running with Administrator Rights, Running with Administrator Rights
		application execution with, User Account Control and Virtualization
	elevation, Running with Administrator Rights
	running as administrative rights, Running with Administrator Rights

	standard user tokens, Tokens
	standby threads, Using Tools to Interact with Priority, Thread Selection, Choosing a Processor for a Thread When There Are Idle
 Processors
	standby/resume performance diagnostics, Diagnostic Functionality
	Start parameter, Service Applications
	start-of-thread function, Exception Dispatching
	start-stop problem scenarios, Windows Diagnostic Infrastructure
	StartService function, Services
	StartServiceCtrlDispatcher function, Service Applications
	startup, The Service Control Manager, Service Startup, Service Startup, Startup Errors, Diagnostic Functionality
		(see also boot process)
	errors, Service Startup, Startup Errors
	repair tool, Diagnostic Functionality
	services, The Service Control Manager

	Startup Programs Viewer, Digging into Windows Internals
	stations, The OSI Reference Model, The OSI Reference Model
		point-to-point communications between, The OSI Reference Model

	Streamlined Advanced Programmable Interrupt Controllers
 (SAPICs), Hardware Interrupt Processing
	stride value, Ideal and Last Processor
	Strings, dumping API Set table with, API Sets
	structured exception handling, Timer Coalescing
	stub procedures, RPC Operation, RPC Operation
		generating, RPC Operation

	SUA (Subsystem for UNIX-based Applications), Subsystem for Unix-based Applications
	sub-DLLs, SwitchBack
	subkeys, registry, Registry Usage, Transactional Registry (TxR)
		(see also keys, registry)
	transacted deletion, Transactional Registry (TxR)

	subsystem DLLs, Architecture Overview, Environment Subsystems and Subsystem DLLs, User-Mode Debugging
		user-mode debugging APIs, User-Mode Debugging

	Subsystem for UNIX-based Applications (SUA), Subsystem for Unix-based Applications, Executive Objects
		executive objects, Executive Objects

	subsystem processes, creation, Session Manager (Smss)
	subsystems, Environment Subsystems and Subsystem DLLs, Subsystem Startup, Subsystem for Unix-based Applications, Subsystem for Unix-based Applications, Subsystem for Unix-based Applications, Data Structures, RPC Implementation
		GDI, Data Structures
	internal support functions, Subsystem for Unix-based Applications
	POSIX, Subsystem for Unix-based Applications
	RPC, RPC Implementation
	startup, Environment Subsystems and Subsystem DLLs
	Subsystem for UNIX-based Applications, Subsystem for Unix-based Applications
	Windows, Subsystem Startup

	SunRPC, WSK Implementation
	Superfetch, Executive
	surrogate providers, Multiple UNC Provider, Surrogate Providers
	SvcCtrlMain function, Interactive Services and Session 0 Isolation
	Svchost.exe, Processes, Threads, and Jobs
	SwitchBack, Post-Import Process Initialization, SwitchBack
		invoking, SwitchBack

	SwitchBranch mechanism, Image Loader
	SwitchToFiber function, Processes, Threads, and Jobs
	SwitchToThread() call, Ideal and Last Processor
	symbol files, Kernel Debugging
	symbol server, Processes, Threads, and Jobs, Kernel Debugging
		configuring, Processes, Threads, and Jobs
	loading symbols from, Kernel Debugging

	symbolic link objects, Object Directories
	symbolic links, Object Directories, Hive Size Limits, Server Message Block and Sub-Redirectors
		registry, Hive Size Limits
	SMB support, Server Message Block and Sub-Redirectors

	symmetric multiprocessing (SMP), Portability, Synchronization
		mutual exclusion, Synchronization

	Sync Center control panel interface, Offline Files
	synchronization, Type Objects, Object Filtering, Synchronization, Synchronization, Low-IRQL Synchronization, Low-IRQL Synchronization, Low-IRQL Synchronization, Low-IRQL Synchronization, What Signals an Object?, Keyed Events, Fast Mutexes and Guarded Mutexes, Executive Resources, Pushlocks, Pushlocks, Pushlocks, User-Mode Resources, Condition Variables, Run Once Initialization, Dispatcher Database
		condition variables, User-Mode Resources
	critical sections, Pushlocks
	data structures, What Signals an Object?
	deadlocks, Pushlocks
	dispatcher objects, Low-IRQL Synchronization
	executive resources, Low-IRQL Synchronization, Fast Mutexes and Guarded Mutexes
	high-IRQL, Synchronization
	interlocked operations, Synchronization
	kernel mechanisms, Low-IRQL Synchronization
	low-IRQL, Low-IRQL Synchronization
	mutexes, Keyed Events
	object support of, Type Objects
	of dispatcher database, Dispatcher Database
	pushlocks, Executive Resources
	run once initialization, Run Once Initialization
	scalable, pointer-size, Condition Variables
	user-mode objects, Pushlocks

	synchronization interrupt level, Software Interrupt Request Levels (IRQLs)
	synchronization objects, Low-IRQL Synchronization, Low-IRQL Synchronization, Waiting for Dispatcher Objects, Data Structures
		executive resources, Low-IRQL Synchronization
	keyed events, Data Structures
	rules of behavior, Waiting for Dispatcher Objects
	state, Low-IRQL Synchronization

	synchronous event exceptions, Trap Dispatching
	synchronous execution, Run Once Initialization
	synthetic devices, Emulated Devices
	sysenter instruction, System Service Dispatching
	Sysinternals Site Blog, Windows Driver Kit
	Sysinternals tools, Windows Driver Kit
	system, Debugging Tools for Windows, System Architecture, Architecture Overview, Symmetric Multiprocessing, Checked Build, Trap Dispatching, Software Interrupt Request Levels (IRQLs), System Worker Threads, Registry Usage, HKEY_USERS, HKEY_LOCAL_MACHINE, Process Monitor Internals, Diagnostic Functionality, Stage 2: Opening the Image to Be Executed, Extended Affinity Mask, AppLocker, Network Access Protection
		(see also operating systems; system mechanisms; Windows operating
 system)
	affinity mask, Extended Affinity Mask
	architecture, System Architecture (see system architecture)
	configuration, HKEY_USERS
	connecting live, Debugging Tools for Windows
	crashes, Software Interrupt Request Levels (IRQLs)
	global flags, System Worker Threads
	health policies, Network Access Protection
	idle, Process Monitor Internals
	initialization, Stage 2: Opening the Image to Be Executed (see system initialization)
	license policy file, Symmetric Multiprocessing
	lockdown, AppLocker
	registry settings, Registry Usage
	responsiveness performance diagnostics, Diagnostic Functionality
	security policies, HKEY_LOCAL_MACHINE
	service calls, Trap Dispatching
	support processes, Architecture Overview

	System account security settings, HKEY_LOCAL_MACHINE
	system address space, Processes, Threads, and Jobs, Stage 7: Performing Process Initialization in the Context of
 the New Process
		data structures in, Processes, Threads, and Jobs
	ETHREAD and other structures in, Stage 7: Performing Process Initialization in the Context of
 the New Process

	system architecture, System Architecture, System Architecture, Operating System Model, Architecture Overview, Portability, Symmetric Multiprocessing, Scalability, Checked Build, Key System Components, Environment Subsystems and Subsystem DLLs, Subsystem for Unix-based Applications, Ntdll.dll, Executive, Hardware Support, Device Drivers, System Processes
		client vs. server versions, Scalability
	device drivers, Device Drivers
	diagram, Key System Components
	environment subsystem, Environment Subsystems and Subsystem DLLs
	hardware abstraction layer, Hardware Support
	kernel, Executive
	key system components, Checked Build
	Ntdll.dll, Subsystem for Unix-based Applications
	overview, Operating System Model
	portability features, Architecture Overview
	requirements and design goals, System Architecture
	scalability features, Symmetric Multiprocessing
	symmetric multiprocessing capabilities, Portability
	system processes, System Processes
	Windows executive, Ntdll.dll

	system call table, System Service Dispatching, System Service Dispatching, Service Descriptor Tables
		compaction, System Service Dispatching

	system calls, Windows API, System Service Dispatching, System Service Dispatching, System Service Dispatching, System Service Dispatching, Service Descriptor Tables, Wow64 Process Address Space Layout
		defined, Windows API
	exported, System Service Dispatching
	from 32-bit systems, System Service Dispatching
	from 64-bit systems, System Service Dispatching
	from kernel-mode code, System Service Dispatching
	functions and arguments, mapping to, Service Descriptor Tables
	in Wow64, Wow64 Process Address Space Layout

	System Calls/Sec performance counter, Service Descriptor Tables
	system clock, Hardware Interrupt Processing, Asynchronous Procedure Call Interrupts, Asynchronous Procedure Call Interrupts, Timer Processing, Per-Session CPU Quota Blocks
		(see also clock cycles; clock intervals)
	interval timer, Asynchronous Procedure Call Interrupts
	maintenance of, Asynchronous Procedure Call Interrupts
	restoring default value, Timer Processing
	updating, Hardware Interrupt Processing

	system code and data protection, Kernel Mode vs. User Mode
	system events, thread state changes, What Signals an Object?
	system files, restoring, Diagnostic Functionality
	System Health Agent (SHA), Network Access Protection
	System Health Validator (SHV), Network Access Protection
	system idle process, System Processes, Idle Threads
	system images, undocumented interfaces, Windows Driver Foundation
	system initialization, Session Manager (Smss), Session Manager (Smss), Run Once Initialization, Stage 2: Opening the Image to Be Executed, Logon
		parent processes, Stage 2: Opening the Image to Be Executed
	Smss functions, Session Manager (Smss)
	system worker threads, Run Once Initialization
	Wininit.exe functions, Session Manager (Smss)
	Winlogon initialization, Logon

	system mechanisms, System Mechanisms, Service Descriptor Tables, Object Filtering, Run Once Initialization, System Worker Threads, Windows Global Flags, Kernel Event Tracing, Wow64, User-Mode Debugging, Native Support, Hypervisor (Hyper-V), Live Migration, Kernel Transaction Manager, Hotpatch Support, Kernel Patch Protection
		Advanced Local Procedure Call, Windows Global Flags
	code integrity, Kernel Patch Protection
	global flags, System Worker Threads
	hotpatch support, Kernel Transaction Manager
	Hypervisor, Hypervisor (Hyper-V)
	image loader, Native Support
	kernel event tracing, Kernel Event Tracing
	Kernel Patch Protection, Hotpatch Support
	Kernel Transaction Manager, Live Migration
	object manager, Service Descriptor Tables
	synchronization, Object Filtering
	system worker threads, Run Once Initialization
	trap dispatching, System Mechanisms
	user-mode debugging, User-Mode Debugging
	Wow64, Wow64

	system objects, integrity protection, Objects and Handles
	system physical address space (SPA space), Memory Virtualization
	System process, System Processes, Object Handles and the Process Handle Table, Run Once Initialization, Protected Processes, Idle Threads
		handles, Object Handles and the Process Handle Table
	protected mode, Protected Processes
	system worker threads, Run Once Initialization

	system processes, System Processes, System Processes, System Processes, System Processes, Session Manager (Smss), Session Manager (Smss), Session Manager (Smss), Service Control Manager (SCM), Local Session Manager (Lsm.exe), Priority Levels
		Local Session Manager, Service Control Manager (SCM)
	priority level, Priority Levels
	Service Control Manager, Session Manager (Smss)
	Session Manager, Session Manager (Smss)
	system idle process, System Processes
	System process, System Processes (see System process)
	tree, viewing, System Processes
	Windows logon process, Local Session Manager (Lsm.exe)
	Wininit.exe process, Session Manager (Smss)

	system profile, HKEY_USERS
	system resources, Object Methods, Object Filtering
		(see also resources)
	handles to, Object Methods

	System Service Descriptor Table (SSDT), Kernel Patch Protection
	system service dispatcher, Windows Error Reporting, System Service Dispatching, System Service Dispatching
		locating, System Service Dispatching
	system service tables, locating, System Service Dispatching

	system service tables, System Service Dispatching
	system services, Subsystem for Unix-based Applications, Ntdll.dll, Windows Error Reporting, System Service Dispatching, System Service Dispatching, Service Descriptor Tables
		activity, viewing, Service Descriptor Tables
	dispatch stubs, Subsystem for Unix-based Applications
	dispatch table, System Service Dispatching
	dispatching, Windows Error Reporting
	numbers, System Service Dispatching

	System software interrupts, Trap Dispatching
	system threads, Kernel Mode vs. User Mode, System Processes, System Process and System Threads, System Process and System Threads, Priority Levels, Priority Boosts After GUI Threads Wake Up
		(see also threads)
	balance set manager, Priority Boosts After GUI Threads Wake Up
	device drivers, mapping to, System Process and System Threads
	execution, mapping, System Process and System Threads
	mode usage, Kernel Mode vs. User Mode
	priority levels, Priority Levels

	system time, Dispatch or Deferred Procedure Call (DPC)
 Interrupts, Timer Expiration, Per-Session CPU Quota Blocks
		(see also clock cycles; system clock)
	keeping track of, Timer Expiration
	updating, Dispatch or Deferred Procedure Call (DPC)
 Interrupts

	system timers, Processor Selection
	system traps, Trap Dispatching
	system unresponsiveness, Dispatch or Deferred Procedure Call (DPC)
 Interrupts, Security
		(see also performance)
	DPCs and, Dispatch or Deferred Procedure Call (DPC)
 Interrupts

	system worker threads, Run Once Initialization, Run Once Initialization, System Worker Threads, System Worker Threads, System Worker Threads
		(see also system threads; threads)
	dynamic, System Worker Threads
	listing, System Worker Threads
	number of, System Worker Threads
	types, Run Once Initialization

	system-start drivers, Interactive Services and Session 0 Isolation
	System.log, parsing and repairing, Stable Storage
	systemwide cookies, Stage 7: Performing Process Initialization in the Context of
 the New Process
	systemwide thread startup stub, Stage 7: Performing Process Initialization in the Context of
 the New Process

 T
	Tag parameter, Service Applications
	tagged TLB, Memory Virtualization
	take ownership privilege, Super Privileges
	targeted DPCs, Dispatch or Deferred Procedure Call (DPC)
 Interrupts
	Task (Process) List, Digging into Windows Internals
	Task Manager, Processes, Threads, and Jobs, Processes, Threads, and Jobs, Processes, Threads, and Jobs, Kernel Mode vs. User Mode, Digging into Windows Internals, Protected Processes, Using Tools to Interact with Priority, File System and Registry Virtualization
		access rights, Protected Processes
	Applications tab, Processes, Threads, and Jobs
	kernel mode vs. user mode counter, Kernel Mode vs. User Mode
	priority levels, changing, Using Tools to Interact with Priority
	process activity, viewing, Processes, Threads, and Jobs
	Processes tab, Processes, Threads, and Jobs
	virtualization status, viewing, File System and Registry Virtualization

	task offloading, NDIS Drivers
	Taskeng.exe, Processes, Threads, and Jobs
	TaskHost, Consumer Registration
	TCB (thread control block), Data Structures, Extended Affinity Mask
		CPU numbers, Extended Affinity Mask

	TCP/IP, Kernel Event Tracing, Windows Networking Components, Winsock Extensions, Protocol Drivers, Protocol Drivers, Protocol Drivers, Protocol Drivers, Windows Filtering Platform, NDIS Drivers
		activity, tracing, Kernel Event Tracing
	device objects, viewing, Protocol Drivers
	Next Generation TCP/IP Stack, Protocol Drivers
	offloading, NDIS Drivers
	receive window auto tuning, Protocol Drivers
	WAN-friendly charactersitics, Protocol Drivers
	well-known addresses, Winsock Extensions
	WFP integration, Windows Filtering Platform

	TCP/IP port (port 88), User Logon Steps
	TCP/IP protocol stack, The OSI Reference Model
	TDI (Transport Driver Interface), Windows Networking Components, Winsock Kernel, Surrogate Providers
		transports, Windows Networking Components

	TDI (Transport Driver Interface) clients, The OSI Reference Model
	TDI Extension (TDX) Driver, Windows Networking Components
	TEB (thread environment block), Shared Service Processes, Stage 7: Performing Process Initialization in the Context of
 the New Process, Data Structures, Data Structures, Data Structures
		dumping, Data Structures
	fields, Data Structures
	service tags, Shared Service Processes

	temporary objects, Object Security
	terminal server sessions, Terminal Services and Multiple Sessions, Service Control Manager (SCM)
		detecting, Terminal Services and Multiple Sessions
	management, Service Control Manager (SCM)

	terminal-services environments, Kernel Mode vs. User Mode, Service Isolation, Choosing a Processor for a Thread When There Are No Idle
 Processors
		processor share-based scheduling, Choosing a Processor for a Thread When There Are No Idle
 Processors
	window stations, Service Isolation

	terminated threads, Thread States, Termination
	terms, definitions of, Windows API
	Testlimit tool, Object Handles and the Process Handle Table
	third-party device drivers, verification, Kernel Mode vs. User Mode
	thread context, Processes, Threads, and Jobs, Processes, Threads, and Jobs
		32-bit and 64-bit, Processes, Threads, and Jobs

	thread data structures, Data Structures, Data Structures
		dumping, Data Structures

	thread dispatcher, activating, Software Interrupt Request Levels (IRQLs)
	thread environment block (TEB), Stage 7: Performing Process Initialization in the Context of
 the New Process (see TEB (thread environment block))
	thread IDs, Processes, Threads, and Jobs
	Thread Information Block (TIB), Data Structures
	thread objects, Executive Objects, Keyed Events
		KeyedWaitSemaphore, Keyed Events

	thread parameter, Stage 4: Creating the Initial Thread and Its Stack and
 Context
	thread pools, Worker Factories (Thread Pools), Worker Factories (Thread Pools), Worker Factories (Thread Pools)
		shutting down, Worker Factories (Thread Pools)
	viewing, Worker Factories (Thread Pools)

	thread scheduling, Processes, Threads, and Jobs, Processes, Threads, and Jobs, Thread Scheduling, Thread Scheduling, Overview of Windows Scheduling, Using Tools to Interact with Priority, Thread States, Dispatcher Database, Priority Boosts, Priority Boosts, Priority Boosts for Multimedia Applications and Games, Scheduling Scenarios, Scheduling Scenarios, Preemption, Quantum End, Termination, Termination, Idle Threads, Thread Selection, Thread Selection, Ideal and Last Processor, Thread Selection on Multiprocessor Systems, Thread Selection on Multiprocessor Systems, Choosing a Processor for a Thread When There Are No Idle
 Processors, Resuming Execution
		context switches, Priority Boosts for Multimedia Applications and Games
	DFSS scheduling and, Resuming Execution
	dispatcher database, Thread States
	fibers, Processes, Threads, and Jobs
	idle scheduling, Thread Selection
	idle threads, Termination
	limitations, Choosing a Processor for a Thread When There Are No Idle
 Processors
	on multiprocessor systems, Thread Selection
	preemption, Scheduling Scenarios
	priority boosts, Priority Boosts
	priority levels, Overview of Windows Scheduling
	priority-driven, preemptive, Thread Scheduling
	processor selection, Thread Selection on Multiprocessor Systems
	quantum, Dispatcher Database
	quantum end, Preemption
	thread execution states, Using Tools to Interact with Priority
	thread selection, Idle Threads
	thread selection on multiprocessor
 systems, Ideal and Last Processor
	thread termination, Termination
	threads in real-time range, Priority Boosts
	time slicing, Quantum End
	UMS, Processes, Threads, and Jobs
	voluntary switching, Scheduling Scenarios
	work-stealing loop, Thread Selection on Multiprocessor Systems

	thread stack, Examining Thread Activity, Examining Thread Activity
		32-bit and 64-bit, Examining Thread Activity

	thread-local storage (TLS), Processes, Threads, and Jobs
	threaded DPCs, Dispatch or Deferred Procedure Call (DPC)
 Interrupts, Dispatch or Deferred Procedure Call (DPC)
 Interrupts
		disabling, Dispatch or Deferred Procedure Call (DPC)
 Interrupts

	threads, Processes, Threads, and Jobs, Processes, Threads, and Jobs, Processes, Threads, and Jobs, Processes, Threads, and Jobs, Processes, Threads, and Jobs, Processes, Threads, and Jobs, Trap Dispatching, Hardware Interrupt Processing, Software Interrupt Request Levels (IRQLs), Software Interrupt Request Levels (IRQLs), Dispatch or Deferred Procedure Call (DPC)
 Interrupts, Dispatch or Deferred Procedure Call (DPC)
 Interrupts, Asynchronous Procedure Call Interrupts, Asynchronous Procedure Call Interrupts, Asynchronous Procedure Call Interrupts, Exception Dispatching, Unhandled Exceptions, System Service Dispatching, Type Objects, Object Filtering, Low-IRQL Synchronization, Low-IRQL Synchronization, What Signals an Object?, Data Structures, Fast Mutexes and Guarded Mutexes, Executive Resources, User-Mode Resources, Run Once Initialization, System Worker Threads, Kernel Support, DLL Name Redirection, Stage 3B: Creating the Initial Process Address Space, Stage 7: Performing Process Initialization in the Context of
 the New Process, Stage 7: Performing Process Initialization in the Context of
 the New Process, Stage 7: Performing Process Initialization in the Context of
 the New Process, Stage 7: Performing Process Initialization in the Context of
 the New Process, Stage 7: Performing Process Initialization in the Context of
 the New Process, Data Structures, Data Structures, Data Structures, Data Structures, Birth of a Thread, Birth of a Thread, Birth of a Thread, Birth of a Thread, Examining Thread Activity, Examining Thread Activity, Examining Thread Activity, Examining Thread Activity, Examining Thread Activity, Examining Thread Activity, Examining Thread Activity, Examining Thread Activity, Examining Thread Activity, Thread Scheduling, Thread Scheduling, Thread Scheduling, Overview of Windows Scheduling, Overview of Windows Scheduling, Overview of Windows Scheduling, Overview of Windows Scheduling, Priority Levels, Interrupt Levels vs. Priority Levels, Using Tools to Interact with Priority, Using Tools to Interact with Priority, Using Tools to Interact with Priority, Using Tools to Interact with Priority, Thread States, Thread States, Thread States, Thread States, Thread States, Thread States, Thread States, Dispatcher Database, Quantum, Priority Boosting After I/O Completion, Priority Boosts for Multimedia Applications and Games, Scheduling Scenarios, Termination, Idle Threads, Thread Selection, Logical Processor State, Extended Affinity Mask, Extended Affinity Mask, Ideal and Last Processor, Choosing a Processor for a Thread When There Are No Idle
 Processors, Per-Session CPU Quota Blocks, CPU Rate Limits, Protecting Objects, Access Checks, Access Checks, Tokens, Impersonation, Determining Access, Super Privileges
		access tokens, Processes, Threads, and Jobs, Super Privileges
	activation context stack, DLL Name Redirection
	activity, examining, Birth of a Thread
	affinity mask, Logical Processor State
	alertable wait state, Asynchronous Procedure Call Interrupts
	APC queue, Dispatch or Deferred Procedure Call (DPC)
 Interrupts
	artificially waiting, CPU Rate Limits
	clock cycle count, Examining Thread Activity
	clock cycles charged to, Per-Session CPU Quota Blocks
	components, Processes, Threads, and Jobs
	contention count, Executive Resources
	context switching, Priority Boosts for Multimedia Applications and Games
		(see also context switches)

	CPU consumption, Examining Thread Activity
	CPU numbers, Extended Affinity Mask
	CreateThread function, Birth of a Thread
	creation, Birth of a Thread
	creation time, Data Structures
	data structures, Stage 7: Performing Process Initialization in the Context of
 the New Process
	debug objects associated with, Kernel Support
	deferred ready state, Using Tools to Interact with Priority
	defined, Processes, Threads, and Jobs
	dispatching, Overview of Windows Scheduling
	distribution of, Choosing a Processor for a Thread When There Are No Idle
 Processors
	execution, Stage 7: Performing Process Initialization in the Context of
 the New Process, Birth of a Thread
	execution state transitions, Thread States
	execution state transitions, viewing, Thread States
	execution states, Using Tools to Interact with Priority
	executive resources, waiting on, Priority Boosting After I/O Completion
	fibers, converting, Processes, Threads, and Jobs
	housekeeping, Extended Affinity Mask
	idle thread, Termination
	impersonation, Protecting Objects
	impersonation tokens, Impersonation
	information fields, Data Structures
	information, displaying, Data Structures
	initialized state, Thread States
	integrity levels, Determining Access
	internal start functions code, Unhandled Exceptions
	internal structures, Stage 7: Performing Process Initialization in the Context of
 the New Process
	killing, Examining Thread Activity
	mutual exclusion, Object Filtering
	objects, waiting for, Low-IRQL Synchronization
	passive interrupt level, Interrupt Levels vs. Priority Levels
	preempted, Overview of Windows Scheduling, Scheduling Scenarios
	previous mode, System Service Dispatching
	priority boosts, Priority Levels
	priority levels, Overview of Windows Scheduling
		(see also priority levels)

	processor affinity, Thread Scheduling
		(see also affinity masks; processor affinity)

	quantum, Hardware Interrupt Processing, Overview of Windows Scheduling, Dispatcher Database
	quantum expiration, Dispatch or Deferred Procedure Call (DPC)
 Interrupts
	quorums, Stage 3B: Creating the Initial Process Address Space
	ready state, Thread Scheduling, Using Tools to Interact with Priority
	reaper function, System Worker Threads
	run-time accounting, Examining Thread Activity, Quantum
	running state, Thread States
	scheduling, Software Interrupt Request Levels (IRQLs), Thread Scheduling
	scheduling on multiprocessor systems, Thread Selection
	scheduling priorities, Software Interrupt Request Levels (IRQLs)
	security access validation, Access Checks
	security contexts, Tokens
	security descriptors, Examining Thread Activity
	selection, Idle Threads
	selection on multiprocessor systems, Ideal and Last Processor
	shared and exclusive access, Fast Mutexes and Guarded Mutexes, User-Mode Resources
	shared memory sections, Processes, Threads, and Jobs
	SIDs, Access Checks
	stack, Examining Thread Activity
	standby state, Using Tools to Interact with Priority
	start address, Data Structures, Examining Thread Activity
	start address, viewing, Exception Dispatching
	startup in common routine, Stage 7: Performing Process Initialization in the Context of
 the New Process
	startup wrapper function, Examining Thread Activity
	suspension, Asynchronous Procedure Call Interrupts, Examining Thread Activity
	synchronization, Type Objects, Low-IRQL Synchronization
	system worker, Run Once Initialization
	terminated state, Thread States
	termination, Asynchronous Procedure Call Interrupts, Stage 7: Performing Process Initialization in the Context of
 the New Process
	transition state, Thread States
	trap frame, Trap Dispatching
	virtual address space, Processes, Threads, and Jobs
	wait blocks list, What Signals an Object?
	wait queues, viewing, Data Structures
	waiting state, Thread States

	throttling, Stage 4: Creating the Initial Thread and Its Stack and
 Context (see CPU throttling)
	thunking, Wow64 Process Address Space Layout, Stage 7: Performing Process Initialization in the Context of
 the New Process
	TIB (Thread Information Block), Data Structures
	time-keeping processor, Processor Selection, Processor Selection
		CPU 0, Processor Selection
	designating, Processor Selection

	timer coalescing, Intelligent Timer Tick Distribution
	timer expirations, Timer Expiration, Intelligent Timer Tick Distribution
		minimizing, Intelligent Timer Tick Distribution

	timer object type, Executive Objects
	timer processing, Asynchronous Procedure Call Interrupts, Timer Expiration, Processor Selection, Processor Selection, Intelligent Timer Tick Distribution
		intelligent timer tick distribution, Processor Selection
	listing timers, Processor Selection
	timer coalescing, Intelligent Timer Tick Distribution
	timer expiration, Timer Expiration

	timer table, Timer Expiration
	timers, Timer Processing, Timer Expiration, Timer Expiration, Processor Selection, Processor Selection, Processor Selection, Processor Selection, Intelligent Timer Tick Distribution, Intelligent Timer Tick Distribution, Timer Coalescing
		coalescable, Intelligent Timer Tick Distribution
	high-frequency, Timer Processing
	intelligent timer tick distribution, Processor Selection
	listing, Processor Selection
	processing KPRCB fields, Timer Expiration
	processor selection, Processor Selection
	queuing behaviors, Processor Selection
	shifting, Timer Coalescing
	tolerance, Intelligent Timer Tick Distribution
	types, Timer Expiration

	Tlist.exe tool, Processes, Threads, and Jobs, Shared Service Processes, Data Structures
		services running in processes, viewing, Shared Service Processes
	thread information, displaying, Data Structures

	TLNPI (Transport Layer Network Provider
 Interface), Windows Networking Components, Extending Winsock
		AFD client, Extending Winsock

	TLS (thread-local storage), Processes, Threads, and Jobs
	TLS initializers, Post-Import Process Initialization
	TM (Transaction Manager), Kernel Transaction Manager
	TmEn objects, Executive Objects
	TmRm objects, Executive Objects
	TmTm objects, Executive Objects
	TmTx objects, Executive Objects
	token object type, Executive Objects
	tokens, Service Isolation, Tokens, Tokens, Tokens, Tokens, Tokens, Tokens, Tokens, Tokens, Tokens, Tokens, Tokens, Tokens, Tokens, Tokens, Tokens, Impersonation, Impersonation, User Account Control and Virtualization
		AppLocker attributes, Tokens
	authentication ID, Tokens
	contents of, Tokens
	expiration time, Tokens
	filtered admin, Tokens, User Account Control and Virtualization
	generating, Tokens
	impersonation, Impersonation
	informational fields, Tokens
	LUID, Tokens
	mandatory policies, Tokens
	privilege arrays, Tokens
	restricted, Tokens, Impersonation
	security information in, Tokens
	types, Tokens
	viewing, Tokens
	write-restricted, Service Isolation

	TOKEN_MANDATORY_NEW_PROCESS_MIN policy, Tokens
	TOKEN_MANDATORY_NO_WRITE_UP policy, Tokens
	topology, network, Location and Topology, Active Probe
		discovery and mapping, Location and Topology
	Link-Layer Topology Discovery, Active Probe

	TpWorkerFactory, Executive Objects, Worker Factories (Thread Pools)
	trace data, kernel, Kernel Event Tracing
	transaction handles, Transactional Registry (TxR)
	Transaction Manager (TM), Kernel Transaction Manager
	transaction managers, Kernel Transaction Manager
	transaction objects, Kernel Transaction Manager
	transactions, Transactional Registry (TxR), Transactional Registry (TxR)
		isolation level, Transactional Registry (TxR)

	transfer jobs, Background Intelligent Transfer Service, Background Intelligent Transfer Service, Background Intelligent Transfer Service
		priority, Background Intelligent Transfer Service
	security context, Background Intelligent Transfer Service

	transition threads, Thread States
	TransmitFile function, Winsock Server Operation
	TransmitPackets API, Winsock Server Operation
	Transport Driver Interface (TDI) clients, The OSI Reference Model
	transport layer in OSI reference model, The OSI Reference Model
	Transport Layer Network Provider Interface
 (TLNPI), Windows Networking Components
	transport provider interfaces, RPC Operation
	transport service providers, Winsock Extensions
	transport, the, Windows Networking Components
	transports, Windows Networking Components
	trap dispatching, System Mechanisms, Trap Dispatching, Asynchronous Procedure Call Interrupts, Timer Coalescing, Windows Error Reporting
		exception dispatching, Timer Coalescing
	interrupt dispatching, Trap Dispatching
	system service dispatchng, Windows Error Reporting
	timer processing, Asynchronous Procedure Call Interrupts

	trap frames, Trap Dispatching
	trap handlers, Trap Dispatching, Trap Dispatching, Exception Dispatching
	trap, defined, System Mechanisms
	trigger consumers, registration, Provider Registration
	trigger information, Provider Registration, Consumer Registration
		viewing, Consumer Registration

	trigger providers, registration, UBPM API
	triggers, WDI, Windows Diagnostic Infrastructure
	Trojan horse prevention, Trusted Computer System Evaluation Criteria
	troubleshooting, Process Monitor Internals, Diagnostic Policy Service
		modules, Diagnostic Policy Service
	registry-related problems, Process Monitor Internals

	Trusted Computer System Evaluation Criteria (TCSEC), Security, Trusted Computer System Evaluation Criteria
		rating levels, Trusted Computer System Evaluation Criteria

	trusted facility management, Trusted Computer System Evaluation Criteria
	trusted path functionality, Trusted Computer System Evaluation Criteria
	tunneling, Protocol Drivers, Remote Access
	TxF, Kernel Transaction Manager
	TxR, Kernel Transaction Manager, HKEY_PERFORMANCE_DATA, Transactional Registry (TxR)
		common logging file system support, Transactional Registry (TxR)

	type initializers, information in, Type Objects
	type objects, Object Structure, Object Headers and Bodies, Type Objects, Data Structures
		Process, Data Structures
	viewing, Type Objects

	Type parameter, Service Applications, Service Applications

 U
	UAC (User Account Control), Local Session Manager (Lsm.exe), Local Session Manager (Lsm.exe), HKEY_USERS, User Account Control and Virtualization, User Account Control and Virtualization, User Account Control and Virtualization, File System and Registry Virtualization, Registry Virtualization, Running with Administrator Rights, Running with Administrator Rights, Requesting Administrative Rights, Auto-Elevation, Controlling UAC Behavior, Controlling UAC Behavior
		access tokens, Local Session Manager (Lsm.exe)
	administrative rights requests, Running with Administrator Rights
	administrative rights, running with, Running with Administrator Rights
	auto-elevation, Requesting Administrative Rights
	elevation, User Account Control and Virtualization, Registry Virtualization
	modifying behavior of, Auto-Elevation
	standard user rights, User Account Control and Virtualization
	storage location of settings, Controlling UAC Behavior
	turning off, Controlling UAC Behavior
	virtualization, file system and registry, File System and Registry Virtualization
	virtualized registry root, HKEY_USERS

	UAC File Virtualization Filter Driver, File Virtualization
	UBPM (Unified Background Process Manager), Service Tags, Service Tags, Initialization, Initialization, Initialization, Initialization, Initialization, Initialization, Initialization, UBPM API, UBPM API, Provider Registration, Consumer Registration, Consumer Registration
		architecture, Service Tags
	consumer registration, Provider Registration
	consumer thread creation, Initialization
	ETW consumer initialization, Initialization
	event manager setup, Initialization
	event processing, Initialization
	initialization, Initialization
	internal tracing support, Initialization
	provider registration, UBPM API
	service control programs, Consumer Registration
	TaskHost, Initialization, Consumer Registration
	UBPM API, UBPM API

	UIPI (User Interface Privilege Isolation), Determining Access
	UMDF (User-Mode Driver Framework), Windows Driver Model (WDM)
	UMPD (User Mode Print Driver) framework, Data Structures
	UMS (user-mode scheduling), Processes, Threads, and Jobs
	unauthorized access, Security, Software Restriction Policies
		preventing, Security
		(see also security mechanisms)

	Software Restriction Policies for, Software Restriction Policies

	unauthorized operations, Super Privileges
	UNC names, HTTP, Surrogate Providers
		redirector support, Surrogate Providers

	UNC paths, accessing, UPnP with PnP-X
	unconnected communication ports, Connection Model
	undocumented interfaces, viewing, Windows Driver Foundation
	unhandled exception filter calls, Unhandled Exceptions
	unhandled exceptions, Exception Dispatching, Unhandled Exceptions
		debugging, Unhandled Exceptions

	unicast packets, Network Address Translation
	Unicode, Registry
	Unified Background Process Manager (UBPM), Service Tags (see UBPM (Unified Background Process Manager))
	Universal Naming Convention (UNC), HTTP, UPnP with PnP-X
	Universal Plug and Play, Message Queuing
	UNIX-based applications, Subsystem for Unix-based Applications, Networking APIs
		networking, Networking APIs
	subsystem for, Subsystem for Unix-based Applications

	unrestricted service SIDs, Service Isolation
	unwait boosts, Boosts Due to Scheduler/Dispatcher Events
	uploads, Background Intelligent Transfer Service
	USB network devices, Connection-Oriented NDIS
	user access restrictions, Security
		(see also access rights)

	User Account Control (UAC), Local Session Manager (Lsm.exe) (see UAC (User Account Control))
	User Account Control Settings dialog box, Auto-Elevation
	user address space, Kernel Mode vs. User Mode
	User APC reserve object, Reserve Objects
	user applications, Kernel Mode vs. User Mode, Architecture Overview
		user mode vs. kernel mode, Kernel Mode vs. User Mode

	user authentication, Security, Logon, Assured Authentication
		biometric framework, Assured Authentication

	user callbacks, User Callbacks
	user environment initialization, Winlogon, LogonUI, and Userinit
	USER functions, Windows Subsystem
	user identification, Logon
	User Interface Privilege Isolation (UIPI), Determining Access
	User Interface Services, Windows Operating System Versions
	user logon, Local Session Manager (Lsm.exe), Winlogon Initialization, Winlogon Initialization, User Logon Steps, User Logon Steps, Biometric Framework for User Authentication
		(see also logon)
	active sessions, listing, User Logon Steps
	Assured Authentication, User Logon Steps
	authentication, Winlogon Initialization
	management, Local Session Manager (Lsm.exe)
	via fingerprint scan, Biometric Framework for User Authentication

	user mode, Processes, Threads, and Jobs, Kernel Mode vs. User Mode, Kernel Mode vs. User Mode, Requirements and Design Goals, Operating System Model
		context switches, Processes, Threads, and Jobs
	transitioing to kernel mode, Kernel Mode vs. User Mode

	User Mode Print Driver framework (UMPD), Data Structures
	user profiles, HKEY_USERS, HKEY_USERS, User Logon Steps, User Account Control and Virtualization
		HKU subkeys, HKEY_USERS
	loading, User Logon Steps
	per-user settings, User Account Control and Virtualization
	storage location, HKEY_USERS

	User Profiles management dialog box, HKEY_USERS
	user rights, Account Rights, User Account Control and Virtualization
		adding, removing, enumerating, Account Rights

	user-mode address space, Data Structures
	user-mode APCs, Dispatch or Deferred Procedure Call (DPC)
 Interrupts
	user-mode applications, Timer Expiration, Exception Dispatching
		timer use, Timer Expiration
	vectored exception handling, Exception Dispatching

	user-mode code, Low-IRQL Synchronization, Condition Variables, Interrupt Levels vs. Priority Levels
		locking primitives, Low-IRQL Synchronization
	passive interrupt level, Interrupt Levels vs. Priority Levels
	SRW Locks for, Condition Variables

	user-mode debugger, Data Structures, Data Structures, Examining Thread Activity
		CSR_PROCESS, dumping, Data Structures
	CSR_THREAD, dumping, Data Structures
	thread stack, displaying, Examining Thread Activity

	user-mode debugging, Executive, User-Mode Debugging, User-Mode Debugging, Kernel Support, Native Support, Native Support
		kernel support, User-Mode Debugging
	native support, Kernel Support
	WinDbg for, Native Support
	Windows subsystem support, Native Support

	User-Mode Driver Framework (UMDF), Windows Driver Model (WDM)
	user-mode dump processes, Debugging Tools for Windows
	user-mode processes, Kernel Debugging, Architecture Overview, Session Manager (Smss), Session Manager (Smss)
		debugging, Kernel Debugging
	services, Session Manager (Smss)
	session manager, Session Manager (Smss)
	types, Architecture Overview

	user-mode scheduling (UMS), Processes, Threads, and Jobs
	user-mode synchronization objects, Data Structures, Pushlocks, Pushlocks
		critical sections, Data Structures, Pushlocks

	user-mode thread pools, Worker Factories (Thread Pools)
	user-mode threads, preempting, Dispatch or Deferred Procedure Call (DPC)
 Interrupts
	User32.dll, Architecture Overview
	Userinit.exe, Local Session Manager (Lsm.exe), User Logon Steps
	users, Security, Security, Interactive Services and Session 0 Isolation, Choosing a Processor for a Thread When There Are No Idle
 Processors, CPU Rate Limits, Protecting Objects, Protecting Objects, Tokens, Tokens, Tokens, Logon, Winlogon Initialization, Windows Networking Components
		CPU priority, Choosing a Processor for a Thread When There Are No Idle
 Processors
	CPU rate limits, CPU Rate Limits
	group membership, Tokens, Tokens
	identity validation, Protecting Objects, Logon
	intra-user isolation, Protecting Objects
	local logon SID, Winlogon Initialization
	of the transport, Windows Networking Components
	privileges, Tokens
	security context, Security
	security credentials, Security
	service UI notifications, Interactive Services and Session 0 Isolation

 V
	VADs (virtual address descriptors), Processes, Threads, and Jobs
	values, registry, Registry Usage, Registry Usage, Process Monitor Internals
		missing, Process Monitor Internals
	types, Registry Usage

	variable quantums, Variable Quantums
	variables, User-Mode Resources, User-Mode Resources
		condition, User-Mode Resources
	signaling change to, User-Mode Resources

	VDevs (virtual devices), Enlightenments
	vectored exception handling, Exception Dispatching
	VerifyVersionInfo function, Differences Between Client and Server Versions
	version numbers, Windows Operating System Versions
	VID (VM infrastructure driver), Virtual Machine Manager Service and Worker Processes
	video display support, Windows Subsystem
	view blobs, Blobs, Handles, and Resources
	virtual address descriptors (VADs), Processes, Threads, and Jobs
	virtual address space, Virtual Memory
	virtual directory, uploading to, Background Intelligent Transfer Service
	virtual DLL files, API Sets
	virtual machine management service, Parent Partition
	virtual machine worker processes (VMWPs), Parent Partition
	virtual machines, Memory Virtualization, Intercepts
		Dynamic Memory, Memory Virtualization
	migrating between nodes, Intercepts

	virtual memory, Virtual Memory, Kernel Mode vs. User Mode, Executive, Using Tools to Interact with Priority
		access mode tag, Kernel Mode vs. User Mode
	executive implementation, Executive
	limits, Using Tools to Interact with Priority

	virtual processors (VPs), Synthetic Devices
	virtual service accounts, Virtual Service Accounts, Virtual Service Accounts, Virtual Service Accounts
		passwords, Virtual Service Accounts
	permissions, granting, Virtual Service Accounts

	virtualization, Hypervisor (Hyper-V), Hypervisor (Hyper-V), Hypervisor (Hyper-V), Hypervisor (Hyper-V), Hypervisor (Hyper-V), Hypervisor (Hyper-V), Child Partitions, Memory Virtualization, Stage 5: Performing Windows Subsystem–Specific
 Post-Initialization, File System and Registry Virtualization, File System and Registry Virtualization, File System and Registry Virtualization, File System and Registry Virtualization, File System and Registry Virtualization, File System and Registry Virtualization, Requesting Administrative Rights
		application, Stage 5: Performing Windows Subsystem–Specific
 Post-Initialization
	application-compatibility shims, File System and Registry Virtualization
	architecture, Hypervisor (Hyper-V)
	disallowed, File System and Registry Virtualization
	enlightenments, Child Partitions
	exceptions list, File System and Registry Virtualization
	file, File System and Registry Virtualization
	file system, File System and Registry Virtualization
	guests, Hypervisor (Hyper-V)
	host-based, Hypervisor (Hyper-V)
	hosts, Hypervisor (Hyper-V)
	hypervisor-based, Hypervisor (Hyper-V)
		(see also hypervisor (Hyper-V))

	memory, Memory Virtualization
	registry, File System and Registry Virtualization, Requesting Administrative Rights

	virtualization service clients (VSCs), Child Partitions, Emulated Devices
	virtualization service providers (VSPs), Virtual Machine Manager Service and Worker Processes, Emulated Devices
	VM infrastructure driver (VID), Virtual Machine Manager Service and Worker Processes
	VMBus, Emulated Devices
	VMWPs (virtual machine worker processes), Parent Partition
	volatile hives, Logging Activity in Unprivileged Accounts or During
 Logon/Logoff
	VPN remote access, Remote Access
	VPNs, always-on, Direct Access
	VSCs (virtualization service clients), Child Partitions, Emulated Devices
	VSPs (virtualization service providers), Virtual Machine Manager Service and Worker Processes, Emulated Devices
	VT Extended/Nested Page Table (NPT)
 technology, Memory Virtualization

 W
	W32PROCESS, Data Structures, Data Structures, Data Structures, Stage 5: Performing Windows Subsystem–Specific
 Post-Initialization
		allocation, Stage 5: Performing Windows Subsystem–Specific
 Post-Initialization
	dumping, Data Structures

	W32THREAD, Data Structures, Data Structures, Data Structures, Data Structures
		dumping, Data Structures
	fields, Data Structures

	wait blocks, What Signals an Object?, What Signals an Object?, What Signals an Object?, Executive Resources
		for pushlocks, Executive Resources
	state information, What Signals an Object?
	wait information in, What Signals an Object?

	wait calls, Worker Factories (Thread Pools), Scheduling Scenarios
		worker factory management, Worker Factories (Thread Pools)

	wait chain address ordering, Data Structures
	wait operations, Object Filtering, What Signals an Object?
		(see also synchronization)
	data structures for, What Signals an Object?

	wait queues, Asynchronous Procedure Call Interrupts, Data Structures
		reordering, Asynchronous Procedure Call Interrupts
	viewing, Data Structures

	wait state, Asynchronous Procedure Call Interrupts, Data Structures, Data Structures
		aborted, Data Structures
	alertable, Asynchronous Procedure Call Interrupts
	entering, Data Structures

	wait status register, Data Structures
	WaitForMultipleObjects function, Low-IRQL Synchronization
	WaitForSingleObject function, Low-IRQL Synchronization
	waiting threads, Thread States, Unwait Boosts, Scheduling Scenarios
		boosting, Unwait Boosts
	voluntary switching, Scheduling Scenarios

	waits, Asynchronous Procedure Call Interrupts, Data Structures, Data Structures, Data Structures, Keyed Events
		committed state, Data Structures
	on keyed events, Keyed Events
	resolution, Asynchronous Procedure Call Interrupts
	satisfied, Data Structures
	timed-out, Data Structures

	wake operations, Keyed Events
	Wake-on-LAN, NDIS Drivers
	WANs, The OSI Reference Model, Mini-Redirectors, BranchCache
		content caching, BranchCache
	datalink layer, The OSI Reference Model
	SMB 2.0 for, Mini-Redirectors

	WBEM (Web-Based Enterprise Management), Service Control Programs
	WbemTest, viewing WMI class definition, The Common Information Model and the Managed Object Format
 Language
	WDF (Windows Driver Foundation), Windows Driver Model (WDM)
	WDI (Windows Diagnostic Infrastructure), Executive, Windows Diagnostic Infrastructure, Windows Diagnostic Infrastructure, Windows Diagnostic Infrastructure, Diagnostic Policy Service, Diagnostic Functionality
		diagnostic functionality, Diagnostic Functionality
	Diagnostic Policy Service, Windows Diagnostic Infrastructure
	Group Policy settings, Diagnostic Policy Service
	instrumentation, Windows Diagnostic Infrastructure

	WDM (Windows Driver Model), Windows Driver Model (WDM)
	Web access APIs, Web Access APIs
	web servers, Winsock Server Operation (see servers)
	Web Services, Windows API
	Web-Based Enterprise Management (WBEM), Service Control Programs
	WebDAV mini-redirector, Mini-Redirectors
	well-known addresses, Winsock Extensions
	WER (Windows Error Reporting), Unhandled Exceptions, Unhandled Exceptions, Windows Error Reporting, Windows Error Reporting, Protected Processes
		configuring, Unhandled Exceptions
	dialog box, Windows Error Reporting
	protected mode, Protected Processes
	registry configuration options, Windows Error Reporting

	WerFault.exe process, Unhandled Exceptions
	WFP (Windows Filtering Platform), Windows Networking Components, Windows Filtering Platform, Windows Filtering Platform, Internet Protocol Security
		callout drivers, Windows Networking Components
	components, Windows Filtering Platform
	IPsec WFP callout driver, Internet Protocol Security

	wide area networks (WANs), BranchCache (see WANs)
	Win16 executables, Stage 2: Opening the Image to Be Executed
	Win32 API, Windows Operating System Versions, Windows API, Object Headers and Bodies
		history, Windows API
	objects created through, Object Headers and Bodies

	Win32 emulation on 64-bit Windows, Wow64 (see Wow64)
	Win32 subsystem process, Environment Subsystems and Subsystem DLLs (see Csrss.exe (Client/Server Run-Time Subsystem))
	Win32k.sys, Architecture Overview, Type Objects, Data Structures, Data Structures, Priority Boosts for Foreground Threads After Waits
		GUI thread priority boosts, Priority Boosts for Foreground Threads After Waits
	per-thread data structure, Data Structures
	routine definition, Type Objects
	W32PROCESS, Data Structures

	Win32PrioritySeparation registry value, Quantum Settings Registry Value
	Win32StartAddr, Data Structures
	WinDbg, Debugging Tools for Windows, Native Support, Loaded Module Database, Examining Thread Activity
		debugger objects, viewing, Native Support
	loaded modules database, dumping, Loaded Module Database

	window messages, integrity level and, Determining Access
	window stations, Service Isolation, Service Isolation, Service Isolation, Logon
		creating and opening, Logon
	Service-0x0-3e7$, Service Isolation
	WinSta0, Service Isolation

	windowing and graphics system, Architecture Overview
	Windows 7, Concepts and Tools, Scalability, Scalability, Software Interrupt Request Levels (IRQLs), SwitchBack, Trusted Computer System Evaluation Criteria, AppLocker
		AppLocker, AppLocker
	client versions, Scalability
	context, SwitchBack
	security rating, Trusted Computer System Evaluation Criteria
	small-footprint versions, Software Interrupt Request Levels (IRQLs)
	vs. Windows Server 2008 R2, Scalability

	Windows API, Windows Operating System Versions, Windows Operating System Versions, Asynchronous Procedure Call Interrupts, Overview of Windows Scheduling
		description, Windows Operating System Versions
	thread priority assignment, Overview of Windows Scheduling
	user-mode APCs, Asynchronous Procedure Call Interrupts

	Windows API functions, defined, Windows API
	Windows authentication, Local Session Manager (Lsm.exe)
	Windows Biometric API, Biometric Framework for User Authentication
	Windows Biometric Driver Interface, Biometric Framework for User Authentication
	Windows Biometric Framework, Assured Authentication
	Windows Biometric Service, Biometric Framework for User Authentication
	Windows Boot Loader, Stable Storage
	Windows Clustering, Live Migration
	Windows device drivers, Services, Functions, and Routines
		(see also device drivers; drivers)

	Windows Diagnostic Infrastructure (WDI), Executive (see WDI (Windows Diagnostic Infrastructure))
	Windows DLLs, Data Structures
	Windows Driver Foundation (WDF), Windows Driver Model (WDM)
	Windows Driver Kit (WDK), Debugging Tools for Windows, Viewing and Changing the Registry, Lock Ownership Boosts
		boost value recommendations, Lock Ownership Boosts
	Offreg.dll, Viewing and Changing the Registry

	Windows Driver Model (WDM), Windows Driver Model (WDM)
	Windows Driver Model Windows Management
 Instrumentation routines, Executive
	Windows Embedded Standard 7, Software Interrupt Request Levels (IRQLs)
	Windows Error Reporting (WER), Unhandled Exceptions (see WER (Windows Error Reporting))
	Windows executables, Requesting Administrative Rights
	Windows executive, Architecture Overview (see executive, Windows)
	Windows File Protection, Diagnostic Functionality
	Windows Filtering Platform (WFP), Windows Filtering Platform
	Windows Firewall, Network Address Translation, Internet Protocol Security
		IPsec security and policy
 configuration, Internet Protocol Security
	Windows Filtering Platform use, Network Address Translation

	Windows Firewall with Advanced Security
 snap-in, Internet Protocol Security
	Windows functions, narrow and wide versions, Registry
	Windows GDI services, System Service Dispatching
	Windows global flags, System Worker Threads
	Windows image, opening, Stage 1: Converting and Validating Parameters and Flags
	Windows Initialization Process, Session Manager (Smss)
	Windows installation image, HKEY_LOCAL_MACHINE
	Windows internals, Registry, Digging into Windows Internals, Digging into Windows Internals, Digging into Windows Internals, Performance Monitor
		exploring, Digging into Windows Internals
	exposing, Registry
	kernel debugging, Performance Monitor
	Performance Monitor, Digging into Windows Internals
	tools for viewing, Digging into Windows Internals

	Windows logon process, Local Session Manager (Lsm.exe)
		(see also logon)

	Windows Management Instrumentation (WMI), Service Control Programs (see WMI (Windows Management Instrumentation))
	Windows Media Center Extender sessions, Terminal Services and Multiple Sessions
	Windows Media Center interactive sessions, Terminal Services and Multiple Sessions
	Windows Media Certificate, Protected Processes
	Windows Networking (WNet) API, UPnP with PnP-X
	Windows NT, Windows API, System Architecture, Windows Driver Model (WDM)
		driver model, Windows Driver Model (WDM)
	requirements of, System Architecture

	Windows operating system, Concepts and Tools, Concepts and Tools, Windows Operating System Versions, Terminal Services and Multiple Sessions, Objects and Handles, Security, Registry, Registry, Debugging Tools for Windows, System Architecture, System Architecture, Requirements and Design Goals, Operating System Model, Architecture Overview, Architecture Overview, Symmetric Multiprocessing, Scalability, Differences Between Client and Server Versions, Checked Build, Checked Build, Executive, Windows Driver Foundation, Security, Post-Import Process Initialization, API Sets, Hypervisor (Hyper-V), Management Mechanisms, Stage 4: Creating the Initial Thread and Its Stack and
 Context, Thread Scheduling, Thread Scheduling, Overview of Windows Scheduling, Priority Levels, Choosing a Processor for a Thread When There Are No Idle
 Processors, Security, Trusted Computer System Evaluation Criteria, Trusted Computer System Evaluation Criteria, Protecting Objects, Security Identifiers, Determining Access, Logon, Networking
		checked build version, Checked Build
	client editions, Terminal Services and Multiple Sessions
	client vs. server versions, Scalability
	Common Criteria certification, Trusted Computer System Evaluation Criteria
	core system files, Architecture Overview
	crash dump files, Debugging Tools for Windows
	debug version, Checked Build
	edition running, determining, Differences Between Client and Server Versions
	enlightenments, Hypervisor (Hyper-V)
	hardware error architecture, Executive
	impersonation model, Security
	integrity mechanism, Protecting Objects
	logon interface, Logon
	management mechansims, Management Mechanisms
	MinWin version, API Sets
	model, Requirements and Design Goals
	networking support, Networking
	object-oriented design, Operating System Model
	portability, Architecture Overview
	post-initialization operations, Stage 4: Creating the Initial Thread and Its Stack and
 Context
	priority levels, Overview of Windows Scheduling
	processor share-based scheduling, Choosing a Processor for a Thread When There Are No Idle
 Processors
	registry, Security
	releases, Concepts and Tools
	requirements and design goals, System Architecture
	routine naming conventions, Windows Driver Foundation
	scalability, Symmetric Multiprocessing
	scheduling system, Thread Scheduling
	security, Objects and Handles, Determining Access
	security mechanisms, Security
	SIDs, issuing, Security Identifiers
	system architecture, System Architecture
	TCSEC rating levels, Trusted Computer System Evaluation Criteria
	thread priority boosts, Priority Levels
	thread-based scheduling, Thread Scheduling
	Unicode, Registry
	version-specific GUID, Post-Import Process Initialization
	versions, Concepts and Tools
	Windows API, Windows Operating System Versions
	worldwide application binaries, Registry

	Windows PowerShell AppLocker commands, AppLocker
	Windows Server 2008 R2, Concepts and Tools, Scalability, Scalability, Trusted Computer System Evaluation Criteria, AppLocker
		AppLocker, AppLocker
	security rating, Trusted Computer System Evaluation Criteria
	versions, Scalability
	vs. Windows 7, Scalability

	Windows service control manager, Windows API
	Windows services, Windows API, Services, Stage 2: Opening the Image to Be Executed, Virtual Service Accounts, Distributed File System Namespace, BranchCache Optimized Application Retrieval: HTTP
 Sequence
		(see also services)
	defined, Windows API
	DFS-R, Distributed File System Namespace
	DNS server, BranchCache Optimized Application Retrieval: HTTP
 Sequence
	startup code, debugging, Stage 2: Opening the Image to Be Executed
	virtual service accounts, Virtual Service Accounts

	Windows Services MMC snap-in, The Local Service Account
	Windows Sockets, Networking APIs
	Windows Software Development Kit (SDK), Windows Operating System Versions, Kernel Debugging, Debugging Tools for Windows
		contents, Debugging Tools for Windows
	Debugging Tools for Windows, Kernel Debugging
	Windows API description, Windows Operating System Versions

	Windows subsystem, Security, Subsystem Startup, Ntdll.dll, Object Manager, Executive Objects, Protected Processes, Stage 4: Creating the Initial Thread and Its Stack and
 Context, Data Structures, Birth of a Thread
		applications, Data Structures
	executive objects, Executive Objects
	GDI/User objects, Object Manager
	object-based security, Security
	process communication functions, Ntdll.dll
	process initialization, Stage 4: Creating the Initial Thread and Its Stack and
 Context
	processes, creation, Protected Processes
	thread setup, Birth of a Thread

	Windows support images, Stage 2: Opening the Image to Be Executed
	Windows Sysinternals Administrator’s Reference
 (Russinovich and Margosis), Windows Driver Kit
	Windows System Resource Manager (WSRM), Using Tools to Interact with Priority
	Windows Transport Driver Interface
 standard, The OSI Reference Model
	Windows USER services, System Service Dispatching
	Windows via C/C++ (Richter and Nasarre), Windows Operating System Versions, Timer Coalescing, What Signals an Object?
	Windows XP, AppLocker
	windows, visible, Processes, Threads, and Jobs
	WindowStation objects, Executive Objects, Object Methods, Object Methods
		okay-to-close routine, Object Methods
	open method, Object Methods

	WinHTTP, Web Access APIs
	WinInet, Session Manager (Smss), Winlogon Initialization, Web Access APIs, Web Access APIs
		HTTP API, Web Access APIs
	instance of, Session Manager (Smss)

	Winload startup tasks, Hive Size Limits
	Winlogon, Session Manager (Smss), Winlogon, LogonUI, and Userinit, Security System Components, Logon, Logon, Logon, Winlogon Initialization, Winlogon Initialization, Winlogon Initialization, Winlogon Initialization, Winlogon Initialization, User Logon Steps
		Ctrl+Alt+Delete key combination
 notification, Winlogon Initialization
	desktop, Logon, Winlogon Initialization
	initialization, Logon
	instance of, Session Manager (Smss)
	logon coordination, Logon
	logon failure messages, User Logon Steps
	LsaAuthenticationPort connection, Winlogon Initialization
	RPC message server registration, Winlogon Initialization
	user logon steps, Winlogon Initialization

	WinObj, Service Descriptor Tables, Reserve Objects, Object Directories, Message Model
		ALPC port objects, viewing, Message Model
	base names objects, viewing, Object Directories
	object ACLs, displaying, Reserve Objects

	Winsider Seminars & Solutions, Differences Between Client and Server Versions
	Winsock, Networking APIs, Networking APIs, Windows Sockets, Windows Sockets, Winsock Server Operation, Winsock Server Operation, Winsock Server Operation, Winsock Extensions, Winsock Extensions, Winsock Extensions, Winsock Extensions, Winsock Extensions, Extending Winsock, Extending Winsock, RPC Operation
		AcceptEx function, Winsock Server Operation
	client operation, Windows Sockets
	connection-oriented operation, Winsock Server Operation
	extending, Winsock Extensions
	features, Networking APIs
	Helper libraries, Extending Winsock
	implementation, Extending Winsock
	layered service providers, Winsock Extensions
	namespace providers, viewing, Winsock Extensions
	network communication authentication and
 encryption, RPC Operation
	server operation, Windows Sockets
	service provider interface, Winsock Extensions
	TransmitFile function, Winsock Server Operation
	transport providers, viewing, Winsock Extensions

	Winsock 2.2, Networking APIs
	Winsock Kernel (WSK), Windows Networking Components (see WSK (Winsock Kernel))
	WinSta0, Object Directories, Service Startup
		opening, Service Startup

	WMI (Windows Management Instrumentation), Service Control Programs, Service Control Programs, WMI Architecture, WMI Architecture, WMI Architecture, WMI Architecture, WMI Architecture, Providers, The Common Information Model and the Managed Object Format
 Language, The Common Information Model and the Managed Object Format
 Language, The WMI Namespace, Class Association, Class Association, WMI Implementation, WMI Implementation, WMI Implementation
		ActiveX controls, WMI Architecture
	architecture, Service Control Programs
	CIMOM Object Repository, WMI Architecture
	class association, The WMI Namespace
	class definitions, The Common Information Model and the Managed Object Format
 Language
	Common Information Model, Providers
	Control application, WMI Implementation
	implementation, Class Association
	namespace, The Common Information Model and the Managed Object Format
 Language
	provider classifications, WMI Architecture
	providers, WMI Architecture
	scripting API, WMI Architecture
	scripting language support, Class Association
	security, WMI Implementation
	System Control commands, WMI Implementation

	WMI Administrative Tools, The Common Information Model and the Managed Object Format
 Language
	WMI CIM Studio, The Common Information Model and the Managed Object Format
 Language, The Common Information Model and the Managed Object Format
 Language
		namespaces, viewing, The Common Information Model and the Managed Object Format
 Language

	WMI COM API, WMI Architecture
	WMI Object Browser, Class Association
	Wmic.exe, WMI Implementation
	Wmiprvse process, Class Association, WMI Implementation
		creation, viewing, WMI Implementation

	WNet provider, Multiple Provider Router
	WNetAddConnection function, Multiple Provider Router
	WNetAddConnection2 and WNetAddConnection3
 functions, Multiple Provider Router
	work items, Run Once Initialization
	work-stealing loop, Thread Selection on Multiprocessor Systems
	worker factories, Worker Factories (Thread Pools), Worker Factories (Thread Pools), Worker Factories (Thread Pools), Worker Factories (Thread Pools)
		thread creation, Worker Factories (Thread Pools)
	thread termination, Worker Factories (Thread Pools)
	viewing, Worker Factories (Thread Pools)

	worker threads, Worker Factories (Thread Pools), Worker Factories (Thread Pools)
		allocation, Worker Factories (Thread Pools)
	viewing, Worker Factories (Thread Pools)

	Workstation service, UPnP with PnP-X
	world SIDs, Service Isolation
	worldwide application binaries, Registry
	Wow64, Wow64, Wow64, Wow64, Wow64, Wow64 Process Address Space Layout, Wow64 Process Address Space Layout, Wow64 Process Address Space Layout, Wow64 Process Address Space Layout, User Callbacks, User Callbacks, Registry Redirection, Registry Redirection, I/O Control Requests, I/O Control Requests, I/O Control Requests, DLL Name Redirection, Examining Thread Activity
		16-bit application support, I/O Control Requests
	32-bit and 64-bit thread stacks, Examining Thread Activity
	address space for processes, Wow64
	APC delivery, Wow64 Process Address Space Layout
	architecture, Wow64
	console support, Wow64 Process Address Space Layout
	DLL versioning check, DLL Name Redirection
	exception dispatching, Wow64 Process Address Space Layout
	file system redirection, User Callbacks
	I/O control functions, Registry Redirection
	printer driver porting, I/O Control Requests
	registry redirection, Registry Redirection
	restrictions, I/O Control Requests
	system calls, Wow64 Process Address Space Layout
	user callbacks, User Callbacks
	user-mode DLLs, Wow64

	Wow64.dll, Wow64
	Wow6432Node key, Registry Redirection
	Wow64Cpu.dll, Wow64
	Wow64GetThreadContext function, Processes, Threads, and Jobs
	Wow64Win.dll, Wow64
	Wowia32x.dll, Wow64
	write-restricted SIDs, Service Isolation
	write-restricted tokens, Service Isolation
	WSK (Winsock Kernel), Windows Networking Components, Winsock Kernel, Winsock Kernel
		implementation, Winsock Kernel

	WSRM (Windows System Resource Manager), Using Tools to Interact with Priority

 X
	x64 architecture, x64 Interrupt Controllers, Software Interrupt Request Levels (IRQLs), Software Interrupt Request Levels (IRQLs), System Service Dispatching
		interrupt controllers, x64 Interrupt Controllers
	interrupt dispatch, Software Interrupt Request Levels (IRQLs)
	interrupt request levels, Software Interrupt Request Levels (IRQLs)
	system service dispatching, System Service Dispatching

	x64 processors, Kernel Mode vs. User Mode, Architecture Overview, Hardware Abstraction Layer
		HAL image, Hardware Abstraction Layer
	system code and data protection, Kernel Mode vs. User Mode

	x86 architecture, Kernel Mode vs. User Mode, Hardware Support, Hardware Interrupt Processing, IA64 Interrupt Controllers, Exception Dispatching, Windows Error Reporting
		exceptions and interrupt numbers, Exception Dispatching
	HALs, Hardware Support
	interrupt controllers, Hardware Interrupt Processing
	interrupt request levels, IA64 Interrupt Controllers
	system code and data protection, Kernel Mode vs. User Mode
	system service dispatching, Windows Error Reporting

	x86 interfaces, Hardware Support
	Xperf Viewer, viewing DPC and ISR activity
 with, Dispatch or Deferred Procedure Call (DPC)
 Interrupts

 Z
	zero page thread, Idle Threads
	zero-copy file transmission, Winsock Server Operation
	Zw versions of system calls, System Service Dispatching

 About the Authors
Mark Russinovich is a Technical Fellow in the Windows Azure™ group at Microsoft. He is coauthor of Windows SysInternals Administrator’s Reference, co-creator of the Sysinternals tools available from Microsoft TechNet, and coauthor of the Windows Internals book series.
David A. Solomon is coauthor of the Windows Internals book series and has taught his Windows internals class to thousands of developers and IT professionals worldwide, including Microsoft staff. He is a regular speaker at Microsoft conferences, including TechNet and PDC.
Alex Ionescu is a chief software architect and consultant expert in low-level system software, kernel development, security training, and reverse engineering. He teaches Windows internals course with David Solomon, and is active in the security research community.

Special Upgrade Offer

If you purchased this ebook from a retailer other than O’Reilly, you can upgrade it for $4.99 at oreilly.com by clicking here.

Windows® Internals, Sixth Edition, Part
 1

Mark E. Russinovich

David A. Solomon

Alex Ionescu

Copyright © 2012 David Solomon and Mark Russinovich

All rights reserved. No part of the contents of this book may be
 reproduced or transmitted in any form or by any means without the
 written permission of the publisher.

Library of Congress Control Number: 2012933511

Microsoft Press books are available through booksellers and
 distributors worldwide. If you need support related to this book, email
 Microsoft Press Book Support at mspinput@microsoft.com.
 Please tell us what you think of this book at http://www.microsoft.com/learning/booksurvey.

Microsoft and the trademarks listed at http://www.microsoft.com/about/legal/en/us/IntellectualProperty/Trademarks/EN-US.aspx
 are trademarks of the Microsoft group of companies. All other marks are
 property of their respective owners.
The example companies, organizations, products, domain names,
 email addresses, logos, people, places, and events depicted herein are
 fictitious. No association with any real company, organization, product,
 domain name, email address, logo, person, place, or event is intended or
 should be inferred.

This book expresses the author’s views and opinions. The
 information contained in this book is provided without any express,
 statutory, or implied warranties. Neither the authors, Microsoft
 Corporation, nor its resellers, or distributors will be held liable for
 any damages caused or alleged to be caused either directly or indirectly
 by this book.

Acquisitions Editor: Devon Musgrave

Developmental Editor: Devon Musgrave

Project Editor: Carol Dillingham

Technical Reviewer: Christophe Nasarre; Technical Review services provided by Content Master, a member of CM Group, Ltd.

Copy Editor: Roger LeBlanc

Indexer: Christina Yeager

Editorial Production: Waypoint Press

Cover: Twist Creative • Seattle

Microsoft Press
A Division of Microsoft Corporation
One Microsoft Way
Redmond, Washington 98052-6399

2013-04-03T09:45:26-07:00

OEBPS/httpatomoreillycomsourcemspimages1568811.png
MictosoftSCSlIniiator Sevice Propertes Locl Cormpute) =

Genera | Log On| Recovery | Dependencies

Selectthe computer's response i tis servies fals. HE i S8 U T2EvEi
Edions;

Flesetfal count afer 0 days

Riestart seryice after 2 minutes

Enable actons for staps with erors. | Fectart Computer Dplions

Fun program

custonSerpt cmd Browse.

‘Appendfal count to end of cammand fne (/fal=31%)

Aovly

OEBPS/httpatomoreillycomsourcemspimages1568839.png.jpg
Image base address

Loader database

Thread-local storage data
Code page data
Process flags

Heap flags

Heap size information

Process heap

R

GDI shared handle table

05 version information
Image version information
Image process affinity mask

Application compatibility data

FLS/TLS data

OEBPS/httpatomoreillycomsourcemspimages1569021.png
iministratar: Comrmand Prompt

OEBPS/httpatomoreillycomsourcemspimages1569075.png.jpg

OEBPS/httpatomoreillycomsourcemspimages1568783.png.jpg
Block boundaries

Empty bin Root| Val1 val2

Bin1
1 Key cell (key node) B0 Subkey-list cell Bin 2
1 Value cell 1 Free space

. \alue-list cell

OEBPS/httpatomoreillycomsourcemspimages1569085.png
Advanced Settings &=

‘Adapters and Bindings | Provider Order

You can anange the arder in uhich this compuer accesses
information an the netwark. Providers and other connecions are
accessed in the ader ised.

Network providers:

Microsaft Windows Netwark.
Mictosolt Terminal Server Network Provider | [3
S8 Web Clint Netnork

OEBPS/httpatomoreillycomsourcemspimages1568873.png.jpg
(57 audiodg.exe3148 Propertes

SEr=]

e e

T

o CPU CSwichDeta Start Address

3488 ‘ntdl diRtlUser ThreadStart

Tread s Covosse

Start Time: 7:01:39PM 2/10/2012

User Time: 0:00:00.000 1/O Priority: nfa

Context Switches: 26 Memory Priority: nfa

Cydes: nfa Ideal Processor: 0
] (e]

Co] Lo]

OEBPS/httpatomoreillycomsourcemspimages1568697.png.jpg
] Wi
Fie View Hep

3
U Avcame

. Baseamedonects
1 Cotback

& RPC Control

A securty
» U sesions

1 UMDFCommuricationpors
o3 Vindows

Hame
) EVENT_READYROOT/CIMV2SCM EVENT ..
L EVENT_READYROOT/CIMVZWMI SELF IN...
i FirstWinlogonCheck

I FrtCache- 4320661 41908723-elc..
SfontCacheron

£ FosSmsesionlousI92 51518

(@ Global

s HomeGroupStateEvent, (82700142-260€ 4...
LIPSEC_GP REFRESH EVENT

L\ IPSEC_POLICY CHANGE EVENT

AL IPSEC_POLICY_CHANGE NOTY

b LanmanServeNetworkdntalzed

£ LoADPERF MUTEX.

PLocal

L LSARPC SERVER ACTIE

e TS 5

OEBPS/httpatomoreillycomsourcemspimages1568933.png
e e I

TCRIIP Securty | Environment Job

Strings.

Job Name:

<Unnamed Job>

Pracesses inJab:

Process PID

lemdens 183
notepad ere 645

Jab Linits:

Linit

OEBPS/httpatomoreillycomsourcemspimages1568675.png.jpg
Windows
application

Writefile in
Kernelbase.dl

NtWriteFile in
Ntdildil

Windows kernel APIs

Call WriteFile

Call Ntwritefile
Return to caller

SYSENTER
Return to caller

Application
Windows-

specific

Used by all Gdiz2.dil

subsystems ~ or User32.ll

‘Windows USER and

Software interrupt

KisystemService
in Ntoskmlexe

Call NewiteFile
Dismiss interrupt

NtWiiteFile in
Ntosknl.exe

Do the operation
Return to caller

GDI APls
Call USER or
GDI service(..)
SYSENTER | Windows-
Retum to caller | specific
1 User mode
Kernel mode

Software interrupt

KisystemService in
Ntoskrlexe

Call Windows
routine
Dismiss interrupt

7

Service entry point
in Win32ksys

Do the operation
Return to caller

OEBPS/httpatomoreillycomsourcemspimages1568917.png.jpg
Priority punning
20

19 :I

18

Ready

g oo

16

A5

. [H

To wait state

OEBPS/httpatomoreillycomsourcemspimages1568925.png.jpg
Threads Aand B
become ready to run

| Interrupt

T T T
Interval 1 Interval 2 Interval 3

OEBPS/httpatomoreillycomsourcemspimages1569115.png.jpg
Winsock

User mode
WSK clients = DI clients Kernel mode
Ancillary
Function oI
WSK Driver e

Next Generation TCP/IP Stack (Tcpip.sys)

CP UDP RAW

NDIS

‘Windows
Filtering
Platform
APl

OEBPS/httpatomoreillycomsourcemspimages1569157.png.jpg

OEBPS/httpatomoreillycomsourcemspimages1568735.png
@ The procedure entry point CresteDislogParamm could not be locsted

i the dynamic ink library USER3Z.ll

OEBPS/httpatomoreillycomsourcemspimages1568701.png.jpg
L Wi
Fie View Hep

U HemeObects
3 KnownDl:
Jws
1 onectypes
L #9C Contl
& sy

Phiped

Name /
£ OBWinMute

A OINPUTWINMM

20w TEC-ApiPor 710

i DwmComposedevent 1

8 ESENT_Per Ubrary.Lock PID Scc

) EventShutDownCSRSS

(@Global

PLocal

£ o P by Lock PO Scc

£ MICROSOFT WMDMMUTEX

8 Microsoft WMP_70_CheckForOtherinsta..
£ MidiMopper modtongMesssge RefCot
8 MSCTF Asm MuteDeloutl.

L MSCTF amCacheResdy Defaut

L MSCTF Cactvated Ocfsokt

A\ MSCTE CiDesctoted Defautt.

Tope
Maant
vt

et
Motant
et
Symboictink
Smboictink
Motant
Motant
Motant
Motant
Motant
et

et

et

\BssehomedObjects
\Sesion\1\Basetlamed..

\Sesiond1\BaseNamedObjecth ESENT_Per Libray_Lock PID Scc

OEBPS/httpatomoreillycomsourcemspimages1569059.png.jpg
RPC client application RPC server application

ServerFunction()

} t

RPC stub library RPC stub library

L 1

Network

OEBPS/httpatomoreillycomsourcemspimages1569031.png.jpg
Reparented

Standard user

Explorer

ShellExecute
(Admin.exe)

Local system

Applnfo service

CreateProcessAsUser
(Admin.exe)

Admin.exe

OEBPS/httpatomoreillycomsourcemspimages1568599.png.jpg
ssuysmowr‘t Service User
pro?:zsseg processes applications

Environment
subsystems

I I

Subsystem DLLs

L I

Executive

Device drivers

Hardware abstraction layer (HAL)

User mode

Kernel mode

OEBPS/httpatomoreillycomsourcemspimages1568583.png
Configure Symbols ==

Pracess Explarer uses symbs t resalve funclian names when displaying thiead start
adkesses and thiead stack locatians on the Thieads tab of @ process’ propertes
dilog,

1fyou do it rectire that infomation you do not need o configure symbols.

Dbghelp.dl patt:

C:\Program Files\Debugging Tools for Windows (154)\dbghelp.dl =
Symbols path
ool i /med microsofcom/conoad/ambols =

=

OEBPS/httpatomoreillycomsourcemspimages1568685.png.jpg
2 Process xplore - Sysintemals wanwsysintermascom [ALEXIONESCUDGES\Adr SeI=)
il Options View ProcessFind Handle Uses_Help
- I= I R X — s
Process = D CPU Private Bytes. Working SetCompany Name
auosgee 3504 13312k 13456 K Mot Coparion]
=
a7 coherence exe. 2020 628K 804 K Paralels Holdings. -
Te Nore e Hocess
recoy ownbls [T~
e Cm Ao oe oanoo
| Key HKLM\SYS TEM\ControlSet001\Control\Nis\Sorting \Versions. 18 000020019
o HRINSYSTEM ConraSe 0T Cori S hansr oic oo
WedowSaton Sessons\\indows WindonSatars WaSad [
Deson \Deink oX oo
WedowSaton \Scssons\\indows Wedow Sators Wniad 030 oo
|Fie C:\Windows\System32\en-US \cmd exe mui- 034 0x00120089
|Key HKLM 038 c000F003F
| Thread ‘omd exe(3144): 2120 0ac c001FFFFF
| Key HKCU cd0 c000F003F
| Key HKLM\SYSTEM\ControlSet001\Controf\Nis\Locale o 00020019
ey HKLHNSYSTEMNContlSl00TCoro\\Locle et Sos e oo
ey HKLM\SYSTEM\ControlSet001\Control\Nis\Language Groups C 000020019
CPU Usage 6A4% _ Commit Chrge 2807% Processes 1 Physcl Usage TL56%

OEBPS/httpatomoreillycomsourcemspimages1569127.png.jpg
—
| Newapne % OpenCupne S | 5 CopteSetngs b St 0 G By = s PantProis = 3 Oy | o Howbal =
(r
G N T T ————

i Iy

;o

i

1335,

T — = =
T ——

[========pH]|
S Aty -

OEBPS/httpatomoreillycomsourcemspimages1568853.png.jpg
Event [Process| Stack

Frame Module Location Address Path

K0 nikmipaexe CmpCalCalBacks + (x156 x8laelacd C:\Windows\system32\ntkmipa exe.
K1 nikmipaexe CmpParseKey + 0209 0812710 C:\Windows\system32\ntkmipa.exe.
K2 nikmipaexe ObplookupObjectName + Océfa (x81a686e C:\Windows\system32\ntkmipa exe.
K3 nikmipaexe ObOpenObjectByName + (165 (x81a78f80 C:\Windows\system32\ntkmipa exe
K 4 nkmipaexe CmOpenKey + Ox1f4 Bx81a76eb1 C:\Windows\system32\ntkmipa.exe.
K5 nikmipaexe MOpenKey + 018 08128718 C:\Windows\system32\ntkmipa.exe.
K6 ntkmipaexe KiFastCalEntry + 0122 81881212 C:\Windows \system32\rtkmipa.exe
K7 ntkmipaexe ZwOpenKey + (11 (c81875bd C:\Windows\system32\ntkmipa.exe
K 8 nikmipaexe PspAlocateProcess + (313 (081294624 C:\Windows\system32\ntkmipa exe.
K9 nkmipaexe MCresteUserProcess + &c5Ta (x81ab2631 C:\Windows\system32\tkmipa exe.
K 10 ntkmipaexe KiFastCalEntry + (<122 81881212 C:\Windows \system32\ntkmipa.exe
Uil ndidl MOsselseocssse e G757 CWindows SYSTEMEZ el
U2 kemeiR2dl GesteProcessimemalf - 075 Oc7Sddef C:Windows\systen 2 kemel 21
U3 kemel22dl GesteProcesshl + e 07502078 C\Windows system32\kemel22l
U 14 cmdexe ExecPgm + 020 (4236394 C:\Windows \system32\cmd exe
U5 ondee ECWoke 0T 0céa%3cb5 C:AWindows\systeni2\cmd ere
U6 onders BeCom =07 0cta%3048 C\Windows\systen32\cmd exe

U 17 omdexe FindFixAndRun + Oc1f7 (4296155 C:\Windows \system32\cmd.exe

U 18 cmdexe Dispatch + Gx14b (x429622c0 C:\Windows\system32\cmd exe
UTS onde man-02is 0a977H0 C:\Windows\systeni2\emd exe
U20 omdexe _initterm_e + 0x163. (0x4296835¢ C:\Windows\system32\omd exe

U 21 kemel32dl BaseThreadint Thunk + Ore (x75d2ed6c C:\Windows \system32\kemel32 dI
U2 ndidl _RilseThesdSion 070 G737 C\Windows SYSTEMEZ el dl
U2 ndldl RilseThesdSte o G737k CWindows SYSTEMEZ el

ropertes...) [_Searh... | [Source...) (LuSavems
(4] (3] Emetrignirees (Come]

OEBPS/httpatomoreillycomsourcemspimages1568757.png.jpg
= - 4r G

& tarduare T
4] AddHadnare
8 mos Y an et otans For i s ey o i e e
=
] Spcty e aoun o ey o s e o, ok ey s the
S Sty i e st o
D Processor
s € s
5 10e Conroer 0 i
= 85 ot conler L
4 oD Orive @ pynanic
s o e
9 5CSt Controller Fans)
§ Mok e R)
o ey th o of nemor i Hyper byt
fou i ol o e e a2 e e s 0
o ‘datermine an amount of memory for the buffer.
7 cone
. ooyt | %
I Osteteorive
A b [~ Memary weight
Mansgement ‘Speafy how to priorkize the avalabiity of memory for this vitual machine
e A Bt ol et
£ mepatinseviss - ——————
] Snepshot il Locaton) Speciying alower satting for this virtual machine might prevent & from
o er vt e e o i a ma o

) Ausomas st Acton
Restat f reiousy uing

o) s stop cton

OEBPS/httpatomoreillycomsourcemspimages1569139.png.jpg
Kerberos client

Remote Net Logon service authentication DLL
(for legacy support only) (Kerberos.dll)
Winsock
: Kerberos Key
B Distribution Center
itk (Kdesvedll)
SAM
APl

sam
NT LAN Manager |21 |

SAM server
(Samsrv.dil)

(Msv1_0.dll)

Active Directory
directory service
Nmsa il

l«———> LDAP/ADSI
> MAPI

Lsass

Active
Directory
(Ntds.dit)

OEBPS/httpatomoreillycomsourcemspimages1569087.png.jpg
T Py
Do omokink b

s bk Dk WO SIOEOS O el oo
Py AN ——)

oo s
2 s s
= oo e

Sevion oot ot

OEBPS/httpatomoreillycomsourcemspimages1568957.png
e 2616 Properties el

e i ezl g
UGraph | Thveads | TCRIP | Seaurty | Evronment | strngs

Users azus2jeh
SIDi 5-15-21-962839631-821590794-898124547-1001
Session: 1 Logon Session: 2828

Virtualized: No

Growp Flags
Logon 51D (5-1550-167608) Mandatory
Eveyone Mandatory
Mandatory LabehMedium Mandatory Level Integity
LocaL Mandatory
CONSOLE LOGON Mandatory
NT AUTHORITY\éutherticated Users Mandatory
NT AUTHORITYAThis Orgarization Mandatory
azius2Hamellsers Mandatory
azius2iNone Mandatory
BUILTIN\Adrinitators Deny
BUILTINWJsers Mandatory
NT AUTHORITYINTERACTIVE Mandatory

NT AUTHORITYANTLM Aubhenlicaion Mandatory

Growp SID: nfa

Piiviege Flags
SeChangeNotiyPiviege Defaul Enabled
SelncreaseworkingSetPiiviege Disabled
SeShuitdonnPiiviege Disabled
SeTineZonePiiviege Disabled
SellndockPiiviege Disabled
Permissions
Concel

OEBPS/httpatomoreillycomsourcemspimages1568803.png.jpg
Ele View Help

LR

BN
£ Actiome
© 03 BrellamedObiects
3 otk

© 0 Filesytem

Sooman

& KemelObiects

23 KnownDls

ams

3 Objecypes

SR Contrel

0 ecurty

2 UMDFCommunicatonPors
©30 Windows

Name
ace
acerHaL
aro

Fatopi
Fbsindoox
Hoeep

Hcdrom

Hars

Fomaare
Fcomptart
s

Ak

FA0kn
Fheman
FAHaBudAdSenice
FAHOAudEs
FAHen

OEBPS/httpatomoreillycomsourcemspimages1569027.png.jpg
% User Account Control ==

) Do you want to allow the following program to make

V' changes to this computer?

22 Pogamnsme Regisy Editor
Verfied publisher Microsoft Windows

5 ser Account Control =

() show detais

() Do youwant to allow the following program to make.

to this computer?

L frmnme spinmt e
Verfied publsher, Mirosoft Corporation
Fieorign: Downlosdedfrom th Internet

%) User Account Control

T _

Progamname Buggyexe

Poner " Unkown
Fieaig Hord e cnthis cmputr
9 show s =

hange when these notfiation

OEBPS/httpatomoreillycomsourcemspimages1568953.png.jpg
Token source
Impersonation type
Token ID
Authentication ID
Modified ID
Expiration time
Session ID
Flags
Logon session
Mandatory policy
Default primary group
Default DACL
User account SID

Group 15ID

Group n SID

Restricted SID 1

Restricted SID n

Privilege 1

Privilege n

OEBPS/httpatomoreillycomsourcemspimages1568609.png.jpg
Sescempcan

oo

sfpenmn] Ho
ooy

v
oo
pn
s
don

ncome.z
ooy
oM
ey
[ryeteyd

[——
Sopnseeeprizes

Dogtnion

o —

OEBPS/httpatomoreillycomsourcemspimages1568995.png.jpg
A Access token
S B User's SID Ac
Group SIDs
Privileges
Owner SID
Primary group SID
Default ACL
AL l Thread 1 > AL ' Thread 2 AcL | Thread 3
Access token Access token
acc | [Userssio acc | [vserssio
Group SIDs Group SIDs
Privileges Privileges
Oviner SID Owner SID
Primary group SID Primary group SID
Default ACL Default ACL

OEBPS/httpatomoreillycomsourcemspimages1569061.png.jpg
Rpcrtd.dil
Winsock _ Named pipes LPC

Ws2_32.dll

Winsock service
providers

Ntdlldll

Application
==

—|

exe | Rpessdl

Active
Directory

User mode

Named pipe FSD AFD (Winsock)

X

‘Advanced local
procedure call
facility

Kernel mode

OEBPS/httpatomoreillycomsourcemspimages1568997.png.jpg
FEile Action View Help
¢ 2@ = @m

B Secury Setings
» T Account Polcies
4 [Local Policies
AuditPolicy
4 User Rights Assignment
> Securty Optons
Windows Firewall with Advanced Security
3 Network List Manager Polces
b (21 Public Key Policies
Software Resticion Palicies
» 1 Applcaton ControlPolces
» 8 P Secury Plicieson Local Computer
© (1 Advanced Audit Policy Configuration

>

Policy 3 Securiy Setting

3 Audit account logon events No auditing
) Audit account management No auditing
L Audit directory senvce access No suditing
2 Audit logan events No suditing
2 Audit object access No auditing
3 Audit poicy change No auditing
2 Audit priilege use No sudiing
2 Audit process tracking No auditing
2 Audit system events Nosuditing

OEBPS/httpatomoreillycomsourcemspimages1569009.png.jpg
Winlogon
process

LogonU!l
process

Credential
Provider DLL

Authentication
packages

Net Logon
service

Kerberos
Key Distribution
Center Service

Active
Directory

SECURITY

OEBPS/httpatomoreillycomsourcemspimages1569159.png.jpg

OEBPS/httpatomoreillycomsourcemspimages1569057.png.jpg
WSK

client

WSK
registration
functions

WSK
provider NPI

WSK
client NPI

WSK

subsystem

OEBPS/httpatomoreillycomsourcemspimages1569143.png.jpg
Al thisd-perty $HAs are
out.of-process COM DL

Windows PR
Sy T roy| [mery
Heslth Agent Sn Sia
i 1
et Sevee oo voimon
T e e
Widons
i =
Upire sy
e el A COM AP o Managemen]
NNAP Agent EAP Host Service EAP Third-Party.
— = X P
e [Gaesin Socae oo e
oemert Minagement . .
Enforcement Chient COM APIs and Management. L O | le—sf | Dispatcher
P&mmi . WS-PER? | (EAPPIMST.O
o) = Ty
e T e ||
Minsgement - ppsc v | oo ovcic | ekt s
7 || Ler
i /bg HEN
xs09 1] o] [] et
cateae £§ Wetnod bras
e
l Al third-party ECs
fryeiritd
Network [see| [‘m onc] [Randem] ™ Conris’
-

OEBPS/httpatomoreillycomsourcemspimages1568597.png.jpg
PIETIEE T IDIT— col]

B €8 ton Gy Uty
(S ireMEHH BP0 0RIE0RE000R 1 A 8

[connected to Windows 7 7600 %64 target at (Tue Dec 8 12:50:39.503 2009 (GNT-5)),
synbol search path is: srvrc:\symbols*http://msdl.microsoft. con/download/synbols

lExecutable search path is:
[sindowe 7 Kernel Version 7600 MP (2 proce) Fres x6d

Product: Server, suite: Enterprise TerminalServer SingleUserTs

[Built by: 7600.16385. and6dfre. win?_rtn.090713-1255

tachine Name:

[Kernel base = DxEEEEEBDD’ 01853000 PeLoadedHoduleList = DxEEEEFB00°01a90850
lDebug seseion time: Tue Dec 8 12:50:39.675 2009 (GHT-5)

system Uptine: 0 days 17:11:50.457

4 I
e T

[im0, Col0 [575 0 orw> [Proc 0000 [Tred 0000 (157 [0 6% [

OEBPS/httpatomoreillycomsourcemspimages1568779.png.jpg
AT
56 XBE cA® A% EIEE

Dnsccen Rt i S

T RSO g D 0

OEBPS/httpatomoreillycomsourcemspimages1569165.png.jpg
Here!

Leam Microsoft
Visual C# 2010

OEBPS/httpatomoreillycomsourcemspimages1569093.png.jpg
"/ Locl Group Py Edtor
Flecion ien He
(2@ @ml

.2

o Computr oy
4 88 ComputsCntgtion
5 Saamesetng:
5 i setings
i T
Convtbaet
= tutgnabl
= sanncane
5 onsclen
Liansen
LoktoyerTops

2 ek Cemed |

= etk Comeet
. Ofterier
asradasn
St Canuesion
ER
2 WindeusComec

Contgure v ok mode Setog
ol £ Preart o o Oftos el
et Pt e cofguton o Offine Fes.

» P Mk i Offine osthse s s
i et Tl temids bikons
s S 0 athe 5 Alegol, gt ol <oy of i e e

ok mode o OFNEFIE 5 T o conomic ppicationof sty e

s rtid s e sishmaspiaan

indovs s 0055 Ty & e bdoon e
oy i cnrl ahenchnt 5 G btaon e
oo oo Wicows 7 | Core e el
indows s 3088 triion
et i st £ Conre S kst

Sycvane st e bl g o
it i s cprsingin & 5 st when oggng o

e e e e S gl b sperd

i e Tt e)
iRy ey

Notcaniees
et
ot catiees
et
ot o
Netcefques
ot
ettt
Net ol

3 seingt)

OEBPS/httpatomoreillycomsourcemspimages1568829.png
General | Backup/Restore| Secuty | Advanced

Namespace navigation allows you to set namespace specifc secuiy

{3 aspret

3 oMv2
Qo

{2 DEFAULT
{3 diectory
{2 Hardware
{2 Microsoft
Qe

{2 Policy

{3 RsOP

{2 SECURITY
{2 ServiceModsl
2 subsciiption
0 wM

=

OEBPS/httpatomoreillycomsourcemspimages1569073.png.jpg
bisptagpane

bisplaspane

OEBPS/httpatomoreillycomsourcemspimages1568823.png
Browse For Namespace

Motiotone [WAERTAFTIF otk eigood
- |

[ERe] oo =
aspret

M2

Ci F
DEFAULT

diestory

Hardware

Mictosoft

nap 41

¥ Lse essing cornecion i possile o Cancel

OEBPS/httpatomoreillycomsourcemspimages1568919.png.jpg
Priority

Running Ready

18 “#——————————— From wait state

17
o)

1 THOHOOH
y

15

14

13

OEBPS/httpatomoreillycomsourcemspimages1569117.png.jpg
Legacy

Windows | [1Psec policy

Firewall service

(mpssv) (policy-

Ws2_32.dl agent)
Cmanage- | [Cmanage- | [Cmanage- | [Cmanage-
ment AP| | | ment APl || mentaPi || ment APl
|wpucintain] |dwpucintaih] |dwpucintdih] |fwpucint.i)

i

1] !

RPC
runtime
(rpcrtddi)

23
25
i3
o2

RPC interface (management) ———
KE protocol
~ UM filter AuthiP
2 engine protocol
7 (keext)
o Base filtering engine
g (bfe)
5
s IKE and IPsec
= IR B layers (v4/v6)

User mode

Kernel mode

Stream layer shim

‘Application layer
enforcement (con-
nection management)

Transport layer shim

10CTL interface

Stream/datagram
data layer
(v4/v6)

Inbound/outbound|
ALE layer
4/v6)

Callout API

SFP kernel

Inbound/outbound|

(TCP/UDP)

transport layer
4/v6)

Network layer shim
(IPV4/IPV6)

Inbound/outbound
1P layer

IPsec callout

(fwpkclnt.sys)

(v4/v6)

OEBPS/httpatomoreillycomsourcemspimages1568799.png.jpg
%, Interactive Services Detection

A program running on this computer is trying to display a
message
The program might need information form you or your permission to complete a

task.
‘Why does this happen?

+ View the message

9 Ask me later

(&) Hide program detals

Program(s) or devices(s) requesting attention

Messagetitle: Paint
Program path: C:AWindows\system32\mspaint.exe
Received: Today, January 25, 2012, 9:13:48 PM

“This problem occurs when a program is not fully compatible with Windows.
Please contact the program or device manufacturer(s) for more information.

OEBPS/httpatomoreillycomsourcemspimages1568621.png
snv2.sys Praperties

General | Secuty | Detais | Previous Versios

Property Value

Description

Tope System File
Fleverson 6.0.6001.18000
Product name Mictosoft® Windons® Operating System
Product version” .0.6001.18000

Coppight @ Microsolt Corporation Alights reserv.
Size 141KB

Date modiied 1/18/2008 10:29PM

Language Engish (Urited States)

Femove Properties and Personal Infomation

Aoty

OEBPS/httpatomoreillycomsourcemspimages1568837.png.jpg
'
.
pPsActiveProdessHead —|

i
Session Object—
|

Process control block (PCB)
Process ID.

Parent process ID

Exit status

Create and exit times

Active process link B

EPROCESS

Session process link
Quota block
Memory management information
Security/Exception/Debug ports

|

Primary access token

Handle table

|

Process environment block

Image filename
Image base address

Win32k process structure

I

Job object

Process flags

Process counters

Dispatcher header

|

Process page directory

Kernel time

User time.

Cycle time
Inswap/Outswap lst entry

‘Thread list head

KTHREAD

Process spinlock

Processor affinity

Resident kernel stack count
Ideal node

Process state
Thread seed
Inheritable Thread Scheduling Flags

OEBPS/httpatomoreillycomsourcemspimages1568711.png.jpg
Object A

Object B

Dispatcher objects

Thread objects

PRCB 0

List entry.

Size | Type
oo N Wait blocks
[~Wait list head~ + Listentry —
Object-type- e Thread
specific data —ohjm
Key | Type
Next link
size | Type |+—H
State Thread 2 wait block
[Wait list head- +———+— = Listentry —«——f—|— Listentry —{
Object-type- o Thread e Thread
specific data S obkct Ohiect
Key | Type Key | Type
Next link Next link

Thread 1 wait block Thread 2 wait block

OEBPS/httpatomoreillycomsourcemspimages1569155.png.jpg

OEBPS/httpatomoreillycomsourcemspimages1569145.png.jpg
Al ticparySHs ae
s ool process COM DiLs
Requeents AR
ok “Third-Party | “Third-Party
£y £
Sonice Poces IR) ework Py erver Sapn
sty
AP Agent e anoOS o
Windows System s Contgrra]
Heath Valiaior v P
wiswow
S Component Coniator Senis]
5yt Heath Valdator COM AP nd Managermrt o)
ey provder u
NAP Server =
v 7
WPS Pipeine
i
oS
comtstenr oS
Regitry
v | (s w07 fasonce| [T ry
sever | [Soer | [“Semer &
fo e SR S !
mshces{ | o | | onee s

OEBPS/httpatomoreillycomsourcemspimages1568681.png.jpg
Object name

Object directory

Security descriptor

Object name
Object directory
Object | Security descriptor
header | Quota charges
Open handle count
Open handles fst
Object type
Reference count

Quota charges

Open handles list +——

_— Object Type Table
body | Object specific data e P
6DIAED4 | | TyPe name
0A3C44AT LElE
i Default quota charges
Access types
Generic access ights mapping
Synchronizable? (Y/N)
Methods:
Open, close, delete,
parse, security
query name

OEBPS/httpatomoreillycomsourcemspimages1568743.png.jpg
Virtualization stack

WMI provider | [oen
VM service plocesses
User mode
Kernel mode
Server core Virtualization

Device
drivers

OEBPS/httpatomoreillycomsourcemspimages1568883.png.jpg
Thread priorities 0-31

31
30
29
28
27
26

N W

: ¢
o Pasve |

IRQLs

High
Power fail

Inter-processor interrupt
Clock
Profile
Device n

Device 1
DPC/dispatch

[— Hardware interrupts

APC

Software interrupts

OEBPS/httpatomoreillycomsourcemspimages1569051.png.jpg
Server
application

listen

connect

Listen socket

Client socket

accept

Server socket

send, recv

Client
application

OEBPS/httpatomoreillycomsourcemspimages1568759.png.jpg
2 show descrtion

Remve <<

OEBPS/httpatomoreillycomsourcemspimages1568859.png.jpg
& Event Propertes [sIEl=])
Event | Process | Stack

Fame Modde Location Addess Path

KO rikmpace PaCallmageNothyRoines +062 O1afid5e C:Windows\system32itkmipa.2)
K1 rikmpace MiMapViewOfimageSecton + 0670 De81a6733d C:\Windows\system32vtkmipa o)
K2 rkmpaoe MMapViewOfSecton +022¢ 081a57e08 C:\Windows\systen32vtkmiba o)
K3 kmpaec MrbMapVienOfSection+02a 81a57efe C\Windows\system32 itk &
K4 rikmipaexe NMapViewOfSection + 0204 0481258657 C:\Windows\system32\ntkmipa e
K5 nmpasc KFasiCalEny + (128 018421 C\Windows\system32 ntkripa.e)
UG mdidl ZwMapViewOfSection + O 07754534 C:\Windows\System 32\t il
U7 ndidl LipMapVienOiSecton <07 Q77560604 C:\Windows\System32\ntldl
US mdidl LdpFindOriapDi - 0303 077560620 C:\Windows\System 32\l il
US mdidl LdpLoadDi « b2 OT75551 C:\Windows\System3Z\ntdlL il
UT0 ndldl LeLoadDl 052 077562262 C:\Windows\System32\ntl il
U1l mdldl LdpkitalecProcess + 0de7 077567043 C:\Windows\System32\ntcl il
U12 mdldl _Ldpiiioize + 078 77566047 C:-\Windows\System32tdl
U3 ndidl LetakzeThunk + 010 077563609 C:\Windows\System 32\t

[Propertes...) [Searen.

OEBPS/httpatomoreillycomsourcemspimages1569065.png.jpg
Server
application

\Server\Pipe\AppPipe
Named pipe © Client named pipe
instances i endpoint

Client
application

OEBPS/httpatomoreillycomsourcemspimages1569167.png.jpg
Visual Basic 2010

= 3
Step

OEBPS/httpatomoreillycomsourcemspimages1568725.png
Property
© automatic
value Description B
dskint Diski10 entry.
o Page fauls
r Hard page fauls
9] net Network TCP/IP
registry. Regstry details =
apc alec
spltio Spit 10
driver Driver delays o
Manusl
Oxt0000

o

Gance

OEBPS/httpatomoreillycomsourcemspimages1568665.png
] notepad.exe8284 Properies =

T || T [e || e
U Greph | Theads | TR | Searty | Envronnent | Job | Stings

Count: 1

™0 CPU Cycles Delta Start Address

T —

Start Time: S:27:26PH 11/21/2011
State: Wait:WillserRequest Bass Priorty: 8
Kernel Time: 0:00:00.031 Dynaric Priorty: 10
User Time: 0:00:00.015 1jo pririty: Normal
Context Switches: 1,647 Memory Prory: S
Cycles: 90,217,306 Ideal Pracessor:

OEBPS/httpatomoreillycomsourcemspimages1568895.png.jpg
R S ———
s 2@ OB

@ feiaiy wapetormance |55 3 &5+ G X 7] 0 00 0

2 @ ertan Tty
 petomanc ot
S iy onkar
» [Data Collector Sets:
B erors

P 100 A

st 5000 Avenge 5000 Minimam
Masimum| 5000 Dunion

Coor_ScoleCounter_Instance_Paent Computer

OEBPS/httpatomoreillycomsourcemspimages1568645.png.jpg
2 ProcessBplores - Ssintemak: syl com [dsolomonpe dsclomar]
Ele Qptons View Process Find Users Help

PRI R Y O [e | e 1 I
Poces T U P Sewin Wokigset Descton -
Syt Pocess o am o aar {
o5 pen PR 2un o souk
e W oa o o OF Hatwe et 0P
Elenscn o stk o 1K Wi St M
ey o an asiex o 500K Cht St s Pocess |
e . " v

(CPU Usage 293% Commit Charge: 2408% Processes 121 Physical Usage 4571%

OEBPS/httpatomoreillycomsourcemspimages1568655.png.jpg
Time

Software Timer Expiration

Timer Interrupt ———»

010853201y T J0SS8301d

OEBPS/httpatomoreillycomsourcemspimages1568921.png.jpg
)

Priority Running Ready
15

u ﬂ |
13

12

11

OEBPS/httpatomoreillycomsourcemspimages1568667.png
21 Stack for thread 8540

rloskrl exelKiSnapContentsDe7a
Ptoskin exelKiCormiT hreadwaits 142

Ploskn exelKeW aifrSingleObject 41 9f
nloskinl exelKiSuspendT hieads 0554
PlosknevelKiDelverpe+0:201

Ptoskin exelKiCormiT hreadwaits3dd

Ploskin evelKeW aif orSingleObiect 419

wind2k syslpssFieslSleepT iead+0:257

wind2k systissSlespThieads 0553

wind2k systessFiealintemalGetilsssager ide
wind2k syslsintemalGetitessage+0i35

wind2k sysINtserGelMessage+0475

nloskinl exelKiSystemServiceCopyEnde01 3
USER32 diNtserGelMessage+lia

USER32 diGetMessagew's 34

notepad exelWinMain+0182

notepad exelDisplayNontenuineDighworker+0s2da
Kemel32 diBaseT hieadiritThurks0xd

el dIRNserThveadStart s d

Copy all

OEBPS/httpatomoreillycomsourcemspimages1568937.png.jpg
e e o
- forrmd Sonw wes sy
4 (Hea e RESHNARY 0700 10000000009810 0000 0200010
.3 ocomoortno SwOoman. REGUNARY fens
33 nasowase
g
o)
41 Domins
- Account
o e
o e
20 Uses
i 000001F4.
i 000001F5
i o00003€n
i 000003€D
3 wonnzee
© L Names
0 Buitin
3 LaaStlpgne
3 raact
2 scuRy
5 poly
- RXACT
o s
- SOFTWARE -
CompuanKEY LOCAL_MACHINESAMSAN

OEBPS/httpatomoreillycomsourcemspimages1569019.png

OEBPS/httpatomoreillycomsourcemspimages1568763.png
10:11:15 AM 10:11:20 AM

mum 2006000 Duration

[

OEBPS/httpatomoreillycomsourcemspimages1568947.png
Select Columns

=

il i Wi
PiocessGPU_|_Hande | DLL | NET | StausBar
ProsessInege | Fiocess Pefomance. | FocessI/0

Select the columns that wil appear on the Process view of
Pracess Explarer.

Process Name. [Window Title
PID (Process dentfier) [Window Status
[z Name [Session
[7] Command Line.
[7] Comment
[T Veified Signer DEP Status
[version integrty Level
[Image Path [vitualzed

[image Type (B4 vs 32b) (] ASLR Enabled

Fackage Name

OEBPS/httpatomoreillycomsourcemspimages1568891.png.jpg
7] show description vob) (o) [cancel)

Descrtion:

Thvead States the et sate o the thread, 1150 for Insilzed, 1 orReady, 2 for Running, 3for Stanly, 4 for Termiated, Sfor ~
Walk, orTranskin, 7 for Ukron. A Rueringtread s usiogaprocessor » Sandby s sbou to uss e, A Ready tread
Warks 0 s processr, bu & wating for pracesor ecau none ar e, A tread i Transtions Wokna or aresource i arder

o execik, such 5 watingfor 15 execton acko be paged from sk, & Wakin hread s 1o Us or e processor bocase 5~

OEBPS/httpatomoreillycomsourcemspimages1568705.png.jpg
Time

Get queue tail
Insert data at current location

Increment tail pointer

Get queue tail

Insert data at current location /*ERROR*/
Increment tail pointer

OEBPS/httpatomoreillycomsourcemspimages1568715.png
Global Flags =)

System Regity | Kernel Flags Image File |

Image: (TABtorefrest) [oiestiestess Lauch
I~ Stop on exception I~ Disable stack extension
I~ Show loader snaps.

¥ Enable heaptai checking I~ Enable system crical breaks
¥ Ensble hesp free checking I~ Disable heap coslesce on free
I~ Enable heap parameter checking

™ Enable heap valication on call

¥ Enbis sppication veriier
I~ Enable page heap

™ Enable heap tagging
™ Create user mode stacktrace catabase | Early crial section event creafion

™ Ensble hesp tagging by DLL ™ Disable protected DLL verification
I~ lgnore asserts

I Load image using arge. pages it possible

™ Debugger:

™ Stack Backrace: (Megs) !7

Cancel Apply

OEBPS/httpatomoreillycomsourcemspimages1568983.png.jpg
Pemissions | Audting | Owner | Effecive Pemissions

To view detatof & peission enty, double click the enty. To modiy pemissions, cick Chenge Pemissions.

Obiectname: CAUsersjehADocuments\screencapstest i it

Pemission eriies.

Type Inherted From
i <rolinheited
Homelses (azs2AHomelses] Fleadtewecuts <nol inherted>
SYSTEM, Fullcontrol <notinheited>
eh faus2ieh) Fullcontrel <notinherted>
Evenore Fullcontrel <notinherted>

[Inchude inheritable pemissions from this objects parent

"Menaging permission enties

OEBPS/httpatomoreillycomsourcemspimages1568593.png.jpg
x64 1A-64

8192 GB
(8 TB) User
process space

7152 GB
(7TB) User
process space

8192 GB 7152 GB
System space System space

OEBPS/httpatomoreillycomsourcemspimages1569003.png
m
Object

‘Apply anto: [Thi cbiect only

Access: Successiul__ Faled

Full control
Traverse folder | execut e
ListFolder { read data

Read attrbutes

Read extended attrbutes
Create fies f wite data
Creste folders | append data
it atributes

irke extended atributes

Delete
Read permissions

OOoOOOoOOooooO
OOoOOOoOOoooO

Apply these audting entries to sbiects Clear Al
andjor cantainers within this container anly

Managing audting

OEBPS/httpatomoreillycomsourcemspimages1569111.png.jpg
Lo Goup
Fle Acion View Help
«o9(2@ s Em Y

o Computs oty
4 ComptesConusion
5 Satwesetings
5 ot

ot
Ntk
et Tt e
2 sunacane
5 ons
Loy TepaegyDscovey
MicoratPer e e eoting S
" Motk Comecions
1 NetwrkComectty Sttt
5 Oftneries
QS Snesr
5L Congution setings
2 T semngs
2 Vi Conction
2 e

Sty

—

Corporte OIS e ot ame Seting
5 Carponte DN P ot s

s utc g, 5 Caponte O pre s ome
feinens " Caponte et it

Sl WidowsTorWadows 3, Crponte bt ke URL
sener e Do ocsonDtintion R
cescapien

T e rame 145 i

i e s
e g cenncny

f——
btinses (S

OEBPS/httpatomoreillycomsourcemspimages1568607.png.jpg
82 Dependency Walker - cmd.re]
¢ fle fd View Qptons Boie Window by
Er Y T P L Y=l

ey oz 2 Ty 2o | _mrmola —Toosicoior Teaencrion T oo
1 [ramuow 10700 2300 | IVISA231s | WANO[A [0OGDEGCOL [DasnEsCer s | Comole
3| mvermou oy, | o | aousfa [oosarsse Py e

oo oo e |y s | mala lososssors leasrssoss Las | consre

Forelp,press 71

OEBPS/httpatomoreillycomsourcemspimages1568967.png
| sample st Properties

General| Secuty | Detais | Previous Versions

Object name: Di\altestisample.bt

Group o user ames:
2 jeh (ubicontieh)

2 Admiisaors (ubion\Adrinistators)
82, Users rubicontUsers]

“ il ’

To change permissions, click Edit

Permisions fo stvany Alow Dy

Fullcontral
Modty

Read b svecute
Read

wite

Special permissions

For specil pemisons or advenced selings,
click Advanced. = -

Leain about ascess conlol and permissions

Aovly

OEBPS/httpatomoreillycomsourcemspimages1568771.png
User Proies &=

Profies stored on ths computer:

See Type Status Mo

ALECLAPTOP|ser 198M6 local Local 7]

nge Type. Dekte | [Copy To.

To create new user accounts, clck here.

=

OEBPS/httpatomoreillycomsourcemspimages1569121.png.jpg
TCP/IP Protocol

NDIS library

{
!

Network Card

I NDIS Net Buffer Lists (NBLs)

NDIS Miniport Edge
NDIS Protocol Edge

NDIS Filter Interface
NDIS Filter Interface

NDIS Miniport Edge

OEBPS/httpatomoreillycomsourcemspimages1568867.png.jpg
ETHREAD
‘W32 THREAD
Thread

Ref count

DC/Brush attributes o1

User mode printing data_s—]

e I

Sprite state s
T
Rendering/AA data
Flags

Thread lock

OEBPS/httpatomoreillycomsourcemspimages1569107.png.jpg
Public key

[Fash] * Friendly name

authority.classifier } P2P ID

Hash

!

(128 bits) [Service location (128 bits) | } PNRP ID

OEBPS/httpatomoreillycomsourcemspimages1568687.png.jpg
©® Resource Monitor
—

Processes s cruusos 7 9% wamum reunsy B

Dimse D ouapten o e e

@ ontce 5648 Vindows ommun.._umning . o om
Amoumsinsse 10508 Amoumsin funning 2 o om
sudadg e S g B o os |

msne P e tandename
7= s Gent EsramesObject SASoNTISEALTEO E1S.

ooyl s Gemt a0 imimonconntConchon

i W Rl CndomptenenUSucupepidin

eyl e e CWndomSntnienUsmordiou

OEBPS/httpatomoreillycomsourcemspimages1568991.png
] rundis2.excd60 roperies el

i i ezl o
UGraph | Thveads | TCRIP | Seaurty | Evronment | strngs

Users azus2jeh
SIDi 5-15-21-962839631-821590794-898124947-1001
Session: 1 Logon Session: 28ada

Virtualized: No

Growp Flags
Logon 51D (5-1-550-168506) Mandatory
Eveyone Mandatory
Mandatory LabehMedium Mandatory Level Integity
LocaL Mandatory
CONSOLE LOGON Mandatory
NT AUTHORITY\éutherticated Users Mandatory
NT AUTHORITYAThis Orgarization Mandatory
azius2Hamellsers Mandatory
azius2iNone Mandatory
BUILTIN\Adrinitators Deny
BUILTINWJsers Mandatory
NT AUTHORITYINTERACTIVE Mandatory

NT AUTHORITYANTLM Aubhenlicaion Mandatory

Growp SID: nfa

Piiviege Flags
SeChangeNlotiyPivige Defauit Enzbled
SelncreaseworkingSetPiiviege Disabled
SeShudowrPiiviiege Disabled

SellndackPriviege Disabled

Permissions.

OEBPS/httpatomoreillycomsourcemspimages1568773.png.jpg
it Yiew Favores _Help
. BCon00 Name 0w

R Dcigton S0y Galuenot e
etement e Version of

2 Objects
4 DcedS9L-e6b3- 4616 b23c-Se0dORs0Sds)
i Description
4 Ehements
& 16000020
4 e 16ab-e 9016 21280265450]
) Descigtion
4 ements
i 14000006
4 4636 SALE A0S L30-aGATTEHS)
s Description
4 emenss
i tstonnss
i 1su000ns
i tstnnnse
4 AR5 3038 0917021
1 Descigtion
4 ements
i taononny
gy
L uooons
s sstonnnt.
3 srunnnes
4 15185025c-5558-df2-bead 208k 12562}
s Description
i Elements
4 6520116613653 e SefT20T)
s Description
4 Hements
3 14000005
4 Teatetac-2es1-4728-3333-895054059f0e}
i Description N
4 Eements
Ui 14000005
4 THGOTe0-4395-11d-b0de 9800200c8866)
i Description
4 Ehements
& 25000063
3 25u000es
) 25000065

Computen HKEY_LOCAL MACHINE\BCDUD000D0NObjects\(466/5288-0af2-4F16-9038-0956 110 21c Elements\ 12000004

OEBPS/httpatomoreillycomsourcemspimages1568943.png
#2725TC

Detais { Secity |

Group ot user names:

82,5vSTEM
2 ih ubionteh)
o hccount Urknonr(s-1550.545850)

Permissions for SYSTEM

Add Bemove

Alow Dy

Fead
wite
Delete
Evecute
Synchiorize

For special permissions or advanced setings, cick
Advanced.

Leain about ascess contol and permissions

OEBPS/httpatomoreillycomsourcemspimages1568813.png.jpg
Servces

By servces epseed it ocess

Dispey Name: Pan

Netwak Connecions C\Windows\System32netmen i
Windows Diiver Foundaiion -Usermade Diver Fiameolk C:\Windows\Systema20WUDFSve di

Manages audi devies fo the Windows Audio service. I s service s stopped. sud devices and ffectswil o fuction
praper. Iftis sevis is disabed, 3y sevices hat expicly dspend on wilfai 10 st

=) Ce)

OEBPS/httpatomoreillycomsourcemspimages1568663.png.jpg
Debugger
(first chance)

Trap
handler

Frame-based

Exception handlers
record
Exception Debugger

dispatcher (second chance)

Environment
subsystem

Windows Error
Reporting

-===> Function call
—— ALPC

.| Kemel defautt
handler

OEBPS/httpatomoreillycomsourcemspimages1568929.png.jpg
One

per
session

Global Quota Control CPU 0 DFSS Data

Total weight [Fair share interval | ———[DPC | Generation | |Cycles accrued | gne
Per CPU data | _Block count idie-only | Sortedd | Quota wait
T T Queuelock | blocklist | ~ block Py

-

CPUT DFssData
CPU2 DFssData

Session 0 CPU Quota Block.

CPU 255 _DFss Data

Weight | session 1D |4 List entry CPU Entry
[£CPU 2 entry [CPU T entry [CPU 0 entry | e
st entry.
B : 2 N dle-only queue
- . 8 Base cycle allowance
CPU 255 entry Cycles remaining
Session 1 + S Generation
Session 2

Session

‘Word process
(Session 1)

SQL Server process.
(Session 0)

OEBPS/httpatomoreillycomsourcemspimages1569013.png
/8 Windows Tesk Manager
Eile Options View Help

Applcations | Processes | ervices

InageName UAC Vitual,
and.exe Disabled
conhost.exe Disabled
carssexe ot Alowed
corssexe ok Alowed
dum.exe Disabled
explorer.exe Disabled
iexplore.cie Enabled
iexplore.ce Enabled
Isass.eve ot Alowed
tim.eve ot Alowed
MetipEng.exe Nt Alowed
meseces.ee Disabled
Nesrv.ere ot Alowed

Searchindexe... Mot Aloved
services.exe Mot lloved

7] show processes from allusers

Processes:37 CPU Usage: 0%

=]

Performance | Networking | Users

D
2560
1430
E
an8
1872
1020
3680
3960
S04
s12
72
1748
1976
280
452

CPU Memary
o T
o 748K
o 1k
o 126K
o 780K
o ;75K
o 24764k
o 408K
o 29K
o 860k
o ss7EsK
o 418k
o 12K
o a4k
o 33EK

Description
indaws Comm
Console Windor
Client: Server R =
Clent: Server R
Desktop Windoy
indows Explor
Internet Explors
Internet Explors
Lacal Security A
Lacal Session M.
Antimatware Se1
Mirasoft Securi
Micrasoft Netuc
Micrasoft Winde
Services and Cc =

Physical Memory: 34%

OEBPS/httpatomoreillycomsourcemspimages1568963.png
General| Log On | Recavery | Dependencies

Logon s

© LosalSystem account
[llow service to interact with desktop

o] NTSERVICEwNay

Password . .
ot password:

Help me confiqur user aceourt log on opfiors.

OEBPS/httpatomoreillycomsourcemspimages1568931.png.jpg
T e I ST eeest
T
,I-I ;l = Ea @ s ad EEE
‘Bosisoe

OEBPS/httpatomoreillycomsourcemspimages1568893.png.jpg
At courters Added corters

Thresd 3
Tesists ot 0
Tesas e o
esdse e 1
Tesise e 10
Tvesiste oo 11
-2
— B
Tesiste e 15
Tesiste oo 16
Teuse e 2
Testsae e 3
Tesisae e 4
Teasae e S
hesae e
Tesae e 7
= Thiead State mime 8
FT— Do) | Mesdsse e s
=

=)

o ot i the ek stao ofth tread. i fo ntiled, 1 for Ready, 2 or unio, 3 for Sandby, 4 fo Terminated, Sfor =
Wk, orTranhin, 7 For Uekzon. A Ruering tread s usogaprocessor » Sandby s sbou to s ne. A Ready Uread

Warks 0 s procesr, bu & wating For pracesor ecaus none ar e, A tread i Transtions ok or aresource arder
o execi, 5 5 watingfo 5 exeaton ack o be paged from dsk. A Wk heead as o e for the rocessor becase 5~

OEBPS/httpatomoreillycomsourcemspimages1569029.png.jpg
%) User Account Control

@ Do you want to allow the following program to make

¥ cha to thi

mputer?

29 Program name: Registry Editor
Verfied publisher: Microsoft Windows

File origin:

Hard drive on this computer

To continue, type an administrator password, and then click Ves,

OEBPS/httpatomoreillycomsourcemspimages1568807.png.jpg
[General | Details

Joecause of the following error:

associated with it

Log Name: System
Source: Senvice Control Manager Eve Logged:
01 Task Category:
Eror Keywords:
s A Computer:
OpCode: Info

More Information: ~Event Log Online Hel

[The Windows Firewall senvice depends on the Base Fitering Engine service which faled to start:

[The senvice cannot be started, either because it s disabled or because it has no enabled devices

9/16/2008 45600 P
None

Classic

AlexcLaptop

OEBPS/httpatomoreillycomsourcemspimages1568721.png.jpg
e ew teh

&)
Arctane
9) BoNanedobiecs
o
@) vevee
o
3 Fesytem
closar
KernelObjects
primey
prasees
s
Objectrpes
) stss
o Cota
secrty
Sesins

i UMD CommuricationPorts
®

None Tope
Seoror pcrot
sbaopat ApCport
W shaedsecton Secton

1Sessions\ {Windows

OEBPS/httpatomoreillycomsourcemspimages1569023.png
REG_KEV_DONT SILENT FAIL: CLEAR
REG_KEY_RECURSE_FLAG: CLEAR

[The operation completed successfully.

[C:\>reg £lags hklm\sof twarenicrosof t\windous

RECEY DONT S 1LENT FalL: CLEAR
REG_KEY_RECURSE_FLAG: SET

[The operation completed successfully.

OEBPS/httpatomoreillycomsourcemspimages1568809.png.jpg
Ele Edt View Favores Help

4188 Computer
i HIEY_CLASEES ROOT
- HIEY_CURRENT_USER
4 HKEY_LOCAL MACHINE
i D000
+-Ji COMPONENTS

33 Conoiseon2
i Contoetony
34 Convorsens
40 CumertContolset
1 LtknownGoodhecovery
. Mountadbeices
b
& slet
b0 setup
o3 WeA
o e useRs
L HREY_CURRENT_CONFS

Type
o] R
Hument ReS oworRD

Rec oworo

REG_OWORD
#LastknownGood REG_DWORD.

03
(aluenotset
o0n0non: ¢
o0n0non:)
w0000z @)
oonuoons ()

ComputenHKEY_LOCAL MACHINEVSYSTEM Select

OEBPS/httpatomoreillycomsourcemspimages1568845.png.jpg
stage 1

stage 2

Stage 3

Stage 4

Stage 5

Stage 6

Creating process

Convert and validate
parameters and
flags

e

Open EXE and
create section
object

T

Create
Windows
process object

T

Create
Windows
thread object

Perform Windows-
subsystem-specific
process initialization

Windows subsystem

Setup for new
process and
thread

New process

Start execution
of the initial
thread

7

Return
to caller!

1

Final

at entry point
toimage

Stage 7

OEBPS/httpatomoreillycomsourcemspimages1568817.png
UBPM Properties =
TisceBufes—|_Fie | Diecioy] Siop Condion
TicoPovides | TiasaSesson | Secuy

Broviders:

indon

ApnlD

Mictosoftwindows ApplcationE sperence-Lookup.
MictosoftWindows BT iggerProvider
MictosoftWindows BfeT iggerPravider
MictosoftWindows DomainlairManagerT iggerPr.
MicrosoftWindows DiiverFrameworks-Useihode
MicrosaftWindows EFS TriggerProvider

MicrosaftWindows Feedback Service TriagerProv.
Micsnsoft Winloss i mPolie e Prier.

1L

Bemove

Secuiy.

Fropeties
Property Vae Deseriplion
Keywards(bry] Dt Everts with any of th,
Keywordsl] 040 Events with alof the.
Level Ot Everts up o thislev.
Fropetes 00000, These addiional dat
Fiter Disabled

[

Cancel Apply

Help

OEBPS/httpatomoreillycomsourcemspimages1568703.png.jpg
Options View Process Find Hande Users Help

e
B ER0RIE X NS |
= PD CPU Prvate Bytes ‘Working Set_ Company Name
@ 0w 804K 15444 K oot Coportin

6% <omt 380K

Name. Hande Acoess
explrer cxe(1630): 1684 Oa1FE OQOIFFFFE
explrer exe(1620): 2052 01350 COTFFFEF
explrer exe(1630): 1052 001388 _OAOTFFFFE

wStation_\Sessions\I\Windows\WindowStatons WinSia
CPUUsage:818% Commit Charge: 0.74% Processes: 54 Physical Usage: 8023%

OEBPS/httpatomoreillycomsourcemspimages1569097.png.jpg
3rd Party Applications

Gfice | [CopyFile

Explorer Office | [[SharePoint][BITS | [WMP.

SMB (CSC/SRV)

HTTP (WeblO/http sys)

BranchCache

OEBPS/httpatomoreillycomsourcemspimages1568713.png
Global Flags
System Registy | Kemel Flags | Image Fe |

I~ Siop on excapton
I~ Show oater snaps.
™ Debug ntil command

I~ Enable heaptai checking

™ Ensble hesp free checking

™ Enable heap parameter checking
™ Enable heap valication on call

™ Enable applcation verfier

5
™ Enable hean tagging
I~ Create user mode stackrace database
I~ Create kernel mode stack race database
™ Maintain st of objects for eachtype
I Ensble hesp tagging by DLL
Kernel Special Poo Tag

 Hex

© Text

€ Verity Start @ Verlfy Endt

I Ensble debugging of Win32 subsystem
I~ Enabe loading of kernel debugger symbols
I Disable paging of kernel stacks

I~ Enable system crical breaks

I~ Disable heap coslesce on free

™ Enable cose exception

I~ Enable exception logaing

I~ Enable object hanle type tagaing
I~ Enable page heap
I~ Debug WINLOGON
I~ Buffer DbgPrint output
I~ Early crtical section event creation
™ Load DLL top-down (Ains4 only)
™ Enable bad hanles cetection
™ Disable protected DLL verifcation
Object Reference Tracing
I~ Enable [

PoolTags|
Process [

oo

OEBPS/httpatomoreillycomsourcemspimages1568591.png.jpg
Default 3 GB User space

2 GB User
process space

3 GB User
process space

2 GB System 1.GB System
space space

OEBPS/httpatomoreillycomsourcemspimages1569001.png.jpg
fudking

Toview or edk detals for an audting entry, seect the entry and then cick Ed.

Objectname; Ciusersiiehisample.txt

Audting enres

Hame

S -

¥ Inchude inheritable auditing entries from this object's parent.

hat are the requirements for ucting object access?

OEBPS/httpatomoreillycomsourcemspimages1568677.png.jpg
[

orer
Flesystem

GLoBaL

KernelObjects

Koowrls

KrownDls2

us

ObjectTypes

Psiss

RRC Contrcl

Searty

Sessions.
UNDFConmuricationPorts
Widows

Moo Tpe Synkink

(@oosdevces Syrbaidrk 17
s Devee
A caisbymctven: Event:
(@t Symbolcink DevicelDfsClent.
| 1.05¥5086 Debug,Trace Memary.... Event
Asersinreven: Event:
A LamanserverAnnounceEvent Event
B soperformance Section
Smcssaoport Apcrat

s Devie
powertontaport aupcrat
powervort ApCrat
recisTey ey
1) 5A_SERVICE_STARTED Event:
S selsacommendport atpcrat
) seRmCommandbort Aupcrat
Ssmapport Aupcrat
) sswinstatondgPort ApCrot
[@systemoot Symbolclink \DevicelHarddskPartion2lindows
A UriquelnteractivesessionidEvent Event:
| 4 Uriquesessionldevent Event
Susnppot atpcrat

€ windowsEnorRepertngsenicePort ALPC Port

OEBPS/httpatomoreillycomsourcemspimages1569129.png.jpg
TCP/IP

NDIS
miniport

USB bus driver

USB controller
driver

USB controller

USB network
device

USB cable

OEBPS/httpatomoreillycomsourcemspimages1568671.png.jpg
User mode
Kernel mode

System
service call

System service

dispatch table

System
service

dispatcher

0—
1
\2

[+ system service 2

3

OEBPS/httpatomoreillycomsourcemspimages1568993.png
] rundis2.excd60 roperies el

i i ezl o
UGraph | Thveads | TCRIP | Seaurty | Evronment | strngs

Users azus2jeh
SIDi 5-15-21-962839631-821590794-898124947-1001
Session: 1 Logon Session: 28ada

Virtualized: No

Growp Flags
Logon 51D (5-1-550-168506) Mandatory
Eveyone Mandatory
Mandatory LabehMedium Mandatory Level Integity
LocaL Mandatory
CONSOLE LOGON Mandatory
NT AUTHORITY\éutherticated Users Mandatory
NT AUTHORITYAThis Orgarization Mandatory
azius2Hamellsers Mandatory
azius2iNone Mandatory
BUILTIN\Adrinitators Deny
BUILTINWJsers Mandatory
NT AUTHORITYINTERACTIVE Mandatory

NT AUTHORITYANTLM Aubhenlicaion Mandatory

Growp SID: nfa

Piiviege Flags
SeChangeNlotiyPivige Defauit Enzbled
SelncreaseworkingSetPiiviege Disabled
SeShudowrPiiviiege Disabled

SellndackPriviege Disabled

Permissions.

OEBPS/httpatomoreillycomsourcemspimages1568577.png.jpg
User mode
(managed code)

.NET Application
(Standard User-Mode EXEs)
Framework Class Library Assemblies
(Standard User-Mode DLLs)

User mode
(unmanaged code)

CLR DLLs
(COM server)

Windows API DLLs

Kernel mode

Windows Kernel

OEBPS/httpatomoreillycomsourcemspimages1568709.png.jpg
Mutex (kernel-
mode use only)

Mutex (exported to
user mode)

Semaphore

Event

Event pair

Timer

Thread

System events and
resulting state change

Owning thread
releases the mutex.

Effect of signaled state
on waiting threads

Nonsignaled|

Resumed thread
acquires the mutex.

Owning thread or other
thread releases the mutex.

Signaled

Nonsignaled|

Signaled

o
Resumed thread
acquires the mutex.

One thread releases the

semaphore, freeing a resource.

Nonsignaled|

Signaled

T

Athread sets the event.

A thread acquires the semaphore.
More resources are not available.

Nonsignaled|

Signaled

Kernel resumes one
or more threads.

Dedicated thread sets

-

one event in the event pair

Nonsignaled|

Signaled

Kernel resumes the

other dedicated thread.
Timer expires.

Nonsignaled|

A thread (re)initializes
the timer.

Thread terminates.

=

Nonsignaled|

Kernel resumes one
ing thread.

Kernel resumes one
ing thread.

Kernel resumes one
or more waiting threads.

Kernel resumes one
or more waiting threads.

Kernel resumes waiting
dedicated thread.

Kernel resumes all
waiting threads.

A thread reinitializes
the thread object.

OEBPS/httpatomoreillycomsourcemspimages1569171.png.jpg
ASBNET and AJAX:
Architecting
Web Applications

—

OEBPS/httpatomoreillycomsourcemspimages1568789.png.jpg
Main thread

Service thread

Main
Pipe to
scm

StartServiceCtriDispatcher

1. StartServiceCtriDispatcher launches service thread.
2. Service thread registers control handler.

RegisterServiceCtriHandler

Initialize

Process client requests.

Connections to
service clients

3. StartServiceCtriDispatcher calls handlers in response to SCM commands.

4. Service thread processes client requests.

OEBPS/httpatomoreillycomsourcemspimages1569043.png.jpg
b faon you tin
e 2@ BE

s
s

optr
Septotr

o

it Ao

[[ows]

Mt Window AploctaOE oL

e
o
e,

oot e
e
Conpuer 05

a———————————

[Epa—

OEBPS/httpatomoreillycomsourcemspimages1569147.png.jpg
eo 2@ @ m

S s
gt

Flsysen
etk G5 02 Pokes
indon Feenst v Advorced Sty
etk st vanager s

9 virdss o (8 80210 Pkcs
5 1 nblcrerices

5) SofreRestnn ks

& ok s rotec

®

5 8 7 Seaiy Poes on Acve Orectory QUP 8
© % Adnced At oy oot
Pl b s

s Tenptes: Pl deftons (00 i)
et

L e —(

570 Gaew Quvorers Etconat O
Bexr o v Gt

5 ot s ot o Hrdons 193 Woors Vit et
s EXPOLetocamrt et W

i

%, DHCP Quuwortine Erforcemert Gt =

o e

o 4GP Qs Eoranert et
Descen: Prds HCPbasd tercomrt o AP
Ve 10

OEBPS/httpatomoreillycomsourcemspimages1568739.png.jpg
Hosted virtualization Hypervisor virtualization

Guest 1 Guest 2 Guest 1 Guest 2

Host OS VMM* | l VMM**

* Represents software product such as Virtual PC ** This VMM is the hypervisor.

OEBPS/httpatomoreillycomsourcemspimages1568897.png.jpg
Thread 1

Thread 2

Thread 3

Thread 4.

PO
ready queues

31

31

Ready summary

B

)

Deferred
ready queue

1

cPU1
ready queues

31

0

Ready summary

31 0
Deferred
ready queue

OEBPS/httpatomoreillycomsourcemspimages1569025.png.jpg
User mode HKLM\Software\App

Kernel mode
Access denied

HKCU\Software\Classes\VirtualStore\
Machine\Software\App

Registry

OEBPS/httpatomoreillycomsourcemspimages1568795.png
] svchosterest2i2 Properties =
Insge Performance Performance Greph Servces
Tveads | TcPp_| Seanty | Endroent | stongs

Uses N AUTHORITVLOCAL SERVICE
I
Sesson 0 vituskasd: o
Grou Flage
BUILTINsers Mandatoy
Everyone Mandatoy, Resicted
Everyone Mandatoy
LociL Mandatoy

Logon 51D (5-1:550-110213%8)

Logon 51D (5-1:55:0-11021398)
Mandatory LabehSystem Mandatory Level
NT AUTHORITY \Autherticated Users
NT AUTHORITYASERVICE

NT AUTHORITYAThis Orgarization

NT AUTHORITYWRITE RESTRICTED
NT AUTHORITYWRITE RESTRICTED
NT SERVICE\BFE

NT SERVICE\BFE

NT SERVICE\DPS

NT SERVICE\DPS

NT SERVICE MpsSve

NT SERVICE MpsSve

NT SERVICE \pla

NT SERVICE\pla

Growp SID: nfa

Piiviege Flags

SehssignPiimayTokenPiviege Disabled

Mandatoy, Resticted
Quner

ety

Mandatory
Mandatory
Mandatory
Mandatary, Resticted
Mandatory
Mandatoy, Resticted
OQuer

Mandatoy, Resticted
Qurer

Mandator, Resticted
Qurer

Mandatoy, Resticted
Quer

SedudiPiviege
SeChangeNotiyFiviege
SeCreatelabaPiviege
SelmpersonstePiviege
SelncreaseluotaPiviege

Enabled
Defauit Enabled
Defauit Enabled
Defauit Enabled
Disabled

&=

OEBPS/httpatomoreillycomsourcemspimages1569033.png.jpg
Choose when to be notified about changes to your computer

ol programsfrom making changes to your computer.

Defaul - Notify me only when programstry to make
changes tomy computer

© Donft ntiy me when meke changes to Windows
setings

© fecommendes o oo nd it

OEBPS/httpatomoreillycomsourcemspimages1569133.png.jpg
Group Policy client service

Group Policy en

Next Generation TCP/IP Stack (tcpip.sys)
Transport layer (TCP/UDP)

Network layer (IPv4/IPv6)

@depsaul
uomadsu|

Framing layer (802.3/802.11/etc)

NDIS 6.0 QoS NPI

Kernel mode

OEBPS/httpatomoreillycomsourcemspimages1568835.png.jpg
Process

| environment | +———

block

Process address space

Thread
environment

block

System address space

Process
object

Win32k process structure

Thread

object

OEBPS/httpatomoreillycomsourcemspimages1569063.png.jpg
Creator or

Server session

URL group

controller Worker process Worker process Worker process.
process T i i
13 13 ¥

Request
queve

Request
queue

HTTP kernel mode

OEBPS/httpatomoreillycomsourcemspimages1568969.png
Local Securty Seting | Explain|
j Create a pagefle

Admirisalors
NT SERVICE\srvany

OEBPS/httpatomoreillycomsourcemspimages1568785.png.jpg
Cell index

T ndex

Hive’s cell map
directory

Target block

-)

Cell map table

—
—

1023

0
N

511

Hive cell map directory pointer

OEBPS/httpatomoreillycomsourcemspimages1569105.png.jpg
Application

Cache

Branch
Cache

Generate
or update
hash

Generate
or update
hash

SMB Client
Driver

OEBPS/httpatomoreillycomsourcemspimages1568601.png.jpg
Symmetric Asymmetric

Processor A ProcessorB Processor A Processor B

OEBPS/httpatomoreillycomsourcemspimages1568903.png.jpg
Avalable counters Added couers
‘Selct courters rom coputer
tocal conputer>

Caer parent
Theesd

B % Procesor Tme CPUSTRES
Tetephony
TerminalSenvices
Termina Senices Sssion
Thvead

. Prveged Tme

1 Processor T

2 er e

Comet Sutchesiec

OEBPS/httpatomoreillycomsourcemspimages1568741.png.jpg
VM worker | |
processes

Applications Applications Applications Applications

Windows Windows Non- Xen-enabled

Server 2008 Server 2003, 2008 | | hypervisor-aware Linux kernel
os

F==)

- VSC

IHV.
] [

Linux VSC
Hypercall adapter

Windows hypervisor

“Designed for Windows" server hardware

OEBPS/httpatomoreillycomsourcemspimages1568683.png.jpg
Process

OEBPS/httpatomoreillycomsourcemspimages1568695.png.jpg
Process A

Handles

Handle table

Index

System space

Event object

Other structure

DuplicateHandle

Process B

Handle table

Event object

OEBPS/httpatomoreillycomsourcemspimages1569007.png.jpg
3 Applcation ControlPolces
> 8 P Secury Polceson Local Computer
4 Advanced Audit Policy Configuration
4 85 Syster AucitPolicies - LocalGroup F
» 3 Account Logon
o 5 Account Management
38 Detaited Tracking
38 oSaceess
5 Logon/Logoff
53 ObjectAccess

53 Pivge Use
3 e

» 3 Policy Change
>
» 3 Global ObjectAccess Auditing

Subcategory
Audit Applcation Generated
) Audit Certification Services
it et Fi Share
4 it il Share
BuditFileSystem
AuditFitering Phtform Connection
 AuditFiering Pltfom Packet Drop
it i Miripulstion
4 Audit Kemel Object
Bt OtherObject Access vents
BuditRegity
5 Audi M

<0

AuditEvents
Not Configured
Not Configured
Not Configured
Not Configured
Suceess and Failure
Not Configured
Not Configured
Not Configured
Not Configured
Not Configured
Not Configured
Not Configured

OEBPS/httpatomoreillycomsourcemspimages1568581.png
le Options View Windows _Help

Roptcatiors |Procsses | senics | Performance | Reworking | Users

Task. status
ket~ Notepad Rurring
Bos(@) Rurring
B Select Ciiwindowslsystem32|cmd.exe Running
E Rurring

e [o

Processesid5 CPU Usage: 1% Physical Memory: 26%

OEBPS/httpatomoreillycomsourcemspimages1568871.png
T Stack forthread 5540 =

wowscpU. dliCpupSyscallStub+0x9
wows4cpL.dIThunkArg+0xS
Wows4. dlIRUNCpUSIMUIation+0xa
Wwows4.diWowe4Ldrpintialize+0x429

ntell dll77_C @_0BN@K LOBBEB@Enabling?s heap?s debug?s options?)
ntdll dilLdrinitializeThunk+Oxe
USER32.dll_NtUserWaitMessage@o+0x15
mso. dilOrdinal2612+0x1 a

9 wwlis dil_GetallocCounters@o+0xe00ka
10wl dil_GetAllocCounters@0+0x5206
11wl dil_GetAllacCounters@+0x5of2e
12wl dil_GetallocCounters@0+0x4e281
13 WINWORD EXE+0x1 625

14 WINWORD EXE+0x15aa

15 nedll dil___RtlUserThreadStart@g+0x70
16 necll dli__RelUserThreadStart@s+0x1b

L) Coma)

OEBPS/httpatomoreillycomsourcemspimages1568999.png.jpg
Protected
subsystem

l Audit calls

Windows
server

Audit system

service calls

Security subsystem

LSA SAM

authentication

To Security Log

User mode

LSA
auditing

ALPC

ALPC

Audit policy Audit records

Kernel mode

Object manager

1/0 parse
Security NTFS
reference Mailslot
monitor (SRM) NPFS

Configuration registry
Process manager

OEBPS/httpatomoreillycomsourcemspimages1569089.png.jpg
Multiple
e e
fitien LI_']
o [R
OS AP1 Layer, Network Network Network Network
[el | e | nseri | i
ot e
10 Merer
]
Rt i
Filters (optional)
Multiple UNC 7
i =
P
an || s |[weooww
Retmor | Redvetr] | Reser
i 3
T |

Redrecied Dive Cacre
csc mechrism utiringSuyiem Manager
sarogste pviden [, [Comnect 1
£ ¢ i State. v RAM
] Cacne
ey
Mansger

SC Store.

OEBPS/httpatomoreillycomsourcemspimages1569081.png.jpg
Network Explorer user interface

Plug and Play

1PBusEnum

Function discovery API

DevNode

Network discovery providers

WSD.

SSDP

Third party

Device driver

OEBPS/httpatomoreillycomsourcemspimages1568865.png.jpg
CSR_THREAD

Create time
Thread links CSR_THREAD
Hash links

Client ID
Wait block
Thread handle

Impersonation count

CSR_WAITBLOCK

OEBPS/httpatomoreillycomsourcemspimages1569151.png.jpg
ryptographic service provider (CSP) = Microsoft RSA SChannel Cryptographic Pro
idex, keylength - 2048

ash algorithn = shatRSA <1.3.14.3.2.29>

DHCP Quarantine Enforcement Client
79612
Disabled

IPsec Relying Party
29639

Enabled

= BD Gateuay Quarantine Enforcement Client

EAP Quarantine Enforcenent Client
79623
Enabled

Disabled
Disabled

hEeps ://tkSradnd2 . rednond .corp.microsof t .con/NonDon:

2
Hs1T

Enabled
hEepsz//eocradnd! .europe .corp.microsof t .con/NonDonainHRA heor|

3
Hs1T

Enabled

https ://s inradnd1 .southpacif ic .corp.nicrosof t..con/NonDonainHRl

1

icrosoft IT Network Access Protection
For remediation options, click the 'More Infornation’ hutton if a

e systen cannot find the File specified.

:\Users\Beian>

OEBPS/httpatomoreillycomsourcemspimages1568971.png.jpg
=]
3 pavans
3 Pavesion
1 S
T e
+ 5 scoman)
B ot
B oo
3 oan
1 Gonetme
b SecDesc
- DefautPassword
- DPAPLSYSTEM
S it die

2 Robioprms s

Name

ety

e
REG DWORD

o
Gmald DWORD G2bit)value)

OEBPS/httpatomoreillycomsourcemspimages1569067.png.jpg
Server
application

\\Serverl\Mailslot\AppSiot

Server
application

\\Server2\Mailslot\AppSiot

Client mailslot

Client
application

endpoint

OEBPS/httpatomoreillycomsourcemspimages1569091.png.jpg
o BranchCache Peers.
Offline Files ... Network -+ or
Service BranchCache Server

Application

User Mode
Kernel Mode
1/0 Manager
Multiple UNC
Provider (MUP)
H
Redirected Drive
Offine Files || Buffering
Surrogate SubSystem
(RDBSS)
Offline Files
Cache

SMB Server

SMB Redirector |.

OEBPS/httpatomoreillycomsourcemspimages1568653.png.jpg
Timer 1 Timer 2 Timer 3 Timer 4

cPUO cPUl
Timer Table Timer Table
255 255

Timer Hand Timer Hand

=

31 0 31 0

OEBPS/httpatomoreillycomsourcemspimages1568945.png
3 oplorerexe2360 Propertes el

e i ezl g
UGraph | Thveads | TCRIP | Seaurty | Evronment | strngs

Users azus2jeh
SIDi 5-15-21-962839631-821590794-898124547-1001
Session: 1 Logon Session: 2828

Virtualized: No

Growp Flags
Logon 51D (5-1550-167608) Mandatory
Eveyone Mandatory
Mandatory LabehMedium Mandatory Level Integity
LocaL Mandatory
CONSOLE LOGON Mandatory
NT AUTHORITY\éutherticated Users Mandatory
NT AUTHORITYAThis Orgarization Mandatory
azius2Hamellsers Mandatory
azius2iNone Mandatory
BUILTIN\Adrinitators Deny
BUILTINWJsers Mandatory
NT AUTHORITYINTERACTIVE Mandatory

NT AUTHORITYANTLM Aubhenlicaion Mandatory

Growp SID: nfa

Piiviege Flags
SeChangeNlotiyPivige Defauit Enzbled
SelncreaseworkingSetPiiviege Disabled
SeShudowrPiiviiege Disabled
SeTimeZonePiivilege Disabled
SellndackPriviege Disabled

OEBPS/httpatomoreillycomsourcemspimages1568973.png.jpg
File
object

Security

DACL

Allow

Allow
TEAM1

descriptor

USERL
Read data

ACE

Read data
Write data

ACE

Allow

Everyone
File execute

ACE

OEBPS/httpatomoreillycomsourcemspimages1568623.png.jpg
Ee acton View Help

es @ Do

5 Sevies Qo)

PrintSposer

oz e senice
et he s

Descipion
Lovds e to memoryfo bter
pinting

Hame
CNmsaccesy

L Offce Souce Eng.
O il

L petormance Log..
Phug 1nd Py
PP XIPBus
% Posable Device E.

bl Fepors ..
i praectd Songe
i Remote Accert .
4 Remate Acess .
X Remote Procedur.
i Remote Pracedu.
4 Remote Registy.

A Resutant Setof B,
. Routng e
% SecondnyLogen
G Secure Sacket T
G Secunty Accouns..

Descipton

S
The Offine
Partormine.
Ensbes .
The ..
Ertorces 3.

i sece.
Proide .

Creter o
Momsge i
S th..
Mamgesth..
Ensoles e
Prodes .
Ot ot
P
Proide .
Thetatup

St
Saed

Saed

Sunsd

sned

Sarup Type
Ausomtc
Mo
Oisbied
Mot
Automtc
Disbled
e

Ml
Aot
Disbied
Aot
e
Disbled
Mo
Oinbis
Oinsbled
Oisbled
Monust

Logonas
Locsyte.
Loc Syt
Loc Syt
Locl Sevice
Locasyte.
Loca Sy
Loc 3.

Lo syt
o syt

Lo syt
Lo syt
Netwok ..
Netwok ..
Lo Sevce
Lo st
syt
o syt
Lo Sevce
Locsye.

[)

Gtendes (Saniv

OEBPS/httpatomoreillycomsourcemspimages1568879.png.jpg
Stack for thread 756,

rtkrip exelSwapThiead+D:266
Ptcripa,exelKComm ThreadWait«De1cf
rtcripaexe Ke Wat ForSingleObject -3x393
tripa exelKSuspend Thread+0x18

Ptcripa exe K DeliverApc+Dx1 7

rtcripa exe!KiSwap ThreadsBc2de
rtcripa.exelKiCommi ThreadWat <Dt
rtcripa,exe Ke WattForSingleOblect x393

3 ntkmipa exelApcpReceivellessagePort-0245
10 rtkamips exelApcpReceiveLegacyMessage +0x198.
11 rtkamips exeINtReply Watt Receive PortEx+0c102
12 rtkripa.exe!NtReply WatReceivePort«0x18
13 nikmipa.exe!KFastCalEntry 0122

14 ridldlFastSystemCal Ret

15 rtdl dilZwReph WatReceiveFort=Dic

16 lsm.exe!CCrigr:LpcWorker=Cxéd.

17 lom exelCCorligr staticlpeWorker+0id

18 ntdl IRt ToWorkCalback +0c11d

19 rtdl il TopWorker Thead=0:572

20 kemel32dllBase Threadit Thurk e

21 rtdldl_RiUserThreadStart =070

22 rtdldl_RiUserThreadStart+Dxlb

1
2
3
4
5
6
7
8

oK

OEBPS/httpatomoreillycomsourcemspimages1568905.png.jpg
Gorwl [Sauca D
Osply shrers
Ol e
e ——
Owex Owmn
© L

5ol mtcmtaty oo cneris
Sy

Dt

OEBPS/httpatomoreillycomsourcemspimages1568765.png.jpg
Time ——

Source
Host
Target
Host
1. Migration 2. Memory 3. State
Setup Transfer Transfer

——— VM Running

OEBPS/httpatomoreillycomsourcemspimages1568613.png.jpg
2% i Edt View Qptions Bt Window_tio
EC ORI T I Y=o
B P Lo [t [Foncion
PHEDOLL
HALDUL.
soonDoLL
KocoMoL —
cusses [T Funcion
an @[10000 00005 | Ehcaurerasraie
200002)| 3300050 | Ecquirehundownprstcton
300003)| 940405 | EcaureRundownProtectonCachedure
| 100000 550005F) | EcauieRundommProtectoncachetmetc

56 00060) | BacqireRundomnProtecsonte

T 5

Viodute | FieTrme Samp_| ik T Sy _| Pl Sae | At | Unk Chectsum | el Chectsum.
BOOTVOIL | oyis/20s ety [ovisass s | 2410 000060ES | 6000060€S
o o200 250 et bauosesso | maoosesso
cussrs | oo 239 000045E7D | 000045€70
ol | oisans man 00003859F | 0003839
rocomowL | asrams 24t 1551 bau0103es | a0oioses
NTOSRNL B | /157208 1250 a5 0003600CE | a03649cE
psHeDoLL | o1s/a0s 2 st bouoi3aA | onoiiaa

OEBPS/httpatomoreillycomsourcemspimages1568825.png.jpg
Br@ e O

5 V2 Lok v e gt om0 5| |1]9
[l r—

[P ——
N T
=

=

e

N EvereCode

e

by

Mottt
a0 5 e o
(Sirzos s ar o

b ettt tosmodvom v

OEBPS/httpatomoreillycomsourcemspimages1568863.png.jpg
Exception st
Stack base

Stack limit

TIB

Thread ID

Fiber information

Active RPC handle

PEB

LastError value

Count of owned critical sections

Current locale

User32 lient information

‘GDI32 information

OpenGL information

TLS armay

Winsock data

OEBPS/httpatomoreillycomsourcemspimages1569153.png.jpg
[y
B
e
e
poteaed

vt may e
g
byl

e

Managed
Client

Managed
Client

coser oo

e s

NATS e

Client.

et e
[0S

Optonaicze
e P vt

e |
b

Tt 1w

SR e e

vt o 75
Py

Conet
e
orianan

OEBPS/httpatomoreillycomsourcemspimages1569047.png.jpg
et Bl

Application
Presentation
Session
Transport
Network
Data-link
Physical

b
Virtual communication

O

Application
Presentation
Session
Transport
Network
Data-link
Physical

P i

OEBPS/httpatomoreillycomsourcemspimages1569041.png.jpg
[y
. Fsdy e o A e sy LNSRI

[
Loton, Wi Windom g0
Do Comatsthe sl et s iy o L i o

pree—

R R——

———

OEBPS/httpatomoreillycomsourcemspimages1568941.png.jpg
L~
£ PrivaEshueabemon s

4, #222STORAGE Volume#(33a1 1fce-29ci 111 B89e...
4, #579STORAGE Volumes(33al1fce-20ck 11l 889e...
0, #273STORAGE Volumes#(33a11fce-20ct 111 889e..
i, #272STORAGE Volume#(33al1fce-29ci-11el 889e...
b #974STORAGESVolumes{33alfce-29c-11el 889e..
2 NET CLR Dt s Librry.Lock PID 1004
& NET CLR Data_per Library Lock P10 1118
84 NET CLR Data_Pert Library_Lock PID_tec

OEBPS/httpatomoreillycomsourcemspimages1568719.png.jpg
3 Avctiame
+ 1 Bueomedotiees

3 coteack
o 0 e

3 v

3 Fiesyem

3 olosmur

. Kemlobjets

3 Knowrls

3 Knowtin2

S

3 Objectypes
o0 PSS

L 89 ol

L Secuy
b0 Sesons

L MO Communicstonpors
54 Windows

Name
actson

o

cossnctn

o

(Boosoesce

0 051006 0ebug T Memory 230
ersns
Y
Buspetomnce

ViR —
Mot acionContol.
[y ——
AMirmotMaarPcontento..
Ty
Eivmasappon

AL NETLOGON ERICE TARTED
s

[ErT—

T

prceantapon

o seciTR

s st srasren

Tyee
ALpCPar
Desice

Euent
Symbaictink
Smboitink
Euent

Euant

Euent
Section
FiteConnect.

FiteCannect.
FiteCannecs..
FiteConnect..

FiteConnect.
ApChon
et

Desice
awpchon
ApCran

FiteCannect.

Key
Euant

\DevicepfsClient
w

OEBPS/httpatomoreillycomsourcemspimages1568639.png
@ oo

Peripheral Device 1/0 APIC CPU Local
Controller or PIC APIC/IRQ# Line
n

CPU Interrupt
Dispatch Table

ISR Address Read from device
Raise IRQL
Spinlock
Grab Spinlock Acknowledge-
Dispatch P — Interrupt
Code 5
Drop Spinlock —_—
Interrupt Request DPC
Object Lower IRQL —

KilnterruptDispatch Driver ISR

OEBPS/httpatomoreillycomsourcemspimages1568847.png.jpg
Run Cmd.exe Run Ntvdm.exe Use .exe directly

MS-DOS .bat

Winl6 Windows
or.cmd

What kind of

application s it?

MS-DOS .exe,

e com, or pif

Run Posix.exe Run Ntvdm.exe

OEBPS/httpatomoreillycomsourcemspimages1569083.png.jpg
Application Mprdil
& e wetapt

Other redirector | ...

Ntlanman dil ey

RPC

Workstation
service

Ntdlldil

T —

l Kernel mode

MUP FSD | Other redirector

OEBPS/httpatomoreillycomsourcemspimages1569119.png.jpg
Rule Type

Selectthe peof connecionsecuy e o ile

Stops.
Fule Type
Erdpeins
Reauienerts
Ashertcaon Method
Fufie
Nae

Whatype o connecton secuy e woud you ke to reae?

© Lsoltion
Festic comections basedon uthencaon ctes,such s domsin membessip o
bedih i,

©) Authentication exemption
Do nctauhenicat connecions o e seciid conputrs.

© Severtoserver
Suthenicat connscin between he specied oniders.

© Tuanel
Butheniiats connecions between gaenay conpules.

© guston
Custom .

Noe: Connecton secusly es specyhow and when atheriaton occus, b they dort
Slom connectins. To alon aconnecton, creae o bourd o otbound .

Lean resbout e s

OEBPS/httpatomoreillycomsourcemspimages1569109.png.jpg
800

@ Peer A sends a PNRP
request message to the
node that registered the PNRP
1D of 500 (peer O) because itis
the closest (numerically) to 800.

Peer C does not have an entry for the
PNRP ID of 800 or any entries thatare

@ Peer B does have an entry
its cache for the PNRP ID of
800, so it sends the IPv6
address of peer € to peer A

closer to 800, so it sends back a response. 350 ® Peer A sends a PNRP request
indicating that it could not find an entry to peer E

closer to 800. (® Peer E sends a positive name
Peer A now sends a PNRP request message resolution response back to

to the next closest PNRP ID (450), peer B. peer A,

OEBPS/httpatomoreillycomsourcemspimages1568855.png.jpg
22 Procss Monior Syt wawysntemls om.
Eie gt B fr Toon Gprars Hep
SH ABED 94D 8 A5 EEND

e Success
s pen2na Success

Mo PHaOTEPAD DE DS HAMENT FOUND
MG o Crb oG CormaSrsontia FEPAESE
HUM trCoiCrnoSe ComtSoiontia SUECESS
FHMG s CmrCrpobeComrsonia TR FOUNO
HH s CnboGoCcmnsonin SULCESS

EiSpeni2Varet2a ez
e v e Supcess

M oo oS cn REPARSE
HMS oS ot S5 od NAME T FOUND
HMS oS Comd S GP DL FEPAFSE
HHM S CarCrboS e Com SAGPOLL NAME T FOUND
RGOt Ao SUECESS
R MCOTVARE koot WAE T FOUND
FHUMSOFTVARE ko WVt SULCESS
HHD o Ponsssonvinso o WA FOUND

B OTED S D303
Detedhcen Gt st Onpate Oon
Desethscr e

Deseshicn oot

ety

S o Sy
Detedhces Dy Vi 2V
Deedhcce DoV SeVin
Deethccr et

Detedhcon Domy Vi

ety

Desteghces e g

Backedywtnimemory

OEBPS/httpatomoreillycomsourcemspimages1568787.png.jpg
He ot yew Fomes Hop

4 compur
vy cuasses oot
eV CURRGNT.USER
4 1 HeerLocal yiacrane
3 scousorinn

o Convoren:
Conmolsety
5 convorsns
41 Comncomraset
o Comt
3 Deddeviee s
o e
& b ot
o s
o MeTeso
3 NETCitteoring

S priebentied
- NETFramework

L3 o s e
- (S661AED-0F2A-473E-8E
L3 s o
o3 e e e

tome
0
0escpton

S 0ipioime
erorCorwol
Eestuccions
gt
otjectime
eqiredieges
o

e

e
(s

e

et

Res oworo

e vy
Res om0
et
RS
Res owoRD
Res w00

on
e oty

@tenRoctd e el

Spplision Epernce

ooy

[——————
ctsytem

SeTaPrdege mperorsePiiege

oaennscy

a6

OEBPS/httpatomoreillycomsourcemspimages1568881.png.jpg
31

16 1
157

—————0

[— 16 real-time levels

[— 16 variable levels

System level
(Zero page thread, one per system)

OEBPS/httpatomoreillycomsourcemspimages1568733.png.jpg
Process Name

mepp.oe
Smers oo
Smerp o
Smerp o
Smers oo
Smers o
Smerp o
Smerp o
Smers oo
Smerp o
Smerp o
Smers o

mepp oo

mepn o0
e

Operation
BhCraterie
Bhcraterie
Bhcraterie
Bhcraterie
Bhcratefie
Bhcraterie
Bhcraterie
BhueryBasici
BhCloserie
Bhcraterie
BhcreateFietia
BhueryStandar.
BhCreateFietia
Load Image
CloseFie

Path

C\myapp \myapp exe local\myibrary dl
Camyapp\mylbrary dl
Camyapp\myibrary dl
C:\Windows\SysWOWB4\myibrary ol
CalWindows\system\myibrary.di
C:\Windows\mibray dil

Cimyibray dil

Cimibray dl

Cimibray dil

Cimibray dil

Cimibray dil

Cimibray dil

Cimibray dil

Cimyibray dil

Comylibrary dil

Resut
NAME NOT FOUND
NAME NOT FOUND
NAME NOT FOUND
NAME NOT FOUND
NAME NOT FOUND
NAME NOT FOUND
SUCCESS

SUCCESS

SUCCESS

SUCCESS

FILE LOCKED WITHONL.
SUCCESS

SUCCESS

SUCCESS

SUCCESS

OEBPS/httpatomoreillycomsourcemspimages1568585.png.jpg
ammw—smm—mwm- .
B G o
CIIE. V=11 XY he N S —— . S —

70 U ormoen owerr Conporyome

215497 Mo rocas o WindowsSenicr Moot Coporsian
S Sisyem Aor st
1752525 Mo roces o WindowsSanics McosonCopoton
25057 HotErocesorindors Somcer oA Capoman
o iie Do Sevic omae
EEhw Seni oo
Senven v hncle vaious PorsDeskisss. M Graphics e
FoProcassor o Sevces Meroson Coparman
204523 s eont e 0 Sevscn Meoioncop
HciPrcesstotinoes Sonees M Coporer
HotFroass o Mo Seees McosonCoporon
Hoterocrs o iow Toss Mosoncaportan
SE2577 Woomoh Windows Seach oo Capoman

914083 P Hosde G4
o it oy ook Shrng Seric
630319 o Prackes i S

o Pracss o Windows Seces Wi oo
Tpaumectiasie HoienFociartOoviopm.
Ve i Somer rocienlotom Senses

LocalSevonarogerseoce Meroon oo
Vindow LogonApricaion M Copoe

e
Yt pr——

[CPU Uage 1705 Comm hge 1145 Procemes 61 Phpical Unage: 356%

OEBPS/httpatomoreillycomsourcemspimages1569113.png.jpg
3 Administrator: Admin Command Prompt
NTenponetsh interface top show global

enabled
Sutonatic
onahled
disabled
[Receive Windou Auto-Tuning Level noynal
Add-On Congestion Gontrol Provider : none
E iis disapled
REC 1353 Tinestanps aisabled
The ahove autotuninglevel setting is the result of Windows Scaling heuristics

overriding any local/policy configuration on at least one profile.

\Tempynetsh interface tep set glohal ecncapability-enabled

:\Tenponetsh interface top show global
Querying active state-

enabled
Sutonatic
onahled
disabled

[Receive Uindou Auto-Tuning Level noynal

40°0n Congost ion Concrol Provider : none

FC 1353 Tinestanps aisabled

The ahove autotuninglevel setting is the result of Windows Scaling heuristics

bverriding any local/policy configuration on at least one profile.

OEBPS/httpatomoreillycomsourcemspimages1568819.png.jpg
Database i C/C++ Management
application owser application applications
e ‘ActiveX
controls
comM/DCoM

_ D

{com/pcom
= 2 Registry i
SNMP provider Windows provider ftl Providers
SNMP objects Windows objects | Registry | Managed objects

objects

OEBPS/httpatomoreillycomsourcemspimages1569037.png.jpg
Ele Acton View Hep

«»| 2@ o

Sty Stngs
2 Aot ascis
2 Loct Pl
Windou Feentvith Adoncet secor| [GEipg S
Netor i Harages ok
bty Pl e
it i A
3 SloareResiction i R et i Sk i 0 05 3
2 Appicaon Cortpalices
T Appocker
[Executable Rules: ez 28 b
5 Vindows e R - .
8 Jovends 3 et vt onsoc

8 1 ecuty Potcieson et Compee || [Gonpoe b
5 Abvanced At Py Contigutin

L S ——
e A rees.

Use e etercementsting o esch i colctontocnlipas vt s
e A it et e o et

2 ot bt
D o

-

. & 3o ||| @ e

OEBPS/httpatomoreillycomsourcemspimages1568961.png.jpg
He acion Yiew i =
es@0csEm > enn

Nome S

4 St CardRemo.
G T

Descapton
o e
Ao,

s

St Proecion Enblesthe. e
PP Notfcson.._provies . _Sured

550P Dcnary
& Songesevice

L Supaech
e o,
G TabepClputse.
Tk Sehdulr
ATComNesOSH.
CTdepnany

i Theres

G Thisd Ordeing.
TP B Senscs
09 Dot
o seice
Gtk

L Volume Sadow .
Gweacren

o 1.
Martsinrs.
Mondors .
Enaies To,
Erales s
Provdes .
Provdes e
Prodes .
Proddeson,
Erales e
Ao, U,
Provdtim
Maragesan.
Erabies Vi

s
saed

Sted
Sored

s

surp e
iy
Auorsic 0
ey

togonss
Locagem
LacnSnice
Neork Snice
Locu Snice

Locagstem
Locgsem
LocSsem
LocsSptem
LocsSptem
LocsSeniee
Nework Snice
Locrgsem
LocSnice
LocaSnies
LocSniee
Locs e
Lecrgsem
Locgsem
LocSnice

btendes (St

OEBPS/httpatomoreillycomsourcemspimages1568935.png.jpg
Dire
LogonUl
— f—s|

LSA policy | Msv1 0l
Kerberos dll

. 1s
Winlogon £ .
- - Active

ctory

Kernel mode

System service dispatcher

(Kemel-mode callable interfaces)

1/0 manager

JaBeuew 19O
1aeuew dud

Jabeuews samog

atpe> wanshs ap

Kernel

(Knsiba) obeueus

ainpaoud 201

uoneinbyuo>

Hardware abstraction layer (HAL)

Hardware interfaces

(Buses, 1/O devices, interrupts, interval timers, DMA, memory cache control, and so on)

OEBPS/httpatomoreillycomsourcemspimages1569035.png.jpg
e

Opensosion.
r—
Gorten
[RE—r—
pepenes
Satites

Jr—

OEBPS/httpatomoreillycomsourcemspimages1568643.png.jpg

OEBPS/httpatomoreillycomsourcemspimages1568869.png
Stack for thread 3532

RPCRT dILAPE_CCALL SendReceie-D220
RPCRTA d FocSeniscensetiz)

FPCRTA diTdSeocener s

FPCRTS diNdCientCozetiica

v dnp<OperPie D14
o dnOpen o PCA 102
o A Oper Pl 46
b e
FOVERRNT £ Drle

OEBPS/httpatomoreillycomsourcemspimages1568965.png
rvany.exe:3620 Properties

[E=SECER =

Inage

1 iz Wi

sarvees | Theads | TGP | Seeurky | Envieomen: | Sngs

Users NTSERVICELsrvany

SIDi 51.5-60-1966334153-2474529691 -1 1018B8334-11799473
Sesson: 0 etualied: o

Group Flags E
Logon SID (5-1-550-17135061) Mendaloy B
Eveyons Mandslory

Mandsto LabelHigh Mandat... Inegity

LocaL Mandslory

CONSOLE LOGON Mandslory

NT AUTHORITY\éutherticate... Mandatory

Growp SID: nfa

Piiviege Flags
SeChangeNotiFiviege Defauit Enzbled
SeCreateabaPiviege Defauit Enzbled
SelmpersonstePiviege Defauit Enzbled
SelncreassorkingSetPiiviege Disabled
SeShudownPiiviege Disabled
SeTimeZonePiiviege Disabled
SellndackPrviege Disabled

Ceemssens]
[]

Concel

OEBPS/httpatomoreillycomsourcemspimages1568693.png.jpg
Detalls | Securty

(Group or user names:

4 RESTRICTED
SSYSTEM

Pemissions for Everyone.

[) (Femoe)

#dd Object
Add Subdrectory
Read

Wite

Delete

Advanced.

Leam about access cortrol and permissions

For special pemissions or advanced settings, lick =

OEBPS/httpatomoreillycomsourcemspimages1568833.png.jpg

OEBPS/httpatomoreillycomsourcemspimages1568769.png.jpg
i\ Program Compatibilty Assistant =]

i\ Windows requires a digitally signed driver

A recently installed program tred to install an unsigned
driver. This version of Windows requires all drivers to have a
vald digital signature. The driver is unavailable and the
program that uses this driver might not work correctly.
Uninstallthe program or device that uses this driver and
check the publisher's support website to get a digitally
signed driver.

Driver: Unknown Program

Service: PORTIOB4

Publisher: Unknown Publisher

Location: C:\Users\Ash\AppDa..\PIO8BS9.tmp

@ Whtis o signed drver?

OEBPS/httpatomoreillycomsourcemspimages1568913.png.jpg
Quantum —» ie—

T Boost upon

Priority [wait (cmp\e(e

Pnomy decay at
quamum end

Preempt

(before quantum endy| Round-robin at

base priority

Base
priority ~~

TiME e

OEBPS/httpatomoreillycomsourcemspimages1568885.png.jpg
Image | Performance | Performance Graph | _Diskand Network

GPUGraph | Threads | TcPP | Searity | Envionment | Srings

cont: 1

™ CPU Cycls et Stat Address

Tesa 0 2 sock] [e
Start Time: 11:20:56 AM 2/10/2012
sute Wt By 8
KereTwe: otoonsw owamcrrody 12
User Time: 0:00:00.171. 1/ Priority: Normal
Conestches: 6352 Weneryrecty: 5
- Lesnemmo Ideaprocesor
Cu] :
o) Come)

OEBPS/httpatomoreillycomsourcemspimages1569011.png.jpg
Provided by Provided by
Microsoft Provided by Microsoft
IHV/ISV THV/ISV IHV/ISV

Windows Biometric Framework API

Windows Biometric Service

Biometric Sel Provided by

Microsoft
SersorAdapter_| [EngineAdapter| [storage Acaptr
Windows Biometric Driver Interface

F } Provided by
IHV/ISV

OEBPS/httpatomoreillycomsourcemspimages1569069.png.jpg
Application | Kemel32dll

Ntdlldil

NtReadFile, NtWriteFile,
NtCreateFile, NtCreateNamedPipeFile,
NtCreateMailslotFile

User mode

/

Kernel mode

\Device\NamedPipe \Device\Mailslot
Named pipe FSD Mailslot FSD

OEBPS/httpatomoreillycomsourcemspimages1568805.png.jpg
[T———
s Coptognay L,
[had @ty WOZ faenctiy

o E Rl et —
3 s
S oren
it
S
=
L o
i
L e
&Pttt
sda
i -
[

—]
ot AIEY LOCAL MACHINE STV CarrtCotr e ContronSence g

OEBPS/httpatomoreillycomsourcemspimages1568611.png.jpg
2 Process Explorer - Sysintemals:waw.sysintemals.com [dzolomon-PC\dzolomon el e
e Optors Yiw_proces FndHinde ety
000 F X ne NN EE——

Frocess PO CPU Cycles et Descrpton Company Name
System s rocess 06540 675201140
iormpts we 103 Herdwars ampts
e 137 Defored Procedur Call.
3 m mazeem
- 5

‘Windows Session Menager Microsof Corgorsion

Tpos o m SUASUbsysam Sever - Microsod Corporaion
corse o @ 566,454 Chant Sarver Funtims Pocess Wicrosot Comoraton
s o s 66,605,279 Chant Sarver Runbm Froceee_hicrosot Comaraton

_ m¥coroster 2 Console WindowHost Micoso Cororsion

Tops . Name

| ALCRat ARG Contoharaie bovoousuouuonseBpetndia
op \Delout

[orecory YnownDis
[Direcory (SossionsBaseNemedObjecs
Event 1BaseNemedObject\ConscléEvent O0D000000NNNEES

(CPUUrnge 1475 Comm Chorge 24556 Procere 99 Pyl nge 05%

OEBPS/httpatomoreillycomsourcemspimages1568793.png
=] suchostexesdd Propertes S
Insge | performance | performance Gragh | _servies
Trveas | TcPp_| Seeunty | Enkonnent | Sings

User: T AUTHORITYALOCAL SERVICE

E

Sessons 0 Witusizedk Mo

G Flage -
BULTINsers Mandatoy

Eveare Mandatoy

LocaL Mandatoy

Logon SID (5-1-55-0-79335) Dwiner

Mandatory LabehSystem Mandatory Level Ity
NT AUTHORITY\Autherticated Users Mandatory

NT AUTHORITYASERVICE Mandatory
NT AUTHORITYAThis Orgarization Mandatory
NT SERVICE Audiosry Quner
NT SERVICE'Dhep Ouner
NT SERVICE\EvertLog Ouner
NT SERVICE\FCRegSve Qurer

NT SERVICE \imhasts Quner

Growp SID: nfa

Piiviege Flags
SeChangeNotiyiviege Defauit Enzbled
SeCreatelabaPiviege Defauit Enzbled
SelmpersonstePiviege Defauit Enzbled

SelncreaseWorkingSetPiiviege Disabled

Bermissions

[eemssons)
[conce]

Concel

OEBPS/httpatomoreillycomsourcemspimages1568651.png.jpg
&) Cheneryeportami To[x

Bing

i Fovores | g5) SusgetedShes =) WebSiceGlley
53]+ @ Crenergy.. x @ YouTwbe- A | | B ~

EIE Rl Proecleiety i Tacie @

Information

Platform Timer ResolutionTimer Request Stack
The stack of mocules respansibl for the lowest platform tmr satting inthis process.
Requested period 10000

Requasting Process 10 2984

Requasting Procass Path \Device\SRVOI\140062.en0\OFfice14\POWERPNT.EXE

Chlling Modole Seack \Device\WarddiskVolume2\ Windows\SysWOWS\ntdlLal
\evice\arddiskVolume2\ Windows\SysWOWS\winm 4l
\evice\SFVeI\140062.ENU\OFFICEL\PPCOREDLL
\Device\SFVEI\140062.eno\OFfice14\POWERPNT.EXE
\Device\HarddisVolume2\ Windows\SysWOWG\kernel32.l
\Device\HarddiskVolume2\ Windows\SysWOWS \ntdlLdl

Platform Timer ResolationTimer Request Stack
The stack of modules respensibl for the owezt pltform tmr satting nthis process.
Requested Period 10000
Requesting Process 10 3128
Requasting Procass Path \Device\HarddiskVolume2\Program Fles (x86)\UtraVHC\winvnc.exe
Calling Modole Seack \Device\Warddiskolume2\ Windows\SysWOWGS \ntdlLal
\Device\HarddisVolume2\ Windows\SysWOWS\winm 4l
\Device\Harddisolume2\ Program Fles (x86)\UItraVHC\winvnc.exe
\Device\HarddiskVolume2\ Windows\SysWOWG\kernel32.l
\Device\HarddisVolume2\ Windows\SysWOWSS \ntdlLdl

Done 18 Computer | Protected Mode: Off

G-~

R 5%

OEBPS/httpatomoreillycomsourcemspimages1568979.png
| testLixt Praperties

General| Secuty | Detais | Previous Versions

Object name: C:\Usersieh\Documentstsoreencapsitestl i st

Group ot user names:

S2,5YSTEM
2 Homellsers [azius2\HomelJsers]

2 jeh (azius2\jsh)

8 Adminsttors (azus2\Admiistatos)

To change permissions, click Edit

dt.

Permissions for Everyane. Alow Dy

Fullcontral
Modty

Read b svecute
Read

wite

Special permissions

For specil pemisons or advenced selings,
click Advanced. = -

Leain about ascess conlol and permissions

EENCNENEN

Aoty

OEBPS/httpatomoreillycomsourcemspimages1568761.png.jpg

OEBPS/httpatomoreillycomsourcemspimages1568889.png
Ready (1),
Standby (3),
Deferred ready

kernel stack /
inswapped
dispatched preemption or

quantum end

!

Ter

/
J

nate (4)
voluntary

switch

kernel stack .
outswapped wait

resolved

OEBPS/httpatomoreillycomsourcemspimages1569137.png
Advanced Settings

‘Adepters and Bindngs | Provider Order

Ptk services.

Connections:

Cornestions ar fsted in the arder in uhich they are accessed by

- Local Area Connection
- Local Area Conmection 2
=4 Local Area Conmection 3

Bincings for Wireless Network Connection

R Clintfor Micrasot Netwarks

25 Fie and Prter Shating orMicrasaft Networks Py
Intemet Protocol Verson 4 (TCP/IPvA)
] = Inemet ProtocolVersion & (TCP/IPVE) 3

Internet Protacol Version 4 (TCP/IP4)
Iternet Protacol Version 6 (TCP/IPYE]

OEBPS/httpatomoreillycomsourcemspimages1569161.png.jpg

OEBPS/httpatomoreillycomsourcemspimages1568617.png
5] Process Tree - win7-boot2. PML

Only show processes st running at end of current trace.
7] Timelines cover displayed events only

Process Descipiion Image Pal *
5) System (4] System
B] smss.exe (324) [Windows Session Manager C\Windov
£ aulochk eve (336) |Auto Check ity C\Windor
55 smss.exe (460) [Windows Session Manager C\Windov
£ cors.ene (464 Cliert Server unine Process ~ C:Windor|_
) &) wiiit eve (600) [Windows Start-Up Applcation C\Windo
5] services exe (640) Senvices and Contoler app C\Windov,
svchostene (B16] | Host Pocess for Windows Servises C:Windor
£ sass.ene (648) Local Secuty Authorty Frocess C:\Windor)
T smese (656) Local Session Manager Service C:\Windor)
1 pswss.cne (560) 5UA Subsystem Server C\Windor)
B 7 smss.exe (566) [Windows Session Manager C\Windor
1 cass eve (576) (Cliert Server unline Process C:\Windov,
4 virlogon.exe (716) Windows Logan Applcaion C\Windov ~
Desarpton:
Company
Path; de
Commend:
User:
PID: o Started: 121312010 5:31:17 PM

(cotomen) (indusorrocss] (o gibves |

OEBPS/httpatomoreillycomsourcemspimages1568631.png.jpg
CPUO

CPU1

Processor Core

Processor Core

i

I

Local APIC Local APIC
Device 1/0 W ion
interrupts APIC a .

OEBPS/httpatomoreillycomsourcemspimages1568753.png.jpg
0x41404

i

File —-0x80841404

0x91084

GVAs > GPAs + SPAs

OEBPS/httpatomoreillycomsourcemspimages1568781.png.jpg
Process Explorer - Sysinternal: wwwysinterals.com [A
Eile Options View Brocess Find Handle Users Help

Qo= CIERITY:] ___
Prcess D CPUCowchDeta Desorpion
9 Sysem de Pocess o w730 2361
Finensis wa 074 2200 Hadwor e

wa 150 Oeened Procecies Cle

‘)

w0 Wdows S Managar

P Ciow Seves Runtin Prcess -
Tipe Name Hande Access *
File \Device\NetBT_Tcpip_{BF27A252-514D-4EB9-9660-1A376D40EB7A} 0x10C 0+00000000
Fle Cindons\Syaand2conio\ T\ CSUROAE? TSOCASIGRDCIOABGBEELITENTMES D10 DADIZDISE
Fle CWindows\Syten2\conlg\DEFALLT LOG2 0a14 000000003
Fle C\Windows Syt TAconiRegBack CONPONENTS 0a18 0:00020003
Fle C\Windows\SstonAconig\SECURITY LOG oac Daonnon:
File C:\Windows\System32\LogFies\WMI\RtBackup\E twRTDiaglog.etl 0120 0x00130088
Fla _C\Windowe\SytenTAconig\ SOFTWIARE. 024 0:00020003
File C:\Windows\System32\config\SYSTEM 0x12C 0400020003
Fle _Coindous\Sytanconig\DEFALLT 0a% 00020003~

CPUUsage:222% Commit Charge: 2L.17% Processes: 53 Threads: 465 Handles: 12412

OEBPS/httpatomoreillycomsourcemspimages1568637.png.jpg
IRQL setting

High
—_— Power fail
Inter-processor interrupt
IRQL = Clock | —
Clock
Profile/Synch
Device n
Interrupts masked on _|
Processor A
[
= Processor B
Device 1
«—{IRQL = DPc/dispatch|
Interrupts masked on
Processor B

OEBPS/httpatomoreillycomsourcemspimages1568633.png.jpg
31
30
29
28
27
26

High
Power fail
Interprocessor interrupt
Clock
Profile/Synch
Device n

Corrected Machine Check Interrupt

|- Hardware interrupts

|- Software interrupts

<«— Normal thread execution

OEBPS/httpatomoreillycomsourcemspimages1568987.png.jpg
(e 2@X =0 m
B ety Seting: Paky - [Secuty sing
Pt 4 Access Credential Manager 35 2 trusted caller
« G aaapaices b i compt o ot ek [s—
e oty
LT — et prtof o opesing e
e Add workstaions o domain
e O acea]| EVAG memoy quata for proces LocaL sRACENETWO..
B o e paoes 5 atowiog olacty Gusstadmiisrton .
M ordpints Al log o thioughRemets Do S Adiitroremts .
Sotore o ocies ckup i and dectoris dminisonSackp
Aoplcaton Contl Pl ity e chckiog Eeyonc 0CAL SRV .
8 ey Pt on oo Comput| Chngetheytem e LoCAL SERICE .
5 R Py Confuon] = Chonge et ot LocL sRcE Admin.
Crtespagdic Admiiors
Clcmteotencbiet
e gttt LocaL seRacsETwo..
e pemanen shcd s
et ymbicints Adiisors
tug programs Admiitors
ettt compe o thenewok Guet
S mylagonsrsbacoh
S erylogonsrsence
berylagoniocly
Dinylog n through RemoteDesktap S
Sl compte s s ecouns o bt for .
Elforc shutdoun fom remot e Adinisors
[——— LoCAL SRACENETWO..
Ellmpenonste s clent s sthrtcason LocaL sence Newo..
s s procwoting et e
Cllnrsse scheduing oty Admiitors
[T ———— e s Ao
Eltock pagesiamemry Eroyone
Logon s ttchjob SatSeme 0SS
loganma e SQtseneat0U B
e — pomiivy
Mty objc e
SO i— Ju—
L mAn—————— ‘Adiitors
Pt snglepoces ‘Admiistors
i o poformance Aditors TSR
Rmovs computss o docking tion Admiiron s
[E I —" LOCAL SERMCENETWO..
o i snddrectors AdmiistorSackip.
CShtdown the st Admiitrtor o
i Snehon oy senice s
Tk o ofles ot et Adiitors

OEBPS/httpatomoreillycomsourcemspimages1568887.png.jpg
5 Windows Task Manager

File Options View Help
hopications | Proceses [Senices

Image Name PID CPU Memary
adods exe w0 0 00k
e s ek
w2 o Lok
s 0 ek
damexe 0 o ek
exprerxe w6 o 20K
Goghlpdseme 20 w0 ek
logortip.xe w2 w0k
kass.exe [
kmere e 00 408k
npait e w0 o sk
(potspedzve T — 1

procexp.exe
Procman.exe

Open File Location

servces.xe End Process

slave.exe End Process Tree
svchost.exe Debug

svchost.exe
svchost.exe Create Dump File

svchost.exe

svchost.exe Set Priority.
svchost.exe Set Affinity.
svchost.exe

svchost.exe Properties
System 6o to Service(s)
System Idie Protrss

7] show processes from all users

Processes: 33 CPU Usage: 2%

Performance | Networking | Lsers

Description
Windows Audio Device Graph Isalation
Windows Command Processor
Client Server Runtime Process
Client Server Runtime Pracess
Desktop Window Manager
indows Explrer
Google Installer
Windows NT Logon Helper Application
Local Securty Authoriy Process
Lacal Session Manager Service
Pant
[
Einternals Process Explorer
peess Monitor
bvices and Controller app
rosaft Software Licensing Service
fedaws Session Manager
st Process for Windows Services
st Process for Windows Services

st Process for Windows Services

High
Above Normal
Normal

v BelowNarmal e -
Los] Hprocess

Physical Memory: 24%

OEBPS/httpatomoreillycomsourcemspimages1568751.png.jpg
Parent partition

Child partitions

User mode

Kernel mode

Virtualization service
provider (VSP)

Fast path filter (VSC)

Virtualization service
client (VSC)

Windows hypervisor |

Hardware

OEBPS/httpatomoreillycomsourcemspimages1568911.png.jpg
Avalable counters Added couers
‘Selct courters rom coputer
tocal conputer>

Comer parent
(Thread]
[y Py Curent CPUSTRES
. Procesor e
1 ser Tme
Context Swrchesfec
Eapsed Tme
process
I Thiead
prcty Base

Prorty Curent

OEBPS/httpatomoreillycomsourcemspimages1568669.png.jpg
acovio EXE has stopped working

Windows can check online for a slution to the problem.
% Check online for a solution and close the program
% Close the program

% Debug the program

© Viempotien deai)

OEBPS/httpatomoreillycomsourcemspimages1568605.png.jpg
82 Dependency Walkr - [notepad)

=]

¢ fle fd View Gpions Boie Window by HOD
Er YT P L Y=l

~Toose i eS| Uk S| Fie S| At o Chcksom | el Chcinom | G0 Sobpos | ~
e i 235, | o o | _aoeala—[ooviariz Jooviariae s ou E
oo U0 o0 | VORI | LALIIA [0OV1I0N |B015086 [k | Cosle
oo vz |wsam o | Umu(a [oosiiemn [ssesas e |comole
Olowumon |osmonnon wsme o | somola [oswsrass [ossvsrre Las |comae |-

Forelp,press 71

OEBPS/httpatomoreillycomsourcemspimages1568673.png.jpg
Table Index

Index into table System service number
31 13 11 0

Native API Native API

Unused Win32k.sys API

KeServiceDescriptorTable KeServiceDescriptorTableShadow

OEBPS/httpatomoreillycomsourcemspimages1568747.png.jpg
[c:\>Tivekd -hvl

LiveKd v5.0 - Execute kd/windbg on a Tlive system
Sysinternals - www.sysinternals.com

copyright (C) 2000-2010 Mark Russinovich and Ken Johnson

Partition GUID Name
[CBFA520B-CBBC-48CE-84EC-14BC2B2C3A74 Win7x64

(SAVS

OEBPS/httpatomoreillycomsourcemspimages1569049.png.jpg
Winsock | | peer-to-
app/ | [peer nfra-| - - - -
sevice | | structure §3
Winsock 2.0 APl u 2

(Transport and namespace functions) .

Winsock 20 SPI

Transport SPI functions [Namespace SPI functions|

[ayered service providers
TCP UDP

(Namespace LSPs
not supported)
(5P #2)

Winsock
aatalog

NetBIOS
Winsock driver H I client

- TDI Extension Driver (TDX)

(3 wiopelg Buuyy swopuim

1dv uooadsuy

oP TCP/P | IP:

U P/ Sec — ATM
[Ceo23] [Cwan_] [[1394_] [[toopback 1P tunnel
Network Driver Interface Specification (NDIS) API | [PPP/sLIP

Next Generation Network Protocol Stack (NetiO)

Application
layer

Presentation
layer

Session
layer

apow sasn

Transport

apow jpusay

and

Network
layers

Data-Link
layer

OEBPS/httpatomoreillycomsourcemspimages1569045.png.jpg
File Acton View Help

es 2@

B Securiy Settings
> T AccountPoliies
> 4 Local Polcies
> £ Windows Firewall with Advanced Security
1 Network List Mansger Policies
5 1 Public Key Policies
4 2 Software Restiction Polices
3 SecurtyLevels
1 Additonsl Rules
5 @ P Securiy Polcies on Lacal Computer

Object Type

3 Secuiy Lewels

% Addions!Rules
 Enforcement

5 Desigrated Fil Types

OEBPS/httpatomoreillycomsourcemspimages1569095.png.jpg
C:\Windows

\CsC

- \namespace

L <server-name>

<server-name>

<directories & files>

\temp

S C—

sm

OEBPS/httpatomoreillycomsourcemspimages1569163.png.jpg
Microsoft

OEBPS/httpatomoreillycomsourcemspimages1569103.png.jpg
80 Admiistrtor: Adrmin Command Prompt

TNTenponetsh branchcache
he following commands are available:

contoxt:
Displays a list of commands.

Displays a configuration script.

Exports the content infornation key.

Flushes the contents of the local cache.
Displays a 135t of conmands.

Inports a new content infornation key.

Rosots the BranchCache Service.

Sets configuration paraneters.

Displays configuration parancters.

Changes to the ‘netch branchcache smb’ context.

he Following sub-contexts are availabl

0 viey help for a command, type the command, followed by a space, and then
ype 7.

\Tenp>netsh brancheache set
he following commands are available:

ommands in this context:

¢ cachesize - Sets the size of the local cache

€ Koy = Gonorates a new content information key.

¢ localcache - Sets the location of the local cache.

€ publicationcache - Sets the location of the local publication cach

€ publicat ioncachesize - Sots the size of the local publication cache.
Z'§ets the status of the BranchCache service.

OEBPS/httpatomoreillycomsourcemspimages1568727.png.jpg
e92@Dc=@mPua

® performance
4 [Menitoring Tools
B Performance Meriter
4 15 Data ColecorSets
418 UserDefined

7 eperiment
» TR System
2 Event Trace Sessions
2 Startup Event Trace Sessions
» 1 Reports

OEBPS/httpatomoreillycomsourcemspimages1568737.png.jpg
B Bl £k tew Ootions pofle Wndow tho =lolx]
‘H\.'Uc\‘ﬁ\\s\ﬂﬂ\gﬁ\JJ\!EEﬂ\'ﬂ

Themase oo [
B AL WL CORE AT SRR 0L (000000 [ConowesiEs
= A (100000 | compreshmgdns

o Dirmamccw Mo 200000 | compmesrnan
[WA (300009 gy | cacooorrrsasesroo
O ML CORE AP0 WA (300009 | caswtnetow | cacooorrrsaasacsn
0 ML CORE VMRV L1010 Na 500009 casumotyoew | o00007FF38seseeo

[ty s |£(00008) mkopaTowiechs | :000007FF 3680200

2 Na |5(00007 | schatonmen | 000007 F36081070

38 105 WILCORE SOH1-10.0U
38 s wnicoRe FRELL 100

38 wiswniCoRe o100

38 #1415 WILCORE THREAOROOUAL 100

8 A5 WD COREUSRARVLORDER AL 100

8 4145 WOLCORE NAVEDPFE 11000

38 wins WILCOREMISCALHO0U

8 1S WDLCORE SYSIFO-1-100U

8 4115 WDLCORE LOGIATIONA1-1. 0.0

8 91415 WILCORE FROCESSEIVROWENT 41100
38 WIS WILCORE STANGL10.00

8 91415 WOLCORE QBRI 1100

8 AL WOLCORE ERRORHAIOLIG 110004

38 w10 WILCORE FEERSA1-1:000

38 wiis wDLCoRE U100

8 w105 WDLCORE FROFLET 100

8 s WSV BASE L1000

T [T L oo
(020001 [0(0:0000)| Compaesrnat [0:00001080
20:0002) 1 0:0001) | compurestigordeal | 00001050
5(0:0003) | 2(0:002) | conpaesrngy | c00001050
400008 5(0:0003) | ks oianoo0e
500005 4 0:0008) | Gesnatypeecw 000001080
00006 [00005 | Gusnatypew | s00001060
7(0:0007) 6 0006 keyTowwechr | cc00001080
500008 | 7(0:0007) | whsochartanitre | 00001080

For o, press 1 7

OEBPS/httpatomoreillycomsourcemspimages1569079.png.jpg
Win32 APIs

Graphing Grouping
Flood and NsP
synchronization Groip
security. Identity
Store Manager
G
& o0 PNRP.
maintenance
Winsock APl Crypto API

Microsoft TCP/IP version 6 protocol

OEBPS/httpatomoreillycomsourcemspimages1568699.png.jpg
2 Process Explorer - ysintemals: i ysinteral.com [ALEXIONESCUDGES\Admiistroter]
Fie Options View Process FindHandle Users Help

EIRETE NI S Y] O 1 s

Process. = PID CPU Private Bytes. Working Set Company Name E

[froerer o 3048013 648K 27624 K Mcrosoh Coporaion I

n | wmpnetwi exe 212 <001 5820K 8,052 K Microsoht Comoration -

Type Neme Hode Access ~

ey HKLM\SOFTWARE\Mcrosoft\Windows NT\CurentVersion\ppCompatags 760000000008
0388 x001F0001

iutant \Sessons\1\BaseNamedObjects MICROSOFT_WMDM_MUTEX

Mutont \BaseNamedObjecs_?._c:_users_admnsiator_sppdeta_local_mcrosoht meda piyer_.. 0IC4 - OTFO001
utant \BaseNamedObjects\ _7_c:_users_adminstator_sppdata_local_mcrosoht_medapiayer_.. 0:IC8 - (KOOTFO001
Mutant_\BaseNamedObjects\7_c:_users_admnstator_sppdata local morosoht meda piyer_.. _0clS8_(OTFO001 -

CPUUsage:688% Commit Charge: 3L01% Processes: 55 Physical Usage: 8131%

OEBPS/httpatomoreillycomsourcemspimages1569039.png.jpg
 ERem s

OEBPS/httpatomoreillycomsourcemspimages1568975.png.jpg
Processes Objects

Read —
‘Write

OEBPS/httpatomoreillycomsourcemspimages1568649.png.jpg
R S : : A
z |

OEBPS/httpatomoreillycomsourcemspimages1568745.png.jpg
Guest applications

User mode

Kernel mode

Virtualization
service

clients
(VSCs)

OEBPS/httpatomoreillycomsourcemspimages1568595.png.jpg
Er=-exsiconaina

OEBPS/httpatomoreillycomsourcemspimages1568797.png.jpg
Ele View Help

LER

E=)
22 actime
@ 21 BaseNomedObiects
0 collack
80 Device
B orier
© 03 Fiesytern
B ctosur
&0 KemelObjects
23 Knownlls
amns
0 ObjectTypes
23 RO Contol
B Secuy
@0 Sesions
2 UMOFCommunicaonports
&80 Windows
8 WindouStations

Nome
Bsenice 002048
Ssenice-00-2e58
Ssenice-0a-2078
B

OEBPS/httpatomoreillycomsourcemspimages1568579.png
Select rocess Page Columns &=

Select the columns that wil appear on the Process page of the Task.
Manager.

Sessian 1D 2
] cpusage
9] cPU Time
Mermory - Working Set
Mermory - Peak Working Set
Memory - Working Set Delta
7] Meory - Private Working Set
(7] Merory - Commit 5ze
Mermory - Paged Pool
Memary - Non-paged Poal
Page Fauls
Page Fault Delta
7] Base Priorty
9] Handles
9] Threads o

=

OEBPS/httpatomoreillycomsourcemspimages1568729.png.jpg
32-bit EXE, DLLs
Gdi32.dll 32-bit Ntdll.dll User32.dIl

Wows4cpudll
Wow6d.dil Wows4windil

64-bit Ntdll.dIl

OEBPS/httpatomoreillycomsourcemspimages1568777.png.jpg
Performance-
monitoring
applications

Programming
interfaces

Custom Custom Performance
application A application B tool
I
Pdhdil
[RegQueryvaluetx ‘Windows Management Instrumentation
High-performance provider interface
Advapi32.dil PerflLib Registry DLL provider

I

System
performance
DLL

Performance.

extension
DLL

High-
performance
data provider

object

OEBPS/httpatomoreillycomsourcemspimages1568981.png
| testLixt Praperties

General| Secuty | Detais | Previous Versions

Object name: C:\Usersieh\Documentstsoreencapsitestl i st

Group o user ames:
2 Eveyone

82,5v5TEM

2 Homellsers [azius2\HomelJsers]
2 jeh (azius2\jsh]

To change permissions, click Edit

dt.

Permisions for Admiistators Alow Dery

Fullcontral
Modty

Read b svecute
Read

wite

Special permissions

For specil pemisons or advenced selings,
click Advanced. = -

Leain about ascess conlol and permissions

EENCNENEN

Aoty

OEBPS/httpatomoreillycomsourcemspimages1568619.png.jpg
2 Systemst Properties (=l

image | Performance | Prfomance raph | Tveads |7cote | seuity | Envranment
D CPU | CswithDelta | Start Address

108 101 ntkripa.exe!KeSwapProcessOrStack.

s 79 nirive oxcPhase itdiaton

s 34 sty oo

B o ah i

04 2 nirioa oxcCBlanceSetiianager

H o et e

M e et

ea 11 it cxePMoggngiorer

B 11 N PrveteTreadokerRostie

% S it

i 3 Tipe oxlCequeuetamitescanTread

= 3 gmlepsidsdiiterresd

a0 3 ntips cxelEspliokerTresdidancetanager
2208 3 btveudosys+0G220

Siis 3 bvctaysoxisss

s 3 ntimipe cxeEtvploger

= 3 nte excEtlogger

s 3 nte cxcEtlogger

i 3 ntipe excEtlogger

B 1 . e Etwplogger

Tresd 5

Start Time: 3:45:34PM 27/01/2008

Sate WatwQuee BeseProt: 12

KameTme: vionge.sss OynemicPrinty: 13

User Time: 0:00:00.000 1/O Priority: nfa

Context Switches: 3,679,972 Memory Priority: nfa

[surena

OEBPS/httpatomoreillycomsourcemspimages1568723.png
Which event trace providers would you like to enable?

Broviders:

Windows Kemel Trace Add,

Properties:

Property Value Edit

Keywordsiam) 00
Keyworasiel) 00
Level o0

Properties ox00000000
< i

OEBPS/httpatomoreillycomsourcemspimages1568875.png.jpg
File Options View Process Find Handle Users Help

‘DB EEOBD|E R NS

Process PIDCPU_ Descrpton

s 520 Local Secuny Ashody Process __ Micosot Coporaton
e 5 Local Sesson Nanager Senvice — Hicrsot Coporst
EGETT 432027 Clot Sever urtime Process__ Wicrosoh Coporaton

ccsss
COOIFFFFF
B01FO001
00060003
0001F003

CPUUsage: 1135% Commit Charge: 4947% Processess60. Physical Usage: 1980%

OEBPS/httpatomoreillycomsourcemspimages1568815.png.jpg
Public API

Task Scheduler
(Schedsvedll)

SCM Extension DLL

I

UBPM API DLL (Ubpm.dil)

)

Unified Background
Process Manager (UBPM)
(Services.exe)

@ (o

Services... Tasks...

OEBPS/orm_front_cover.jpg
o e
Windows 6

Internals o
Part 1
) §
Mark Russinovic h
David A. Solomon

OEBPS/httpatomoreillycomsourcemspimages1568901.png.jpg
4

2

Short vs.
Long

Variable vs.
Fixed

Priority
Separation

OEBPS/httpatomoreillycomsourcemspimages1569053.png.jpg
Application ws2 32l

B
Service providers Wahtcpipdll, . i
Ntdildil

NtReadFile,

NtWriteFile,

NiCreateFile,
NtDeviceloControlfile User mode
Kernel mode

AFD

Protocol drivers NetBIOS

OEBPS/httpatomoreillycomsourcemspimages1568717.png.jpg
Client address Kernel address space Server address

space space
Connection port
| Message
| aueue
Client process Server process
Handle « > Handle
Client L server > Handle
communication [" | communication
port port
Client view |+— — | Serverview
of section [+ of section

Shared
section

OEBPS/httpatomoreillycomsourcemspimages1568849.png
21 Process Monitor Filter

Display entriss matching these condiions:

=

Processtiame][] emd.exel

Reset

< then [Include

Remove.
Column Reltion Valie Acton =
1 ProcessN.. is emdere Include

D Processh. s rotepadere Inchide
V1€ PracessN.. is Procmon.exe Exclude
I ProcessN... is System Exclude

16€) Operation begins ith 1RP_MI_ Exclude
V168 Ninexation _hecins with FASTIN Fuchule e

Concel Aosly

OEBPS/httpatomoreillycomsourcemspimages1568821.png.jpg
O [8 commiowar

- - s Qoo

H D e

= EEEES
L
a7 w2 o
5.0) O ok
0 8 s
Qe TP
5 01) O Cocronises
07 O S
©) Wiz Oheerieten
O G el
0) vz St
ez Senares
] ez Orieies it
.0] O bongedsptenéicnnt
0) O Pt
20 5) O Lopeotemir
@0) S Thesd
50] Wed2 CoMegicson
©0 1 i
1) Wi Sevesersin
©0 1) OM Sy
50 1] OM Sowarene
1) Wi Dioiode
S r—
900) Wi Pogunsrastilen
0 I Wi N Cavecion
90) Wi COnGs
9] ez Accomt
516 OM Sevee
00] M Sevesteceson
516 M Syenfonace
0 1) w2 Shue
©0C M Fispien
0 [i NPt
1) Wik ShaionPovier
@0 OM Aedrdairan
01) Wi Dudaérorecna
0 1) Wi PiRoseToe
01) Wi S
0) vt Lnctiotos

mu%uw«:

|9 CM_DataFile.

[pe—.

B ol [clmelue

(L ot o o bt o b e

e 7
=

& Dot
£ oue
£ Eopanssintons nra
& wnped oo
£ Evnpriebod s
£ bvoren g
£ Fatien £
& rusn
£ it
& Pt | g
£ fohane
£ vt
& mose
£ wisetant
£ Ucnd
£ Comadios
[& Mo
] & o

& pan
£ Restate
£ s
£ Sysem.
3 Ve
£ o
& _cuss
8 Zossarion
8 Zomesrv
& _cens 2
B
8 e ara
8 Zeroreary_coun 2

i

Vi
=
cono.
<o,
oo,
cono.
=
oo,
oo
=
oo,
cono
=
=
cono.
<o,
oo,
cono
=
oo
oo
<o,
=
cono.
<o,
oo,
cono.
<o,
oo,
cono,
<o,
=
cono.
<o,
oM ouse

]

O Momeisyteninent
rooncw2
NAEXUPTORRODTGMVZ0!
£l

W Computer|Protected Mo Off

OEBPS/httpatomoreillycomsourcemspimages1568647.png.jpg
& CiProgramming\ddk\taclstracing\i v | ¢7 | X || Google 2

W & rogramming\ddkitools v @ v [Bage v G Taols v
DPC/SR Breakdown 5]
DPC processor utilization Top: 63 of 68
Module ProcessorAddress Percent
atapotsys 0 80782FAC 3
ndis 375 0 80637107 1
gk sy 0 8726005 1
tepip.sys 0901802FE 08
tepip.sys 1 901802FE 05
usbhub.sys 08FFCD00s 02
usbportsys 0oFszmsEC 02
classprp.sys 05230594 02
ndis.sys 0 0EFIFC 01
1804201 375 0 8FicesEA 0t
iddmk sy 0 oFaiDiE0 01
ataportsys 1 s0782FAC
ndis sys 1 80637107
gk sy 1 8726005
usbhub.sys 1 GFFCDO0S
ustport sys 1 8F52888C
classpnp.sys 1 82380504
ndis 575 1 BOBEFIFC
i804zprtsys 1 BFecessA
gk sys 1 8F84D460 J
Done 18 Computer | Protected Mode: OFf ST

OEBPS/httpatomoreillycomsourcemspimages1569017.png.jpg
Legacy
application

Write to
Windows\App.ini

User mode
Kernel mode
Luafusys
Write to
\Users\<user>\AppData\ Write to
Local\VirtualStore\ \Windows\App.ni
Windows\App.ini

Access

Qe denied!

OEBPS/httpatomoreillycomsourcemspimages1568949.png.jpg
5 (=]
Ele Options View Brocess Find Users Help

CIIEEIOETE X X v]] I |
Poces PO CPU gty Descrtnn CarparyNane e
A 10 Moot Windows Seachindons i Copesn
22 00 Vs Mo lgr it S Mt Coptoon
36 007 men Hotocesi Vo Sevies it Coptatin
10 S HotPociaVindowSuvies et Coptatin
0 S HodPociaVindmaSuvies et Copain
oo S ey
D0 Guen Lo SedgeSns Mot Coptn
(% 057 5em Gl Suvr e P Vi Coportion
B W ComsdewndaaHot il Copoion
S5 Syen idows Logom Aok Voot Copotion
20 0 edan Windows e Vi Copoion
T bon | Syinens o bobe Syt i con
2% GISHG Syelanas e Eviom St o i o
e Window Commarocssn o Copoin
@ ede e Moo Coprten
B9 ke bsneGobe s Coprten -
B anloe eaEo s Coprten -

CPU Usage: 30045 CommitCharge: L111% Processes: 46 Physica Usage: 24.48%

OEBPS/httpatomoreillycomsourcemspimages1568755.png.jpg
Dynamic
Memory
Balancer

User mode

Kernel mode

Parent partition

Dynamic Memory
VsP

Child partition

Child
Applications

VMBus.

Windows hypervisor

OEBPS/httpatomoreillycomsourcemspimages1568767.png.jpg
LUN Owner

—— Pre-migration
Post-migration

OEBPS/httpatomoreillycomsourcemspimages1568939.png.jpg
Set audit event
Create logon session
Delete logon session

Local Security
Authority (LSA) server|

Communication
port

SeLsaCommandPort

Communication
port

port

SeRmCommandPort

Security reference
monitor (SRM)

Communi
port

User mode

Kernel mode

Shared
section

Write audit message
Delete logon session

OEBPS/httpatomoreillycomsourcemspimages1568899.png
Performance Options

Visual Effects | Advanced | Data Execution Prevention

Processor scheduing
Choose how to allocate processor resources,

Adiust or best performance of;

© Bragram Backround services

Virtual memary

A paging fle is an are3 on the hard disk that Windows uses as
it were RAM

Total paging il size for al dives: 0% B

Change.

OEBPS/httpatomoreillycomsourcemspimages1568635.png.jpg
15
14
13
12
11

o R N W A

x64

1A64

High/Profile High/Profile/Power
Interprocessor interrupt/Power Interprocessor interrupt
Clock Clock
Synch Synch
Device Device n
Device 1
Device 1 Corrected Machine Check
Dispatch/DPC Dispatch/DPC & Synch
APC APC

Passive/Low

Passive/Low

OEBPS/httpatomoreillycomsourcemspimages1568749.png.jpg
C:\>1ivekd -hv win7x64

Livekd v5.0 - Execute kd/windbg on a Tive system
Sysinternals - www.sysinternals.com
Copyright (C) 2000-2010 Mark Russinovich and Ken Johnson

Launching c:\program files\Debugging Tools for windows (x64)\kd.exe:

Microsoft (R) Windows Debugger Version 6.13.0002.895 AMDG4
Copyright (c) Microsoft Corporation. A1l rights reserved.

Loading Dump File [C:\Windows\11ivekd. dnp)
Kernel Complete Dump File: Full address space is available

Comment: 'LiveKp live system view (hypervisor partition)’

Symbol search path is: srvic:\Symbols*http://msdl.microsoft.com/download/symbols
Executable search path is:

windows 7 Kernel Version 7600 MP (2 procs) Free x64

Product: WinNt, suite: TerminalServer SingleUserTs

Built by: 7600.16617.amd64fre.win7_gdr.100618-1621

Machine Nam

Kernel base = OxFffff800°02a06000 PsLoadedModuleList = OXFFfff800°02c43e50
Debug session time: Sat Feb 12 19:34:57.897 17420 (UTC - 7:00)

System Uptime: 3 days 7:14:55.312

Loading Kernei symbols

Loading user Symbols

Loading unloaded module Tist

tvm

+#+ Virtual Memory Usage *#*

Physical Memory: 513422 (2053688 Kb)
Page File: \?7\C:\pagefile.sys
Current: ' 1048576 kb Free Space: 792480 Kb
Minimum: 1048576 Kb Maximum: 4194304 Kb

Available page
ResAvail Pages:
Locked 10 Pages: 0
Free System PTEs: 33533587
ooy 4 4 oo I

167196 668784 Kb
0 Kb’

134134348 Kb
M R o

101260 E 405040 xbg

OEBPS/httpatomoreillycomsourcemspimages1568927.png
Processor ity =

The Processor Affnty setting controls which CPUs the process wil
be alowed to execute on,

IR FcPut

Cancel

OEBPS/httpatomoreillycomsourcemspimages1569125.png.jpg
8 Microrot e Montor 3.4
o
Mgt openCpre

(B e

Pt - 2 Optors @ Howo

pes =

[t S s e ot 3

[Fa——

Gt

o | v
ety ne

15 o i i oo s o
e e o o T

12 oo e 02 sk 2T

Welcome to

Microsoft Network Monitor 3.4

fcrosof Network Monitrs 3ol forviewin te contens ofnetwork ackets hat.
eingsentand recived over e newrk comnecton o rom apreviously
aptured dtafle. 1 prowes ieringcptions or complex anlyss of nework t.

What's New

 Capture Files and DrverChanges:We e b mproing s captre
e anding s 1o 5 wel s prepanng fordve fitenn I younotice
1y s i s DUl please -l our“emon” suppor s

 Color Rules NetworkMontor cannow s et f ol et fles for
asysharing 105 alsopossbe 1o ht<ickand 24d 3 Colo Fule from the
Fram Summany s Frame Detalswincws. To et stared o some
of e aaiable Color ule Sets here
Dltnoarepeinstesiorine mon)Shtec % Do ment e kaISes.

 UTC Timestamps: Netvork Monitor il oow capure and s Time Zone
efsted nfomton n 3 ace By el s opénedith Tme Zone
{nformation il astmatcally hov tmes adusted o yout 0ca Time Zone
e ol tme or Time Zone can b vewed by dding th Time and
at” comn o ewing the Proertes nder e Fle e

- Column Management: etwork Montor il avomaseally choose
column ajcutbased on th Speof e eing apened T column layout
s appliedo heFrame Summary Window: T ajout canbe modiied and
sovaforftreus.Inaddson wo e ayosfo TP and TGP
agnostcs have beenincused

OEBPS/httpatomoreillycomsourcemspimages1568951.png
21 Process Moritor Fitr &=

Filtrs were i effect thelast time you exied Process Moritor:

Display entries matching these

Processtiame][- ~ then [Incude +.
Reset add Remove

Relation Value. Actian

@ Frocessane s Proconere Evchde
DFocesstane = Sytem Euchie
QOpeion bogmowin REML Euckie
Qpoion begewih FASTIO. Euckie b

Cancel Aoply

OEBPS/httpatomoreillycomsourcemspimages1568877.png.jpg
W3 lsmexe36 Properies =1

=]

insge | performance | _performance Graph || Diskand Netnork

GUGh | Theeds | TGP/ | secuty | Envronment | srngs

Count: 10

TID CPU Cycles Deta Start Address -

500 lsm exeimanCRTStp

G Al Top Water Trread

755 rid diTopMorkerTread

764 id diTopMorkerTread

758 i diTopMorkerTread

I i diTopMorkerTread

76 rid diTopMorkerTread

72 i diTopMorkerTread b

E rid iTopMorkeTread

Tead o Covosse

Start Time: 11:07:01AM 2/10/2012

Stte WaittserRequest BaseProrty: 8

KemelTime: 0:00:00.000 Oynamcprorty: 6

User Time: 0:00:00.000 1/ Priority: Normal

Contextsuithes: 20 Vemorypritys 5

Cyes: 21323 el processr
@ o)

OEBPS/httpatomoreillycomsourcemspimages1568641.png.jpg
IRQL setting

@ A timer expires, and the kernel table

queues a DPC that will release
any threads waiting on the High
timer. The kemel then

requests a software interrupt

@ After the DPC interrupt,

g control transfers to the

(thread) dispatcher.

@ When the IRQL drops below
DPC/dispatch level, a DPC DPC/dispatch —r
interrupt occurs APC

Passive
.npc queue

(@ The dispatcher executes each DPC routine

the DPC queue, emptying the queue as
it proceeds. If required, the dispatcher also
reschedules the processor.

OEBPS/httpatomoreillycomsourcemspimages1568689.png.jpg
Process

Top-level
pointers

Middle-level
pointers

Subhandle
table

OEBPS/httpatomoreillycomsourcemspimages1569101.png.jpg
Fle Acion View Help

(2@ Em Y

o Computs oty
4 ComptesConusion
5 Satwesetings
5 ot

ot
Ntk

[y em——
2 snacane

5 ons

2 Ntk Comec
5 Oftneries
QS sches

L Contputons
2 T semngs
2 VinsousConcc

TumonBrctache

o ol na.
[o— = SanCacnHostes Cocnerode

el hinsoss i) ContgeBanchCace o eworkls

e [DS p——
Thpey s pcites

i ek ovtentn)

[rieptved

e (RAN ks comcing

S e o o s

s b doicnds s e

iy auing campuer a3

inh e s cane s s

Kt o s e

R Sarcncre e

Erense S

OEBPS/httpatomoreillycomsourcemspimages1568857.png.jpg
e gt B b Tooh Gppons

e
GH | ABED $AD © | &5 ESE
Prceatin PO Opusen o e s B
crioe 50 ek SO TVARE WG SUCCESS
orice 20 .Coati Jmeenivery Success o
raaraion 151 Lontinsse o Gpaenovaatrs Sutcess i B DD e S 0300
| Srassdem 154 Slondnozs [t rr) Sugcess B DTESD e D)
| Sragsion 14 RGessie i A OTEPAD DEDOTESTS NANENTFOUND Demd ot v P Do 58
ramsion 1t By M s EnCorboboComrrsonin FEFARSE Destnihcos ot
o 1ot ooy HHUMG s CerCnpobeComensonta CULCESS Besnghcen oot
Tompodon 104 Buiae WG e oo CamehCrmaila. NAMENDTFOLNO Lrgh 1124
| rapator 154 ke S o rdarr SUEESS e T
ropodon 151 & Losinsg iy Success s B OO IS 040
| ragsder 194 Ertpkes MG CoiCornoSe ComaS 0 REPAFGE Deradhcest t Vb 2oy
| Sragsdon 154 ke HM i ComiCrtoSe ComdS3HBesd NEMENDT FOLNO Dot Ao Doy StV
| Sragsion 154 Aoty FRMS v CmerCnboSeh oSO DL FEFARSE Desnshsen et
| Srapadnn 159 Aty FHMG s CrboGoN eSO TAMERTFOUNO DA s
ronpeton 15t oy HHCoan ot SULCESS Denghcon Doy
rapeten 1t hehvan IMNGONAREdemserabndete AMENDTFOLNO. Lrgh 80
e 15t Bk HERCOTVARE ot Mt i e SULCESS
| Srapator 154 ety RNt 4o, WMENTFOUND Deedcces: Vo
| rapsian 194 oot oGy Bz Success o, B g S 0100
| Srapsdan 154 ostnoys [y Sugcess o, DD g e Do)
154 Roemic it e vy Sufcess

F el

Deedhcen Resh e gt O~

Sowing 35 f 20484 et 1990

Bxckedtywtnimemory

OEBPS/httpatomoreillycomsourcemspimages1568731.png.jpg
Fle Options View Process Find | Handie| Users Help

CIREIE =T X Y) [] =11}
O CPU Prvasbyer Wokn e Descmeen
01 74K 13209K Mot Wed
E ey

\Stsser\\BosaNomedObioct
CPU Usage: 460% _ Commit Charge Z809% Processes 51 Physcal Usage 6%

OEBPS/httpatomoreillycomsourcemspimages1569141.png.jpg
Computer 1

Computer 2

Web server Web server |
User mode User mode

Kernel mode Kernel mode
TCP/IP driver Tcp/pdiver | .
NDIS library NDIS library
Network Load Network Load Network Load
Balancing NDIS Balancing NDIS Balancing

lightweight filer driver lightweight filter driver distributed view
NDIS miniport driver NDIS miniport driver

Clients

OEBPS/httpatomoreillycomsourcemspimages1569149.png.jpg
£ RAPCLCFS - [NAP Chn Cofigurton (Locl Computer\Enforcement Chers]
FreTTm———

«sz@ED
e e]
3 Userlnterfce Setings e, Stah
Dty | —————
B Prec Rebing Pty Enabled
e —

o o
e [T R———
Descicion Pt DHCP b e 1
Venic "

s (=

OEBPS/httpatomoreillycomsourcemspimages1568977.png.jpg
Access token

Groupl: Administrators

Open access requested: Write
Group2: Writers ‘P/ L
Denied \

Revision
Flags

Owner SID

Primary group

DACL pointer
SACL pointer

Deny

Writers

Read, Write

OEBPS/httpatomoreillycomsourcemspimages1569077.png.jpg
ey
prvres
ey

o e
=i
= IE
= iE |

s
@

Vi Mindow sl

oot amanwsn
T g o

e

i —

OEBPS/httpatomoreillycomsourcemspimages1568851.png.jpg
B g G o Toor Sprom i
|0 XBE vA® © A8

oo 250 CWidowsctpadene success. Detedhccss: Resd b, Dposkon O |
s 0 Cinirteton SIS Cosenton OS5 e100 ot
s 20 Cirtrieton Suess
s 250 i SR Deiethcns Rt Dot D,
rien 280 i — QS Pcrmten T
rien 250 Etnto Sucesss
vies 250 Eiris SUECES Doanthcons Ao Dt 0
ries 220 s SUEES Cumerton MO8 oo
e 0 Eirss S
e ENlriagaten SUECE ekt Rt Dy
s 20 Commvpeden PUECOUE0MIH. Srcte Spelmaieansos Fopimi
i 20 ARG TABE Vi Tt AMENSTFOUO D, BV, S 11
s 20 Clinimeronpnien S o
mien 250 [orred SEES e N ciguten
rien 250 Eintorinton SEES DI Gt vt
ot 151 & s o NEES Peearlb

i 121 QR TS
e 20 Cnsovanpsion SUECES o O G DAL AL L
S} EVinsvagston SUEES Canerten BOOT1 5100 o -

Sowing 35 f 20484 s 1990 ke byl meny

OEBPS/httpatomoreillycomsourcemspimages1569099.png.jpg
Headquarters

Distributed Cache

&

Hosted Cache

’

Branch office Branch office

OEBPS/httpatomoreillycomsourcemspimages1568985.png.jpg
Pemissions | Audting | Ounes | Effecive Permissions

The folluing st dsplaysthe pemissions thet would be rented to th selected group o user, based solly on the
pemissions granted drecll though roup membershin.

Objectname: CAUsers\jeh\Documentstscreencapsitest] it

Group o s name;

[Pamistaas

Effectve permissions:

Full cortol
Travese folder / execute fle
Lt foder / read data
Read altibutes
Read evtended atibutes
Createfes / wite data
Create olders / ppend data
Wite atibutes
Wite evlended atibutes

How se efecive pemission: delermined?

OEBPS/httpatomoreillycomsourcemspimages1568691.png.jpg
Audit on close

Inheritable
|— Lock

Pointer to object header n

[— Protect from close

Access mask P

32 bits

OEBPS/httpatomoreillycomsourcemspimages1568589.png
Virtual memory

Physical memory

OEBPS/httpatomoreillycomsourcemspimages1569015.png.jpg
G)=[0 > Computer » 05(€) » Windows »
B it view Toos e

~ Tés [searcn

2]

foder:

b windows

U dgppach

U swembly

& oot

. bracing

U cursons

3 oebug

U Digntocker

Ui Downloaded Insallations
(21 Downlosded Program s
U s

W oms

. Gibsizion

v | Name

g

& oot
 Branding.

i Cursors

i Debug.

L Digocker

1 Downlosdedtnsatations
@ Dowrioaded Progim il
benetss

aforts

. Globalizstion

Date madiied. Type sae
ez Fle

IR AD... Fie Folder

VI8 125... FieFolder

YI8540... File Folder
OISR, FieFolder
YISO I0... FieFolder
SRS, FieFolder
s .. Fie

VI LEL. Fie Folder
WA Fie

IS0 645..._ File Foder

S4itens Qi e spaces 631 G8)

o Campuer

OEBPS/httpatomoreillycomsourcemspimages1568603.png.jpg
System Processes

Local session 3 .
manager Environment

_l Subsystems
Authority m]
e Print spooler

User mode

Kernel mode

System
threads

[

System Service Dispatcher

(Kernel mode callable interfaces)

170
manager

Jabeuew
feld pue Brig
ainpasoid
|e30] padueApy

Hardware abstraction layer (HAL)

Hardware interfaces (buses, /O devices, interrupts,
interval timers, DMA, memory cache control, etc.)

OEBPS/httpatomoreillycomsourcemspimages1568657.png.jpg
o0 e

Timers Queue on CPU 0 Timers Queued on Current CPU

OEBPS/httpatomoreillycomsourcemspimages1569131.png.jpg
TCP/IP

NDIS

Remote NDIS
miniport

Remote NDIS
USB miniport

USB network
device

USB bus driver

USB controller
driver

USB controller

USB cable

OEBPS/httpatomoreillycomsourcemspimages1568827.png.jpg
23 Process xplorer - Sysintemalsswww.ysintemalscom [ALBCLAPTOP\Adrminstrator] =]
File Qptions View Process Find Users Help

Ba=rBeex ac NN I

Process PID CPU_ Desciipion CSitchDeta *
a0 Windows Session Manager
83 Clert Server Auntime Process £
icassere 520 Clert Server Runtime Process 26|
& & winint exe 528 Windows StatUp Appication
21 i services eve 24 Services and Contoler 3pp 8
svehostee 78 Hast Process for Windov Services 5

2 Deskiop Window Menager

Host Process for Windovs Services

=] svohostere. 940 Host Process for Windovs Services
7 udodg eve 1308 Windows Audo Device Graphsoation
] SLsveere N MistosoftSoftware Licensing Senvice.
7 svchostexe 1008 Host Frocess for Windows Services -

CPU Usage: 154% Commit Charge: 22.51% Processes: 55 Threads: 478 Handles: 12653

OEBPS/httpatomoreillycomsourcemspimages1569071.png.jpg
NtDeviceloControlfile User mode

Kernel mode

\Device\Netbios
NetBIOS
emulation driver

OEBPS/httpatomoreillycomsourcemspimages1568679.png.jpg
Owned by the
object manager

Owned by the
kernel

Owned by the
executive

Name
HandleCount
ReferenceCount
Type

Kernel object

Executive object

OEBPS/httpatomoreillycomsourcemspimages1568801.png.jpg
Service database
Group order list

Groupl »[Group2 » [Group3 N

Service entry list
Servicel

Group. Group

Service2 Service3
Type Type Type
Start Start Start
DependOnGroup DependOnGroup DependOnGroup
DependOnService DependOnService DependOnService
Status Status Status
Group

——s

OEBPS/httpatomoreillycomsourcemspimages1568661.png.jpg
Time
Time

Software Timer Expiration

Timer Interrupt ———»

010853201y T J0SS8301d

OEBPS/httpatomoreillycomsourcemspimages1568841.png.jpg
CSR_PROCESS

CSR_PROCESS

Reference count
Client ID

Session data

—

—

CSR_SESSION

— Process links

—

CSR_PROCESS

- Thread list

—

— Parent
Client LPC port

Client View data

Sequence #

Flags

Thread count

Shutdown level
Server data E

CSR_THREAD

One per
CSR_SERVER DLL

_]

OEBPS/httpatomoreillycomsourcemspimages1568989.png.jpg
sEplorer - s o)
Eile Options View process Find Uses _Help

T TCE=oTF ST YN o [o [] ' |

Frcers D CRU neoty Desepion Carparlone
e 55 <001 Syten Loce Sessn Marsgr Svics Wi Capersion
ponee 108 Hgh et PocessExpor Syt v stons e

0 e
Commardine:
oy 32nd2exs” ShaE2 o Conol ArDLL T Widons\Sylen 2t ci
P

C\ndons\Syten sz e

Rurdi Toor

o pton2imedste ol

Tine Dot CorPane g

Vicorh Coposien

§12 Smem o Proces o Windows Sevies | Wiera Copaain

S 0DSpan HoPoces o Windows Sevess Miosa Copoctin

2 002Sptem ot Process o Windows Serves Mol Copocstin

S0 002Syem o Process o Windows Senves _ Miosa Coprstion

(CPUUrage: 3240% Commt Chirges 2304 Processes 30 Physcl Unage 121% Paused

OEBPS/httpatomoreillycomsourcemspimages1568775.png.jpg
Ele Edt View Favores_Help

& 1000ms Name

4 4000005

i 6000

3 ssooonnn

1000005

4 SCHCI b <TG
3 Descipton
4 Hements

3 000001

- 12000002

g

3 o0oms

4 o000

4 a0t

3 20002

4 22000003

3 2500002

. 26000000

4 a2

3 ssooonnn

4 000005

4 OG- BbI-che5T2GH]
3 Descipton
4 Hements

& oot

- 12000002

T -
ComputerHIEY_LOCAL MACHINE\BCD00000000\Obiect\fo091c- 3331 11d-bot-chebT26HbIElement 26000000

e
oy R [
4 Element REGEBINARY 01

OEBPS/httpatomoreillycomsourcemspimages1568959.png
B crd.exe 3264 Properties el

e i ezl g
UGraph | Thveads | TCRIP | Seaurty | Evronment | strngs

Users azus2jeh
SIDi 5-15-21-962839631-821590794-898124947-1001
Session: 1 Logon Session: 2gefa

Virtualized: No

Growp Flags
Logon 51D (5-1550-167608) Mandatory
Eveyone Mandatory
Mandatory LabehHigh Mandatory Level ey

LocaL Mandatory
CONSOLE LOGON Mandatory

NT AUTHORITY\Autherticated Users Mandatory
NT AUTHORITYAThis Orgarization Mandatory

azius2Hamellsers Mandatory
azius2iNone Mandatory
BUILTIN\Adrinitators OQuer

BUILTINWJsers Mandatory
NT AUTHORITYINTERACTIVE Mandatory

NT AUTHORITYANTLM Avthertication Mandatory

Growp SID: nfa

Piiviege Flags B
SeBackupPiviege Disabled =
SeChangeNotiPiviege Defauit Enzbled
SeCreatelabaPivige Defauit Enzbled
SeCrealsPagefiePiiviege Disabled
SeCreateSymbolicLinkPiviege Disabled

SeDebugPriviege Disabled

SelmpersonstePiviege Defaut Enzbled

OEBPS/httpatomoreillycomsourcemspimages1569005.png.jpg
Eoi

Privleges

Log Name:
Souree:

EventID:

Levet:

User:

OpCode:

More Information:

[Access Request Information:

Transaction ID: {00000000-0000-0000-0000-000000000000]
Accesses: READ_CONTROL

Readittributes
Access Reasons: READ_CONTROL: Granted by Ownership

Readiftributes: Granted by DiAgFAS-15-21-
1018543553-3251899282-289116550-1001)

Access Mask: a0

Used for Access Check: -

Resticted SID Count: 0

Secury
Microsoft Windows security Lagged: 2110730 08261
1856 Tosk Category: File Systern
Information Keywords Aucit Success
A Computer; rubicon

Info

Event Log Online Help

GO

OEBPS/httpatomoreillycomsourcemspimages1569055.png.jpg
1/0 manager

Network Winsock Kernel (WSK)
Module

Registrar
(NMR)
Transport Transport Transport
(TCP/IPva) (TCP/IPV6) (Raw)

OEBPS/httpatomoreillycomsourcemspimages1569123.png.jpg
Connection management

NDIS library

transmission
and receipt

Connection
management

NDIS

Data
transmission
and receipt

NDIS library

NDIS library

OEBPS/httpatomoreillycomsourcemspimages1568831.png.jpg
On-demand request
Troubleshooting ||

module (t

Instrumented User mode

component

Kernel mode

ETW instrumentation

OEBPS/httpatomoreillycomsourcemspimages1568861.png.jpg
Thread control block (KTHREAD)

Create and exit times
Process ID

-—

EPROCESS

Thread start address

e ———

Access token

Impersonation information
ALPC message information
Timer information

—

Pending 1/O requests

Dispatcher header

Total user time

Total kernel time

Thread-scheduling information

— |

Trap frame

Kernel stack information

System service table

[P

Thread-local storage array

List of objects thread is waiting on

Synchronization information
List of pending APCs
Timer block and wait block

—

TEB

OEBPS/httpatomoreillycomsourcemspimages1569169.png.jpg

OEBPS/httpatomoreillycomsourcemspimages1568615.png.jpg
Ble gt View ey

System Summary Name. Description File

Tiairore: | T

A adpddoc adpdc Chwindows\system32\drivers\adpdacsys Kemel Driver

. = adpah adpahd Cwindows\system3z\drivers\adpahcisys Kemel Driver
Systam Dy adpul60m adpu160m. Cywindows\system32\drivers\adpu160m.sys Kemel Driver
i"’"" °"’m"§ - adpu320 adpu3zo Cwindows\system3z\drivers\adpu3z0.sys Kemel Driver
EoronmertVares | g oy niono_ cndoworteninanarisys | Kendorer
T | ke oo Eendomer
reocomaon | S L st veneiom
s e e onioenninioieys e
- I O KGR . oIRGB0 Koo
e s | e e it el
THMEI s ke cviiompn——rr fondmer
| s oo cwidorynanandaon Eendomer
Viiom eropuvg| e e vmienstaasncs Vet |

s scnd oy P sy

OEBPS/httpatomoreillycomsourcemspimages1568629.png.jpg
Trap handlers

Interrupt
service
routines

Interrupt —————

System service call ————— Syt
services
Hardware exceptions __ (Exception _, | Exception
Software exceptions frame) dispatcher

Virtual memory|
manager's
pager

Virtual address ————————
exceptions

Exception
handlers

OEBPS/httpatomoreillycomsourcemspimages1568791.png
Hurman nterface Device Access Propertes Locsl Compute) =

General| Log On | Recavery | Dependencies

Logons

Looal System account
Allow service to interact vith deskiap

© Itis account: Dave Cutler

Password B

Confim password

Help me confiqur user aceourt log on opfiors.

Yo can enable or disable this service forthe hardware prfies isted below:

Hardware Profle Senvice

Undacked Prcfe Enabled

Loutsooing i b s [e

OEBPS/httpatomoreillycomsourcemspimages1568659.png.jpg
Time

Software Timer Expiration

Timer Interrupt ———»

010853201y T J0SS8301d

OEBPS/httpatomoreillycomsourcemspimages1568625.png
Print Spooler Propertes Loc Compute) =

General | Log n | Recaver | Dependencies

Service name:

Display name: ~ Pint Spooler

Desciptions |Loads fles to memary for laer pintng =

P 0 executable:
Cwindows\System32\spoolsv ke

Help me confique service staftup oplions

Sevice staus: Stated

St Eause Besune

Yo can speiy the stat parameters that applp when you stat the service
fiom here.

Aoty

OEBPS/httpatomoreillycomsourcemspimages1568707.png.jpg
Processor A Processor B

Do Do
Try to acquire Try to acquire
DPC queue DPC queue
spinlock spinlock

Until SUCCESS Until SUCCESS

DPC queue

Release DPC queue spinlock Release DPC queue spinlock

[Critical section

OEBPS/httpatomoreillycomsourcemspimages1568843.png.jpg
'W32PROCESS EPROCESS

Process _—

Ref count
Flags

PID

Counts

Handle table

GDIlists o= F——

DirectX process —Dl DXGPROCESS

Next process 'W32PROCESS

OEBPS/httpatomoreillycomsourcemspimages1568923.png.jpg
Threads Aand B
become ready to run

Interrupt

Interval 1

Interval 2

OEBPS/httpatomoreillycomsourcemspimages1568587.png.jpg
Access token | Virtual address descriptors (VADs)

fvm[{vm[{VAD’

Handle table

Process
object

Access token

OEBPS/httpatomoreillycomsourcemspimages1569135.png.jpg
Multimedia and real-time collaboration applications

Media and real-time communications platforms

AN
Admission control transport
UDP/TCP
IqWAVE
7 Monitoring Traffic tagging
hing |«—
Coching and probing and shipping

Physical media

OEBPS/httpatomoreillycomsourcemspimages1568955.png.jpg
Save As

[CWindowsSyteminbinoe
You don't have permission to save inthis location.
Contactthe adminiatator o obain permission.

Would you like to save in the My Documents folder instead?

Yes

OEBPS/httpatomoreillycomsourcemspimages1568909.png
3 cPU stress

Pracess Prorty Class: Nomal <
™ Acsess Shared Memory KBptes

Thiead 1
R Active

Thiead 2
I™ Active

Thiead 3
I™ Active

Thiead 4
I™ Active

Thiead Prciy:

Activiy: Masimm <

w o

TreadPiony Joma <]

Activiy: Low E

Thiead Prioity: [Nomal E

Activiy: Low <

Thiead Prioity: [Nomal -

Activiy: Low E

=]

OEBPS/httpatomoreillycomsourcemspimages1568627.png
o svchostexeidi Propertes =)

nage | Performance | Performance Graph| Services [Tveads | 15PEP | secrty | Envonment | iings|

{% Senvicss regitered inthisprocess:

Senvice Display Name. Path

AppMant Application Management C:Wwindows\System32\appmarnts. il
LanmarServer Server CWindows\system32Astvsve dl
MMCSS Mulimedia Class Scheduer CWindows\system32Ammess.dl
Themes Themes CWwindows\system32\shsves di
Winmgrt Windaws Management Instiumentaion C-\Windows\system32\wbemWMisve.di

Facitatesthe runring of interactive application with addiional admiristraive privleges. f tis service is
stopped, users wil be unable o aunch appiications with the addionsl administative pivieges they may
tecquite 1 perom desied user tasks.

P

OEBPS/httpatomoreillycomsourcemspimages1568915.png.jpg
ot

@ et apctormce
e
e
= remnetaion
+ 3 colin e
EL

FE-#X/O0Bal

A

iy Cure
BrareyCoret
FrareyCure
FraeyCoret
oy Curet
oy Curet
Py Curet
prary Cure
Prary Cune.

SEREEERE
I
EETTErrT

OEBPS/httpatomoreillycomsourcemspimages1568907.png.jpg
@ e cton View Fovares Window Help

s 2@ OB

ity rdPeormnce
2 T Mentorng Tt
8 Petormane ortar
Rty onkar
5 O Catectr St
@ Repons

Ere-le¢xsicoainne

PR MAL W

asean s A 50

st B0 Aengel T Minmum[o
Maimom| 10000 Dunton| 1
Sl Couter nstnce Prent Object_ Computer

v 10 PrertyCun. 1 CPUST. Thiesd WALDCLAPTOP

